Merge remote-tracking branch 'origin/Marlin_v1' into add/M665-set-delta-configuration

Conflicts:
	Marlin/Marlin_main.cpp
This commit is contained in:
Jim Morris 2014-02-26 00:19:28 -08:00
commit 8ea5665ee2
18 changed files with 451 additions and 245 deletions

View file

@ -335,11 +335,49 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING
// these are the positions on the bed to do the probing // There are 2 different ways to pick the X and Y locations to probe:
#define LEFT_PROBE_BED_POSITION 15
#define RIGHT_PROBE_BED_POSITION 170 // - "grid" mode
#define BACK_PROBE_BED_POSITION 180 // Probe every point in a rectangular grid
#define FRONT_PROBE_BED_POSITION 20 // You must specify the rectangle, and the density of sample points
// This mode is preferred because there are more measurements.
// It used to be called ACCURATE_BED_LEVELING but "grid" is more descriptive
// - "3-point" mode
// Probe 3 arbitrary points on the bed (that aren't colinear)
// You must specify the X & Y coordinates of all 3 points
#define AUTO_BED_LEVELING_GRID
// with AUTO_BED_LEVELING_GRID, the bed is sampled in a
// AUTO_BED_LEVELING_GRID_POINTSxAUTO_BED_LEVELING_GRID_POINTS grid
// and least squares solution is calculated
// Note: this feature occupies 10'206 byte
#ifdef AUTO_BED_LEVELING_GRID
// set the rectangle in which to probe
#define LEFT_PROBE_BED_POSITION 15
#define RIGHT_PROBE_BED_POSITION 170
#define BACK_PROBE_BED_POSITION 180
#define FRONT_PROBE_BED_POSITION 20
// set the number of grid points per dimension
// I wouldn't see a reason to go above 3 (=9 probing points on the bed)
#define AUTO_BED_LEVELING_GRID_POINTS 2
#else // not AUTO_BED_LEVELING_GRID
// with no grid, just probe 3 arbitrary points. A simple cross-product
// is used to esimate the plane of the print bed
#define ABL_PROBE_PT_1_X 15
#define ABL_PROBE_PT_1_Y 180
#define ABL_PROBE_PT_2_X 15
#define ABL_PROBE_PT_2_Y 20
#define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20
#endif // AUTO_BED_LEVELING_GRID
// these are the offsets to the probe relative to the extruder tip (Hotend - Probe) // these are the offsets to the probe relative to the extruder tip (Hotend - Probe)
#define X_PROBE_OFFSET_FROM_EXTRUDER -25 #define X_PROBE_OFFSET_FROM_EXTRUDER -25
@ -379,16 +417,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#endif #endif
// with accurate bed leveling, the bed is sampled in a ACCURATE_BED_LEVELING_POINTSxACCURATE_BED_LEVELING_POINTS grid and least squares solution is calculated #endif // ENABLE_AUTO_BED_LEVELING
// Note: this feature occupies 10'206 byte
#define ACCURATE_BED_LEVELING
#ifdef ACCURATE_BED_LEVELING
// I wouldn't see a reason to go above 3 (=9 probing points on the bed)
#define ACCURATE_BED_LEVELING_POINTS 2
#endif
#endif
// The position of the homing switches // The position of the homing switches

View file

@ -399,8 +399,14 @@ const unsigned int dropsegments=5; //everything with less than this number of st
// the moves are than replaced by the firmware controlled ones. // the moves are than replaced by the firmware controlled ones.
// #define FWRETRACT //ONLY PARTIALLY TESTED // #define FWRETRACT //ONLY PARTIALLY TESTED
#define MIN_RETRACT 0.1 //minimum extruded mm to accept a automatic gcode retraction attempt #ifdef FWRETRACT
#define MIN_RETRACT 0.1 //minimum extruded mm to accept a automatic gcode retraction attempt
#define RETRACT_LENGTH 3 //default retract length (positive mm)
#define RETRACT_FEEDRATE 80*60 //default feedrate for retracting
#define RETRACT_ZLIFT 0 //default retract Z-lift
#define RETRACT_RECOVER_LENGTH 0 //default additional recover length (mm, added to retract length when recovering)
#define RETRACT_RECOVER_FEEDRATE 8*60 //default feedrate for recovering from retraction
#endif
//adds support for experimental filament exchange support M600; requires display //adds support for experimental filament exchange support M600; requires display
#ifdef ULTIPANEL #ifdef ULTIPANEL

Binary file not shown.

View file

@ -1,5 +1,5 @@
// Tonokip RepRap firmware rewrite based off of Hydra-mmm firmware. // Tonokip RepRap firmware rewrite based off of Hydra-mmm firmware.
// Licence: GPL // License: GPL
#ifndef MARLIN_H #ifndef MARLIN_H
#define MARLIN_H #define MARLIN_H
@ -30,7 +30,7 @@
# include "Arduino.h" # include "Arduino.h"
#else #else
# include "WProgram.h" # include "WProgram.h"
//Arduino < 1.0.0 does not define this, so we need to do it ourselfs //Arduino < 1.0.0 does not define this, so we need to do it ourselves
# define analogInputToDigitalPin(p) ((p) + A0) # define analogInputToDigitalPin(p) ((p) + A0)
#endif #endif
@ -87,7 +87,7 @@ void serial_echopair_P(const char *s_P, double v);
void serial_echopair_P(const char *s_P, unsigned long v); void serial_echopair_P(const char *s_P, unsigned long v);
//things to write to serial from Programmemory. saves 400 to 2k of RAM. //Things to write to serial from Program memory. Saves 400 to 2k of RAM.
FORCE_INLINE void serialprintPGM(const char *str) FORCE_INLINE void serialprintPGM(const char *str)
{ {
char ch=pgm_read_byte(str); char ch=pgm_read_byte(str);
@ -184,8 +184,8 @@ void Stop();
bool IsStopped(); bool IsStopped();
void enquecommand(const char *cmd); //put an ascii command at the end of the current buffer. void enquecommand(const char *cmd); //put an ASCII command at the end of the current buffer.
void enquecommand_P(const char *cmd); //put an ascii command at the end of the current buffer, read from flash void enquecommand_P(const char *cmd); //put an ASCII command at the end of the current buffer, read from flash
void prepare_arc_move(char isclockwise); void prepare_arc_move(char isclockwise);
void clamp_to_software_endstops(float target[3]); void clamp_to_software_endstops(float target[3]);

