smaller changes
This commit is contained in:
parent
4cc8e37bf1
commit
0e3631ff4b
3 changed files with 301 additions and 85 deletions
|
@ -4,8 +4,8 @@
|
|||
|
||||
|
||||
// This determines the communication speed of the printer
|
||||
#define BAUDRATE 250000
|
||||
//#define BAUDRATE 115200
|
||||
//#define BAUDRATE 250000
|
||||
#define BAUDRATE 115200
|
||||
//#define BAUDRATE 230400
|
||||
|
||||
#define EXTRUDERS 1
|
||||
|
@ -26,11 +26,11 @@
|
|||
// MEGA/RAMPS up to 1.2 = 3,
|
||||
// RAMPS 1.3 = 33
|
||||
// Gen6 = 5,
|
||||
// Sanguinololu 1.2 and above = 62,
|
||||
// Ultimaker = 7,
|
||||
// Sanguinololu 1.2 and above = 62
|
||||
// Gen7 = 77,
|
||||
// Ultimaker = 7,
|
||||
// Teensylu = 8
|
||||
#define MOTHERBOARD 7
|
||||
#define MOTHERBOARD 77
|
||||
|
||||
//===========================================================================
|
||||
//=============================Thermal Settings ============================
|
||||
|
@ -45,23 +45,23 @@
|
|||
// 6 is EPCOS 100k
|
||||
// 7 is 100k Honeywell thermistor 135-104LAG-J01
|
||||
|
||||
//#define THERMISTORHEATER_0 3
|
||||
#define THERMISTORHEATER_0 1
|
||||
//#define THERMISTORHEATER_1 1
|
||||
//#define THERMISTORHEATER_2 1
|
||||
|
||||
//#define HEATER_0_USES_THERMISTOR
|
||||
#define HEATER_0_USES_THERMISTOR
|
||||
//#define HEATER_1_USES_THERMISTOR
|
||||
//#define HEATER_2_USES_THERMISTOR
|
||||
#define HEATER_0_USES_AD595
|
||||
//#define HEATER_0_USES_AD595
|
||||
//#define HEATER_1_USES_AD595
|
||||
//#define HEATER_2_USES_AD595
|
||||
|
||||
// Select one of these only to define how the bed temp is read.
|
||||
//#define THERMISTORBED 1
|
||||
//#define BED_USES_THERMISTOR
|
||||
#define THERMISTORBED 1
|
||||
#define BED_USES_THERMISTOR
|
||||
//#define BED_LIMIT_SWITCHING
|
||||
#ifdef BED_LIMIT_SWITCHING
|
||||
#define BED_HYSTERESIS 2 //only disable heating if T>target+BED_HYSTERESIS and enable heating if T>target-BED_HYSTERESIS
|
||||
#define BED_HYSTERESIS 2 //only disable heating if T>target+BED_HYSTERESIS and enable heating if T>target-BED_HYSTERESIS
|
||||
#endif
|
||||
//#define BED_USES_AD595
|
||||
|
||||
|
@ -75,10 +75,10 @@
|
|||
|
||||
// Actual temperature must be close to target for this long before M109 returns success
|
||||
#define TEMP_RESIDENCY_TIME 30 // (seconds)
|
||||
#define TEMP_HYSTERESIS 3 // (C°) range of +/- temperatures considered "close" to the target one
|
||||
#define TEMP_HYSTERESIS 3 // (C°) range of +/- temperatures considered "close" to the target one
|
||||
|
||||
//// The minimal temperature defines the temperature below which the heater will not be enabled
|
||||
#define HEATER_0_MINTEMP 5
|
||||
//#define HEATER_0_MINTEMP 5
|
||||
//#define HEATER_1_MINTEMP 5
|
||||
//#define HEATER_2_MINTEMP 5
|
||||
//#define BED_MINTEMP 5
|
||||
|
@ -107,37 +107,37 @@
|
|||
#define PIDTEMP
|
||||
#define PID_MAX 255 // limits current to nozzle; 255=full current
|
||||
#ifdef PIDTEMP
|
||||
//#define PID_DEBUG // Sends debug data to the serial port.
