marlin2_a10m/Marlin/Marlin.h

338 lines
10 KiB
C
Raw Normal View History

// Tonokip RepRap firmware rewrite based off of Hydra-mmm firmware.
// License: GPL
2012-06-02 20:44:17 +02:00
#ifndef MARLIN_H
#define MARLIN_H
#define FORCE_INLINE __attribute__((always_inline)) inline
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
#include <util/delay.h>
2011-12-22 12:38:50 +01:00
#include <avr/pgmspace.h>
#include <avr/eeprom.h>
#include <avr/interrupt.h>
#include "fastio.h"
#include "Configuration.h"
2015-05-21 18:44:40 +02:00
#include "pins.h"
2015-05-12 10:33:51 +02:00
#ifndef SANITYCHECK_H
#error Your Configuration.h and Configuration_adv.h files are outdated!
#endif
#include "Arduino.h"
#define BIT(b) (1<<(b))
#define TEST(n,b) (((n)&BIT(b))!=0)
2015-05-21 23:16:43 +02:00
#define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
#define RADIANS(d) ((d)*M_PI/180.0)
2015-05-28 09:19:48 +02:00
#define DEGREES(r) ((r)*180.0/M_PI)
2015-04-13 03:07:08 +02:00
#define NOLESS(v,n) do{ if (v < n) v = n; }while(0)
#define NOMORE(v,n) do{ if (v > n) v = n; }while(0)
typedef unsigned long millis_t;
// Arduino < 1.0.0 does not define this, so we need to do it ourselves
#ifndef analogInputToDigitalPin
#define analogInputToDigitalPin(p) ((p) + 0xA0)
#endif
2011-12-22 12:38:50 +01:00
#ifdef USBCON
#include "HardwareSerial.h"
#endif
#include "MarlinSerial.h"
#ifndef cbi
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#endif
#ifndef sbi
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#endif
#include "WString.h"
#ifdef USBCON
#ifdef BTENABLED
#define MYSERIAL bt
#else
#define MYSERIAL Serial
#endif // BTENABLED
2013-11-10 16:36:37 +01:00
#else
#define MYSERIAL MSerial
#endif
2015-04-04 06:43:30 +02:00
#define SERIAL_CHAR(x) MYSERIAL.write(x)
#define SERIAL_EOL SERIAL_CHAR('\n')
#define SERIAL_PROTOCOLCHAR(x) SERIAL_CHAR(x)
#define SERIAL_PROTOCOL(x) MYSERIAL.print(x)
#define SERIAL_PROTOCOL_F(x,y) MYSERIAL.print(x,y)
#define SERIAL_PROTOCOLPGM(x) serialprintPGM(PSTR(x))
#define SERIAL_PROTOCOLLN(x) do{ MYSERIAL.print(x); SERIAL_EOL; }while(0)
#define SERIAL_PROTOCOLLNPGM(x) do{ serialprintPGM(PSTR(x)); SERIAL_EOL; }while(0)
extern const char errormagic[] PROGMEM;
extern const char echomagic[] PROGMEM;
2015-04-04 06:43:30 +02:00
#define SERIAL_ERROR_START serialprintPGM(errormagic)
#define SERIAL_ERROR(x) SERIAL_PROTOCOL(x)
#define SERIAL_ERRORPGM(x) SERIAL_PROTOCOLPGM(x)
#define SERIAL_ERRORLN(x) SERIAL_PROTOCOLLN(x)
#define SERIAL_ERRORLNPGM(x) SERIAL_PROTOCOLLNPGM(x)
2015-04-04 06:43:30 +02:00
#define SERIAL_ECHO_START serialprintPGM(echomagic)
#define SERIAL_ECHO(x) SERIAL_PROTOCOL(x)
#define SERIAL_ECHOPGM(x) SERIAL_PROTOCOLPGM(x)
#define SERIAL_ECHOLN(x) SERIAL_PROTOCOLLN(x)
#define SERIAL_ECHOLNPGM(x) SERIAL_PROTOCOLLNPGM(x)
2015-04-04 06:43:30 +02:00
#define SERIAL_ECHOPAIR(name,value) do{ serial_echopair_P(PSTR(name),(value)); }while(0)
void serial_echopair_P(const char *s_P, float v);
void serial_echopair_P(const char *s_P, double v);
void serial_echopair_P(const char *s_P, unsigned long v);
// Things to write to serial from Program memory. Saves 400 to 2k of RAM.
