marlin2_a10m/Marlin/src/HAL/HAL_DUE/HAL_spi_Due.cpp

773 lines
30 KiB
C++
Raw Normal View History

2017-07-19 00:29:06 +01:00
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* Software SPI functions originally from Arduino Sd2Card Library
* Copyright (C) 2009 by William Greiman
*
* Completely rewritten and tuned by Eduardo José Tagle in 2017/2018
* in ARM thumb2 inline assembler and tuned for maximum speed and performance
* allowing SPI clocks of up to 12 Mhz to increase SD card read/write performance
2017-07-19 00:29:06 +01:00
*/
/**
* Description: HAL for Arduino Due and compatible (SAM3X8E)
*
* For ARDUINO_ARCH_SAM
*/
#ifdef ARDUINO_ARCH_SAM
// --------------------------------------------------------------------------
// Includes
// --------------------------------------------------------------------------
2017-09-06 06:28:32 -05:00
#include "../../inc/MarlinConfig.h"
2017-07-19 00:29:06 +01:00
// --------------------------------------------------------------------------
// Public Variables
// --------------------------------------------------------------------------
// --------------------------------------------------------------------------
// Public functions
// --------------------------------------------------------------------------
#if ENABLED(SOFTWARE_SPI)
// --------------------------------------------------------------------------
// software SPI
// --------------------------------------------------------------------------
Fixes for the Arduino DUE HAL (Serial Port, Graphics Display, EEPROM emulation) (#8651) * Fixing the DUE serial port assignments: Now -1 means the SAM3x USB Device emulating a serial port, and 0 means the USB to serial adapter included as a programming port * Improving the Fast IO port access implementation on Arduino DUE * Implemented EEPROM emulation on Due by storing data on the internal FLASH (with wear leveling) * Implemented a Software SPI for the ST7920 graphics display for the Arduino RAMPS for DUE, as the default one in u8glib is clocking data too fast on ARM, and the display does not understand it. * Fixing the case where the serial port selected is the USB device * Adding configuration for the Makerparts 3D printer (www.makerparts.net) * Tuned MakerParts acceleration on X and Y axis so it never loses steps. Also adjusted pulses per mm to match default hw configuration * Fine tuned Maximum acceleration for MakerParts printer * Style cleanup * Style cleanup (2) * Style fixes (3) * Fixing the DUE serial port assignments: Now -1 means the SAM3x USB Device emulating a serial port, and 0 means the USB to serial adapter included as a programming port * Improving the Fast IO port access implementation on Arduino DUE * Implemented EEPROM emulation on Due by storing data on the internal FLASH (with wear leveling) * Implemented a Software SPI for the ST7920 graphics display for the Arduino RAMPS for DUE, as the default one in u8glib is clocking data too fast on ARM, and the display does not understand it. * Fixing the case where the serial port selected is the USB device * Adding configuration for the Makerparts 3D printer (www.makerparts.net) * Tuned MakerParts acceleration on X and Y axis so it never loses steps. Also adjusted pulses per mm to match default hw configuration * Fine tuned Maximum acceleration for MakerParts printer * Style cleanup * Style changes to u8g_dev_st7920_128_64_sw_spi.cpp * Even more improvements to the FastIO HAL for DUE. Now WRITE() is 2 ASM instructions, if value is constant, and 5 cycles if value is not constant. Previously, it was 7..8 cycles * After some problems and debugging, seems we need to align the interrupt vector table to 256 bytes, otherwise, the program sometimes stops working * Moved comments out of macro, otherwise, token pasting does not properly work sometimes * Improved Software SPI implementation on DUE: Now it honors the selected speed passed to spiInit(). This allows much faster SDCARD access, improving SDCARD menus and reducing latency * Update u8g_dev_st7920_128_64_sw_spi.cpp * Disabling EEPROM over FLASH emulatiion if an I2C or SPI EEPROM is present
2017-12-12 20:51:36 -03:00
// set optimization so ARDUINO optimizes this file
#pragma GCC optimize (3)
Fixes for the Arduino DUE HAL (Serial Port, Graphics Display, EEPROM emulation) (#8651) * Fixing the DUE serial port assignments: Now -1 means the SAM3x USB Device emulating a serial port, and 0 means the USB to serial adapter included as a programming port * Improving the Fast IO port access implementation on Arduino DUE * Implemented EEPROM emulation on Due by storing data on the internal FLASH (with wear leveling) * Implemented a Software SPI for the ST7920 graphics display for the Arduino RAMPS for DUE, as the default one in u8glib is clocking data too fast on ARM, and the display does not understand it. * Fixing the case where the serial port selected is the USB device * Adding configuration for the Makerparts 3D printer (www.makerparts.net) * Tuned MakerParts acceleration on X and Y axis so it never loses steps. Also adjusted pulses per mm to match default hw configuration * Fine tuned Maximum acceleration for MakerParts printer * Style cleanup * Style cleanup (2) * Style fixes (3) * Fixing the DUE serial port assignments: Now -1 means the SAM3x USB Device emulating a serial port, and 0 means the USB to serial adapter included as a programming port * Improving the Fast IO port access implementation on Arduino DUE * Implemented EEPROM emulation on Due by storing data on the internal FLASH (with wear leveling) * Implemented a Software SPI for the ST7920 graphics display for the Arduino RAMPS for DUE, as the default one in u8glib is clocking data too fast on ARM, and the display does not understand it. * Fixing the case where the serial port selected is the USB device * Adding configuration for the Makerparts 3D printer (www.makerparts.net) * Tuned MakerParts acceleration on X and Y axis so it never loses steps. Also adjusted pulses per mm to match default hw configuration * Fine tuned Maximum acceleration for MakerParts printer * Style cleanup * Style changes to u8g_dev_st7920_128_64_sw_spi.cpp * Even more improvements to the FastIO HAL for DUE. Now WRITE() is 2 ASM instructions, if value is constant, and 5 cycles if value is not constant. Previously, it was 7..8 cycles * After some problems and debugging, seems we need to align the interrupt vector table to 256 bytes, otherwise, the program sometimes stops working * Moved comments out of macro, otherwise, token pasting does not properly work sometimes * Improved Software SPI implementation on DUE: Now it honors the selected speed passed to spiInit(). This allows much faster SDCARD access, improving SDCARD menus and reducing latency * Update u8g_dev_st7920_128_64_sw_spi.cpp * Disabling EEPROM over FLASH emulatiion if an I2C or SPI EEPROM is present
2017-12-12 20:51:36 -03:00
/* ---------------- Delay Cycles routine -------------- */
/* https://blueprints.launchpad.net/gcc-arm-embedded/+spec/delay-cycles */
#define nop() __asm__ __volatile__("nop;\n\t":::)
FORCE_INLINE static void __delay_4cycles(uint32_t cy) { // +1 cycle
#if ARCH_PIPELINE_RELOAD_CYCLES<2
#define EXTRA_NOP_CYCLES "nop"
#else
#define EXTRA_NOP_CYCLES ""
#endif
__asm__ __volatile__(
".syntax unified" "\n\t" // is to prevent CM0,CM1 non-unified syntax
"loop%=:" "\n\t"
" subs %[cnt],#1" "\n\t"
EXTRA_NOP_CYCLES "\n\t"
" bne loop%=" "\n\t"
: [cnt]"+r"(cy) // output: +r means input+output
: // input:
: "cc" // clobbers:
);
}
FORCE_INLINE static void DELAY_CYCLES(uint32_t x) {
if (__builtin_constant_p(x)) {
#define MAXNOPS 4
if (x <= (MAXNOPS)) {
switch(x) { case 4: nop(); case 3: nop(); case 2: nop(); case 1: nop(); }
2017-07-19 00:29:06 +01:00
}
Fixes for the Arduino DUE HAL (Serial Port, Graphics Display, EEPROM emulation) (#8651) * Fixing the DUE serial port assignments: Now -1 means the SAM3x USB Device emulating a serial port, and 0 means the USB to serial adapter included as a programming port * Improving the Fast IO port access implementation on Arduino DUE * Implemented EEPROM emulation on Due by storing data on the internal FLASH (with wear leveling) * Implemented a Software SPI for the ST7920 graphics display for the Arduino RAMPS for DUE, as the default one in u8glib is clocking data too fast on ARM, and the display does not understand it. * Fixing the case where the serial port selected is the USB device * Adding configuration for the Makerparts 3D printer (www.makerparts.net) * Tuned MakerParts acceleration on X and Y axis so it never loses steps. Also adjusted pulses per mm to match default hw configuration * Fine tuned Maximum acceleration for MakerParts printer * Style cleanup * Style cleanup (2) * Style fixes (3) * Fixing the DUE serial port assignments: Now -1 means the SAM3x USB Device emulating a serial port, and 0 means the USB to serial adapter included as a programming port * Improving the Fast IO port access implementation on Arduino DUE * Implemented EEPROM emulation on Due by storing data on the internal FLASH (with wear leveling) * Implemented a Software SPI for the ST7920 graphics display for the Arduino RAMPS for DUE, as the default one in u8glib is clocking data too fast on ARM, and the display does not understand it. * Fixing the case where the serial port selected is the USB device * Adding configuration for the Makerparts 3D printer (www.makerparts.net) * Tuned MakerParts acceleration on X and Y axis so it never loses steps. Also adjusted pulses per mm to match default hw configuration * Fine tuned Maximum acceleration for MakerParts printer * Style cleanup * Style changes to u8g_dev_st7920_128_64_sw_spi.cpp * Even more improvements to the FastIO HAL for DUE. Now WRITE() is 2 ASM instructions, if value is constant, and 5 cycles if value is not constant. Previously, it was 7..8 cycles * After some problems and debugging, seems we need to align the interrupt vector table to 256 bytes, otherwise, the program sometimes stops working * Moved comments out of macro, otherwise, token pasting does not properly work sometimes * Improved Software SPI implementation on DUE: Now it honors the selected speed passed to spiInit(). This allows much faster SDCARD access, improving SDCARD menus and reducing latency * Update u8g_dev_st7920_128_64_sw_spi.cpp * Disabling EEPROM over FLASH emulatiion if an I2C or SPI EEPROM is present