|
||||
//#define PID_OPENLOOP 1 // Puts PID in open loop. M104 sets the output power in %
|
||||
#define PID_INTEGRAL_DRIVE_MAX 255 //limit for the integral term
|
||||
#define K1 0.95 //smoothing factor withing the PID
|
||||
#define PID_dT 0.128 //sampling period of the PID
|
||||
//#define PID_DEBUG // Sends debug data to the serial port.
|
||||
//#define PID_OPENLOOP 1 // Puts PID in open loop. M104 sets the output power in %
|
||||
#define PID_INTEGRAL_DRIVE_MAX 255 //limit for the integral term
|
||||
#define K1 0.95 //smoothing factor withing the PID
|
||||
#define PID_dT 0.128 //sampling period of the PID
|
||||
|
||||
//To develop some PID settings for your machine, you can initiall follow
|
||||
// the Ziegler-Nichols method.
|
||||
// set Ki and Kd to zero.
|
||||
// heat with a defined Kp and see if the temperature stabilizes
|
||||
// ideally you do this graphically with repg.
|
||||
// the PID_CRITIAL_GAIN should be the Kp at which temperature oscillatins are not dampned out/decreas in amplitutde
|
||||
// PID_SWING_AT_CRITIAL is the time for a full period of the oscillations at the critical Gain
|
||||
// usually further manual tunine is necessary.
|
||||
//To develop some PID settings for your machine, you can initiall follow
|
||||
// the Ziegler-Nichols method.
|
||||
// set Ki and Kd to zero.
|
||||
// heat with a defined Kp and see if the temperature stabilizes
|
||||
// ideally you do this graphically with repg.
|
||||
// the PID_CRITIAL_GAIN should be the Kp at which temperature oscillatins are not dampned out/decreas in amplitutde
|
||||
// PID_SWING_AT_CRITIAL is the time for a full period of the oscillations at the critical Gain
|
||||
// usually further manual tunine is necessary.
|
||||
|
||||
#define PID_CRITIAL_GAIN 50
|
||||
#define PID_SWING_AT_CRITIAL 47 //seconds
|
||||
|
||||
//#define PID_PI //no differentail term
|
||||
#define PID_PID //normal PID
|
||||
#define PID_CRITIAL_GAIN 50
|
||||
#define PID_SWING_AT_CRITIAL 47 //seconds
|
||||
|
||||
#ifdef PID_PID
|
||||
//PID according to Ziegler-Nichols method
|
||||
//#define PID_PI //no differentail term
|
||||
#define PID_PID //normal PID
|
||||
|
||||
#ifdef PID_PID
|
||||
//PID according to Ziegler-Nichols method
|
||||
// #define DEFAULT_Kp (0.6*PID_CRITIAL_GAIN)
|
||||
// #define DEFAULT_Ki (2*Kp/PID_SWING_AT_CRITIAL*PID_dT)
|
||||
// #define DEFAULT_Kd (PID_SWING_AT_CRITIAL/8./PID_dT)
|
||||
|
||||
// Ultitmaker
|
||||
#define DEFAULT_Kp 22.2
|
||||
#define DEFAULT_Ki (1.25*PID_dT)
|
||||
#define DEFAULT_Kd (99/PID_dT)
|
||||
#define DEFAULT_Kp 22.2
|
||||
#define DEFAULT_Ki (1.25*PID_dT)
|
||||
#define DEFAULT_Kd (99/PID_dT)
|
||||
|
||||
// Makergear
|
||||
// #define DEFAULT_Kp 7.0
|
||||
|
@ -148,21 +148,21 @@
|
|||
// #define DEFAULT_Kp 63.0
|
||||
// #define DEFAULT_Ki (2.25*PID_dT)
|
||||
// #define DEFAULT_Kd (440/PID_dT)
|
||||
#endif
|
||||
|
||||
#ifdef PID_PI
|
||||
//PI according to Ziegler-Nichols method
|
||||
#define DEFAULT_Kp (PID_CRITIAL_GAIN/2.2)
|
||||
#define DEFAULT_Ki (1.2*Kp/PID_SWING_AT_CRITIAL*PID_dT)
|
||||
#define DEFAULT_Kd (0)
|
||||
#endif
|
||||
|
||||
// this adds an experimental additional term to the heatingpower, proportional to the extrusion speed.