FORCE_INLINE void serialprintPGM(const char *str) {
2015-04-04 06:58:48 +02:00
char ch;
while ((ch = pgm_read_byte(str))) {
MYSERIAL.write(ch);
2015-04-04 06:58:48 +02:00
str++;
}
}
2011-08-12 22:28:35 +02:00
void get_command();
2015-05-27 05:08:21 +02:00
void idle(); // the standard idle routine calls manage_inactivity(false)
2014-12-30 08:30:37 +01:00
void manage_inactivity(bool ignore_stepper_queue=false);
2011-08-12 22:28:35 +02:00
2015-04-04 00:31:35 +02:00
#if defined(DUAL_X_CARRIAGE) && HAS_X_ENABLE && HAS_X2_ENABLE
#define enable_x() do { X_ENABLE_WRITE( X_ENABLE_ON); X2_ENABLE_WRITE( X_ENABLE_ON); } while (0)
#define disable_x() do { X_ENABLE_WRITE(!X_ENABLE_ON); X2_ENABLE_WRITE(!X_ENABLE_ON); axis_known_position[X_AXIS] = false; } while (0)
2015-04-04 00:31:35 +02:00
#elif HAS_X_ENABLE
#define enable_x() X_ENABLE_WRITE( X_ENABLE_ON)
#define disable_x() { X_ENABLE_WRITE(!X_ENABLE_ON); axis_known_position[X_AXIS] = false; }
2011-08-12 22:28:35 +02:00
#else
#define enable_x() ;
#define disable_x() ;
2011-08-12 22:28:35 +02:00
#endif
2015-04-04 00:31:35 +02:00
#if HAS_Y_ENABLE
#ifdef Y_DUAL_STEPPER_DRIVERS
#define enable_y() { Y_ENABLE_WRITE( Y_ENABLE_ON); Y2_ENABLE_WRITE(Y_ENABLE_ON); }
#define disable_y() { Y_ENABLE_WRITE(!Y_ENABLE_ON); Y2_ENABLE_WRITE(!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; }
#else
#define enable_y() Y_ENABLE_WRITE( Y_ENABLE_ON)
#define disable_y() { Y_ENABLE_WRITE(!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; }
#endif
2011-08-12 22:28:35 +02:00
#else
#define enable_y() ;
#define disable_y() ;
2011-08-12 22:28:35 +02:00
#endif
2015-04-04 00:31:35 +02:00
#if HAS_Z_ENABLE
#ifdef Z_DUAL_STEPPER_DRIVERS
#define enable_z() { Z_ENABLE_WRITE( Z_ENABLE_ON); Z2_ENABLE_WRITE(Z_ENABLE_ON); }
#define disable_z() { Z_ENABLE_WRITE(!Z_ENABLE_ON); Z2_ENABLE_WRITE(!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }
#else
#define enable_z() Z_ENABLE_WRITE( Z_ENABLE_ON)
#define disable_z() { Z_ENABLE_WRITE(!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }
#endif
2011-08-12 22:28:35 +02:00
#else
#define enable_z() ;
#define disable_z() ;
2011-08-12 22:28:35 +02:00
#endif
2015-04-04 00:31:35 +02:00
#if HAS_E0_ENABLE
#define enable_e0() E0_ENABLE_WRITE( E_ENABLE_ON)
#define disable_e0() E0_ENABLE_WRITE(!E_ENABLE_ON)
2011-08-12 22:28:35 +02:00
#else
#define enable_e0() /* nothing */
#define disable_e0() /* nothing */
2011-08-12 22:28:35 +02:00
#endif
2015-04-04 00:31:35 +02:00
#if (EXTRUDERS > 1) && HAS_E1_ENABLE
#define enable_e1() E1_ENABLE_WRITE( E_ENABLE_ON)
#define disable_e1() E1_ENABLE_WRITE(!E_ENABLE_ON)
#else
#define enable_e1() /* nothing */
#define disable_e1() /* nothing */
#endif
2015-04-04 00:31:35 +02:00
#if (EXTRUDERS > 2) && HAS_E2_ENABLE
#define enable_e2() E2_ENABLE_WRITE( E_ENABLE_ON)