View file

@ -31,7 +31,7 @@
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING
#include "vector_3.h" #include "vector_3.h"
#ifdef ACCURATE_BED_LEVELING #ifdef AUTO_BED_LEVELING_GRID
#include "qr_solve.h" #include "qr_solve.h"
#endif #endif
#endif // ENABLE_AUTO_BED_LEVELING #endif // ENABLE_AUTO_BED_LEVELING
@ -63,7 +63,7 @@
#define VERSION_STRING "1.0.0" #define VERSION_STRING "1.0.0"
// look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
//Implemented Codes //Implemented Codes
@ -76,11 +76,11 @@
// G10 - retract filament according to settings of M207 // G10 - retract filament according to settings of M207
// G11 - retract recover filament according to settings of M208 // G11 - retract recover filament according to settings of M208
// G28 - Home all Axis // G28 - Home all Axis
// G29 - Detailed Z-Probe, probes the bed at 3 points. You must de at the home position for this to work correctly. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
// G30 - Single Z Probe, probes bed at current XY location. // G30 - Single Z Probe, probes bed at current XY location.
// G90 - Use Absolute Coordinates // G90 - Use Absolute Coordinates
// G91 - Use Relative Coordinates // G91 - Use Relative Coordinates
// G92 - Set current position to cordinates given // G92 - Set current position to coordinates given
// M Codes // M Codes
// M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled) // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
@ -101,7 +101,7 @@
// M31 - Output time since last M109 or SD card start to serial // M31 - Output time since last M109 or SD card start to serial
// M32 - Select file and start SD print (Can be used _while_ printing from SD card files): // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
// syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#" // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
// Call gcode file : "M32 P !filename#" and return to caller file after finishing (simiarl to #include). // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
// The '#' is necessary when calling from within sd files, as it stops buffer prereading // The '#' is necessary when calling from within sd files, as it stops buffer prereading
// M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
// M80 - Turn on Power Supply // M80 - Turn on Power Supply
@ -127,18 +127,18 @@
// M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil) // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
// M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil) // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
// M140 - Set bed target temp // M140 - Set bed target temp
// M150 - Set BlinkM Colour Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
// M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
// Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
// M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters). // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000) // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!! // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
// M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
// M206 - set additional homeing offset // M206 - set additional homing offset
// M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
// M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min] // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
// M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
// M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y> // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
// M220 S<factor in percent>- set speed factor override percentage // M220 S<factor in percent>- set speed factor override percentage
@ -147,7 +147,7 @@
// M240 - Trigger a camera to take a photograph // M240 - Trigger a camera to take a photograph
// M250 - Set LCD contrast C<contrast value> (value 0..63) // M250 - Set LCD contrast C<contrast value> (value 0..63)
// M280 - set servo position absolute. P: servo index, S: angle or microseconds // M280 - set servo position absolute. P: servo index, S: angle or microseconds
// M300 - Play beepsound S<frequency Hz> P<duration ms> // M300 - Play beep sound S<frequency Hz> P<duration ms>
// M301 - Set PID parameters P I and D // M301 - Set PID parameters P I and D
// M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
// M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C) // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
@ -155,14 +155,14 @@
// M400 - Finish all moves // M400 - Finish all moves
// M401 - Lower z-probe if present // M401 - Lower z-probe if present
// M402 - Raise z-probe if present // M402 - Raise z-probe if present
// M500 - stores paramters in EEPROM // M500 - stores parameters in EEPROM
// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily). // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
// M503 - print the current settings (from memory not from eeprom) // M503 - print the current settings (from memory not from EEPROM)
// M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
// M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal] // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
// M665 - set delta configurations // M665 - set delta configurations
// M666 - set delta endstop adjustemnt // M666 - set delta endstop adjustment
// M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ] // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
// M907 - Set digital trimpot motor current using axis codes. // M907 - Set digital trimpot motor current using axis codes.
// M908 - Control digital trimpot directly. // M908 - Control digital trimpot directly.
@ -232,10 +232,13 @@ int EtoPPressure=0;
#endif #endif
#ifdef FWRETRACT #ifdef FWRETRACT
bool autoretract_enabled=true; bool autoretract_enabled=false;
bool retracted=false; bool retracted=false;
float retract_length=3, retract_feedrate=17*60, retract_zlift=0.8; float retract_length = RETRACT_LENGTH;
float retract_recover_length=0, retract_recover_feedrate=8*60; float retract_feedrate = RETRACT_FEEDRATE;
float retract_zlift = RETRACT_ZLIFT;
float retract_recover_length = RETRACT_RECOVER_LENGTH;
float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
#endif #endif
#ifdef ULTIPANEL #ifdef ULTIPANEL
@ -264,7 +267,7 @@ int EtoPPressure=0;
#endif #endif
//=========================================================================== //===========================================================================
//=============================private variables============================= //=============================Private Variables=============================
//=========================================================================== //===========================================================================
const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'}; const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0}; static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
@ -284,7 +287,7 @@ static int buflen = 0;
static char serial_char; static char serial_char;
static int serial_count = 0; static int serial_count = 0;
static boolean comment_mode = false; static boolean comment_mode = false;
static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42 const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
@ -312,7 +315,7 @@ bool CooldownNoWait = true;
bool target_direction; bool target_direction;
//=========================================================================== //===========================================================================
//=============================ROUTINES============================= //=============================Routines======================================
//=========================================================================== //===========================================================================
void get_arc_coordinates(); void get_arc_coordinates();
@ -349,7 +352,7 @@ void enquecommand(const char *cmd)
{ {
if(buflen < BUFSIZE) if(buflen < BUFSIZE)
{ {
//this is dangerous if a mixing of serial and this happsens //this is dangerous if a mixing of serial and this happens
strcpy(&(cmdbuffer[bufindw][0]),cmd); strcpy(&(cmdbuffer[bufindw][0]),cmd);
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOPGM("enqueing \""); SERIAL_ECHOPGM("enqueing \"");
@ -364,7 +367,7 @@ void enquecommand_P(const char *cmd)
{ {
if(buflen < BUFSIZE) if(buflen < BUFSIZE)
{ {
//this is dangerous if a mixing of serial and this happsens //this is dangerous if a mixing of serial and this happens
strcpy_P(&(cmdbuffer[bufindw][0]),cmd); strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOPGM("enqueing \""); SERIAL_ECHOPGM("enqueing \"");
@ -671,9 +674,9 @@ void get_command()
return; return;
} }
//'#' stops reading from sd to the buffer prematurely, so procedural macro calls are possible //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
// if it occures, stop_buffering is triggered and the buffer is ran dry. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
// this character _can_ occure in serial com, due to checksums. however, no checksums are used in sd printing // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
static bool stop_buffering=false; static bool stop_buffering=false;
if(buflen==0) stop_buffering=false; if(buflen==0) stop_buffering=false;
@ -832,7 +835,7 @@ static void axis_is_at_home(int axis) {
} }
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING
#ifdef ACCURATE_BED_LEVELING #ifdef AUTO_BED_LEVELING_GRID
static void set_bed_level_equation_lsq(double *plane_equation_coefficients) static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
{ {
vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1); vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
@ -856,42 +859,36 @@ static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
} }
#else #else // not AUTO_BED_LEVELING_GRID
static void set_bed_level_equation(float z_at_xLeft_yFront, float z_at_xRight_yFront, float z_at_xLeft_yBack) {
static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
plan_bed_level_matrix.set_to_identity(); plan_bed_level_matrix.set_to_identity();
vector_3 xLeftyFront = vector_3(LEFT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xLeft_yFront); vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
vector_3 xLeftyBack = vector_3(LEFT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION, z_at_xLeft_yBack); vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
vector_3 xRightyFront = vector_3(RIGHT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xRight_yFront); vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
vector_3 xPositive = (xRightyFront - xLeftyFront).get_normal(); vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
vector_3 yPositive = (xLeftyBack - xLeftyFront).get_normal(); vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
vector_3 planeNormal = vector_3::cross(xPositive, yPositive).get_normal(); vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
//planeNormal.debug("planeNormal");
//yPositive.debug("yPositive");
plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal); plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
//bedLevel.debug("bedLevel");
//plan_bed_level_matrix.debug("bed level before");
//vector_3 uncorrected_position = plan_get_position_mm();
//uncorrected_position.debug("position before");