|
||||
// if Kc is choosen well, the additional required power due to increased melting should be compensated.
|
||||
#define PID_ADD_EXTRUSION_RATE
|
||||
#ifdef PID_ADD_EXTRUSION_RATE
|
||||
#define DEFAULT_Kc (1) //heatingpower=Kc*(e_speed)
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef PID_PI
|
||||
//PI according to Ziegler-Nichols method
|
||||
#define DEFAULT_Kp (PID_CRITIAL_GAIN/2.2)
|
||||
#define DEFAULT_Ki (1.2*Kp/PID_SWING_AT_CRITIAL*PID_dT)
|
||||
#define DEFAULT_Kd (0)
|
||||
#endif
|
||||
|
||||
// this adds an experimental additional term to the heatingpower, proportional to the extrusion speed.
|
||||
// if Kc is choosen well, the additional required power due to increased melting should be compensated.
|
||||
#define PID_ADD_EXTRUSION_RATE
|
||||
#ifdef PID_ADD_EXTRUSION_RATE
|
||||
#define DEFAULT_Kc (1) //heatingpower=Kc*(e_speed)
|
||||
#endif
|
||||
#endif // PIDTEMP
|
||||
|
||||
// extruder run-out prevention.
|
||||
|
@ -184,9 +184,9 @@
|
|||
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
|
||||
|
||||
// The pullups are needed if you directly connect a mechanical endswitch between the signal and ground pins.
|
||||
const bool X_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
|
||||
const bool Y_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
|
||||
const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
|
||||
const bool X_ENDSTOPS_INVERTING = false; // set to true to invert the logic of the endstops.
|
||||
const bool Y_ENDSTOPS_INVERTING = false; // set to true to invert the logic of the endstops.
|
||||
const bool Z_ENDSTOPS_INVERTING = false; // set to true to invert the logic of the endstops.
|
||||
// For optos H21LOB set to true, for Mendel-Parts newer optos TCST2103 set to false
|
||||
|
||||
#define ENDSTOPS_ONLY_FOR_HOMING // If defined the endstops will only be used for homing
|
||||
|
@ -209,9 +209,9 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
|
|||
//#define INVERT_Z_DIR false // for Mendel set to false, for Orca set to true
|
||||
//#define INVERT_E*_DIR true // for direct drive extruder v9 set to true, for geared extruder set to false, used for all extruders
|
||||
|
||||
#define INVERT_X_DIR true // for Mendel set to false, for Orca set to true
|
||||
#define INVERT_X_DIR false // for Mendel set to false, for Orca set to true
|
||||
#define INVERT_Y_DIR false // for Mendel set to true, for Orca set to false
|
||||
#define INVERT_Z_DIR true // for Mendel set to false, for Orca set to true
|
||||
#define INVERT_Z_DIR false // for Mendel set to false, for Orca set to true
|
||||
#define INVERT_E0_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
|
||||
#define INVERT_E1_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
|
||||
#define INVERT_E2_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
|
||||
|
@ -256,7 +256,8 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
|
|||
#define DEFAULT_MINIMUMFEEDRATE 0.0 // minimum feedrate
|
||||
#define DEFAULT_MINTRAVELFEEDRATE 0.0
|
||||
|
||||
// minimum time in microseconds that a movement needs to take if the buffer is emptied. Increase this number if you see blobs while printing high speed & high detail. It will slowdown on the detailed stuff.
|
||||
// minimum time in microseconds that a movement needs to take if the buffer is emptied. Increase this number if you see blobs while
|
||||
//printing high speed & high detail. It will slowdown on the detailed stuff.
|
||||
#define DEFAULT_MINSEGMENTTIME 20000 // Obsolete delete this
|
||||
#define DEFAULT_XYJERK 20.0 // (mm/sec)
|
||||
#define DEFAULT_ZJERK 0.4 // (mm/sec)
|
||||
|
@ -290,7 +291,7 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
|
|||
// this enables the watchdog interrupt.