#define disable_e2() E2_ENABLE_WRITE(!E_ENABLE_ON)
#else
#define enable_e2() /* nothing */
#define disable_e2() /* nothing */
#endif
2015-04-04 00:31:35 +02:00
#if (EXTRUDERS > 3) && HAS_E3_ENABLE
#define enable_e3() E3_ENABLE_WRITE( E_ENABLE_ON)
#define disable_e3() E3_ENABLE_WRITE(!E_ENABLE_ON)
2015-01-23 23:13:06 +01:00
#else
#define enable_e3() /* nothing */
#define disable_e3() /* nothing */
#endif
/**
* The axis order in all axis related arrays is X, Y, Z, E
*/
#define NUM_AXIS 4
/**
* Axis indices as enumerated constants
*
* A_AXIS and B_AXIS are used by COREXY printers
* X_HEAD and Y_HEAD is used for systems that don't have a 1:1 relationship between X_AXIS and X Head movement, like CoreXY bots.
*/
enum AxisEnum {X_AXIS=0, Y_AXIS=1, A_AXIS=0, B_AXIS=1, Z_AXIS=2, E_AXIS=3, X_HEAD=4, Y_HEAD=5};
2011-08-12 22:28:35 +02:00
2015-05-21 23:16:43 +02:00
enum EndstopEnum {X_MIN=0, Y_MIN=1, Z_MIN=2, Z_PROBE=3, X_MAX=4, Y_MAX=5, Z_MAX=6, Z2_MIN=7, Z2_MAX=8};
void enable_all_steppers();
void disable_all_steppers();
2011-08-12 22:28:35 +02:00
void FlushSerialRequestResend();
void ok_to_send();
2011-08-12 22:28:35 +02:00
void reset_bed_level();
2011-08-12 22:28:35 +02:00
void prepare_move();
void kill(const char *);
void Stop();
#ifdef FILAMENT_RUNOUT_SENSOR
void filrunout();
#endif
/**
* Debug flags - not yet widely applied
*/
enum DebugFlags {
DEBUG_ECHO = BIT(0),
DEBUG_INFO = BIT(1),
DEBUG_ERRORS = BIT(2),
DEBUG_DRYRUN = BIT(3),
DEBUG_COMMUNICATION = BIT(4)
};
extern uint8_t marlin_debug_flags;
2015-04-08 09:56:19 +02:00
extern bool Running;
inline bool IsRunning() { return Running; }
inline bool IsStopped() { return !Running; }
2011-08-12 22:28:35 +02:00
2015-04-13 03:07:08 +02:00
bool enqueuecommand(const char *cmd); //put a single ASCII command at the end of the current buffer or return false when it is full
void enqueuecommands_P(const char *cmd); //put one or many ASCII commands at the end of the current buffer, read from flash
2011-11-15 20:54:40 +01:00
void prepare_arc_move(char isclockwise);
void clamp_to_software_endstops(float target[3]);
2015-04-13 03:07:08 +02:00
extern millis_t previous_cmd_ms;
inline void refresh_cmd_timeout() { previous_cmd_ms = millis(); }
#ifdef FAST_PWM_FAN
void setPwmFrequency(uint8_t pin, int val);
#endif
#ifndef CRITICAL_SECTION_START
#define CRITICAL_SECTION_START unsigned char _sreg = SREG; cli();
#define CRITICAL_SECTION_END SREG = _sreg;
#endif
2011-08-12 22:28:35 +02:00
extern float homing_feedrate[];
extern bool axis_relative_modes[];
2015-04-14 02:17:36 +02:00
extern int feedrate_multiplier;
extern bool volumetric_enabled;
extern int extruder_multiplier[EXTRUDERS]; // sets extrude multiply factor (in percent) for each extruder individually
extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder.