// and set our bed level equation to do the right thing
//plan_bed_level_matrix.debug("bed level after");
vector_3 corrected_position = plan_get_position(); vector_3 corrected_position = plan_get_position();
//corrected_position.debug("position after");
current_position[X_AXIS] = corrected_position.x; current_position[X_AXIS] = corrected_position.x;
current_position[Y_AXIS] = corrected_position.y; current_position[Y_AXIS] = corrected_position.y;
current_position[Z_AXIS] = corrected_position.z; current_position[Z_AXIS] = corrected_position.z;
// but the bed at 0 so we don't go below it. // put the bed at 0 so we don't go below it.
current_position[Z_AXIS] = zprobe_zoffset; current_position[Z_AXIS] = zprobe_zoffset;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
} }
#endif // ACCURATE_BED_LEVELING
#endif // AUTO_BED_LEVELING_GRID
static void run_z_probe() { static void run_z_probe() {
plan_bed_level_matrix.set_to_identity(); plan_bed_level_matrix.set_to_identity();
@ -1098,6 +1095,42 @@ void refresh_cmd_timeout(void)
previous_millis_cmd = millis(); previous_millis_cmd = millis();
} }
#ifdef FWRETRACT
void retract(bool retracting) {
if(retracting && !retracted) {
destination[X_AXIS]=current_position[X_AXIS];
destination[Y_AXIS]=current_position[Y_AXIS];
destination[Z_AXIS]=current_position[Z_AXIS];
destination[E_AXIS]=current_position[E_AXIS];
current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
plan_set_e_position(current_position[E_AXIS]);
float oldFeedrate = feedrate;
feedrate=retract_feedrate;
retracted=true;
prepare_move();
current_position[Z_AXIS]-=retract_zlift;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
prepare_move();
feedrate = oldFeedrate;
} else if(!retracting && retracted) {
destination[X_AXIS]=current_position[X_AXIS];
destination[Y_AXIS]=current_position[Y_AXIS];
destination[Z_AXIS]=current_position[Z_AXIS];
destination[E_AXIS]=current_position[E_AXIS];
current_position[Z_AXIS]+=retract_zlift;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
//prepare_move();
current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
plan_set_e_position(current_position[E_AXIS]);
float oldFeedrate = feedrate;
feedrate=retract_recover_feedrate;
retracted=false;
prepare_move();
feedrate = oldFeedrate;
}
} //retract
#endif //FWRETRACT
void process_commands() void process_commands()
{ {
unsigned long codenum; //throw away variable unsigned long codenum; //throw away variable
@ -1113,6 +1146,18 @@ void process_commands()
case 1: // G1 case 1: // G1
if(Stopped == false) { if(Stopped == false) {
get_coordinates(); // For X Y Z E F get_coordinates(); // For X Y Z E F
#ifdef FWRETRACT
if(autoretract_enabled)
if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
float echange=destination[E_AXIS]-current_position[E_AXIS];
if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
plan_set_e_position(current_position[E_AXIS]); //AND from the planner
retract(!retracted);
return;
}
}
#endif //FWRETRACT
prepare_move(); prepare_move();
//ClearToSend(); //ClearToSend();
return; return;
@ -1147,39 +1192,10 @@ void process_commands()
break; break;
#ifdef FWRETRACT #ifdef FWRETRACT
case 10: // G10 retract case 10: // G10 retract
if(!retracted) retract(true);
{
destination[X_AXIS]=current_position[X_AXIS];
destination[Y_AXIS]=current_position[Y_AXIS];
destination[Z_AXIS]=current_position[Z_AXIS];
current_position[Z_AXIS]-=retract_zlift;
destination[E_AXIS]=current_position[E_AXIS];
current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
plan_set_e_position(current_position[E_AXIS]);
float oldFeedrate = feedrate;
feedrate=retract_feedrate;
retracted=true;
prepare_move();
feedrate = oldFeedrate;
}
break; break;
case 11: // G11 retract_recover case 11: // G11 retract_recover
if(retracted) retract(false);
{
destination[X_AXIS]=current_position[X_AXIS];
destination[Y_AXIS]=current_position[Y_AXIS];
destination[Z_AXIS]=current_position[Z_AXIS];
current_position[Z_AXIS]+=retract_zlift;
destination[E_AXIS]=current_position[E_AXIS];
current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
plan_set_e_position(current_position[E_AXIS]);
float oldFeedrate = feedrate;
feedrate=retract_recover_feedrate;
retracted=false;
prepare_move();
feedrate = oldFeedrate;
}
break; break;
#endif //FWRETRACT #endif //FWRETRACT
case 28: //G28 Home all Axis one at a time case 28: //G28 Home all Axis one at a time
@ -1232,7 +1248,7 @@ void process_commands()
#else // NOT DELTA #else // NOT DELTA
home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))); home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
#if Z_HOME_DIR > 0 // If homing away from BED do Z first #if Z_HOME_DIR > 0 // If homing away from BED do Z first
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) { if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
@ -1394,12 +1410,21 @@ void process_commands()
break; break;
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING
case 29: // G29 Detailed Z-Probe, probes the bed at 3 points. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
{ {
#if Z_MIN_PIN == -1 #if Z_MIN_PIN == -1
#error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin." #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
#endif #endif
// Prevent user from running a G29 without first homing in X and Y
if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
{
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
break; // abort G29, since we don't know where we are
}
st_synchronize(); st_synchronize();
// make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
//vector_3 corrected_position = plan_get_position_mm(); //vector_3 corrected_position = plan_get_position_mm();
@ -1414,10 +1439,11 @@ void process_commands()
setup_for_endstop_move(); setup_for_endstop_move();
feedrate = homing_feedrate[Z_AXIS]; feedrate = homing_feedrate[Z_AXIS];
#ifdef ACCURATE_BED_LEVELING #ifdef AUTO_BED_LEVELING_GRID
// probe at the points of a lattice grid
int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (ACCURATE_BED_LEVELING_POINTS-1); int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (ACCURATE_BED_LEVELING_POINTS-1); int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
// solve the plane equation ax + by + d = z // solve the plane equation ax + by + d = z
@ -1427,9 +1453,9 @@ void process_commands()
// so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
// "A" matrix of the linear system of equations // "A" matrix of the linear system of equations
double eqnAMatrix[ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS*3]; double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
// "B" vector of Z points // "B" vector of Z points
double eqnBVector[ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS]; double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
int probePointCounter = 0; int probePointCounter = 0;
@ -1452,7 +1478,7 @@ void process_commands()
zig = true; zig = true;
} }
for (int xCount=0; xCount < ACCURATE_BED_LEVELING_POINTS; xCount++) for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
{ {
float z_before; float z_before;
if (probePointCounter == 0) if (probePointCounter == 0)
@ -1469,9 +1495,9 @@ void process_commands()
eqnBVector[probePointCounter] = measured_z; eqnBVector[probePointCounter] = measured_z;
eqnAMatrix[probePointCounter + 0*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = xProbe; eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
eqnAMatrix[probePointCounter + 1*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = yProbe; eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
eqnAMatrix[probePointCounter + 2*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = 1; eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
probePointCounter++; probePointCounter++;
xProbe += xInc; xProbe += xInc;
} }
@ -1479,7 +1505,7 @@ void process_commands()
clean_up_after_endstop_move(); clean_up_after_endstop_move();
// solve lsq problem // solve lsq problem
double *plane_equation_coefficients = qr_solve(ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS, 3, eqnAMatrix, eqnBVector); double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
SERIAL_PROTOCOLPGM("Eqn coefficients: a: "); SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
SERIAL_PROTOCOL(plane_equation_coefficients[0]); SERIAL_PROTOCOL(plane_equation_coefficients[0]);
@ -1493,24 +1519,24 @@ void process_commands()
free(plane_equation_coefficients); free(plane_equation_coefficients);
#else // ACCURATE_BED_LEVELING not defined #else // AUTO_BED_LEVELING_GRID not defined
// Probe at 3 arbitrary points
// probe 1
float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
// prob 1 // probe 2
float z_at_xLeft_yBack = probe_pt(LEFT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION, Z_RAISE_BEFORE_PROBING); float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
// prob 2 // probe 3
float z_at_xLeft_yFront = probe_pt(LEFT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS); float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
// prob 3
float z_at_xRight_yFront = probe_pt(RIGHT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
clean_up_after_endstop_move(); clean_up_after_endstop_move();
set_bed_level_equation(z_at_xLeft_yFront, z_at_xRight_yFront, z_at_xLeft_yBack); set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
#endif // ACCURATE_BED_LEVELING #endif // AUTO_BED_LEVELING_GRID
st_synchronize(); st_synchronize();
// The following code correct the Z height difference from z-probe position and hotend tip position. // The following code correct the Z height difference from z-probe position and hotend tip position.
@ -2079,7 +2105,7 @@ void process_commands()
} }
else else
{ {
bool all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))|| (code_seen(axis_codes[3]))); bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
if(all_axis) if(all_axis)
{ {
st_synchronize(); st_synchronize();
@ -3048,42 +3074,6 @@ void get_coordinates()
next_feedrate = code_value(); next_feedrate = code_value();
if(next_feedrate > 0.0) feedrate = next_feedrate; if(next_feedrate > 0.0) feedrate = next_feedrate;
} }
#ifdef FWRETRACT
if(autoretract_enabled)
if( !(seen[X_AXIS] || seen[Y_AXIS] || seen[Z_AXIS]) && seen[E_AXIS])
{
float echange=destination[E_AXIS]-current_position[E_AXIS];
if(echange<-MIN_RETRACT) //retract
{
if(!retracted)
{
destination[Z_AXIS]+=retract_zlift; //not sure why chaninging current_position negatively does not work.
//if slicer retracted by echange=-1mm and you want to retract 3mm, corrrectede=-2mm additionally
float correctede=-echange-retract_length;
//to generate the additional steps, not the destination is changed, but inversely the current position
current_position[E_AXIS]+=-correctede;
feedrate=retract_feedrate;
retracted=true;
}
}
else
if(echange>MIN_RETRACT) //retract_recover
{
if(retracted)
{
//current_position[Z_AXIS]+=-retract_zlift;
//if slicer retracted_recovered by echange=+1mm and you want to retract_recover 3mm, corrrectede=2mm additionally
float correctede=-echange+1*retract_length+retract_recover_length; //total unretract=retract_length+retract_recover_length[surplus]
current_position[E_AXIS]+=correctede; //to generate the additional steps, not the destination is changed, but inversely the current position
feedrate=retract_recover_feedrate;
retracted=false;
}
}
}
#endif //FWRETRACT
} }
void get_arc_coordinates() void get_arc_coordinates()