|
||||
//#define USE_WATCHDOG
|
||||
//#ifdef USE_WATCHDOG
|
||||
// you cannot reboot on a mega2560 due to a bug in he bootloader. Hence, you have to reset manually, and this is done hereby:
|
||||
// you cannot reboot on a mega2560 due to a bug in he bootloader. Hence, you have to reset manually, and this is done hereby:
|
||||
//#define RESET_MANUAL
|
||||
//#define WATCHDOG_TIMEOUT 4 //seconds
|
||||
//#endif
|
||||
|
@ -305,12 +306,12 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
|
|||
//#define ADVANCE
|
||||
|
||||
#ifdef ADVANCE
|
||||
#define EXTRUDER_ADVANCE_K .0
|
||||
#define EXTRUDER_ADVANCE_K .0
|
||||
|
||||
#define D_FILAMENT 2.85
|
||||
#define STEPS_MM_E 836
|
||||
#define EXTRUTION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159)
|
||||
#define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS]/ EXTRUTION_AREA)
|
||||
#define D_FILAMENT 2.85
|
||||
#define STEPS_MM_E 836
|
||||
#define EXTRUTION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159)
|
||||
#define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS]/ EXTRUTION_AREA)
|
||||
|
||||
#endif // ADVANCE
|
||||
|
||||
|
@ -321,18 +322,18 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
|
|||
#define SD_FINISHED_STEPPERRELEASE true //if sd support and the file is finished: disable steppers?
|
||||
#define SD_FINISHED_RELEASECOMMAND "M84 X Y E" // no z because of layer shift.
|
||||
|
||||
//#define ULTIPANEL
|
||||
#define ULTIPANEL
|
||||
#ifdef ULTIPANEL
|
||||
//#define NEWPANEL //enable this if you have a click-encoder panel
|
||||
#define SDSUPPORT
|
||||
#define ULTRA_LCD
|
||||
#define LCD_WIDTH 20
|
||||
#define LCD_HEIGHT 4
|
||||
#define NEWPANEL //enable this if you have a click-encoder panel
|
||||
#define SDSUPPORT
|
||||
#define ULTRA_LCD
|
||||
#define LCD_WIDTH 20
|
||||
#define LCD_HEIGHT 4
|
||||
#else //no panel but just lcd
|
||||
#ifdef ULTRA_LCD
|
||||
#define LCD_WIDTH 16
|
||||
#define LCD_HEIGHT 2
|
||||
#endif
|
||||
#ifdef ULTRA_LCD
|
||||
#define LCD_WIDTH 16
|
||||
#define LCD_HEIGHT 2
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// A debugging feature to compare calculated vs performed steps, to see if steps are lost by the software.
|
||||
|
@ -353,13 +354,13 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
|
|||
// on an ultimaker, some initial testing worked with M109 S215 T260 F0.1 in the start.gcode
|
||||
//#define AUTOTEMP
|
||||
#ifdef AUTOTEMP
|
||||
#define AUTOTEMP_OLDWEIGHT 0.98
|
||||
#define AUTOTEMP_OLDWEIGHT 0.98
|
||||
#endif
|
||||
|
||||
//this prevents dangerous Extruder moves, i.e. if the temperature is under the limit
|
||||
//can be software-disabled for whatever purposes by
|
||||
#define PREVENT_DANGEROUS_EXTRUDE
|
||||
#define EXTRUDE_MINTEMP 190
|
||||
#define EXTRUDE_MINTEMP 0
|
||||
#define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances.
|
||||
|
||||
const int dropsegments=5; //everything with less than this number of steps will be ignored as move and joined with the next movement
|
||||
|
@ -378,9 +379,9 @@ const int dropsegments=5; //everything with less than this number of steps will
|
|||
// The number of linear motions that can be in the plan at any give time.
|
||||
// THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, i.g. 8,16,32 because shifts and ors are used to do the ringbuffering.