extern float volumetric_multiplier[EXTRUDERS]; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner
extern float current_position[NUM_AXIS];
2015-07-15 04:49:43 +02:00
extern float home_offset[3]; // axis[n].home_offset
extern float min_pos[3]; // axis[n].min_pos
extern float max_pos[3]; // axis[n].max_pos
extern bool axis_known_position[3]; // axis[n].is_known
2015-07-15 04:49:43 +02:00
#if defined(DELTA) || defined(SCARA)
void calculate_delta(float cartesian[3]);
#ifdef DELTA
2015-07-15 07:55:56 +02:00
extern float delta[3];
2015-07-15 04:49:43 +02:00
extern float endstop_adj[3]; // axis[n].endstop_adj
extern float delta_radius;
extern float delta_diagonal_rod;
extern float delta_segments_per_second;
void recalc_delta_settings(float radius, float diagonal_rod);
#ifdef ENABLE_AUTO_BED_LEVELING
extern int delta_grid_spacing[2];
void adjust_delta(float cartesian[3]);
#endif
#elif defined(SCARA)
extern float axis_scaling[3]; // Build size scaling
void calculate_SCARA_forward_Transform(float f_scara[3]);
#endif
#endif
2015-07-15 04:49:43 +02:00
#ifdef Z_DUAL_ENDSTOPS
extern float z_endstop_adj;
#endif
#ifdef ENABLE_AUTO_BED_LEVELING
extern float zprobe_zoffset;
#endif
#ifdef PREVENT_DANGEROUS_EXTRUDE
extern float extrude_min_temp;
#endif
extern int fanSpeed;
#ifdef BARICUDA
extern int ValvePressure;
extern int EtoPPressure;
#endif
#ifdef FAN_SOFT_PWM
extern unsigned char fanSpeedSoftPwm;
#endif
#ifdef FILAMENT_SENSOR
extern float filament_width_nominal; //holds the theoretical filament diameter ie., 3.00 or 1.75
extern bool filament_sensor; //indicates that filament sensor readings should control extrusion
extern float filament_width_meas; //holds the filament diameter as accurately measured
extern signed char measurement_delay[]; //ring buffer to delay measurement
extern int delay_index1, delay_index2; //ring buffer index. used by planner, temperature, and main code
extern float delay_dist; //delay distance counter
extern int meas_delay_cm; //delay distance
#endif
#ifdef FWRETRACT
extern bool autoretract_enabled;
2015-07-15 04:49:43 +02:00
extern bool retracted[EXTRUDERS]; // extruder[n].retracted
extern float retract_length, retract_length_swap, retract_feedrate, retract_zlift;
extern float retract_recover_length, retract_recover_length_swap, retract_recover_feedrate;
#endif
2015-04-14 02:17:36 +02:00
extern millis_t print_job_start_ms;
extern millis_t print_job_stop_ms;
// Handling multiple extruders pins
extern uint8_t active_extruder;
#ifdef DIGIPOT_I2C
extern void digipot_i2c_set_current( int channel, float current );
extern void digipot_i2c_init();
#endif
extern void calculate_volumetric_multipliers();
#endif //MARLIN_H