2017-12-12 20:51:36 -03:00
else { // because of +1 cycle inside delay_4cycles
const uint32_t rem = (x - 1) % (MAXNOPS);
switch(rem) { case 3: nop(); case 2: nop(); case 1: nop(); }
if ((x = (x - 1) / (MAXNOPS)))
__delay_4cycles(x); // if need more then 4 nop loop is more optimal
2017-07-19 00:29:06 +01:00
}
Fixes for the Arduino DUE HAL (Serial Port, Graphics Display, EEPROM emulation) (#8651) * Fixing the DUE serial port assignments: Now -1 means the SAM3x USB Device emulating a serial port, and 0 means the USB to serial adapter included as a programming port * Improving the Fast IO port access implementation on Arduino DUE * Implemented EEPROM emulation on Due by storing data on the internal FLASH (with wear leveling) * Implemented a Software SPI for the ST7920 graphics display for the Arduino RAMPS for DUE, as the default one in u8glib is clocking data too fast on ARM, and the display does not understand it. * Fixing the case where the serial port selected is the USB device * Adding configuration for the Makerparts 3D printer (www.makerparts.net) * Tuned MakerParts acceleration on X and Y axis so it never loses steps. Also adjusted pulses per mm to match default hw configuration * Fine tuned Maximum acceleration for MakerParts printer * Style cleanup * Style cleanup (2) * Style fixes (3) * Fixing the DUE serial port assignments: Now -1 means the SAM3x USB Device emulating a serial port, and 0 means the USB to serial adapter included as a programming port * Improving the Fast IO port access implementation on Arduino DUE * Implemented EEPROM emulation on Due by storing data on the internal FLASH (with wear leveling) * Implemented a Software SPI for the ST7920 graphics display for the Arduino RAMPS for DUE, as the default one in u8glib is clocking data too fast on ARM, and the display does not understand it. * Fixing the case where the serial port selected is the USB device * Adding configuration for the Makerparts 3D printer (www.makerparts.net) * Tuned MakerParts acceleration on X and Y axis so it never loses steps. Also adjusted pulses per mm to match default hw configuration * Fine tuned Maximum acceleration for MakerParts printer * Style cleanup * Style changes to u8g_dev_st7920_128_64_sw_spi.cpp * Even more improvements to the FastIO HAL for DUE. Now WRITE() is 2 ASM instructions, if value is constant, and 5 cycles if value is not constant. Previously, it was 7..8 cycles * After some problems and debugging, seems we need to align the interrupt vector table to 256 bytes, otherwise, the program sometimes stops working * Moved comments out of macro, otherwise, token pasting does not properly work sometimes * Improved Software SPI implementation on DUE: Now it honors the selected speed passed to spiInit(). This allows much faster SDCARD access, improving SDCARD menus and reducing latency * Update u8g_dev_st7920_128_64_sw_spi.cpp * Disabling EEPROM over FLASH emulatiion if an I2C or SPI EEPROM is present
2017-12-12 20:51:36 -03:00
}
else
__delay_4cycles(x / 4);
}
/* ---------------- Delay in nanoseconds and in microseconds */
#define DELAY_NS(x) DELAY_CYCLES( (x) * (F_CPU/1000000) / 1000)
typedef uint8_t (*pfnSpiTransfer) (uint8_t b);
typedef void (*pfnSpiRxBlock)(uint8_t* buf, uint32_t nbyte);
typedef void (*pfnSpiTxBlock)(const uint8_t* buf, uint32_t nbyte);
Fixes for the Arduino DUE HAL (Serial Port, Graphics Display, EEPROM emulation) (#8651) * Fixing the DUE serial port assignments: Now -1 means the SAM3x USB Device emulating a serial port, and 0 means the USB to serial adapter included as a programming port * Improving the Fast IO port access implementation on Arduino DUE * Implemented EEPROM emulation on Due by storing data on the internal FLASH (with wear leveling) * Implemented a Software SPI for the ST7920 graphics display for the Arduino RAMPS for DUE, as the default one in u8glib is clocking data too fast on ARM, and the display does not understand it. * Fixing the case where the serial port selected is the USB device * Adding configuration for the Makerparts 3D printer (www.makerparts.net) * Tuned MakerParts acceleration on X and Y axis so it never loses steps. Also adjusted pulses per mm to match default hw configuration * Fine tuned Maximum acceleration for MakerParts printer * Style cleanup * Style cleanup (2) * Style fixes (3) * Fixing the DUE serial port assignments: Now -1 means the SAM3x USB Device emulating a serial port, and 0 means the USB to serial adapter included as a programming port * Improving the Fast IO port access implementation on Arduino DUE * Implemented EEPROM emulation on Due by storing data on the internal FLASH (with wear leveling) * Implemented a Software SPI for the ST7920 graphics display for the Arduino RAMPS for DUE, as the default one in u8glib is clocking data too fast on ARM, and the display does not understand it. * Fixing the case where the serial port selected is the USB device * Adding configuration for the Makerparts 3D printer (www.makerparts.net) * Tuned MakerParts acceleration on X and Y axis so it never loses steps. Also adjusted pulses per mm to match default hw configuration * Fine tuned Maximum acceleration for MakerParts printer * Style cleanup * Style changes to u8g_dev_st7920_128_64_sw_spi.cpp * Even more improvements to the FastIO HAL for DUE. Now WRITE() is 2 ASM instructions, if value is constant, and 5 cycles if value is not constant. Previously, it was 7..8 cycles * After some problems and debugging, seems we need to align the interrupt vector table to 256 bytes, otherwise, the program sometimes stops working * Moved comments out of macro, otherwise, token pasting does not properly work sometimes * Improved Software SPI implementation on DUE: Now it honors the selected speed passed to spiInit(). This allows much faster SDCARD access, improving SDCARD menus and reducing latency * Update u8g_dev_st7920_128_64_sw_spi.cpp * Disabling EEPROM over FLASH emulatiion if an I2C or SPI EEPROM is present
2017-12-12 20:51:36 -03:00
/* ---------------- Macros to be able to access definitions from asm */
#define _PORT(IO) DIO ## IO ## _WPORT
#define _PIN_MASK(IO) MASK(DIO ## IO ## _PIN)
#define _PIN_SHIFT(IO) DIO ## IO ## _PIN
#define PORT(IO) _PORT(IO)
#define PIN_MASK(IO) _PIN_MASK(IO)
#define PIN_SHIFT(IO) _PIN_SHIFT(IO)
// run at ~8 .. ~10Mhz - Tx version (Rx data discarded)
static uint8_t spiTransferTx0(uint8_t bout) { // using Mode 0
register uint32_t MOSI_PORT_PLUS30 = ((uint32_t) PORT(MOSI_PIN)) + 0x30; /* SODR of port */
register uint32_t MOSI_MASK = PIN_MASK(MOSI_PIN);
register uint32_t SCK_PORT_PLUS30 = ((uint32_t) PORT(SCK_PIN)) + 0x30; /* SODR of port */
register uint32_t SCK_MASK = PIN_MASK(SCK_PIN);
register uint32_t idx;
/* Negate bout, as the assembler requires a negated value */
bout = ~bout;
/* The software SPI routine */
__asm__ __volatile__(
".syntax unified" "\n\t" // is to prevent CM0,CM1 non-unified syntax
/* Bit 7 */
" ubfx %[idx],%[txval],#7,#1" "\n\t" /* Place bit 7 in bit 0 of idx*/
" str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ubfx %[idx],%[txval],#6,#1" "\n\t" /* Place bit 6 in bit 0 of idx*/
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
/* Bit 6 */
" str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ubfx %[idx],%[txval],#5,#1" "\n\t" /* Place bit 5 in bit 0 of idx*/
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
/* Bit 5 */
" str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ubfx %[idx],%[txval],#4,#1" "\n\t" /* Place bit 4 in bit 0 of idx*/
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
/* Bit 4 */
" str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ubfx %[idx],%[txval],#3,#1" "\n\t" /* Place bit 3 in bit 0 of idx*/
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
/* Bit 3 */
" str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ubfx %[idx],%[txval],#2,#1" "\n\t" /* Place bit 2 in bit 0 of idx*/
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
/* Bit 2 */
" str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ubfx %[idx],%[txval],#1,#1" "\n\t" /* Place bit 1 in bit 0 of idx*/
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
/* Bit 1 */
" str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ubfx %[idx],%[txval],#0,#1" "\n\t" /* Place bit 0 in bit 0 of idx*/
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
/* Bit 0 */
" str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" nop" "\n\t" /* Result will be 0 */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
: [idx]"+r"( idx )
: [txval]"r"( bout ) ,
[mosi_mask]"r"( MOSI_MASK ),
[mosi_port]"r"( MOSI_PORT_PLUS30 ),
[sck_mask]"r"( SCK_MASK ),
[sck_port]"r"( SCK_PORT_PLUS30 )
: "cc"
);
return 0;
}
// Calculates the bit band alias address and returns a pointer address to word.