|
||||
#if defined SDSUPPORT
|
||||
#define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller
|
||||
#define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller
|
||||
#else
|
||||
#define BLOCK_BUFFER_SIZE 16 // maximize block buffer
|
||||
#define BLOCK_BUFFER_SIZE 16 // maximize block buffer
|
||||
#endif
|
||||
|
||||
|
||||
|
@ -392,3 +393,5 @@ const int dropsegments=5; //everything with less than this number of steps will
|
|||
#include "thermistortables.h"
|
||||
|
||||
#endif //__CONFIGURATION_H
|
||||
|
||||
|
||||
|
|
|
@ -237,9 +237,11 @@ void setup_photpin()
|
|||
void setup_powerhold()
|
||||
{
|
||||
#ifdef SUICIDE_PIN
|
||||
#if (SUICIDE_PIN> -1)
|
||||
SET_OUTPUT(SUICIDE_PIN);
|
||||
WRITE(SUICIDE_PIN, HIGH);
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
|
||||
void suicide()
|
||||
|
|
|
@ -527,23 +527,119 @@ void MainMenu::showAxisMove()
|
|||
MENUITEM( lcdprintPGM(" Main \003") , BLOCK;status=Main_Menu;beepshort(); ) ;
|
||||
break;
|
||||
case ItemAM_X:
|
||||
MENUITEM( lcdprintPGM(" X+") , BLOCK;enquecommand("G92 X0");enquecommand("G1 F700 X10");beepshort(); ) ;
|
||||
// MENUITEM( lcdprintPGM(" X+") , BLOCK;enquecommand("G92 X0");enquecommand("G1 F700 X10");beepshort(); ) ;
|
||||
{
|
||||
if(force_lcd_update)
|
||||
{
|
||||
lcd.setCursor(0,line);lcdprintPGM(" X:");
|
||||
lcd.setCursor(13,line);lcd.print(ftostr3(current_position[X_AXIS]));
|
||||
}
|
||||
|
||||
if((activeline!=line) )
|
||||
break;
|
||||
|
||||
if(CLICKED)
|
||||
{
|
||||
linechanging=!linechanging;
|
||||
if(linechanging)
|
||||
{
|
||||
encoderpos=current_position[X_AXIS];
|
||||
}
|
||||
else
|
||||
{
|
||||
enquecommand("G1 F700 X"+encoderpos);
|
||||
encoderpos=activeline*lcdslow;
|
||||
beepshort();
|
||||
}
|
||||
BLOCK;
|
||||
}
|
||||
if(linechanging)
|
||||
{
|
||||
if(encoderpos<1) encoderpos=1;
|
||||
if(encoderpos>200) encoderpos=200;
|
||||
lcd.setCursor(13,line);lcd.print(current_position[X_AXIS]);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case ItemAM_Y:
|
||||
MENUITEM( lcdprintPGM(" Y+") , BLOCK;enquecommand("G92 Y0");enquecommand("G1 F700 Y10");beepshort(); ) ;
|
||||
//MENUITEM( lcdprintPGM(" Y+") , BLOCK;enquecommand("G92 Y0");enquecommand("G1 F700 Y10");beepshort(); ) ;
|
||||
{
|
||||
if(force_lcd_update)
|
||||
{
|
||||
lcd.setCursor(0,line);lcdprintPGM(" Y:");
|
||||
lcd.setCursor(13,line);lcd.print(ftostr3(current_position[Y_AXIS]));
|
||||
}
|
||||
|
||||
if((activeline!=line) )
|
||||
break;
|
||||
|
||||
if(CLICKED)
|
||||
{
|
||||
linechanging=!linechanging;
|
||||
if(linechanging)
|
||||
{
|
||||
encoderpos=current_position[Y_AXIS];
|
||||
}
|
||||
else
|
||||
{
|
||||
enquecommand("G1 F700 Y"+encoderpos);
|
||||
encoderpos=activeline*lcdslow;
|
||||
beepshort();
|
||||
}
|
||||