Binary file not shown.

View file

@ -24,7 +24,7 @@
Note that analogWrite of PWM on pins associated with the timer are disabled when the first servo is attached. Note that analogWrite of PWM on pins associated with the timer are disabled when the first servo is attached.
Timers are seized as needed in groups of 12 servos - 24 servos use two timers, 48 servos will use four. Timers are seized as needed in groups of 12 servos - 24 servos use two timers, 48 servos will use four.
The sequence used to sieze timers is defined in timers.h The sequence used to seize timers is defined in timers.h
The methods are: The methods are:
@ -50,7 +50,7 @@
/* /*
* Defines for 16 bit timers used with Servo library * Defines for 16 bit timers used with Servo library
* *
* If _useTimerX is defined then TimerX is a 16 bit timer on the curent board * If _useTimerX is defined then TimerX is a 16 bit timer on the current board
* timer16_Sequence_t enumerates the sequence that the timers should be allocated * timer16_Sequence_t enumerates the sequence that the timers should be allocated
* _Nbr_16timers indicates how many 16 bit timers are available. * _Nbr_16timers indicates how many 16 bit timers are available.
* *
@ -89,12 +89,12 @@ typedef enum { _timer3, _Nbr_16timers } timer16_Sequence_t ;
typedef enum { _Nbr_16timers } timer16_Sequence_t ; typedef enum { _Nbr_16timers } timer16_Sequence_t ;
#endif #endif
#define Servo_VERSION 2 // software version of this library #define Servo_VERSION 2 // software version of this library
#define MIN_PULSE_WIDTH 544 // the shortest pulse sent to a servo #define MIN_PULSE_WIDTH 544 // the shortest pulse sent to a servo
#define MAX_PULSE_WIDTH 2400 // the longest pulse sent to a servo #define MAX_PULSE_WIDTH 2400 // the longest pulse sent to a servo
#define DEFAULT_PULSE_WIDTH 1500 // default pulse width when servo is attached #define DEFAULT_PULSE_WIDTH 1500 // default pulse width when servo is attached
#define REFRESH_INTERVAL 20000 // minumim time to refresh servos in microseconds #define REFRESH_INTERVAL 20000 // minimum time to refresh servos in microseconds
#define SERVOS_PER_TIMER 12 // the maximum number of servos controlled by one timer #define SERVOS_PER_TIMER 12 // the maximum number of servos controlled by one timer
#define MAX_SERVOS (_Nbr_16timers * SERVOS_PER_TIMER) #define MAX_SERVOS (_Nbr_16timers * SERVOS_PER_TIMER)
@ -118,13 +118,13 @@ public:
uint8_t attach(int pin); // attach the given pin to the next free channel, sets pinMode, returns channel number or 0 if failure uint8_t attach(int pin); // attach the given pin to the next free channel, sets pinMode, returns channel number or 0 if failure
uint8_t attach(int pin, int min, int max); // as above but also sets min and max values for writes. uint8_t attach(int pin, int min, int max); // as above but also sets min and max values for writes.
void detach(); void detach();
void write(int value); // if value is < 200 its treated as an angle, otherwise as pulse width in microseconds void write(int value); // if value is < 200 it is treated as an angle, otherwise as pulse width in microseconds
void writeMicroseconds(int value); // Write pulse width in microseconds void writeMicroseconds(int value); // Write pulse width in microseconds
int read(); // returns current pulse width as an angle between 0 and 180 degrees int read(); // returns current pulse width as an angle between 0 and 180 degrees
int readMicroseconds(); // returns current pulse width in microseconds for this servo (was read_us() in first release) int readMicroseconds(); // returns current pulse width in microseconds for this servo (was read_us() in first release)
bool attached(); // return true if this servo is attached, otherwise false bool attached(); // return true if this servo is attached, otherwise false
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0) #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
int pin; // store the hw pin of the servo int pin; // store the hardware pin of the servo
#endif #endif
private: private:
uint8_t servoIndex; // index into the channel data for this servo uint8_t servoIndex; // index into the channel data for this servo

View file

@ -1,5 +1,5 @@
/* /*
This code contibuted by Triffid_Hunter and modified by Kliment This code contributed by Triffid_Hunter and modified by Kliment
why double up on these macros? see http://gcc.gnu.org/onlinedocs/cpp/Stringification.html why double up on these macros? see http://gcc.gnu.org/onlinedocs/cpp/Stringification.html
*/ */

View file

@ -17,6 +17,7 @@
// 8 Portuguese // 8 Portuguese
// 9 Finnish // 9 Finnish
// 10 Aragonese // 10 Aragonese
// 11 Dutch
#ifndef LANGUAGE_CHOICE #ifndef LANGUAGE_CHOICE
#define LANGUAGE_CHOICE 1 // Pick your language from the list above #define LANGUAGE_CHOICE 1 // Pick your language from the list above
@ -158,9 +159,9 @@
#define MSG_FILAMENTCHANGE "Change filament" #define MSG_FILAMENTCHANGE "Change filament"
#define MSG_INIT_SDCARD "Init. SD card" #define MSG_INIT_SDCARD "Init. SD card"
#define MSG_CNG_SDCARD "Change SD card" #define MSG_CNG_SDCARD "Change SD card"
#define MSG_ZPROBE_OUT "Z probe out. bed" #define MSG_ZPROBE_OUT "Z probe out. bed"
#define MSG_POSITION_UNKNOWN "Home X/Y before Z" #define MSG_POSITION_UNKNOWN "Home X/Y before Z"
#define MSG_ZPROBE_ZOFFSET "Z Offset" #define MSG_ZPROBE_ZOFFSET "Z Offset"
#define MSG_BABYSTEP_X "Babystep X" #define MSG_BABYSTEP_X "Babystep X"
#define MSG_BABYSTEP_Y "Babystep Y" #define MSG_BABYSTEP_Y "Babystep Y"
#define MSG_BABYSTEP_Z "Babystep Z" #define MSG_BABYSTEP_Z "Babystep Z"
@ -343,9 +344,9 @@
#define MSG_FILAMENTCHANGE "Zmien filament" #define MSG_FILAMENTCHANGE "Zmien filament"
#define MSG_INIT_SDCARD "Inicjal. karty SD" #define MSG_INIT_SDCARD "Inicjal. karty SD"
#define MSG_CNG_SDCARD "Zmiana karty SD" #define MSG_CNG_SDCARD "Zmiana karty SD"
#define MSG_ZPROBE_OUT "Sonda Z za lozem" #define MSG_ZPROBE_OUT "Sonda Z za lozem"
#define MSG_POSITION_UNKNOWN "Wroc w XY przed Z" #define MSG_POSITION_UNKNOWN "Wroc w XY przed Z"
#define MSG_ZPROBE_ZOFFSET "Offset Z" #define MSG_ZPROBE_ZOFFSET "Offset Z"
#define MSG_BABYSTEP_X "Babystep X" #define MSG_BABYSTEP_X "Babystep X"
#define MSG_BABYSTEP_Y "Babystep Y" #define MSG_BABYSTEP_Y "Babystep Y"
#define MSG_BABYSTEP_Z "Babystep Z" #define MSG_BABYSTEP_Z "Babystep Z"
@ -528,9 +529,9 @@
#define MSG_FILAMENTCHANGE "Changer filament" #define MSG_FILAMENTCHANGE "Changer filament"
#define MSG_INIT_SDCARD "Init. la carte SD" #define MSG_INIT_SDCARD "Init. la carte SD"
#define MSG_CNG_SDCARD "Changer de carte" #define MSG_CNG_SDCARD "Changer de carte"
#define MSG_ZPROBE_OUT "Z sonde exte. lit" #define MSG_ZPROBE_OUT "Z sonde exte. lit"
#define MSG_POSITION_UNKNOWN "Rev. dans XY av.Z" #define MSG_POSITION_UNKNOWN "Rev. dans XY av.Z"
#define MSG_ZPROBE_ZOFFSET "Offset Z" #define MSG_ZPROBE_ZOFFSET "Offset Z"
#define MSG_BABYSTEP_X "Babystep X" #define MSG_BABYSTEP_X "Babystep X"
#define MSG_BABYSTEP_Y "Babystep Y" #define MSG_BABYSTEP_Y "Babystep Y"
#define MSG_BABYSTEP_Z "Babystep Z" #define MSG_BABYSTEP_Z "Babystep Z"
@ -714,9 +715,9 @@
#define MSG_FILAMENTCHANGE "Filament wechseln" #define MSG_FILAMENTCHANGE "Filament wechseln"
#define MSG_INIT_SDCARD "Init. SD-Card" #define MSG_INIT_SDCARD "Init. SD-Card"
#define MSG_CNG_SDCARD "Change SD-Card" #define MSG_CNG_SDCARD "Change SD-Card"
#define MSG_ZPROBE_OUT "Z probe out. bed" #define MSG_ZPROBE_OUT "Z probe out. bed"
#define MSG_POSITION_UNKNOWN "Home X/Y before Z" #define MSG_POSITION_UNKNOWN "Home X/Y before Z"
#define MSG_ZPROBE_ZOFFSET "Z Offset" #define MSG_ZPROBE_ZOFFSET "Z Offset"
#define MSG_BABYSTEP_X "Babystep X" #define MSG_BABYSTEP_X "Babystep X"
#define MSG_BABYSTEP_Y "Babystep Y" #define MSG_BABYSTEP_Y "Babystep Y"
#define MSG_BABYSTEP_Z "Babystep Z" #define MSG_BABYSTEP_Z "Babystep Z"
@ -905,9 +906,9 @@
#define MSG_CONTROL_ARROW "Control" #define MSG_CONTROL_ARROW "Control"
#define MSG_RETRACT_ARROW "Retraer" #define MSG_RETRACT_ARROW "Retraer"
#define MSG_STEPPER_RELEASED "Desacoplada." #define MSG_STEPPER_RELEASED "Desacoplada."
#define MSG_ZPROBE_OUT "Z probe out. bed" #define MSG_ZPROBE_OUT "Z probe out. bed"
#define MSG_POSITION_UNKNOWN "Home X/Y before Z" #define MSG_POSITION_UNKNOWN "Home X/Y before Z"
#define MSG_ZPROBE_ZOFFSET "Z Offset" #define MSG_ZPROBE_ZOFFSET "Z Offset"
#define MSG_BABYSTEP_X "Babystep X" #define MSG_BABYSTEP_X "Babystep X"
#define MSG_BABYSTEP_Y "Babystep Y" #define MSG_BABYSTEP_Y "Babystep Y"
#define MSG_BABYSTEP_Z "Babystep Z" #define MSG_BABYSTEP_Z "Babystep Z"
@ -1087,9 +1088,9 @@
#define MSG_FILAMENTCHANGE "Change filament" #define MSG_FILAMENTCHANGE "Change filament"
#define MSG_INIT_SDCARD "Init. SD-Card" #define MSG_INIT_SDCARD "Init. SD-Card"
#define MSG_CNG_SDCARD "Change SD-Card" #define MSG_CNG_SDCARD "Change SD-Card"
#define MSG_ZPROBE_OUT "Z probe out. bed" #define MSG_ZPROBE_OUT "Z probe out. bed"
#define MSG_POSITION_UNKNOWN "Home X/Y before Z" #define MSG_POSITION_UNKNOWN "Home X/Y before Z"
#define MSG_ZPROBE_ZOFFSET "Z Offset" #define MSG_ZPROBE_ZOFFSET "Z Offset"
#define MSG_BABYSTEP_X "Babystep X" #define MSG_BABYSTEP_X "Babystep X"
#define MSG_BABYSTEP_Y "Babystep Y" #define MSG_BABYSTEP_Y "Babystep Y"
#define MSG_BABYSTEP_Z "Babystep Z" #define MSG_BABYSTEP_Z "Babystep Z"
@ -1268,9 +1269,9 @@
#define MSG_FILAMENTCHANGE "Cambia filamento" #define MSG_FILAMENTCHANGE "Cambia filamento"
#define MSG_INIT_SDCARD "Iniz. SD-Card" #define MSG_INIT_SDCARD "Iniz. SD-Card"
#define MSG_CNG_SDCARD "Cambia SD-Card" #define MSG_CNG_SDCARD "Cambia SD-Card"
#define MSG_ZPROBE_OUT "Z probe out. bed" #define MSG_ZPROBE_OUT "Z probe out. bed"
#define MSG_POSITION_UNKNOWN "Home X/Y before Z" #define MSG_POSITION_UNKNOWN "Home X/Y before Z"
#define MSG_ZPROBE_ZOFFSET "Z Offset" #define MSG_ZPROBE_ZOFFSET "Z Offset"
#define MSG_BABYSTEP_X "Babystep X" #define MSG_BABYSTEP_X "Babystep X"
#define MSG_BABYSTEP_Y "Babystep Y" #define MSG_BABYSTEP_Y "Babystep Y"
#define MSG_BABYSTEP_Z "Babystep Z" #define MSG_BABYSTEP_Z "Babystep Z"
@ -1457,9 +1458,9 @@
#define MSG_FILAMENTCHANGE "Change filament" #define MSG_FILAMENTCHANGE "Change filament"
#define MSG_INIT_SDCARD "Init. SD-Card" #define MSG_INIT_SDCARD "Init. SD-Card"
#define MSG_CNG_SDCARD "Change SD-Card" #define MSG_CNG_SDCARD "Change SD-Card"
#define MSG_ZPROBE_OUT "Son. fora da mesa" #define MSG_ZPROBE_OUT "Son. fora da mesa"
#define MSG_POSITION_UNKNOWN "XY antes de Z" #define MSG_POSITION_UNKNOWN "XY antes de Z"
#define MSG_ZPROBE_ZOFFSET "Z Offset" #define MSG_ZPROBE_ZOFFSET "Z Offset"
#define MSG_BABYSTEP_X "Babystep X" #define MSG_BABYSTEP_X "Babystep X"
#define MSG_BABYSTEP_Y "Babystep Y" #define MSG_BABYSTEP_Y "Babystep Y"
#define MSG_BABYSTEP_Z "Babystep Z" #define MSG_BABYSTEP_Z "Babystep Z"
@ -1641,9 +1642,9 @@
#define MSG_FILAMENTCHANGE "Change filament" #define MSG_FILAMENTCHANGE "Change filament"
#define MSG_INIT_SDCARD "Init. SD-Card" #define MSG_INIT_SDCARD "Init. SD-Card"
#define MSG_CNG_SDCARD "Change SD-Card" #define MSG_CNG_SDCARD "Change SD-Card"
#define MSG_ZPROBE_OUT "Z probe out. bed" #define MSG_ZPROBE_OUT "Z probe out. bed"
#define MSG_POSITION_UNKNOWN "Home X/Y before Z" #define MSG_POSITION_UNKNOWN "Home X/Y before Z"
#define MSG_ZPROBE_ZOFFSET "Z Offset" #define MSG_ZPROBE_ZOFFSET "Z Offset"
#define MSG_BABYSTEP_X "Babystep X" #define MSG_BABYSTEP_X "Babystep X"
#define MSG_BABYSTEP_Y "Babystep Y" #define MSG_BABYSTEP_Y "Babystep Y"
#define MSG_BABYSTEP_Z "Babystep Z" #define MSG_BABYSTEP_Z "Babystep Z"
@ -1833,9 +1834,9 @@
#define MSG_CONTROL_ARROW "Control" #define MSG_CONTROL_ARROW "Control"
#define MSG_RETRACT_ARROW "Retraer" #define MSG_RETRACT_ARROW "Retraer"
#define MSG_STEPPER_RELEASED "Desacoplada." #define MSG_STEPPER_RELEASED "Desacoplada."
#define MSG_ZPROBE_OUT "Z probe out. bed" #define MSG_ZPROBE_OUT "Z probe out. bed"
#define MSG_POSITION_UNKNOWN "Home X/Y before Z" #define MSG_POSITION_UNKNOWN "Home X/Y before Z"
#define MSG_ZPROBE_ZOFFSET "Z Offset" #define MSG_ZPROBE_ZOFFSET "Z Offset"
#define MSG_BABYSTEP_X "Babystep X" #define MSG_BABYSTEP_X "Babystep X"
#define MSG_BABYSTEP_Y "Babystep Y" #define MSG_BABYSTEP_Y "Babystep Y"
#define MSG_BABYSTEP_Z "Babystep Z" #define MSG_BABYSTEP_Z "Babystep Z"
@ -1918,4 +1919,185 @@
#endif #endif
#if LANGUAGE_CHOICE == 11 //Dutch
// LCD Menu Messages
// Please note these are limited to 17 characters!
#define WELCOME_MSG MACHINE_NAME " gereed."
#define MSG_SD_INSERTED "Kaart ingestoken"
#define MSG_SD_REMOVED "Kaart verwijderd"
#define MSG_MAIN "Main"
#define MSG_AUTOSTART "Autostart"
#define MSG_DISABLE_STEPPERS "Motoren uit"
#define MSG_AUTO_HOME "Auto home"
#define MSG_SET_ORIGIN "Nulpunt instellen"
#define MSG_PREHEAT_PLA "PLA voorverwarmen"
#define MSG_PREHEAT_PLA_SETTINGS "PLA verw. conf"
#define MSG_PREHEAT_ABS "ABS voorverwarmen"
#define MSG_PREHEAT_ABS_SETTINGS "ABS verw. conf"
#define MSG_COOLDOWN "Afkoelen"
#define MSG_SWITCH_PS_ON "Stroom aan"
#define MSG_SWITCH_PS_OFF "Stroom uit"
#define MSG_EXTRUDE "Extrude"
#define MSG_RETRACT "Retract"
#define MSG_MOVE_AXIS "As verplaatsen"
#define MSG_MOVE_X "Verplaats X"
#define MSG_MOVE_Y "Verplaats Y"
#define MSG_MOVE_Z "Verplaats Z"
#define MSG_MOVE_E "Extruder"
#define MSG_MOVE_01MM "Verplaats 0.1mm"
#define MSG_MOVE_1MM "Verplaats 1mm"
#define MSG_MOVE_10MM "Verplaats 10mm"
#define MSG_SPEED "Snelheid"
#define MSG_NOZZLE "Nozzle"
#define MSG_NOZZLE1 "Nozzle2"
#define MSG_NOZZLE2 "Nozzle3"
#define MSG_BED "Bed"
#define MSG_FAN_SPEED "Fan snelheid"
#define MSG_FLOW "Flow"
#define MSG_CONTROL "Control"
#define MSG_MIN " \002 Min"
#define MSG_MAX " \002 Max"
#define MSG_FACTOR " \002 Fact"
#define MSG_AUTOTEMP "Autotemp"
#define MSG_ON "Aan "
#define MSG_OFF "Uit"
#define MSG_PID_P "PID-P"
#define MSG_PID_I "PID-I"
#define MSG_PID_D "PID-D"
#define MSG_PID_C "PID-C"
#define MSG_ACC "Versn"
#define MSG_VXY_JERK "Vxy-jerk"
#define MSG_VZ_JERK "Vz-jerk"
#define MSG_VE_JERK "Ve-jerk"
#define MSG_VMAX "Vmax "
#define MSG_X "x"
#define MSG_Y "y"
#define MSG_Z "z"
#define MSG_E "e"
#define MSG_VMIN "Vmin"
#define MSG_VTRAV_MIN "VTrav min"
#define MSG_AMAX "Amax "
#define MSG_A_RETRACT "A-retract"
#define MSG_XSTEPS "Xsteps/mm"
#define MSG_YSTEPS "Ysteps/mm"
#define MSG_ZSTEPS "Zsteps/mm"
#define MSG_ESTEPS "Esteps/mm"
#define MSG_RECTRACT "Terugtrekken"
#define MSG_TEMPERATURE "Temperatuur"
#define MSG_MOTION "Beweging"
#define MSG_CONTRAST "LCD contrast"
#define MSG_STORE_EPROM "Geheugen opslaan"
#define MSG_LOAD_EPROM "Geheugen laden"
#define MSG_RESTORE_FAILSAFE "Noodstop reset"
#define MSG_REFRESH "Ververs"
#define MSG_WATCH "Info scherm"
#define MSG_PREPARE "Voorbereiden"
#define MSG_TUNE "Afstellen"
#define MSG_PAUSE_PRINT "Print pauzeren"
#define MSG_RESUME_PRINT "Print hervatten"
#define MSG_STOP_PRINT "Print stoppen"
#define MSG_CARD_MENU "Print van SD"
#define MSG_NO_CARD "Geen SD kaart"
#define MSG_DWELL "Slapen..."
#define MSG_USERWAIT "Wachten..."
#define MSG_RESUMING "Print hervatten"
#define MSG_NO_MOVE "Geen beweging."
#define MSG_KILLED "AFGEBROKEN. "
#define MSG_STOPPED "GESTOPT. "
#define MSG_CONTROL_RETRACT "Retract mm"
#define MSG_CONTROL_RETRACTF "Retract F"
#define MSG_CONTROL_RETRACT_ZLIFT "Hop mm"
#define MSG_CONTROL_RETRACT_RECOVER "UnRet +mm"
#define MSG_CONTROL_RETRACT_RECOVERF "UnRet F"
#define MSG_AUTORETRACT "AutoRetr."
#define MSG_FILAMENTCHANGE "Verv. Filament"
#define MSG_INIT_SDCARD "Init. SD kaart"
#define MSG_CNG_SDCARD "Verv. SD card"
#define MSG_ZPROBE_OUT "Z probe uit. bed"
#define MSG_POSITION_UNKNOWN "Home X/Y voor Z"
#define MSG_ZPROBE_ZOFFSET "Z Offset"
#define MSG_BABYSTEP_X "Babystap X"
#define MSG_BABYSTEP_Y "Babystap Y"
#define MSG_BABYSTEP_Z "Babystap Z"
#define MSG_ENDSTOP_ABORT "Endstop afbr."
// Serial Console Messages
#define MSG_Enqueing "enqueing \""
#define MSG_POWERUP "Opstarten"
#define MSG_EXTERNAL_RESET " Externe Reset"
#define MSG_BROWNOUT_RESET " Lage voedingsspanning Reset"
#define MSG_WATCHDOG_RESET " Watchdog Reset"
#define MSG_SOFTWARE_RESET " Software Reset"
#define MSG_AUTHOR " | Auteur: "
#define MSG_CONFIGURATION_VER " Laatst bijgewerkt: "
#define MSG_FREE_MEMORY " Vrij Geheugen: "
#define MSG_PLANNER_BUFFER_BYTES " PlannerBufferBytes: "
#define MSG_OK "ok"
#define MSG_FILE_SAVED "Bestand opslaan voltooid."
#define MSG_ERR_LINE_NO "Regelnummer is niet het laatste regelnummer+1, Laatste regel: "
#define MSG_ERR_CHECKSUM_MISMATCH "Checksum fout, Laatste regel: "
#define MSG_ERR_NO_CHECKSUM "Regel zonder checksum, Laatste regel: "
#define MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM "Geen regelnummer met checksum, Laatste regel: "
#define MSG_FILE_PRINTED "Bestand afdrukken klaar"
#define MSG_BEGIN_FILE_LIST "Begin bestandslijst"
#define MSG_END_FILE_LIST "Einde bestandslijst"
#define MSG_M104_INVALID_EXTRUDER "M104 Ongeldige extruder "
#define MSG_M105_INVALID_EXTRUDER "M105 Ongeldige extruder "
#define MSG_M200_INVALID_EXTRUDER "M200 Ongeldige extruder "
#define MSG_M218_INVALID_EXTRUDER "M218 Ongeldige extruder "
#define MSG_ERR_NO_THERMISTORS "Geen thermistors - geen temperatuur"
#define MSG_M109_INVALID_EXTRUDER "M109 Ongeldige extruder "
#define MSG_HEATING "Opwarmen..."
#define MSG_HEATING_COMPLETE "Opwarmen klaar."
#define MSG_BED_HEATING "Bed opwarmen."
#define MSG_BED_DONE "Bed klaar."
#define MSG_M115_REPORT "FIRMWARE_NAME:Marlin V1; Sprinter/grbl mashup voor gen6 FIRMWARE_URL:" FIRMWARE_URL " PROTOCOL_VERSION:" PROTOCOL_VERSION " MACHINE_TYPE:" MACHINE_NAME " EXTRUDER_COUNT:" STRINGIFY(EXTRUDERS) " UUID:" MACHINE_UUID "\n"
#define MSG_COUNT_X " Aantal X: "
#define MSG_ERR_KILLED "Printer stopgezet. kill() aangeroepen!"
#define MSG_ERR_STOPPED "Printer gestopt vanwege fouten. Los de fout op en gebruik M999 om opnieuw te starten. (Temperatuur is gereset, stel deze opnieuw in na herstart)"
#define MSG_RESEND "Opnieuw sturen: "
#define MSG_UNKNOWN_COMMAND "Onbekend commando: \""
#define MSG_ACTIVE_EXTRUDER "Actieve Extruder: "
#define MSG_INVALID_EXTRUDER "Ongeldige extruder"
#define MSG_X_MIN "x_min: "
#define MSG_X_MAX "x_max: "
#define MSG_Y_MIN "y_min: "
#define MSG_Y_MAX "y_max: "
#define MSG_Z_MIN "z_min: "
#define MSG_Z_MAX "z_max: "
#define MSG_M119_REPORT "Eindstop statusrapportage:"
#define MSG_ENDSTOP_HIT "GERAAKT"
#define MSG_ENDSTOP_OPEN "open"
#define MSG_HOTEND_OFFSET "Hotend afwijking:"
#define MSG_SD_CANT_OPEN_SUBDIR "Kan subdirectory niet openen"
#define MSG_SD_INIT_FAIL "SD initialiseren mislukt"
#define MSG_SD_VOL_INIT_FAIL "volume.init mislukt"
#define MSG_SD_OPENROOT_FAIL "openRoot mislukt"
#define MSG_SD_CARD_OK "SD kaart ok"
#define MSG_SD_WORKDIR_FAIL "workDir openen mislukt"
#define MSG_SD_OPEN_FILE_FAIL "Openen mislukt, bestand: "
#define MSG_SD_FILE_OPENED "Bestand geopend: "
#define MSG_SD_SIZE " Grootte: "
#define MSG_SD_FILE_SELECTED "Bestanden geselecteerd:"
#define MSG_SD_WRITE_TO_FILE "Schrijven naar bestand: "
#define MSG_SD_PRINTING_BYTE "SD printen byte: "
#define MSG_SD_NOT_PRINTING "Niet SD printen"
#define MSG_SD_ERR_WRITE_TO_FILE "Fout tijdens het schrijven naar bestand:"
#define MSG_SD_CANT_ENTER_SUBDIR "Kan subdirectory niet in: "
#define MSG_STEPPER_TOO_HIGH "stapsnelheid te hoog:"
#define MSG_ENDSTOPS_HIT "endstops geraakt: "
#define MSG_ERR_COLD_EXTRUDE_STOP " Koude extrusie voorkomen"
#define MSG_ERR_LONG_EXTRUDE_STOP " te lange extrusie voorkomen"
#define MSG_BABYSTEPPING_X "Babystepping X"
#define MSG_BABYSTEPPING_Y "Babystepping Y"
#define MSG_BABYSTEPPING_Z "Babystepping Z"
#define MSG_SERIAL_ERROR_MENU_STRUCTURE "Fout in menustructuur"
#endif
#endif // ifndef LANGUAGE_H #endif // ifndef LANGUAGE_H

View file

@ -1781,8 +1781,8 @@
#define Z_DIR_PIN 28 #define Z_DIR_PIN 28
#define Z_STOP_PIN 30 #define Z_STOP_PIN 30
#define E_STEP_PIN 17 #define E0_STEP_PIN 17
#define E_DIR_PIN 21 #define E0_DIR_PIN 21
#define LED_PIN -1 #define LED_PIN -1
@ -1793,15 +1793,16 @@
#define HEATER_0_PIN 12 // (extruder) #define HEATER_0_PIN 12 // (extruder)
#define HEATER_1_PIN 16 // (bed) #define HEATER_BED_PIN 16 // (bed)
#define X_ENABLE_PIN 19 #define X_ENABLE_PIN 19
#define Y_ENABLE_PIN 24 #define Y_ENABLE_PIN 24
#define Z_ENABLE_PIN 29 #define Z_ENABLE_PIN 29
#define E_ENABLE_PIN 13 #define E0_ENABLE_PIN 13
#define TEMP_0_PIN 0 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!! (pin 33 extruder) #define TEMP_0_PIN 0 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!! (pin 33 extruder)
#define TEMP_1_PIN 5 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!! (pin 34 bed) #define TEMP_1_PIN -1
#define TEMP_2_PIN -1 #define TEMP_2_PIN -1
#define TEMP_BED_PIN 5 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!! (pin 34 bed)
#define SDPOWER -1 #define SDPOWER -1
#define SDSS 4 #define SDSS 4
#define HEATER_2_PIN -1 #define HEATER_2_PIN -1

View file

@ -1,11 +1,9 @@
#include "qr_solve.h" #include "qr_solve.h"
#ifdef ACCURATE_BED_LEVELING #ifdef AUTO_BED_LEVELING_GRID
#include <stdlib.h> #include <stdlib.h>
#include <math.h> #include <math.h>
#include <time.h>
//# include "r8lib.h" //# include "r8lib.h"
@ -1173,7 +1171,7 @@ void dqrlss ( double a[], int lda, int m, int n, int kr, double b[], double x[],
Discussion: Discussion:
DQRLSS must be preceeded by a call to DQRANK. DQRLSS must be preceded by a call to DQRANK.
The system is to be solved is The system is to be solved is
A * X = B A * X = B
@ -1225,7 +1223,7 @@ void dqrlss ( double a[], int lda, int m, int n, int kr, double b[], double x[],
linear system. linear system.
Output, double RSD[M], the residual, B - A*X. RSD may Output, double RSD[M], the residual, B - A*X. RSD may
overwite B. overwrite B.
Input, int JPVT[N], the pivot information from DQRANK. Input, int JPVT[N], the pivot information from DQRANK.
Columns JPVT[0], ..., JPVT[KR-1] of the original matrix are linearly Columns JPVT[0], ..., JPVT[KR-1] of the original matrix are linearly
@ -1314,7 +1312,7 @@ int dqrsl ( double a[], int lda, int n, int k, double qraux[], double y[],
can be replaced by dummy variables in the calling program. can be replaced by dummy variables in the calling program.
To save storage, the user may in some cases use the same To save storage, the user may in some cases use the same
array for different parameters in the calling sequence. A array for different parameters in the calling sequence. A
frequently occuring example is when one wishes to compute frequently occurring example is when one wishes to compute
any of B, RSD, or AB and does not need Y or QTY. In this any of B, RSD, or AB and does not need Y or QTY. In this
case one may identify Y, QTY, and one of B, RSD, or AB, while case one may identify Y, QTY, and one of B, RSD, or AB, while
providing separate arrays for anything else that is to be providing separate arrays for anything else that is to be

View file

@ -1,6 +1,6 @@
#include "Configuration.h" #include "Configuration.h"
#ifdef ACCURATE_BED_LEVELING #ifdef AUTO_BED_LEVELING_GRID
void daxpy ( int n, double da, double dx[], int incx, double dy[], int incy ); void daxpy ( int n, double da, double dx[], int incx, double dy[], int incy );
double ddot ( int n, double dx[], int incx, double dy[], int incy ); double ddot ( int n, double dx[], int incx, double dy[], int incy );

View file

@ -71,8 +71,8 @@ float st_get_position_mm(uint8_t axis);
void st_wake_up(); void st_wake_up();
void checkHitEndstops(); //call from somwhere to create an serial error message with the locations the endstops where hit, in case they were triggered void checkHitEndstops(); //call from somewhere to create an serial error message with the locations the endstops where hit, in case they were triggered
void endstops_hit_on_purpose(); //avoid creation of the message, i.e. after homeing and before a routine call of checkHitEndstops(); void endstops_hit_on_purpose(); //avoid creation of the message, i.e. after homing and before a routine call of checkHitEndstops();
void enable_endstops(bool check); // Enable/disable endstop checking void enable_endstops(bool check); // Enable/disable endstop checking

View file

@ -250,7 +250,7 @@ void PID_autotune(float temp, int extruder, int ncycles)
Kp = 0.6*Ku; Kp = 0.6*Ku;
Ki = 2*Kp/Tu; Ki = 2*Kp/Tu;
Kd = Kp*Tu/8; Kd = Kp*Tu/8;
SERIAL_PROTOCOLLNPGM(" Clasic PID "); SERIAL_PROTOCOLLNPGM(" Classic PID ");
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp); SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki); SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd); SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
@ -306,7 +306,7 @@ void PID_autotune(float temp, int extruder, int ncycles)
return; return;
} }
if(cycles > ncycles) { if(cycles > ncycles) {
SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the Kp, Ki and Kd constants into Configuration.h"); SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
return; return;
} }
lcd_update(); lcd_update();

View file

@ -28,7 +28,7 @@
#endif #endif
// public functions // public functions
void tp_init(); //initialise the heating void tp_init(); //initialize the heating
void manage_heater(); //it is critical that this is called periodically. void manage_heater(); //it is critical that this is called periodically.
// low level conversion routines // low level conversion routines

View file

@ -38,7 +38,7 @@ char lcd_status_message[LCD_WIDTH+1] = WELCOME_MSG;
#include "ultralcd_implementation_hitachi_HD44780.h" #include "ultralcd_implementation_hitachi_HD44780.h"
#endif #endif
/** forward declerations **/ /** forward declarations **/
void copy_and_scalePID_i(); void copy_and_scalePID_i();
void copy_and_scalePID_d(); void copy_and_scalePID_d();
@ -62,9 +62,9 @@ static void lcd_set_contrast();
static void lcd_control_retract_menu(); static void lcd_control_retract_menu();
static void lcd_sdcard_menu(); static void lcd_sdcard_menu();
static void lcd_quick_feedback();//Cause an LCD refresh, and give the user visual or audiable feedback that something has happend static void lcd_quick_feedback();//Cause an LCD refresh, and give the user visual or audible feedback that something has happened
/* Different types of actions that can be used in menuitems. */ /* Different types of actions that can be used in menu items. */
static void menu_action_back(menuFunc_t data); static void menu_action_back(menuFunc_t data);
static void menu_action_submenu(menuFunc_t data); static void menu_action_submenu(menuFunc_t data);
static void menu_action_gcode(const char* pgcode); static void menu_action_gcode(const char* pgcode);
@ -145,7 +145,7 @@ static void menu_action_setting_edit_callback_long5(const char* pstr, unsigned l
#ifndef REPRAPWORLD_KEYPAD #ifndef REPRAPWORLD_KEYPAD
volatile uint8_t buttons;//Contains the bits of the currently pressed buttons. volatile uint8_t buttons;//Contains the bits of the currently pressed buttons.
#else #else
volatile uint8_t buttons_reprapworld_keypad; // to store the reprapworld_keypad shiftregister values volatile uint8_t buttons_reprapworld_keypad; // to store the reprapworld_keypad shift register values
#endif #endif
#ifdef LCD_HAS_SLOW_BUTTONS #ifdef LCD_HAS_SLOW_BUTTONS
volatile uint8_t slow_buttons;//Contains the bits of the currently pressed buttons. volatile uint8_t slow_buttons;//Contains the bits of the currently pressed buttons.
@ -162,7 +162,7 @@ bool lcd_oldcardstatus;
menuFunc_t currentMenu = lcd_status_screen; /* function pointer to the currently active menu */ menuFunc_t currentMenu = lcd_status_screen; /* function pointer to the currently active menu */
uint32_t lcd_next_update_millis; uint32_t lcd_next_update_millis;
uint8_t lcd_status_update_delay; uint8_t lcd_status_update_delay;
uint8_t lcdDrawUpdate = 2; /* Set to none-zero when the LCD needs to draw, decreased after every draw. Set to 2 in LCD routines so the LCD gets atleast 1 full redraw (first redraw is partial) */ uint8_t lcdDrawUpdate = 2; /* Set to none-zero when the LCD needs to draw, decreased after every draw. Set to 2 in LCD routines so the LCD gets at least 1 full redraw (first redraw is partial) */
//prevMenu and prevEncoderPosition are used to store the previous menu location when editing settings. //prevMenu and prevEncoderPosition are used to store the previous menu location when editing settings.
menuFunc_t prevMenu = NULL; menuFunc_t prevMenu = NULL;
@ -173,10 +173,10 @@ void* editValue;
int32_t minEditValue, maxEditValue; int32_t minEditValue, maxEditValue;
menuFunc_t callbackFunc; menuFunc_t callbackFunc;
// placeholders for Ki and Kd edits // place-holders for Ki and Kd edits
float raw_Ki, raw_Kd; float raw_Ki, raw_Kd;
/* Main status screen. It's up to the implementation specific part to show what is needed. As this is very display dependend */ /* Main status screen. It's up to the implementation specific part to show what is needed. As this is very display dependent */
static void lcd_status_screen() static void lcd_status_screen()
{ {
if (lcd_status_update_delay) if (lcd_status_update_delay)
@ -1008,7 +1008,7 @@ void lcd_init()
WRITE(SHIFT_LD,HIGH); WRITE(SHIFT_LD,HIGH);
#endif #endif
#else // Not NEWPANEL #else // Not NEWPANEL
#ifdef SR_LCD_2W_NL // Non latching 2 wire shiftregister #ifdef SR_LCD_2W_NL // Non latching 2 wire shift register
pinMode (SR_DATA_PIN, OUTPUT); pinMode (SR_DATA_PIN, OUTPUT);
pinMode (SR_CLK_PIN, OUTPUT); pinMode (SR_CLK_PIN, OUTPUT);
#elif defined(SHIFT_CLK) #elif defined(SHIFT_CLK)
@ -1055,7 +1055,7 @@ void lcd_update()
{ {
lcdDrawUpdate = 2; lcdDrawUpdate = 2;
lcd_oldcardstatus = IS_SD_INSERTED; lcd_oldcardstatus = IS_SD_INSERTED;
lcd_implementation_init(); // to maybe revive the lcd if static electricty killed it. lcd_implementation_init(); // to maybe revive the LCD if static electricity killed it.
if(lcd_oldcardstatus) if(lcd_oldcardstatus)
{ {
@ -1470,7 +1470,7 @@ char *ftostr52(const float &x)
} }
// Callback for after editing PID i value // Callback for after editing PID i value
// grab the pid i value out of the temp variable; scale it; then update the PID driver // grab the PID i value out of the temp variable; scale it; then update the PID driver
void copy_and_scalePID_i() void copy_and_scalePID_i()
{ {
#ifdef PIDTEMP #ifdef PIDTEMP
@ -1480,7 +1480,7 @@ void copy_and_scalePID_i()
} }
// Callback for after editing PID d value // Callback for after editing PID d value
// grab the pid d value out of the temp variable; scale it; then update the PID driver // grab the PID d value out of the temp variable; scale it; then update the PID driver
void copy_and_scalePID_d() void copy_and_scalePID_d()
{ {
#ifdef PIDTEMP #ifdef PIDTEMP

View file

@ -17,7 +17,7 @@
void lcd_setcontrast(uint8_t value); void lcd_setcontrast(uint8_t value);
#endif #endif
static unsigned char blink = 0; // Variable for visualisation of fan rotation in GLCD static unsigned char blink = 0; // Variable for visualization of fan rotation in GLCD
#define LCD_MESSAGEPGM(x) lcd_setstatuspgm(PSTR(x)) #define LCD_MESSAGEPGM(x) lcd_setstatuspgm(PSTR(x))
#define LCD_ALERTMESSAGEPGM(x) lcd_setalertstatuspgm(PSTR(x)) #define LCD_ALERTMESSAGEPGM(x) lcd_setalertstatuspgm(PSTR(x))
@ -29,7 +29,7 @@
void lcd_buttons_update(); void lcd_buttons_update();
extern volatile uint8_t buttons; //the last checked buttons in a bit array. extern volatile uint8_t buttons; //the last checked buttons in a bit array.
#ifdef REPRAPWORLD_KEYPAD #ifdef REPRAPWORLD_KEYPAD
extern volatile uint8_t buttons_reprapworld_keypad; // to store the keypad shiftregister values extern volatile uint8_t buttons_reprapworld_keypad; // to store the keypad shift register values
#endif #endif
#else #else
FORCE_INLINE void lcd_buttons_update() {} FORCE_INLINE void lcd_buttons_update() {}
@ -72,7 +72,7 @@
#define REPRAPWORLD_KEYPAD_MOVE_HOME (buttons_reprapworld_keypad&EN_REPRAPWORLD_KEYPAD_MIDDLE) #define REPRAPWORLD_KEYPAD_MOVE_HOME (buttons_reprapworld_keypad&EN_REPRAPWORLD_KEYPAD_MIDDLE)
#endif //REPRAPWORLD_KEYPAD #endif //REPRAPWORLD_KEYPAD
#else #else
//atomatic, do not change //atomic, do not change
#define B_LE (1<<BL_LE) #define B_LE (1<<BL_LE)
#define B_UP (1<<BL_UP) #define B_UP (1<<BL_UP)
#define B_MI (1<<BL_MI) #define B_MI (1<<BL_MI)
@ -85,7 +85,7 @@
#define LCD_CLICKED ((buttons&B_MI)||(buttons&B_ST)) #define LCD_CLICKED ((buttons&B_MI)||(buttons&B_ST))
#endif//NEWPANEL #endif//NEWPANEL
#else //no lcd #else //no LCD
FORCE_INLINE void lcd_update() {} FORCE_INLINE void lcd_update() {}
FORCE_INLINE void lcd_init() {} FORCE_INLINE void lcd_init() {}
FORCE_INLINE void lcd_setstatus(const char* message) {} FORCE_INLINE void lcd_setstatus(const char* message) {}

View file

@ -2,8 +2,8 @@
#define ULTRA_LCD_IMPLEMENTATION_HITACHI_HD44780_H #define ULTRA_LCD_IMPLEMENTATION_HITACHI_HD44780_H
/** /**
* Implementation of the LCD display routines for a hitachi HD44780 display. These are common LCD character displays. * Implementation of the LCD display routines for a Hitachi HD44780 display. These are common LCD character displays.
* When selecting the rusian language, a slightly different LCD implementation is used to handle UTF8 characters. * When selecting the Russian language, a slightly different LCD implementation is used to handle UTF8 characters.
**/ **/
#ifndef REPRAPWORLD_KEYPAD #ifndef REPRAPWORLD_KEYPAD
@ -20,7 +20,7 @@ extern volatile uint16_t buttons; //an extended version of the last checked but
// via a shift/i2c register. // via a shift/i2c register.
#ifdef ULTIPANEL #ifdef ULTIPANEL
// All Ultipanels might have an encoder - so this is always be mapped onto first two bits // All UltiPanels might have an encoder - so this is always be mapped onto first two bits
#define BLEN_B 1 #define BLEN_B 1
#define BLEN_A 0 #define BLEN_A 0