// addr: The byte address of bitbanding bit.
// bit: The bit position of bitbanding bit.
#define BITBAND_ADDRESS(addr, bit) \
(((uint32_t)(addr) & 0xF0000000) + 0x02000000 + ((uint32_t)(addr)&0xFFFFF)*32 + (bit)*4)
// run at ~8 .. ~10Mhz - Rx version (Tx line not altered)
static uint8_t spiTransferRx0(uint8_t bout) { // using Mode 0
register uint32_t bin;
register uint32_t work;
register uint32_t BITBAND_MISO_PORT = BITBAND_ADDRESS( ((uint32_t)PORT(MISO_PIN))+0x3C, PIN_SHIFT(MISO_PIN)); /* PDSR of port in bitband area */
register uint32_t SCK_PORT_PLUS30 = ((uint32_t) PORT(SCK_PIN)) + 0x30; /* SODR of port */
register uint32_t SCK_MASK = PIN_MASK(SCK_PIN);
UNUSED(bout);
/* The software SPI routine */
__asm__ __volatile__(
".syntax unified" "\n\t" // is to prevent CM0,CM1 non-unified syntax
/* bit 7 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
" bfi %[bin],%[work],#7,#1" "\n\t" /* Store read bit as the bit 7 */
/* bit 6 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
" bfi %[bin],%[work],#6,#1" "\n\t" /* Store read bit as the bit 6 */
/* bit 5 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
" bfi %[bin],%[work],#5,#1" "\n\t" /* Store read bit as the bit 5 */
/* bit 4 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
" bfi %[bin],%[work],#4,#1" "\n\t" /* Store read bit as the bit 4 */
/* bit 3 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
" bfi %[bin],%[work],#3,#1" "\n\t" /* Store read bit as the bit 3 */
/* bit 2 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
" bfi %[bin],%[work],#2,#1" "\n\t" /* Store read bit as the bit 2 */
/* bit 1 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
" bfi %[bin],%[work],#1,#1" "\n\t" /* Store read bit as the bit 1 */
/* bit 0 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
" bfi %[bin],%[work],#0,#1" "\n\t" /* Store read bit as the bit 0 */
: [bin]"+r"(bin),
[work]"+r"(work)
: [bitband_miso_port]"r"( BITBAND_MISO_PORT ),
[sck_mask]"r"( SCK_MASK ),
[sck_port]"r"( SCK_PORT_PLUS30 )
: "cc"
);
return bin;
Fixes for the Arduino DUE HAL (Serial Port, Graphics Display, EEPROM emulation) (#8651) * Fixing the DUE serial port assignments: Now -1 means the SAM3x USB Device emulating a serial port, and 0 means the USB to serial adapter included as a programming port * Improving the Fast IO port access implementation on Arduino DUE * Implemented EEPROM emulation on Due by storing data on the internal FLASH (with wear leveling) * Implemented a Software SPI for the ST7920 graphics display for the Arduino RAMPS for DUE, as the default one in u8glib is clocking data too fast on ARM, and the display does not understand it. * Fixing the case where the serial port selected is the USB device * Adding configuration for the Makerparts 3D printer (www.makerparts.net) * Tuned MakerParts acceleration on X and Y axis so it never loses steps. Also adjusted pulses per mm to match default hw configuration * Fine tuned Maximum acceleration for MakerParts printer * Style cleanup * Style cleanup (2) * Style fixes (3) * Fixing the DUE serial port assignments: Now -1 means the SAM3x USB Device emulating a serial port, and 0 means the USB to serial adapter included as a programming port * Improving the Fast IO port access implementation on Arduino DUE * Implemented EEPROM emulation on Due by storing data on the internal FLASH (with wear leveling) * Implemented a Software SPI for the ST7920 graphics display for the Arduino RAMPS for DUE, as the default one in u8glib is clocking data too fast on ARM, and the display does not understand it. * Fixing the case where the serial port selected is the USB device * Adding configuration for the Makerparts 3D printer (www.makerparts.net) * Tuned MakerParts acceleration on X and Y axis so it never loses steps. Also adjusted pulses per mm to match default hw configuration * Fine tuned Maximum acceleration for MakerParts printer * Style cleanup * Style changes to u8g_dev_st7920_128_64_sw_spi.cpp * Even more improvements to the FastIO HAL for DUE. Now WRITE() is 2 ASM instructions, if value is constant, and 5 cycles if value is not constant. Previously, it was 7..8 cycles * After some problems and debugging, seems we need to align the interrupt vector table to 256 bytes, otherwise, the program sometimes stops working * Moved comments out of macro, otherwise, token pasting does not properly work sometimes * Improved Software SPI implementation on DUE: Now it honors the selected speed passed to spiInit(). This allows much faster SDCARD access, improving SDCARD menus and reducing latency * Update u8g_dev_st7920_128_64_sw_spi.cpp * Disabling EEPROM over FLASH emulatiion if an I2C or SPI EEPROM is present
2017-12-12 20:51:36 -03:00
}
// run at ~4Mhz
static uint8_t spiTransfer1(uint8_t b) { // using Mode 0
int bits = 8;
do {
WRITE(MOSI_PIN, b & 0x80);
b <<= 1; // little setup time
2017-07-19 00:29:06 +01:00
WRITE(SCK_PIN, HIGH);
DELAY_NS(125); // 10 cycles @ 84mhz
Fixes for the Arduino DUE HAL (Serial Port, Graphics Display, EEPROM emulation) (#8651) * Fixing the DUE serial port assignments: Now -1 means the SAM3x USB Device emulating a serial port, and 0 means the USB to serial adapter included as a programming port * Improving the Fast IO port access implementation on Arduino DUE * Implemented EEPROM emulation on Due by storing data on the internal FLASH (with wear leveling) * Implemented a Software SPI for the ST7920 graphics display for the Arduino RAMPS for DUE, as the default one in u8glib is clocking data too fast on ARM, and the display does not understand it. * Fixing the case where the serial port selected is the USB device * Adding configuration for the Makerparts 3D printer (www.makerparts.net) * Tuned MakerParts acceleration on X and Y axis so it never loses steps. Also adjusted pulses per mm to match default hw configuration * Fine tuned Maximum acceleration for MakerParts printer * Style cleanup * Style cleanup (2) * Style fixes (3) * Fixing the DUE serial port assignments: Now -1 means the SAM3x USB Device emulating a serial port, and 0 means the USB to serial adapter included as a programming port * Improving the Fast IO port access implementation on Arduino DUE * Implemented EEPROM emulation on Due by storing data on the internal FLASH (with wear leveling) * Implemented a Software SPI for the ST7920 graphics display for the Arduino RAMPS for DUE, as the default one in u8glib is clocking data too fast on ARM, and the display does not understand it. * Fixing the case where the serial port selected is the USB device * Adding configuration for the Makerparts 3D printer (www.makerparts.net) * Tuned MakerParts acceleration on X and Y axis so it never loses steps. Also adjusted pulses per mm to match default hw configuration * Fine tuned Maximum acceleration for MakerParts printer * Style cleanup * Style changes to u8g_dev_st7920_128_64_sw_spi.cpp * Even more improvements to the FastIO HAL for DUE. Now WRITE() is 2 ASM instructions, if value is constant, and 5 cycles if value is not constant. Previously, it was 7..8 cycles * After some problems and debugging, seems we need to align the interrupt vector table to 256 bytes, otherwise, the program sometimes stops working * Moved comments out of macro, otherwise, token pasting does not properly work sometimes * Improved Software SPI implementation on DUE: Now it honors the selected speed passed to spiInit(). This allows much faster SDCARD access, improving SDCARD menus and reducing latency * Update u8g_dev_st7920_128_64_sw_spi.cpp * Disabling EEPROM over FLASH emulatiion if an I2C or SPI EEPROM is present
2017-12-12 20:51:36 -03:00
b |= (READ(MISO_PIN) != 0);
2017-07-19 00:29:06 +01:00
WRITE(SCK_PIN, LOW);
DELAY_NS(125); // 10 cycles @ 84mhz
Fixes for the Arduino DUE HAL (Serial Port, Graphics Display, EEPROM emulation) (#8651) * Fixing the DUE serial port assignments: Now -1 means the SAM3x USB Device emulating a serial port, and 0 means the USB to serial adapter included as a programming port * Improving the Fast IO port access implementation on Arduino DUE * Implemented EEPROM emulation on Due by storing data on the internal FLASH (with wear leveling) * Implemented a Software SPI for the ST7920 graphics display for the Arduino RAMPS for DUE, as the default one in u8glib is clocking data too fast on ARM, and the display does not understand it. * Fixing the case where the serial port selected is the USB device * Adding configuration for the Makerparts 3D printer (www.makerparts.net) * Tuned MakerParts acceleration on X and Y axis so it never loses steps. Also adjusted pulses per mm to match default hw configuration * Fine tuned Maximum acceleration for MakerParts printer * Style cleanup * Style cleanup (2) * Style fixes (3) * Fixing the DUE serial port assignments: Now -1 means the SAM3x USB Device emulating a serial port, and 0 means the USB to serial adapter included as a programming port * Improving the Fast IO port access implementation on Arduino DUE * Implemented EEPROM emulation on Due by storing data on the internal FLASH (with wear leveling) * Implemented a Software SPI for the ST7920 graphics display for the Arduino RAMPS for DUE, as the default one in u8glib is clocking data too fast on ARM, and the display does not understand it. * Fixing the case where the serial port selected is the USB device * Adding configuration for the Makerparts 3D printer (www.makerparts.net) * Tuned MakerParts acceleration on X and Y axis so it never loses steps. Also adjusted pulses per mm to match default hw configuration * Fine tuned Maximum acceleration for MakerParts printer * Style cleanup * Style changes to u8g_dev_st7920_128_64_sw_spi.cpp * Even more improvements to the FastIO HAL for DUE. Now WRITE() is 2 ASM instructions, if value is constant, and 5 cycles if value is not constant. Previously, it was 7..8 cycles * After some problems and debugging, seems we need to align the interrupt vector table to 256 bytes, otherwise, the program sometimes stops working * Moved comments out of macro, otherwise, token pasting does not properly work sometimes * Improved Software SPI implementation on DUE: Now it honors the selected speed passed to spiInit(). This allows much faster SDCARD access, improving SDCARD menus and reducing latency * Update u8g_dev_st7920_128_64_sw_spi.cpp * Disabling EEPROM over FLASH emulatiion if an I2C or SPI EEPROM is present
2017-12-12 20:51:36 -03:00
} while (--bits);
2017-07-19 00:29:06 +01:00
return b;
}
Fixes for the Arduino DUE HAL (Serial Port, Graphics Display, EEPROM emulation) (#8651) * Fixing the DUE serial port assignments: Now -1 means the SAM3x USB Device emulating a serial port, and 0 means the USB to serial adapter included as a programming port * Improving the Fast IO port access implementation on Arduino DUE * Implemented EEPROM emulation on Due by storing data on the internal FLASH (with wear leveling) * Implemented a Software SPI for the ST7920 graphics display for the Arduino RAMPS for DUE, as the default one in u8glib is clocking data too fast on ARM, and the display does not understand it. * Fixing the case where the serial port selected is the USB device * Adding configuration for the Makerparts 3D printer (www.makerparts.net) * Tuned MakerParts acceleration on X and Y axis so it never loses steps. Also adjusted pulses per mm to match default hw configuration * Fine tuned Maximum acceleration for MakerParts printer * Style cleanup * Style cleanup (2) * Style fixes (3) * Fixing the DUE serial port assignments: Now -1 means the SAM3x USB Device emulating a serial port, and 0 means the USB to serial adapter included as a programming port * Improving the Fast IO port access implementation on Arduino DUE * Implemented EEPROM emulation on Due by storing data on the internal FLASH (with wear leveling) * Implemented a Software SPI for the ST7920 graphics display for the Arduino RAMPS for DUE, as the default one in u8glib is clocking data too fast on ARM, and the display does not understand it. * Fixing the case where the serial port selected is the USB device * Adding configuration for the Makerparts 3D printer (www.makerparts.net) * Tuned MakerParts acceleration on X and Y axis so it never loses steps. Also adjusted pulses per mm to match default hw configuration * Fine tuned Maximum acceleration for MakerParts printer * Style cleanup * Style changes to u8g_dev_st7920_128_64_sw_spi.cpp * Even more improvements to the FastIO HAL for DUE. Now WRITE() is 2 ASM instructions, if value is constant, and 5 cycles if value is not constant. Previously, it was 7..8 cycles * After some problems and debugging, seems we need to align the interrupt vector table to 256 bytes, otherwise, the program sometimes stops working * Moved comments out of macro, otherwise, token pasting does not properly work sometimes * Improved Software SPI implementation on DUE: Now it honors the selected speed passed to spiInit(). This allows much faster SDCARD access, improving SDCARD menus and reducing latency * Update u8g_dev_st7920_128_64_sw_spi.cpp * Disabling EEPROM over FLASH emulatiion if an I2C or SPI EEPROM is present
2017-12-12 20:51:36 -03:00
// all the others
static uint32_t spiDelayCyclesX4 = (F_CPU/1000000); // 4uS => 125khz
static uint8_t spiTransferX(uint8_t b) { // using Mode 0
int bits = 8;
do {
WRITE(MOSI_PIN, b & 0x80);
b <<= 1; // little setup time
WRITE(SCK_PIN, HIGH);
__delay_4cycles(spiDelayCyclesX4);
b |= (READ(MISO_PIN) != 0);
WRITE(SCK_PIN, LOW);
__delay_4cycles(spiDelayCyclesX4);
} while (--bits);
return b;
}
// Pointers to generic functions for byte transfers
static pfnSpiTransfer spiTransferTx = spiTransferX;
static pfnSpiTransfer spiTransferRx = spiTransferX;
Fixes for the Arduino DUE HAL (Serial Port, Graphics Display, EEPROM emulation) (#8651) * Fixing the DUE serial port assignments: Now -1 means the SAM3x USB Device emulating a serial port, and 0 means the USB to serial adapter included as a programming port * Improving the Fast IO port access implementation on Arduino DUE * Implemented EEPROM emulation on Due by storing data on the internal FLASH (with wear leveling) * Implemented a Software SPI for the ST7920 graphics display for the Arduino RAMPS for DUE, as the default one in u8glib is clocking data too fast on ARM, and the display does not understand it. * Fixing the case where the serial port selected is the USB device * Adding configuration for the Makerparts 3D printer (www.makerparts.net) * Tuned MakerParts acceleration on X and Y axis so it never loses steps. Also adjusted pulses per mm to match default hw configuration * Fine tuned Maximum acceleration for MakerParts printer * Style cleanup * Style cleanup (2) * Style fixes (3) * Fixing the DUE serial port assignments: Now -1 means the SAM3x USB Device emulating a serial port, and 0 means the USB to serial adapter included as a programming port * Improving the Fast IO port access implementation on Arduino DUE * Implemented EEPROM emulation on Due by storing data on the internal FLASH (with wear leveling) * Implemented a Software SPI for the ST7920 graphics display for the Arduino RAMPS for DUE, as the default one in u8glib is clocking data too fast on ARM, and the display does not understand it. * Fixing the case where the serial port selected is the USB device * Adding configuration for the Makerparts 3D printer (www.makerparts.net) * Tuned MakerParts acceleration on X and Y axis so it never loses steps. Also adjusted pulses per mm to match default hw configuration * Fine tuned Maximum acceleration for MakerParts printer * Style cleanup * Style changes to u8g_dev_st7920_128_64_sw_spi.cpp * Even more improvements to the FastIO HAL for DUE. Now WRITE() is 2 ASM instructions, if value is constant, and 5 cycles if value is not constant. Previously, it was 7..8 cycles * After some problems and debugging, seems we need to align the interrupt vector table to 256 bytes, otherwise, the program sometimes stops working * Moved comments out of macro, otherwise, token pasting does not properly work sometimes * Improved Software SPI implementation on DUE: Now it honors the selected speed passed to spiInit(). This allows much faster SDCARD access, improving SDCARD menus and reducing latency * Update u8g_dev_st7920_128_64_sw_spi.cpp * Disabling EEPROM over FLASH emulatiion if an I2C or SPI EEPROM is present
2017-12-12 20:51:36 -03:00
// Block transfers run at ~8 .. ~10Mhz - Tx version (Rx data discarded)
static void spiTxBlock0(const uint8_t* ptr, uint32_t todo) {
register uint32_t MOSI_PORT_PLUS30 = ((uint32_t) PORT(MOSI_PIN)) + 0x30; /* SODR of port */
register uint32_t MOSI_MASK = PIN_MASK(MOSI_PIN);
register uint32_t SCK_PORT_PLUS30 = ((uint32_t) PORT(SCK_PIN)) + 0x30; /* SODR of port */
register uint32_t SCK_MASK = PIN_MASK(SCK_PIN);
register uint32_t work;
register uint32_t txval;
/* The software SPI routine */
__asm__ __volatile__(
".syntax unified" "\n\t" // is to prevent CM0,CM1 non-unified syntax
" loop%=:" "\n\t"
" ldrb.w %[txval], [%[ptr]], #1" "\n\t" /* Load value to send, increment buffer */
" mvn %[txval],%[txval]" "\n\t" /* Negate value */
/* Bit 7 */
" ubfx %[work],%[txval],#7,#1" "\n\t" /* Place bit 7 in bit 0 of work*/
" str %[mosi_mask],[%[mosi_port], %[work],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ubfx %[work],%[txval],#6,#1" "\n\t" /* Place bit 6 in bit 0 of work*/
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
/* Bit 6 */
" str %[mosi_mask],[%[mosi_port], %[work],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ubfx %[work],%[txval],#5,#1" "\n\t" /* Place bit 5 in bit 0 of work*/
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
/* Bit 5 */
" str %[mosi_mask],[%[mosi_port], %[work],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ubfx %[work],%[txval],#4,#1" "\n\t" /* Place bit 4 in bit 0 of work*/
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
/* Bit 4 */
" str %[mosi_mask],[%[mosi_port], %[work],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ubfx %[work],%[txval],#3,#1" "\n\t" /* Place bit 3 in bit 0 of work*/
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
/* Bit 3 */
" str %[mosi_mask],[%[mosi_port], %[work],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ubfx %[work],%[txval],#2,#1" "\n\t" /* Place bit 2 in bit 0 of work*/
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
/* Bit 2 */
" str %[mosi_mask],[%[mosi_port], %[work],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ubfx %[work],%[txval],#1,#1" "\n\t" /* Place bit 1 in bit 0 of work*/
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
/* Bit 1 */
" str %[mosi_mask],[%[mosi_port], %[work],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ubfx %[work],%[txval],#0,#1" "\n\t" /* Place bit 0 in bit 0 of work*/
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
/* Bit 0 */
" str %[mosi_mask],[%[mosi_port], %[work],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" subs %[todo],#1" "\n\t" /* Decrement count of pending words to send, update status */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
" bne.n loop%=" "\n\t" /* Repeat until done */
: [ptr]"+r" ( ptr ) ,
[todo]"+r" ( todo ) ,
[work]"+r"( work ) ,
[txval]"+r"( txval )
: [mosi_mask]"r"( MOSI_MASK ),
[mosi_port]"r"( MOSI_PORT_PLUS30 ),
[sck_mask]"r"( SCK_MASK ),
[sck_port]"r"( SCK_PORT_PLUS30 )
: "cc"
);
}
static void spiRxBlock0(uint8_t* ptr, uint32_t todo) {
register uint32_t bin;
register uint32_t work;
register uint32_t BITBAND_MISO_PORT = BITBAND_ADDRESS( ((uint32_t)PORT(MISO_PIN))+0x3C, PIN_SHIFT(MISO_PIN)); /* PDSR of port in bitband area */
register uint32_t SCK_PORT_PLUS30 = ((uint32_t) PORT(SCK_PIN)) + 0x30; /* SODR of port */
register uint32_t SCK_MASK = PIN_MASK(SCK_PIN);
/* The software SPI routine */
__asm__ __volatile__(
".syntax unified" "\n\t" // is to prevent CM0,CM1 non-unified syntax
" loop%=:" "\n\t"
/* bit 7 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
" bfi %[bin],%[work],#7,#1" "\n\t" /* Store read bit as the bit 7 */
/* bit 6 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
" bfi %[bin],%[work],#6,#1" "\n\t" /* Store read bit as the bit 6 */
/* bit 5 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
" bfi %[bin],%[work],#5,#1" "\n\t" /* Store read bit as the bit 5 */
/* bit 4 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
" bfi %[bin],%[work],#4,#1" "\n\t" /* Store read bit as the bit 4 */
/* bit 3 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
" bfi %[bin],%[work],#3,#1" "\n\t" /* Store read bit as the bit 3 */
/* bit 2 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
" bfi %[bin],%[work],#2,#1" "\n\t" /* Store read bit as the bit 2 */
/* bit 1 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
" bfi %[bin],%[work],#1,#1" "\n\t" /* Store read bit as the bit 1 */
/* bit 0 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
" bfi %[bin],%[work],#0,#1" "\n\t" /* Store read bit as the bit 0 */
" subs %[todo],#1" "\n\t" /* Decrement count of pending words to send, update status */
" strb.w %[bin], [%[ptr]], #1" "\n\t" /* Store read value into buffer, increment buffer pointer */
" bne.n loop%=" "\n\t" /* Repeat until done */
: [ptr]"+r"(ptr),
[todo]"+r"(todo),
[bin]"+r"(bin),
[work]"+r"(work)
: [bitband_miso_port]"r"( BITBAND_MISO_PORT ),
[sck_mask]"r"( SCK_MASK ),
[sck_port]"r"( SCK_PORT_PLUS30 )
: "cc"
);
}
static void spiTxBlockX(const uint8_t* buf, uint32_t todo) {
do {
(void) spiTransferTx(*buf++);
} while (--todo);
}
static void spiRxBlockX(uint8_t* buf, uint32_t todo) {
do {
*buf++ = spiTransferRx(0xff);
} while (--todo);
}
// Pointers to generic functions for block tranfers
static pfnSpiTxBlock spiTxBlock = spiTxBlockX;
static pfnSpiRxBlock spiRxBlock = spiRxBlockX;
2017-07-19 00:29:06 +01:00
void spiBegin() {
SET_OUTPUT(SS_PIN);
WRITE(SS_PIN, HIGH);
SET_OUTPUT(SCK_PIN);
SET_INPUT(MISO_PIN);
SET_OUTPUT(MOSI_PIN);
}
uint8_t spiRec() {
WRITE(SS_PIN, LOW);
WRITE(MOSI_PIN, 1); /* Output 1s 1*/
uint8_t b = spiTransferRx(0xFF);
WRITE(SS_PIN, HIGH);
return b;
}
void spiRead(uint8_t* buf, uint16_t nbyte) {
uint32_t todo = nbyte;
if (todo == 0) return;
WRITE(SS_PIN, LOW);
WRITE(MOSI_PIN, 1); /* Output 1s 1*/
spiRxBlock(buf,nbyte);
WRITE(SS_PIN, HIGH);
}
void spiSend(uint8_t b) {
WRITE(SS_PIN, LOW);
(void) spiTransferTx(b);
WRITE(SS_PIN, HIGH);
}
void spiSendBlock(uint8_t token, const uint8_t* buf) {
WRITE(SS_PIN, LOW);
(void) spiTransferTx(token);
spiTxBlock(buf,512);
WRITE(SS_PIN, HIGH);
}
Fixes for the Arduino DUE HAL (Serial Port, Graphics Display, EEPROM emulation) (#8651) * Fixing the DUE serial port assignments: Now -1 means the SAM3x USB Device emulating a serial port, and 0 means the USB to serial adapter included as a programming port * Improving the Fast IO port access implementation on Arduino DUE * Implemented EEPROM emulation on Due by storing data on the internal FLASH (with wear leveling) * Implemented a Software SPI for the ST7920 graphics display for the Arduino RAMPS for DUE, as the default one in u8glib is clocking data too fast on ARM, and the display does not understand it. * Fixing the case where the serial port selected is the USB device * Adding configuration for the Makerparts 3D printer (www.makerparts.net) * Tuned MakerParts acceleration on X and Y axis so it never loses steps. Also adjusted pulses per mm to match default hw configuration * Fine tuned Maximum acceleration for MakerParts printer * Style cleanup * Style cleanup (2) * Style fixes (3) * Fixing the DUE serial port assignments: Now -1 means the SAM3x USB Device emulating a serial port, and 0 means the USB to serial adapter included as a programming port * Improving the Fast IO port access implementation on Arduino DUE * Implemented EEPROM emulation on Due by storing data on the internal FLASH (with wear leveling) * Implemented a Software SPI for the ST7920 graphics display for the Arduino RAMPS for DUE, as the default one in u8glib is clocking data too fast on ARM, and the display does not understand it. * Fixing the case where the serial port selected is the USB device * Adding configuration for the Makerparts 3D printer (www.makerparts.net) * Tuned MakerParts acceleration on X and Y axis so it never loses steps. Also adjusted pulses per mm to match default hw configuration * Fine tuned Maximum acceleration for MakerParts printer * Style cleanup * Style changes to u8g_dev_st7920_128_64_sw_spi.cpp * Even more improvements to the FastIO HAL for DUE. Now WRITE() is 2 ASM instructions, if value is constant, and 5 cycles if value is not constant. Previously, it was 7..8 cycles * After some problems and debugging, seems we need to align the interrupt vector table to 256 bytes, otherwise, the program sometimes stops working * Moved comments out of macro, otherwise, token pasting does not properly work sometimes * Improved Software SPI implementation on DUE: Now it honors the selected speed passed to spiInit(). This allows much faster SDCARD access, improving SDCARD menus and reducing latency * Update u8g_dev_st7920_128_64_sw_spi.cpp * Disabling EEPROM over FLASH emulatiion if an I2C or SPI EEPROM is present
2017-12-12 20:51:36 -03:00
/**
* spiRate should be
* 0 : 8 - 10 MHz
* 1 : 4 - 5 MHz
* 2 : 2 - 2.5 MHz
* 3 : 1 - 1.25 MHz
* 4 : 500 - 625 kHz
* 5 : 250 - 312 kHz
* 6 : 125 - 156 kHz
*/
2017-07-19 00:29:06 +01:00
void spiInit(uint8_t spiRate) {
Fixes for the Arduino DUE HAL (Serial Port, Graphics Display, EEPROM emulation) (#8651) * Fixing the DUE serial port assignments: Now -1 means the SAM3x USB Device emulating a serial port, and 0 means the USB to serial adapter included as a programming port * Improving the Fast IO port access implementation on Arduino DUE * Implemented EEPROM emulation on Due by storing data on the internal FLASH (with wear leveling) * Implemented a Software SPI for the ST7920 graphics display for the Arduino RAMPS for DUE, as the default one in u8glib is clocking data too fast on ARM, and the display does not understand it. * Fixing the case where the serial port selected is the USB device * Adding configuration for the Makerparts 3D printer (www.makerparts.net) * Tuned MakerParts acceleration on X and Y axis so it never loses steps. Also adjusted pulses per mm to match default hw configuration * Fine tuned Maximum acceleration for MakerParts printer * Style cleanup * Style cleanup (2) * Style fixes (3) * Fixing the DUE serial port assignments: Now -1 means the SAM3x USB Device emulating a serial port, and 0 means the USB to serial adapter included as a programming port * Improving the Fast IO port access implementation on Arduino DUE * Implemented EEPROM emulation on Due by storing data on the internal FLASH (with wear leveling) * Implemented a Software SPI for the ST7920 graphics display for the Arduino RAMPS for DUE, as the default one in u8glib is clocking data too fast on ARM, and the display does not understand it. * Fixing the case where the serial port selected is the USB device * Adding configuration for the Makerparts 3D printer (www.makerparts.net) * Tuned MakerParts acceleration on X and Y axis so it never loses steps. Also adjusted pulses per mm to match default hw configuration * Fine tuned Maximum acceleration for MakerParts printer * Style cleanup * Style changes to u8g_dev_st7920_128_64_sw_spi.cpp * Even more improvements to the FastIO HAL for DUE. Now WRITE() is 2 ASM instructions, if value is constant, and 5 cycles if value is not constant. Previously, it was 7..8 cycles * After some problems and debugging, seems we need to align the interrupt vector table to 256 bytes, otherwise, the program sometimes stops working * Moved comments out of macro, otherwise, token pasting does not properly work sometimes * Improved Software SPI implementation on DUE: Now it honors the selected speed passed to spiInit(). This allows much faster SDCARD access, improving SDCARD menus and reducing latency * Update u8g_dev_st7920_128_64_sw_spi.cpp * Disabling EEPROM over FLASH emulatiion if an I2C or SPI EEPROM is present
2017-12-12 20:51:36 -03:00
switch (spiRate) {
case 0:
spiTransferTx = spiTransferTx0;
spiTransferRx = spiTransferRx0;
spiTxBlock = spiTxBlock0;
spiRxBlock = spiRxBlock0;
Fixes for the Arduino DUE HAL (Serial Port, Graphics Display, EEPROM emulation) (#8651) * Fixing the DUE serial port assignments: Now -1 means the SAM3x USB Device emulating a serial port, and 0 means the USB to serial adapter included as a programming port * Improving the Fast IO port access implementation on Arduino DUE * Implemented EEPROM emulation on Due by storing data on the internal FLASH (with wear leveling) * Implemented a Software SPI for the ST7920 graphics display for the Arduino RAMPS for DUE, as the default one in u8glib is clocking data too fast on ARM, and the display does not understand it. * Fixing the case where the serial port selected is the USB device * Adding configuration for the Makerparts 3D printer (www.makerparts.net) * Tuned MakerParts acceleration on X and Y axis so it never loses steps. Also adjusted pulses per mm to match default hw configuration * Fine tuned Maximum acceleration for MakerParts printer * Style cleanup * Style cleanup (2) * Style fixes (3) * Fixing the DUE serial port assignments: Now -1 means the SAM3x USB Device emulating a serial port, and 0 means the USB to serial adapter included as a programming port * Improving the Fast IO port access implementation on Arduino DUE * Implemented EEPROM emulation on Due by storing data on the internal FLASH (with wear leveling) * Implemented a Software SPI for the ST7920 graphics display for the Arduino RAMPS for DUE, as the default one in u8glib is clocking data too fast on ARM, and the display does not understand it. * Fixing the case where the serial port selected is the USB device * Adding configuration for the Makerparts 3D printer (www.makerparts.net) * Tuned MakerParts acceleration on X and Y axis so it never loses steps. Also adjusted pulses per mm to match default hw configuration * Fine tuned Maximum acceleration for MakerParts printer * Style cleanup * Style changes to u8g_dev_st7920_128_64_sw_spi.cpp * Even more improvements to the FastIO HAL for DUE. Now WRITE() is 2 ASM instructions, if value is constant, and 5 cycles if value is not constant. Previously, it was 7..8 cycles * After some problems and debugging, seems we need to align the interrupt vector table to 256 bytes, otherwise, the program sometimes stops working * Moved comments out of macro, otherwise, token pasting does not properly work sometimes * Improved Software SPI implementation on DUE: Now it honors the selected speed passed to spiInit(). This allows much faster SDCARD access, improving SDCARD menus and reducing latency * Update u8g_dev_st7920_128_64_sw_spi.cpp * Disabling EEPROM over FLASH emulatiion if an I2C or SPI EEPROM is present
2017-12-12 20:51:36 -03:00
break;
case 1:
spiTransferTx = spiTransfer1;
spiTransferRx = spiTransfer1;
spiTxBlock = spiTxBlockX;
spiRxBlock = spiRxBlockX;
Fixes for the Arduino DUE HAL (Serial Port, Graphics Display, EEPROM emulation) (#8651) * Fixing the DUE serial port assignments: Now -1 means the SAM3x USB Device emulating a serial port, and 0 means the USB to serial adapter included as a programming port * Improving the Fast IO port access implementation on Arduino DUE * Implemented EEPROM emulation on Due by storing data on the internal FLASH (with wear leveling) * Implemented a Software SPI for the ST7920 graphics display for the Arduino RAMPS for DUE, as the default one in u8glib is clocking data too fast on ARM, and the display does not understand it. * Fixing the case where the serial port selected is the USB device * Adding configuration for the Makerparts 3D printer (www.makerparts.net) * Tuned MakerParts acceleration on X and Y axis so it never loses steps. Also adjusted pulses per mm to match default hw configuration * Fine tuned Maximum acceleration for MakerParts printer * Style cleanup * Style cleanup (2) * Style fixes (3) * Fixing the DUE serial port assignments: Now -1 means the SAM3x USB Device emulating a serial port, and 0 means the USB to serial adapter included as a programming port * Improving the Fast IO port access implementation on Arduino DUE * Implemented EEPROM emulation on Due by storing data on the internal FLASH (with wear leveling) * Implemented a Software SPI for the ST7920 graphics display for the Arduino RAMPS for DUE, as the default one in u8glib is clocking data too fast on ARM, and the display does not understand it. * Fixing the case where the serial port selected is the USB device * Adding configuration for the Makerparts 3D printer (www.makerparts.net) * Tuned MakerParts acceleration on X and Y axis so it never loses steps. Also adjusted pulses per mm to match default hw configuration * Fine tuned Maximum acceleration for MakerParts printer * Style cleanup * Style changes to u8g_dev_st7920_128_64_sw_spi.cpp * Even more improvements to the FastIO HAL for DUE. Now WRITE() is 2 ASM instructions, if value is constant, and 5 cycles if value is not constant. Previously, it was 7..8 cycles * After some problems and debugging, seems we need to align the interrupt vector table to 256 bytes, otherwise, the program sometimes stops working * Moved comments out of macro, otherwise, token pasting does not properly work sometimes * Improved Software SPI implementation on DUE: Now it honors the selected speed passed to spiInit(). This allows much faster SDCARD access, improving SDCARD menus and reducing latency * Update u8g_dev_st7920_128_64_sw_spi.cpp * Disabling EEPROM over FLASH emulatiion if an I2C or SPI EEPROM is present
2017-12-12 20:51:36 -03:00
break;
default:
spiDelayCyclesX4 = (F_CPU/1000000) >> (6 - spiRate);
spiTransferTx = spiTransferX;
spiTransferRx = spiTransferX;
spiTxBlock = spiTxBlockX;
spiRxBlock = spiRxBlockX;
Fixes for the Arduino DUE HAL (Serial Port, Graphics Display, EEPROM emulation) (#8651) * Fixing the DUE serial port assignments: Now -1 means the SAM3x USB Device emulating a serial port, and 0 means the USB to serial adapter included as a programming port * Improving the Fast IO port access implementation on Arduino DUE * Implemented EEPROM emulation on Due by storing data on the internal FLASH (with wear leveling) * Implemented a Software SPI for the ST7920 graphics display for the Arduino RAMPS for DUE, as the default one in u8glib is clocking data too fast on ARM, and the display does not understand it. * Fixing the case where the serial port selected is the USB device * Adding configuration for the Makerparts 3D printer (www.makerparts.net) * Tuned MakerParts acceleration on X and Y axis so it never loses steps. Also adjusted pulses per mm to match default hw configuration * Fine tuned Maximum acceleration for MakerParts printer * Style cleanup * Style cleanup (2) * Style fixes (3) * Fixing the DUE serial port assignments: Now -1 means the SAM3x USB Device emulating a serial port, and 0 means the USB to serial adapter included as a programming port * Improving the Fast IO port access implementation on Arduino DUE * Implemented EEPROM emulation on Due by storing data on the internal FLASH (with wear leveling) * Implemented a Software SPI for the ST7920 graphics display for the Arduino RAMPS for DUE, as the default one in u8glib is clocking data too fast on ARM, and the display does not understand it. * Fixing the case where the serial port selected is the USB device * Adding configuration for the Makerparts 3D printer (www.makerparts.net) * Tuned MakerParts acceleration on X and Y axis so it never loses steps. Also adjusted pulses per mm to match default hw configuration * Fine tuned Maximum acceleration for MakerParts printer * Style cleanup * Style changes to u8g_dev_st7920_128_64_sw_spi.cpp * Even more improvements to the FastIO HAL for DUE. Now WRITE() is 2 ASM instructions, if value is constant, and 5 cycles if value is not constant. Previously, it was 7..8 cycles * After some problems and debugging, seems we need to align the interrupt vector table to 256 bytes, otherwise, the program sometimes stops working * Moved comments out of macro, otherwise, token pasting does not properly work sometimes * Improved Software SPI implementation on DUE: Now it honors the selected speed passed to spiInit(). This allows much faster SDCARD access, improving SDCARD menus and reducing latency * Update u8g_dev_st7920_128_64_sw_spi.cpp * Disabling EEPROM over FLASH emulatiion if an I2C or SPI EEPROM is present
2017-12-12 20:51:36 -03:00
break;
}
2017-07-19 00:29:06 +01:00
WRITE(SS_PIN, HIGH);
WRITE(MOSI_PIN, HIGH);
WRITE(SCK_PIN, LOW);
}
Fixes for the Arduino DUE HAL (Serial Port, Graphics Display, EEPROM emulation) (#8651) * Fixing the DUE serial port assignments: Now -1 means the SAM3x USB Device emulating a serial port, and 0 means the USB to serial adapter included as a programming port * Improving the Fast IO port access implementation on Arduino DUE * Implemented EEPROM emulation on Due by storing data on the internal FLASH (with wear leveling) * Implemented a Software SPI for the ST7920 graphics display for the Arduino RAMPS for DUE, as the default one in u8glib is clocking data too fast on ARM, and the display does not understand it. * Fixing the case where the serial port selected is the USB device * Adding configuration for the Makerparts 3D printer (www.makerparts.net) * Tuned MakerParts acceleration on X and Y axis so it never loses steps. Also adjusted pulses per mm to match default hw configuration * Fine tuned Maximum acceleration for MakerParts printer * Style cleanup * Style cleanup (2) * Style fixes (3) * Fixing the DUE serial port assignments: Now -1 means the SAM3x USB Device emulating a serial port, and 0 means the USB to serial adapter included as a programming port * Improving the Fast IO port access implementation on Arduino DUE * Implemented EEPROM emulation on Due by storing data on the internal FLASH (with wear leveling) * Implemented a Software SPI for the ST7920 graphics display for the Arduino RAMPS for DUE, as the default one in u8glib is clocking data too fast on ARM, and the display does not understand it. * Fixing the case where the serial port selected is the USB device * Adding configuration for the Makerparts 3D printer (www.makerparts.net) * Tuned MakerParts acceleration on X and Y axis so it never loses steps. Also adjusted pulses per mm to match default hw configuration * Fine tuned Maximum acceleration for MakerParts printer * Style cleanup * Style changes to u8g_dev_st7920_128_64_sw_spi.cpp * Even more improvements to the FastIO HAL for DUE. Now WRITE() is 2 ASM instructions, if value is constant, and 5 cycles if value is not constant. Previously, it was 7..8 cycles * After some problems and debugging, seems we need to align the interrupt vector table to 256 bytes, otherwise, the program sometimes stops working * Moved comments out of macro, otherwise, token pasting does not properly work sometimes * Improved Software SPI implementation on DUE: Now it honors the selected speed passed to spiInit(). This allows much faster SDCARD access, improving SDCARD menus and reducing latency * Update u8g_dev_st7920_128_64_sw_spi.cpp * Disabling EEPROM over FLASH emulatiion if an I2C or SPI EEPROM is present
2017-12-12 20:51:36 -03:00
#pragma GCC reset_options
2017-07-19 00:29:06 +01:00
#else
// --------------------------------------------------------------------------
// hardware SPI
// --------------------------------------------------------------------------
// 8.4 MHz, 4 MHz, 2 MHz, 1 MHz, 0.5 MHz, 0.329 MHz, 0.329 MHz
int spiDueDividors[] = { 10, 21, 42, 84, 168, 255, 255 };
bool spiInitMaded = false;
void spiBegin() {
if(spiInitMaded == false) {
// Configure SPI pins
PIO_Configure(
g_APinDescription[SCK_PIN].pPort,
g_APinDescription[SCK_PIN].ulPinType,
g_APinDescription[SCK_PIN].ulPin,
g_APinDescription[SCK_PIN].ulPinConfiguration);
PIO_Configure(
g_APinDescription[MOSI_PIN].pPort,
g_APinDescription[MOSI_PIN].ulPinType,
g_APinDescription[MOSI_PIN].ulPin,
g_APinDescription[MOSI_PIN].ulPinConfiguration);
PIO_Configure(
g_APinDescription[MISO_PIN].pPort,
g_APinDescription[MISO_PIN].ulPinType,
g_APinDescription[MISO_PIN].ulPin,
g_APinDescription[MISO_PIN].ulPinConfiguration);
// set master mode, peripheral select, fault detection
SPI_Configure(SPI0, ID_SPI0, SPI_MR_MSTR | SPI_MR_MODFDIS | SPI_MR_PS);
SPI_Enable(SPI0);
#if MB(ALLIGATOR)
SET_OUTPUT(DAC0_SYNC);
#if EXTRUDERS > 1
SET_OUTPUT(DAC1_SYNC);
WRITE(DAC1_SYNC, HIGH);
#endif
SET_OUTPUT(SPI_EEPROM1_CS);
SET_OUTPUT(SPI_EEPROM2_CS);
SET_OUTPUT(SPI_FLASH_CS);
WRITE(DAC0_SYNC, HIGH);
WRITE(SPI_EEPROM1_CS, HIGH );
WRITE(SPI_EEPROM2_CS, HIGH );
WRITE(SPI_FLASH_CS, HIGH );
WRITE(SS_PIN, HIGH );
#endif // MB(ALLIGATOR)
PIO_Configure(
g_APinDescription[SPI_PIN].pPort,
g_APinDescription[SPI_PIN].ulPinType,
g_APinDescription[SPI_PIN].ulPin,
g_APinDescription[SPI_PIN].ulPinConfiguration);
spiInit(1);
spiInitMaded = true;
}
}
void spiInit(uint8_t spiRate) {
if(spiInitMaded == false) {
if(spiRate > 6) spiRate = 1;
#if MB(ALLIGATOR)
2017-09-27 04:57:33 -05:00
// Set SPI mode 1, clock, select not active after transfer, with delay between transfers
2017-07-19 00:29:06 +01:00
SPI_ConfigureNPCS(SPI0, SPI_CHAN_DAC,
SPI_CSR_CSAAT | SPI_CSR_SCBR(spiDueDividors[spiRate]) |
SPI_CSR_DLYBCT(1));
2017-09-27 04:57:33 -05:00
// Set SPI mode 0, clock, select not active after transfer, with delay between transfers
2017-07-19 00:29:06 +01:00
SPI_ConfigureNPCS(SPI0, SPI_CHAN_EEPROM1, SPI_CSR_NCPHA |
SPI_CSR_CSAAT | SPI_CSR_SCBR(spiDueDividors[spiRate]) |
SPI_CSR_DLYBCT(1));
#endif//MB(ALLIGATOR)
// Set SPI mode 0, clock, select not active after transfer, with delay between transfers
SPI_ConfigureNPCS(SPI0, SPI_CHAN, SPI_CSR_NCPHA |
SPI_CSR_CSAAT | SPI_CSR_SCBR(spiDueDividors[spiRate]) |
SPI_CSR_DLYBCT(1));
SPI_Enable(SPI0);
spiInitMaded = true;
}
}
// Write single byte to SPI
void spiSend(byte b) {
// write byte with address and end transmission flag
SPI0->SPI_TDR = (uint32_t)b | SPI_PCS(SPI_CHAN) | SPI_TDR_LASTXFER;
// wait for transmit register empty
while ((SPI0->SPI_SR & SPI_SR_TDRE) == 0);
// wait for receive register
while ((SPI0->SPI_SR & SPI_SR_RDRF) == 0);
// clear status
SPI0->SPI_RDR;
//delayMicroseconds(1U);
}
void spiSend(const uint8_t* buf, size_t n) {
if (n == 0) return;
for (size_t i = 0; i < n - 1; i++) {
SPI0->SPI_TDR = (uint32_t)buf[i] | SPI_PCS(SPI_CHAN);
while ((SPI0->SPI_SR & SPI_SR_TDRE) == 0);
while ((SPI0->SPI_SR & SPI_SR_RDRF) == 0);
SPI0->SPI_RDR;
//delayMicroseconds(1U);
}
spiSend(buf[n - 1]);
}
void spiSend(uint32_t chan, byte b) {
uint8_t dummy_read = 0;
// wait for transmit register empty
while ((SPI0->SPI_SR & SPI_SR_TDRE) == 0);
// write byte with address and end transmission flag
SPI0->SPI_TDR = (uint32_t)b | SPI_PCS(chan) | SPI_TDR_LASTXFER;
// wait for receive register
while ((SPI0->SPI_SR & SPI_SR_RDRF) == 0);
// clear status
while ((SPI0->SPI_SR & SPI_SR_RDRF) == 1)
dummy_read = SPI0->SPI_RDR;
UNUSED(dummy_read);
}
void spiSend(uint32_t chan, const uint8_t* buf, size_t n) {
uint8_t dummy_read = 0;
if (n == 0) return;
for (int i = 0; i < (int)n - 1; i++) {
while ((SPI0->SPI_SR & SPI_SR_TDRE) == 0);
SPI0->SPI_TDR = (uint32_t)buf[i] | SPI_PCS(chan);
while ((SPI0->SPI_SR & SPI_SR_RDRF) == 0);
while ((SPI0->SPI_SR & SPI_SR_RDRF) == 1)
dummy_read = SPI0->SPI_RDR;
UNUSED(dummy_read);
}
spiSend(chan, buf[n - 1]);
}
// Read single byte from SPI
uint8_t spiRec() {
// write dummy byte with address and end transmission flag
SPI0->SPI_TDR = 0x000000FF | SPI_PCS(SPI_CHAN) | SPI_TDR_LASTXFER;
// wait for transmit register empty
while ((SPI0->SPI_SR & SPI_SR_TDRE) == 0);
// wait for receive register
while ((SPI0->SPI_SR & SPI_SR_RDRF) == 0);
// get byte from receive register
//delayMicroseconds(1U);
return SPI0->SPI_RDR;
}
uint8_t spiRec(uint32_t chan) {
uint8_t spirec_tmp;
// wait for transmit register empty
while ((SPI0->SPI_SR & SPI_SR_TDRE) == 0);
while ((SPI0->SPI_SR & SPI_SR_RDRF) == 1)
spirec_tmp = SPI0->SPI_RDR;
UNUSED(spirec_tmp);
// write dummy byte with address and end transmission flag
SPI0->SPI_TDR = 0x000000FF | SPI_PCS(chan) | SPI_TDR_LASTXFER;
// wait for receive register
while ((SPI0->SPI_SR & SPI_SR_RDRF) == 0);
// get byte from receive register
return SPI0->SPI_RDR;
}
// Read from SPI into buffer
void spiRead(uint8_t*buf, uint16_t nbyte) {
if (nbyte-- == 0) return;
for (int i = 0; i < nbyte; i++) {
//while ((SPI0->SPI_SR & SPI_SR_TDRE) == 0);
SPI0->SPI_TDR = 0x000000FF | SPI_PCS(SPI_CHAN);
while ((SPI0->SPI_SR & SPI_SR_RDRF) == 0);
buf[i] = SPI0->SPI_RDR;
//delayMicroseconds(1U);
}
buf[nbyte] = spiRec();
}
// Write from buffer to SPI
void spiSendBlock(uint8_t token, const uint8_t* buf) {
SPI0->SPI_TDR = (uint32_t)token | SPI_PCS(SPI_CHAN);
while ((SPI0->SPI_SR & SPI_SR_TDRE) == 0);
//while ((SPI0->SPI_SR & SPI_SR_RDRF) == 0);
//SPI0->SPI_RDR;
for (int i = 0; i < 511; i++) {
SPI0->SPI_TDR = (uint32_t)buf[i] | SPI_PCS(SPI_CHAN);
while ((SPI0->SPI_SR & SPI_SR_TDRE) == 0);
while ((SPI0->SPI_SR & SPI_SR_RDRF) == 0);
SPI0->SPI_RDR;
//delayMicroseconds(1U);
}
spiSend(buf[511]);
}
#endif // ENABLED(SOFTWARE_SPI)
#endif // ARDUINO_ARCH_SAM