BLOCK;
|
||||
}
|
||||
if(linechanging)
|
||||
{
|
||||
if(encoderpos<1) encoderpos=1;
|
||||
if(encoderpos>200) encoderpos=200;
|
||||
lcd.setCursor(13,line);lcd.print(current_position[Y_AXIS]);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case ItemAM_Z:
|
||||
MENUITEM( lcdprintPGM(" Z+") , BLOCK;enquecommand("G92 Z0");enquecommand("G1 F700 Z10");beepshort(); ) ;
|
||||
//MENUITEM( lcdprintPGM(" Z+") , BLOCK;enquecommand("G92 Z0");enquecommand("G1 F700 Z10");beepshort(); ) ;
|
||||
{
|
||||
if(force_lcd_update)
|
||||
{
|
||||
lcd.setCursor(0,line);lcdprintPGM(" Z:");
|
||||
lcd.setCursor(13,line);lcd.print(ftostr3(current_position[Z_AXIS]));
|
||||
}
|
||||
|
||||
if((activeline!=line) )
|
||||
break;
|
||||
|
||||
if(CLICKED)
|
||||
{
|
||||
linechanging=!linechanging;
|
||||
if(linechanging)
|
||||
{
|
||||
encoderpos=current_position[Z_AXIS];
|
||||
}
|
||||
else
|
||||
{
|
||||
enquecommand("G1 F700 Z"+encoderpos);
|
||||
encoderpos=activeline*lcdslow;
|
||||
beepshort();
|
||||
}
|
||||
BLOCK;
|
||||
}
|
||||
if(linechanging)
|
||||
{
|
||||
if(encoderpos<1) encoderpos=1;
|
||||
if(encoderpos>170) encoderpos=170;
|
||||
lcd.setCursor(13,line);lcd.print(current_position[Z_AXIS]);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case ItemAM_E:
|
||||
MENUITEM( lcdprintPGM(" Extrude") , BLOCK;enquecommand("G92 E0");enquecommand("G1 F700 E50");beepshort(); ) ;
|
||||
MENUITEM( lcdprintPGM(" Extrude") , BLOCK;enquecommand("G92 E0");enquecommand("G1 F700 E10");beepshort(); ) ;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
line++;
|
||||
}
|
||||
updateActiveLines(ItemAM_Z,encoderpos);
|
||||
updateActiveLines(ItemAM_E,encoderpos);
|
||||
}
|
||||
|
||||
enum {ItemT_exit,ItemT_speed,ItemT_flow,ItemT_nozzle,
|
||||
|
@ -1189,7 +1285,7 @@ enum {
|
|||
ItemCM_vmaxx, ItemCM_vmaxy, ItemCM_vmaxz, ItemCM_vmaxe,
|
||||
ItemCM_vtravmin,ItemCM_vmin,
|
||||
ItemCM_amaxx, ItemCM_amaxy, ItemCM_amaxz, ItemCM_amaxe,
|
||||
ItemCM_aret,ItemCM_esteps
|
||||
ItemCM_aret, ItemCM_xsteps,ItemCM_ysteps, ItemCM_zsteps, ItemCM_esteps
|
||||
};
|
||||
|
||||
|
||||
|
@ -1465,11 +1561,126 @@ void MainMenu::showControlMotion()
|
|||
}
|
||||
|
||||
}break;
|
||||
case ItemCM_xsteps://axis_steps_per_unit[i] = code_value();
|
||||
{
|
||||
if(force_lcd_update)
|
||||
{
|
||||
lcd.setCursor(0,line);lcdprintPGM(" X steps/mm:");
|
||||
lcd.setCursor(13,line);lcd.print(itostr4(axis_steps_per_unit[0]));
|
||||
}
|
||||
|
||||
if((activeline!=line) )
|
||||
break;
|
||||
|
||||
if(CLICKED)
|
||||
{
|
||||
linechanging=!linechanging;
|
||||
if(linechanging)
|
||||
{
|
||||
encoderpos=(int)axis_steps_per_unit[0];
|
||||
}
|
||||
else
|
||||
{
|
||||
float factor=float(encoderpos)/float(axis_steps_per_unit[0]);
|
||||
position[X_AXIS]=lround(position[X_AXIS]*factor);
