2017-10-11 03:38:12 -03:00
|
|
|
/**
|
|
|
|
* Marlin 3D Printer Firmware
|
|
|
|
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
|
|
*
|
|
|
|
* Based on Sprinter and grbl.
|
|
|
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
|
|
*
|
|
|
|
* This program is free software: you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* MarlinSerial_Due.cpp - Hardware serial library for Arduino DUE
|
|
|
|
* Copyright (c) 2017 Eduardo José Tagle. All right reserved
|
|
|
|
* Based on MarlinSerial for AVR, copyright (c) 2006 Nicholas Zambetti. All right reserved.
|
|
|
|
*/
|
|
|
|
#ifdef ARDUINO_ARCH_SAM
|
|
|
|
|
|
|
|
#include "../../inc/MarlinConfig.h"
|
|
|
|
|
|
|
|
#include "MarlinSerial_Due.h"
|
|
|
|
#include "InterruptVectors_Due.h"
|
|
|
|
#include "../../Marlin.h"
|
|
|
|
|
|
|
|
// Based on selected port, use the proper configuration
|
2017-11-21 11:13:59 +02:00
|
|
|
#if SERIAL_PORT == -1
|
2017-10-11 03:38:12 -03:00
|
|
|
#define HWUART UART
|
|
|
|
#define HWUART_IRQ UART_IRQn
|
|
|
|
#define HWUART_IRQ_ID ID_UART
|
2017-11-21 11:13:59 +02:00
|
|
|
#elif SERIAL_PORT == 0
|
2017-10-11 03:38:12 -03:00
|
|
|
#define HWUART USART0
|
|
|
|
#define HWUART_IRQ USART0_IRQn
|
|
|
|
#define HWUART_IRQ_ID ID_USART0
|
2017-11-21 11:13:59 +02:00
|
|
|
#elif SERIAL_PORT == 1
|
2017-10-11 03:38:12 -03:00
|
|
|
#define HWUART USART1
|
|
|
|
#define HWUART_IRQ USART1_IRQn
|
|
|
|
#define HWUART_IRQ_ID ID_USART1
|
2017-11-21 11:13:59 +02:00
|
|
|
#elif SERIAL_PORT == 2
|
|
|
|
#define HWUART USART2
|
|
|
|
#define HWUART_IRQ USART2_IRQn
|
|
|
|
#define HWUART_IRQ_ID ID_USART2
|
2017-10-11 03:38:12 -03:00
|
|
|
#elif SERIAL_PORT == 3
|
|
|
|
#define HWUART USART3
|
|
|
|
#define HWUART_IRQ USART3_IRQn
|
|
|
|
#define HWUART_IRQ_ID ID_USART3
|
|
|
|
#endif
|
|
|
|
|
|
|
|
struct ring_buffer_r {
|
|
|
|
unsigned char buffer[RX_BUFFER_SIZE];
|
|
|
|
volatile ring_buffer_pos_t head, tail;
|
|
|
|
};
|
|
|
|
|
|
|
|
#if TX_BUFFER_SIZE > 0
|
|
|
|
struct ring_buffer_t {
|
|
|
|
unsigned char buffer[TX_BUFFER_SIZE];
|
|
|
|
volatile uint8_t head, tail;
|
|
|
|
};
|
|
|
|
#endif
|
|
|
|
|
|
|
|
ring_buffer_r rx_buffer = { { 0 }, 0, 0 };
|
|
|
|
#if TX_BUFFER_SIZE > 0
|
|
|
|
ring_buffer_t tx_buffer = { { 0 }, 0, 0 };
|
|
|
|
static bool _written;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(SERIAL_XON_XOFF)
|
|
|
|
constexpr uint8_t XON_XOFF_CHAR_SENT = 0x80; // XON / XOFF Character was sent
|
|
|
|
constexpr uint8_t XON_XOFF_CHAR_MASK = 0x1F; // XON / XOFF character to send
|
|
|
|
// XON / XOFF character definitions
|
|
|
|
constexpr uint8_t XON_CHAR = 17;
|
|
|
|
constexpr uint8_t XOFF_CHAR = 19;
|
|
|
|
uint8_t xon_xoff_state = XON_XOFF_CHAR_SENT | XON_CHAR;
|
|
|
|
|
|
|
|
// Validate that RX buffer size is at least 4096 bytes- According to several experiments, on
|
|
|
|
// the original Arduino Due that uses a ATmega16U2 as USB to serial bridge, due to the introduced
|
|
|
|
// latencies, at least 2959 bytes of RX buffering (when transmitting at 250kbits/s) are required
|
|
|
|
// to avoid overflows.
|
|
|
|
|
|
|
|
#if RX_BUFFER_SIZE < 4096
|
|
|
|
#error Arduino DUE requires at least 4096 bytes of RX buffer to avoid buffer overflows when using XON/XOFF handshake
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(SERIAL_STATS_DROPPED_RX)
|
|
|
|
uint8_t rx_dropped_bytes = 0;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
|
|
|
|
ring_buffer_pos_t rx_max_enqueued = 0;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// A SW memory barrier, to ensure GCC does not overoptimize loops
|
|
|
|
#define sw_barrier() asm volatile("": : :"memory");
|
|
|
|
|
|
|
|
#if ENABLED(EMERGENCY_PARSER)
|
|
|
|
|
|
|
|
// Currently looking for: M108, M112, M410
|
|
|
|
// If you alter the parser please don't forget to update the capabilities in Conditionals_post.h
|
|
|
|
|
|
|
|
FORCE_INLINE void emergency_parser(const uint8_t c) {
|
|
|
|
|
|
|
|
static e_parser_state state = state_RESET;
|
|
|
|
|
|
|
|
switch (state) {
|
2017-11-22 14:51:42 -06:00
|
|
|
case state_RESET:
|
|
|
|
switch (c) {
|
|
|
|
case ' ': break;
|
|
|
|
case 'N': state = state_N; break;
|
|
|
|
case 'M': state = state_M; break;
|
|
|
|
default: state = state_IGNORE;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case state_N:
|
|
|
|
switch (c) {
|
|
|
|
case '0': case '1': case '2':
|
|
|
|
case '3': case '4': case '5':
|
|
|
|
case '6': case '7': case '8':
|
|
|
|
case '9': case '-': case ' ': break;
|
|
|
|
case 'M': state = state_M; break;
|
|
|
|
default: state = state_IGNORE;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case state_M:
|
|
|
|
switch (c) {
|
|
|
|
case ' ': break;
|
|
|
|
case '1': state = state_M1; break;
|
|
|
|
case '4': state = state_M4; break;
|
|
|
|
default: state = state_IGNORE;
|
|
|
|
}
|
|
|
|
break;
|
2017-10-11 03:38:12 -03:00
|
|
|
|
2017-11-22 14:51:42 -06:00
|
|
|
case state_M1:
|
|
|
|
switch (c) {
|
|
|
|
case '0': state = state_M10; break;
|
|
|
|
case '1': state = state_M11; break;
|
|
|
|
default: state = state_IGNORE;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case state_M10:
|
|
|
|
state = (c == '8') ? state_M108 : state_IGNORE;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case state_M11:
|
|
|
|
state = (c == '2') ? state_M112 : state_IGNORE;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case state_M4:
|
|
|
|
state = (c == '1') ? state_M41 : state_IGNORE;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case state_M41:
|
|
|
|
state = (c == '0') ? state_M410 : state_IGNORE;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case state_IGNORE:
|
|
|
|
if (c == '\n') state = state_RESET;
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
if (c == '\n') {
|
|
|
|
switch (state) {
|
|
|
|
case state_M108:
|
|
|
|
wait_for_user = wait_for_heatup = false;
|
|
|
|
break;
|
|
|
|
case state_M112:
|
|
|
|
kill(PSTR(MSG_KILLED));
|
|
|
|
break;
|
|
|
|
case state_M410:
|
|
|
|
quickstop_stepper();
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
state = state_RESET;
|
2017-10-11 03:38:12 -03:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // EMERGENCY_PARSER
|
|
|
|
|
|
|
|
FORCE_INLINE void store_rxd_char() {
|
|
|
|
|
|
|
|
const ring_buffer_pos_t h = rx_buffer.head,
|
|
|
|
i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
|
|
|
|
|
|
|
|
// Read the character
|
|
|
|
const uint8_t c = HWUART->UART_RHR;
|
|
|
|
|
|
|
|
// If the character is to be stored at the index just before the tail
|
|
|
|
// (such that the head would advance to the current tail), the buffer is
|
|
|
|
// critical, so don't write the character or advance the head.
|
|
|
|
if (i != rx_buffer.tail) {
|
|
|
|
rx_buffer.buffer[h] = c;
|
|
|
|
rx_buffer.head = i;
|
|
|
|
}
|
|
|
|
#if ENABLED(SERIAL_STATS_DROPPED_RX)
|
|
|
|
else if (!++rx_dropped_bytes) ++rx_dropped_bytes;
|
|
|
|
#endif
|
|
|
|
|
2017-11-22 14:51:42 -06:00
|
|
|
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
|
|
|
|
// calculate count of bytes stored into the RX buffer
|
|
|
|
ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
|
|
|
|
// Keep track of the maximum count of enqueued bytes
|
|
|
|
NOLESS(rx_max_enqueued, rx_count);
|
|
|
|
#endif
|
2017-10-11 03:38:12 -03:00
|
|
|
|
2017-11-22 14:51:42 -06:00
|
|
|
#if ENABLED(SERIAL_XON_XOFF)
|
2017-10-11 03:38:12 -03:00
|
|
|
|
2017-11-22 14:51:42 -06:00
|
|
|
// for high speed transfers, we can use XON/XOFF protocol to do
|
|
|
|
// software handshake and avoid overruns.
|
|
|
|
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XON_CHAR) {
|
2017-10-11 03:38:12 -03:00
|
|
|
|
2017-11-22 14:51:42 -06:00
|
|
|
// calculate count of bytes stored into the RX buffer
|
|
|
|
ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
|
2017-10-11 03:38:12 -03:00
|
|
|
|
2017-11-22 14:51:42 -06:00
|
|
|
// if we are above 12.5% of RX buffer capacity, send XOFF before
|
|
|
|
// we run out of RX buffer space .. We need 325 bytes @ 250kbits/s to
|
|
|
|
// let the host react and stop sending bytes. This translates to 13mS
|
|
|
|
// propagation time.
|
|
|
|
if (rx_count >= (RX_BUFFER_SIZE) / 8) {
|
|
|
|
// If TX interrupts are disabled and data register is empty,
|
|
|
|
// just write the byte to the data register and be done. This
|
|
|
|
// shortcut helps significantly improve the effective datarate
|
|
|
|
// at high (>500kbit/s) bitrates, where interrupt overhead
|
|
|
|
// becomes a slowdown.
|
|
|
|
if (!(HWUART->UART_IMR & UART_IMR_TXRDY) && (HWUART->UART_SR & UART_SR_TXRDY)) {
|
|
|
|
// Send an XOFF character
|
2017-10-11 03:38:12 -03:00
|
|
|
HWUART->UART_THR = XOFF_CHAR;
|
2017-11-22 14:51:42 -06:00
|
|
|
|
|
|
|
// And remember it was sent
|
2017-10-11 03:38:12 -03:00
|
|
|
xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT;
|
2017-11-22 14:51:42 -06:00
|
|
|
}
|
|
|
|
else {
|
|
|
|
// TX interrupts disabled, but buffer still not empty ... or
|
|
|
|
// TX interrupts enabled. Reenable TX ints and schedule XOFF
|
|
|
|
// character to be sent
|
|
|
|
#if TX_BUFFER_SIZE > 0
|
|
|
|
HWUART->UART_IER = UART_IER_TXRDY;
|
|
|
|
xon_xoff_state = XOFF_CHAR;
|
|
|
|
#else
|
|
|
|
// We are not using TX interrupts, we will have to send this manually
|
|
|
|
while (!(HWUART->UART_SR & UART_SR_TXRDY)) { sw_barrier(); };
|
|
|
|
HWUART->UART_THR = XOFF_CHAR;
|
|
|
|
// And remember we already sent it
|
|
|
|
xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT;
|
|
|
|
#endif
|
|
|
|
}
|
2017-10-11 03:38:12 -03:00
|
|
|
}
|
|
|
|
}
|
2017-11-22 14:51:42 -06:00
|
|
|
#endif // SERIAL_XON_XOFF
|
2017-10-11 03:38:12 -03:00
|
|
|
|
2017-11-22 14:51:42 -06:00
|
|
|
#if ENABLED(EMERGENCY_PARSER)
|
|
|
|
emergency_parser(c);
|
|
|
|
#endif
|
2017-10-11 03:38:12 -03:00
|
|
|
}
|
|
|
|
|
|
|
|
#if TX_BUFFER_SIZE > 0
|
|
|
|
|
|
|
|
FORCE_INLINE void _tx_thr_empty_irq(void) {
|
|
|
|
// If interrupts are enabled, there must be more data in the output
|
|
|
|
// buffer.
|
|
|
|
|
|
|
|
#if ENABLED(SERIAL_XON_XOFF)
|
|
|
|
// Do a priority insertion of an XON/XOFF char, if needed.
|
|
|
|
const uint8_t state = xon_xoff_state;
|
|
|
|
if (!(state & XON_XOFF_CHAR_SENT)) {
|
|
|
|
HWUART->UART_THR = state & XON_XOFF_CHAR_MASK;
|
|
|
|
xon_xoff_state = state | XON_XOFF_CHAR_SENT;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
#endif
|
|
|
|
{ // Send the next byte
|
|
|
|
const uint8_t t = tx_buffer.tail, c = tx_buffer.buffer[t];
|
|
|
|
tx_buffer.tail = (t + 1) & (TX_BUFFER_SIZE - 1);
|
|
|
|
HWUART->UART_THR = c;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Disable interrupts if the buffer is empty
|
|
|
|
if (tx_buffer.head == tx_buffer.tail)
|
|
|
|
HWUART->UART_IDR = UART_IDR_TXRDY;
|
|
|
|
}
|
|
|
|
|
2017-11-22 14:51:42 -06:00
|
|
|
#endif // TX_BUFFER_SIZE > 0
|
2017-10-11 03:38:12 -03:00
|
|
|
|
|
|
|
static void UART_ISR(void) {
|
|
|
|
uint32_t status = HWUART->UART_SR;
|
|
|
|
|
|
|
|
// Did we receive data?
|
|
|
|
if (status & UART_SR_RXRDY)
|
|
|
|
store_rxd_char();
|
|
|
|
|
|
|
|
#if TX_BUFFER_SIZE > 0
|
|
|
|
// Do we have something to send, and TX interrupts are enabled (meaning something to send) ?
|
|
|
|
if ((status & UART_SR_TXRDY) && (HWUART->UART_IMR & UART_IMR_TXRDY))
|
|
|
|
_tx_thr_empty_irq();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Acknowledge errors
|
|
|
|
if ((status & UART_SR_OVRE) || (status & UART_SR_FRAME)) {
|
|
|
|
// TODO: error reporting outside ISR
|
|
|
|
HWUART->UART_CR = UART_CR_RSTSTA;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Public Methods
|
|
|
|
|
|
|
|
void MarlinSerial::begin(const long baud_setting) {
|
|
|
|
|
|
|
|
// Disable UART interrupt in NVIC
|
|
|
|
NVIC_DisableIRQ( HWUART_IRQ );
|
|
|
|
|
|
|
|
// Disable clock
|
|
|
|
pmc_disable_periph_clk( HWUART_IRQ_ID );
|
|
|
|
|
|
|
|
// Configure PMC
|
|
|
|
pmc_enable_periph_clk( HWUART_IRQ_ID );
|
|
|
|
|
|
|
|
// Disable PDC channel
|
|
|
|
HWUART->UART_PTCR = UART_PTCR_RXTDIS | UART_PTCR_TXTDIS;
|
|
|
|
|
|
|
|
// Reset and disable receiver and transmitter
|
|
|
|
HWUART->UART_CR = UART_CR_RSTRX | UART_CR_RSTTX | UART_CR_RXDIS | UART_CR_TXDIS;
|
|
|
|
|
|
|
|
// Configure mode: 8bit, No parity, 1 bit stop
|
|
|
|
HWUART->UART_MR = UART_MR_CHMODE_NORMAL | US_MR_CHRL_8_BIT | US_MR_NBSTOP_1_BIT | UART_MR_PAR_NO;
|
|
|
|
|
|
|
|
// Configure baudrate (asynchronous, no oversampling)
|
|
|
|
HWUART->UART_BRGR = (SystemCoreClock / (baud_setting << 4));
|
|
|
|
|
|
|
|
// Configure interrupts
|
|
|
|
HWUART->UART_IDR = 0xFFFFFFFF;
|
|
|
|
HWUART->UART_IER = UART_IER_RXRDY | UART_IER_OVRE | UART_IER_FRAME;
|
|
|
|
|
|
|
|
// Install interrupt handler
|
|
|
|
install_isr(HWUART_IRQ, UART_ISR);
|
|
|
|
|
|
|
|
// Enable UART interrupt in NVIC
|
|
|
|
NVIC_EnableIRQ(HWUART_IRQ);
|
|
|
|
|
|
|
|
// Enable receiver and transmitter
|
|
|
|
HWUART->UART_CR = UART_CR_RXEN | UART_CR_TXEN;
|
|
|
|
|
|
|
|
#if TX_BUFFER_SIZE > 0
|
|
|
|
_written = false;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
void MarlinSerial::end() {
|
|
|
|
// Disable UART interrupt in NVIC
|
|
|
|
NVIC_DisableIRQ( HWUART_IRQ );
|
|
|
|
|
|
|
|
pmc_disable_periph_clk( HWUART_IRQ_ID );
|
|
|
|
}
|
|
|
|
|
|
|
|
void MarlinSerial::checkRx(void) {
|
|
|
|
if (HWUART->UART_SR & UART_SR_RXRDY) {
|
|
|
|
CRITICAL_SECTION_START;
|
|
|
|
store_rxd_char();
|
|
|
|
CRITICAL_SECTION_END;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int MarlinSerial::peek(void) {
|
|
|
|
CRITICAL_SECTION_START;
|
|
|
|
const int v = rx_buffer.head == rx_buffer.tail ? -1 : rx_buffer.buffer[rx_buffer.tail];
|
|
|
|
CRITICAL_SECTION_END;
|
|
|
|
return v;
|
|
|
|
}
|
|
|
|
|
|
|
|
int MarlinSerial::read(void) {
|
|
|
|
int v;
|
|
|
|
CRITICAL_SECTION_START;
|
|
|
|
const ring_buffer_pos_t t = rx_buffer.tail;
|
|
|
|
if (rx_buffer.head == t)
|
|
|
|
v = -1;
|
|
|
|
else {
|
|
|
|
v = rx_buffer.buffer[t];
|
|
|
|
rx_buffer.tail = (ring_buffer_pos_t)(t + 1) & (RX_BUFFER_SIZE - 1);
|
|
|
|
|
2017-11-22 14:51:42 -06:00
|
|
|
#if ENABLED(SERIAL_XON_XOFF)
|
|
|
|
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) {
|
|
|
|
// Get count of bytes in the RX buffer
|
|
|
|
ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
|
|
|
|
// When below 10% of RX buffer capacity, send XON before
|
|
|
|
// running out of RX buffer bytes
|
|
|
|
if (rx_count < (RX_BUFFER_SIZE) / 10) {
|
|
|
|
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
|
|
|
|
CRITICAL_SECTION_END; // End critical section before returning!
|
|
|
|
writeNoHandshake(XON_CHAR);
|
|
|
|
return v;
|
|
|
|
}
|
2017-10-11 03:38:12 -03:00
|
|
|
}
|
2017-11-22 14:51:42 -06:00
|
|
|
#endif
|
2017-10-11 03:38:12 -03:00
|
|
|
}
|
|
|
|
CRITICAL_SECTION_END;
|
|
|
|
return v;
|
|
|
|
}
|
|
|
|
|
|
|
|
ring_buffer_pos_t MarlinSerial::available(void) {
|
|
|
|
CRITICAL_SECTION_START;
|
|
|
|
const ring_buffer_pos_t h = rx_buffer.head, t = rx_buffer.tail;
|
|
|
|
CRITICAL_SECTION_END;
|
|
|
|
return (ring_buffer_pos_t)(RX_BUFFER_SIZE + h - t) & (RX_BUFFER_SIZE - 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
void MarlinSerial::flush(void) {
|
|
|
|
// Don't change this order of operations. If the RX interrupt occurs between
|
|
|
|
// reading rx_buffer_head and updating rx_buffer_tail, the previous rx_buffer_head
|
|
|
|
// may be written to rx_buffer_tail, making the buffer appear full rather than empty.
|
|
|
|
CRITICAL_SECTION_START;
|
|
|
|
rx_buffer.head = rx_buffer.tail;
|
|
|
|
CRITICAL_SECTION_END;
|
|
|
|
|
2017-11-22 14:51:42 -06:00
|
|
|
#if ENABLED(SERIAL_XON_XOFF)
|
|
|
|
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) {
|
|
|
|
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
|
|
|
|
writeNoHandshake(XON_CHAR);
|
|
|
|
}
|
|
|
|
#endif
|
2017-10-11 03:38:12 -03:00
|
|
|
}
|
|
|
|
|
|
|
|
#if TX_BUFFER_SIZE > 0
|
2017-11-22 14:51:42 -06:00
|
|
|
|
2017-10-11 03:38:12 -03:00
|
|
|
uint8_t MarlinSerial::availableForWrite(void) {
|
|
|
|
CRITICAL_SECTION_START;
|
|
|
|
const uint8_t h = tx_buffer.head, t = tx_buffer.tail;
|
|
|
|
CRITICAL_SECTION_END;
|
|
|
|
return (uint8_t)(TX_BUFFER_SIZE + h - t) & (TX_BUFFER_SIZE - 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
void MarlinSerial::write(const uint8_t c) {
|
|
|
|
#if ENABLED(SERIAL_XON_XOFF)
|
|
|
|
const uint8_t state = xon_xoff_state;
|
|
|
|
if (!(state & XON_XOFF_CHAR_SENT)) {
|
|
|
|
// Send 2 chars: XON/XOFF, then a user-specified char
|
|
|
|
writeNoHandshake(state & XON_XOFF_CHAR_MASK);
|
|
|
|
xon_xoff_state = state | XON_XOFF_CHAR_SENT;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
writeNoHandshake(c);
|
|
|
|
}
|
|
|
|
|
|
|
|
void MarlinSerial::writeNoHandshake(const uint8_t c) {
|
|
|
|
_written = true;
|
|
|
|
CRITICAL_SECTION_START;
|
|
|
|
bool emty = (tx_buffer.head == tx_buffer.tail);
|
|
|
|
CRITICAL_SECTION_END;
|
|
|
|
// If the buffer and the data register is empty, just write the byte
|
|
|
|
// to the data register and be done. This shortcut helps
|
|
|
|
// significantly improve the effective datarate at high (>
|
|
|
|
// 500kbit/s) bitrates, where interrupt overhead becomes a slowdown.
|
|
|
|
if (emty && (HWUART->UART_SR & UART_SR_TXRDY)) {
|
|
|
|
CRITICAL_SECTION_START;
|
|
|
|
HWUART->UART_THR = c;
|
|
|
|
HWUART->UART_IER = UART_IER_TXRDY;
|
|
|
|
CRITICAL_SECTION_END;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
const uint8_t i = (tx_buffer.head + 1) & (TX_BUFFER_SIZE - 1);
|
|
|
|
|
|
|
|
// If the output buffer is full, there's nothing for it other than to
|
|
|
|
// wait for the interrupt handler to empty it a bit
|
|
|
|
while (i == tx_buffer.tail) {
|
|
|
|
if (__get_PRIMASK()) {
|
|
|
|
// Interrupts are disabled, so we'll have to poll the data
|
|
|
|
// register empty flag ourselves. If it is set, pretend an
|
|
|
|
// interrupt has happened and call the handler to free up
|
|
|
|
// space for us.
|
|
|
|
if (HWUART->UART_SR & UART_SR_TXRDY)
|
|
|
|
_tx_thr_empty_irq();
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
// nop, the interrupt handler will free up space for us
|
|
|
|
}
|
|
|
|
sw_barrier();
|
|
|
|
}
|
|
|
|
|
|
|
|
tx_buffer.buffer[tx_buffer.head] = c;
|
|
|
|
{ CRITICAL_SECTION_START;
|
|
|
|
tx_buffer.head = i;
|
|
|
|
HWUART->UART_IER = UART_IER_TXRDY;
|
|
|
|
CRITICAL_SECTION_END;
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
void MarlinSerial::flushTX(void) {
|
|
|
|
// TX
|
|
|
|
// If we have never written a byte, no need to flush.
|
|
|
|
if (!_written)
|
|
|
|
return;
|
|
|
|
|
|
|
|
while ((HWUART->UART_IMR & UART_IMR_TXRDY) || !(HWUART->UART_SR & UART_SR_TXEMPTY)) {
|
|
|
|
if (__get_PRIMASK())
|
|
|
|
if ((HWUART->UART_SR & UART_SR_TXRDY))
|
|
|
|
_tx_thr_empty_irq();
|
|
|
|
sw_barrier();
|
|
|
|
}
|
|
|
|
// If we get here, nothing is queued anymore (TX interrupts are disabled) and
|
|
|
|
// the hardware finished tranmission (TXEMPTY is set).
|
|
|
|
}
|
|
|
|
|
|
|
|
#else // TX_BUFFER_SIZE == 0
|
|
|
|
|
|
|
|
void MarlinSerial::write(const uint8_t c) {
|
|
|
|
#if ENABLED(SERIAL_XON_XOFF)
|
|
|
|
// Do a priority insertion of an XON/XOFF char, if needed.
|
|
|
|
const uint8_t state = xon_xoff_state;
|
|
|
|
if (!(state & XON_XOFF_CHAR_SENT)) {
|
|
|
|
writeNoHandshake(state & XON_XOFF_CHAR_MASK);
|
|
|
|
xon_xoff_state = state | XON_XOFF_CHAR_SENT;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
writeNoHandshake(c);
|
|
|
|
}
|
|
|
|
|
|
|
|
void MarlinSerial::writeNoHandshake(const uint8_t c) {
|
|
|
|
while (!(HWUART->UART_SR & UART_SR_TXRDY)) { sw_barrier(); };
|
|
|
|
HWUART->UART_THR = c;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // TX_BUFFER_SIZE == 0
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Imports from print.h
|
|
|
|
*/
|
|
|
|
|
|
|
|
void MarlinSerial::print(char c, int base) {
|
|
|
|
print((long)c, base);
|
|
|
|
}
|
|
|
|
|
|
|
|
void MarlinSerial::print(unsigned char b, int base) {
|
|
|
|
print((unsigned long)b, base);
|
|
|
|
}
|
|
|
|
|
|
|
|
void MarlinSerial::print(int n, int base) {
|
|
|
|
print((long)n, base);
|
|
|
|
}
|
|
|
|
|
|
|
|
void MarlinSerial::print(unsigned int n, int base) {
|
|
|
|
print((unsigned long)n, base);
|
|
|
|
}
|
|
|
|
|
|
|
|
void MarlinSerial::print(long n, int base) {
|
|
|
|
if (base == 0)
|
|
|
|
write(n);
|
|
|
|
else if (base == 10) {
|
|
|
|
if (n < 0) {
|
|
|
|
print('-');
|
|
|
|
n = -n;
|
|
|
|
}
|
|
|
|
printNumber(n, 10);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
printNumber(n, base);
|
|
|
|
}
|
|
|
|
|
|
|
|
void MarlinSerial::print(unsigned long n, int base) {
|
|
|
|
if (base == 0) write(n);
|
|
|
|
else printNumber(n, base);
|
|
|
|
}
|
|
|
|
|
|
|
|
void MarlinSerial::print(double n, int digits) {
|
|
|
|
printFloat(n, digits);
|
|
|
|
}
|
|
|
|
|
|
|
|
void MarlinSerial::println(void) {
|
|
|
|
print('\r');
|
|
|
|
print('\n');
|
|
|
|
}
|
|
|
|
|
|
|
|
void MarlinSerial::println(const String& s) {
|
|
|
|
print(s);
|
|
|
|
println();
|
|
|
|
}
|
|
|
|
|
|
|
|
void MarlinSerial::println(const char c[]) {
|
|
|
|
print(c);
|
|
|
|
println();
|
|
|
|
}
|
|
|
|
|
|
|
|
void MarlinSerial::println(char c, int base) {
|
|
|
|
print(c, base);
|
|
|
|
println();
|
|
|
|
}
|
|
|
|
|
|
|
|
void MarlinSerial::println(unsigned char b, int base) {
|
|
|
|
print(b, base);
|
|
|
|
println();
|
|
|
|
}
|
|
|
|
|
|
|
|
void MarlinSerial::println(int n, int base) {
|
|
|
|
print(n, base);
|
|
|
|
println();
|
|
|
|
}
|
|
|
|
|
|
|
|
void MarlinSerial::println(unsigned int n, int base) {
|
|
|
|
print(n, base);
|
|
|
|
println();
|
|
|
|
}
|
|
|
|
|
|
|
|
void MarlinSerial::println(long n, int base) {
|
|
|
|
print(n, base);
|
|
|
|
println();
|
|
|
|
}
|
|
|
|
|
|
|
|
void MarlinSerial::println(unsigned long n, int base) {
|
|
|
|
print(n, base);
|
|
|
|
println();
|
|
|
|
}
|
|
|
|
|
|
|
|
void MarlinSerial::println(double n, int digits) {
|
|
|
|
print(n, digits);
|
|
|
|
println();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Private Methods
|
|
|
|
|
|
|
|
void MarlinSerial::printNumber(unsigned long n, uint8_t base) {
|
|
|
|
if (n) {
|
|
|
|
unsigned char buf[8 * sizeof(long)]; // Enough space for base 2
|
|
|
|
int8_t i = 0;
|
|
|
|
while (n) {
|
|
|
|
buf[i++] = n % base;
|
|
|
|
n /= base;
|
|
|
|
}
|
|
|
|
while (i--)
|
|
|
|
print((char)(buf[i] + (buf[i] < 10 ? '0' : 'A' - 10)));
|
|
|
|
}
|
|
|
|
else
|
|
|
|
print('0');
|
|
|
|
}
|
|
|
|
|
|
|
|
void MarlinSerial::printFloat(double number, uint8_t digits) {
|
|
|
|
// Handle negative numbers
|
|
|
|
if (number < 0.0) {
|
|
|
|
print('-');
|
|
|
|
number = -number;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Round correctly so that print(1.999, 2) prints as "2.00"
|
|
|
|
double rounding = 0.5;
|
|
|
|
for (uint8_t i = 0; i < digits; ++i)
|
|
|
|
rounding *= 0.1;
|
|
|
|
|
|
|
|
number += rounding;
|
|
|
|
|
|
|
|
// Extract the integer part of the number and print it
|
|
|
|
unsigned long int_part = (unsigned long)number;
|
|
|
|
double remainder = number - (double)int_part;
|
|
|
|
print(int_part);
|
|
|
|
|
|
|
|
// Print the decimal point, but only if there are digits beyond
|
|
|
|
if (digits) {
|
|
|
|
print('.');
|
|
|
|
// Extract digits from the remainder one at a time
|
|
|
|
while (digits--) {
|
|
|
|
remainder *= 10.0;
|
|
|
|
int toPrint = int(remainder);
|
|
|
|
print(toPrint);
|
|
|
|
remainder -= toPrint;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Preinstantiate
|
|
|
|
MarlinSerial customizedSerial;
|
|
|
|
|
|
|
|
#endif // ARDUINO_ARCH_SAM
|