|
||||
//current_position[3]*=factor;
|
||||
axis_steps_per_unit[X_AXIS]= encoderpos;
|
||||
encoderpos=activeline*lcdslow;
|
||||
|
||||
}
|
||||
BLOCK;
|
||||
beepshort();
|
||||
}
|
||||
if(linechanging)
|
||||
{
|
||||
if(encoderpos<5) encoderpos=5;
|
||||
if(encoderpos>9999) encoderpos=9999;
|
||||
lcd.setCursor(13,line);lcd.print(itostr4(encoderpos));
|
||||
}
|
||||
|
||||
}break;
|
||||
case ItemCM_ysteps://axis_steps_per_unit[i] = code_value();
|
||||
{
|
||||
if(force_lcd_update)
|
||||
{
|
||||
lcd.setCursor(0,line);lcdprintPGM(" Y steps/mm:");
|
||||
lcd.setCursor(13,line);lcd.print(itostr4(axis_steps_per_unit[1]));
|
||||
}
|
||||
|
||||
if((activeline!=line) )
|
||||
break;
|
||||
|
||||
if(CLICKED)
|
||||
{
|
||||
linechanging=!linechanging;
|
||||
if(linechanging)
|
||||
{
|
||||
encoderpos=(int)axis_steps_per_unit[1];
|
||||
}
|
||||
else
|
||||
{
|
||||
float factor=float(encoderpos)/float(axis_steps_per_unit[1]);
|
||||
position[Y_AXIS]=lround(position[Y_AXIS]*factor);
|
||||
//current_position[3]*=factor;
|
||||
axis_steps_per_unit[Y_AXIS]= encoderpos;
|
||||
encoderpos=activeline*lcdslow;
|
||||
|
||||
}
|
||||
BLOCK;
|
||||
beepshort();
|
||||
}
|
||||
if(linechanging)
|
||||
{
|
||||
if(encoderpos<5) encoderpos=5;
|
||||
if(encoderpos>9999) encoderpos=9999;
|
||||
lcd.setCursor(13,line);lcd.print(itostr4(encoderpos));
|
||||
}
|
||||
|
||||
}break;
|
||||
case ItemCM_zsteps://axis_steps_per_unit[i] = code_value();
|
||||
{
|
||||
if(force_lcd_update)
|
||||
{
|
||||
lcd.setCursor(0,line);lcdprintPGM(" Z steps/mm:");
|
||||
lcd.setCursor(13,line);lcd.print(itostr4(axis_steps_per_unit[2]));
|
||||
}
|
||||
|
||||
if((activeline!=line) )
|
||||
break;
|
||||
|
||||
if(CLICKED)
|
||||
{
|
||||
linechanging=!linechanging;
|
||||
if(linechanging)
|
||||
{
|
||||
encoderpos=(int)axis_steps_per_unit[2];
|
||||
}
|
||||
else
|
||||
{
|
||||
float factor=float(encoderpos)/float(axis_steps_per_unit[2]);
|
||||
position[Z_AXIS]=lround(position[Z_AXIS]*factor);
|
||||
//current_position[3]*=factor;
|
||||
axis_steps_per_unit[Z_AXIS]= encoderpos;
|
||||
encoderpos=activeline*lcdslow;
|
||||
|
||||
}
|
||||
BLOCK;
|
||||
beepshort();
|
||||
}
|
||||
if(linechanging)
|
||||
{
|
||||
if(encoderpos<5) encoderpos=5;
|
||||
if(encoderpos>9999) encoderpos=9999;
|
||||
lcd.setCursor(13,line);lcd.print(itostr4(encoderpos));
|
||||
}
|
||||
|
||||
}break;
|
||||
|
||||
case ItemCM_esteps://axis_steps_per_unit[i] = code_value();
|
||||
{
|
||||
if(force_lcd_update)
|
||||
{
|
||||
lcd.setCursor(0,line);lcdprintPGM(" Esteps/mm:");
|
||||
lcd.setCursor(0,line);lcdprintPGM(" E steps/mm:");
|
||||
lcd.setCursor(13,line);lcd.print(itostr4(axis_steps_per_unit[3]));
|
||||
}
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue