Templatized serial classes (#11982)
This commit is contained in:
parent
ee53f7d813
commit
f6f2246f59
6 changed files with 678 additions and 564 deletions
|
@ -29,6 +29,7 @@
|
|||
* Modified 14 February 2016 by Andreas Hardtung (added tx buffer)
|
||||
* Modified 01 October 2017 by Eduardo José Tagle (added XON/XOFF)
|
||||
* Modified 10 June 2018 by Eduardo José Tagle (See #10991)
|
||||
* Templatized 01 October 2018 by Eduardo José Tagle to allow multiple instances
|
||||
*/
|
||||
|
||||
#ifdef __AVR__
|
||||
|
@ -42,62 +43,26 @@
|
|||
#include "MarlinSerial.h"
|
||||
#include "../../Marlin.h"
|
||||
|
||||
struct ring_buffer_r {
|
||||
unsigned char buffer[RX_BUFFER_SIZE];
|
||||
volatile ring_buffer_pos_t head, tail;
|
||||
};
|
||||
|
||||
#if TX_BUFFER_SIZE > 0
|
||||
struct ring_buffer_t {
|
||||
unsigned char buffer[TX_BUFFER_SIZE];
|
||||
volatile uint8_t head, tail;
|
||||
};
|
||||
#endif
|
||||
|
||||
#if UART_PRESENT(SERIAL_PORT)
|
||||
ring_buffer_r rx_buffer = { { 0 }, 0, 0 };
|
||||
#if TX_BUFFER_SIZE > 0
|
||||
ring_buffer_t tx_buffer = { { 0 }, 0, 0 };
|
||||
#endif
|
||||
static bool _written;
|
||||
#endif
|
||||
|
||||
#if ENABLED(SERIAL_XON_XOFF)
|
||||
constexpr uint8_t XON_XOFF_CHAR_SENT = 0x80, // XON / XOFF Character was sent
|
||||
XON_XOFF_CHAR_MASK = 0x1F; // XON / XOFF character to send
|
||||
// XON / XOFF character definitions
|
||||
constexpr uint8_t XON_CHAR = 17, XOFF_CHAR = 19;
|
||||
uint8_t xon_xoff_state = XON_XOFF_CHAR_SENT | XON_CHAR;
|
||||
#endif
|
||||
|
||||
#if ENABLED(SERIAL_STATS_DROPPED_RX)
|
||||
uint8_t rx_dropped_bytes = 0;
|
||||
#endif
|
||||
|
||||
#if ENABLED(SERIAL_STATS_RX_BUFFER_OVERRUNS)
|
||||
uint8_t rx_buffer_overruns = 0;
|
||||
#endif
|
||||
|
||||
#if ENABLED(SERIAL_STATS_RX_FRAMING_ERRORS)
|
||||
uint8_t rx_framing_errors = 0;
|
||||
#endif
|
||||
|
||||
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
|
||||
ring_buffer_pos_t rx_max_enqueued = 0;
|
||||
#endif
|
||||
template<typename Cfg> typename MarlinSerial<Cfg>::ring_buffer_r MarlinSerial<Cfg>::rx_buffer = { 0 };
|
||||
template<typename Cfg> typename MarlinSerial<Cfg>::ring_buffer_t MarlinSerial<Cfg>::tx_buffer = { 0 };
|
||||
template<typename Cfg> bool MarlinSerial<Cfg>::_written = false;
|
||||
template<typename Cfg> uint8_t MarlinSerial<Cfg>::xon_xoff_state = MarlinSerial<Cfg>::XON_XOFF_CHAR_SENT | MarlinSerial<Cfg>::XON_CHAR;
|
||||
template<typename Cfg> uint8_t MarlinSerial<Cfg>::rx_dropped_bytes = 0;
|
||||
template<typename Cfg> uint8_t MarlinSerial<Cfg>::rx_buffer_overruns = 0;
|
||||
template<typename Cfg> uint8_t MarlinSerial<Cfg>::rx_framing_errors = 0;
|
||||
template<typename Cfg> typename MarlinSerial<Cfg>::ring_buffer_pos_t MarlinSerial<Cfg>::rx_max_enqueued = 0;
|
||||
|
||||
// A SW memory barrier, to ensure GCC does not overoptimize loops
|
||||
#define sw_barrier() asm volatile("": : :"memory");
|
||||
|
||||
#if ENABLED(EMERGENCY_PARSER)
|
||||
#include "../../feature/emergency_parser.h"
|
||||
#endif
|
||||
|
||||
// "Atomically" read the RX head index value without disabling interrupts:
|
||||
// This MUST be called with RX interrupts enabled, and CAN'T be called
|
||||
// from the RX ISR itself!
|
||||
FORCE_INLINE ring_buffer_pos_t atomic_read_rx_head() {
|
||||
#if RX_BUFFER_SIZE > 256
|
||||
template<typename Cfg>
|
||||
FORCE_INLINE typename MarlinSerial<Cfg>::ring_buffer_pos_t MarlinSerial<Cfg>::atomic_read_rx_head() {
|
||||
if (Cfg::RX_SIZE > 256) {
|
||||
// Keep reading until 2 consecutive reads return the same value,
|
||||
// meaning there was no update in-between caused by an interrupt.
|
||||
// This works because serial RX interrupts happen at a slower rate
|
||||
|
@ -111,23 +76,25 @@
|
|||
sw_barrier();
|
||||
} while (vold != vnew);
|
||||
return vnew;
|
||||
#else
|
||||
}
|
||||
else {
|
||||
// With an 8bit index, reads are always atomic. No need for special handling
|
||||
return rx_buffer.head;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
#if RX_BUFFER_SIZE > 256
|
||||
static volatile bool rx_tail_value_not_stable = false;
|
||||
static volatile uint16_t rx_tail_value_backup = 0;
|
||||
#endif
|
||||
template<typename Cfg>
|
||||
volatile bool MarlinSerial<Cfg>::rx_tail_value_not_stable = false;
|
||||
template<typename Cfg>
|
||||
volatile uint16_t MarlinSerial<Cfg>::rx_tail_value_backup = 0;
|
||||
|
||||
// Set RX tail index, taking into account the RX ISR could interrupt
|
||||
// the write to this variable in the middle - So a backup strategy
|
||||
// is used to ensure reads of the correct values.
|
||||
// -Must NOT be called from the RX ISR -
|
||||
FORCE_INLINE void atomic_set_rx_tail(ring_buffer_pos_t value) {
|
||||
#if RX_BUFFER_SIZE > 256
|
||||
template<typename Cfg>
|
||||
FORCE_INLINE void MarlinSerial<Cfg>::atomic_set_rx_tail(typename MarlinSerial<Cfg>::ring_buffer_pos_t value) {
|
||||
if (Cfg::RX_SIZE > 256) {
|
||||
// Store the new value in the backup
|
||||
rx_tail_value_backup = value;
|
||||
sw_barrier();
|
||||
|
@ -140,29 +107,29 @@
|
|||
// Signal the new value is completely stored into the value
|
||||
rx_tail_value_not_stable = false;
|
||||
sw_barrier();
|
||||
#else
|
||||
}
|
||||
else
|
||||
rx_buffer.tail = value;
|
||||
#endif
|
||||
}
|
||||
|
||||
// Get the RX tail index, taking into account the read could be
|
||||
// interrupting in the middle of the update of that index value
|
||||
// -Called from the RX ISR -
|
||||
FORCE_INLINE ring_buffer_pos_t atomic_read_rx_tail() {
|
||||
#if RX_BUFFER_SIZE > 256
|
||||
template<typename Cfg>
|
||||
FORCE_INLINE typename MarlinSerial<Cfg>::ring_buffer_pos_t MarlinSerial<Cfg>::atomic_read_rx_tail() {
|
||||
if (Cfg::RX_SIZE > 256) {
|
||||
// If the true index is being modified, return the backup value
|
||||
if (rx_tail_value_not_stable) return rx_tail_value_backup;
|
||||
#endif
|
||||
}
|
||||
// The true index is stable, return it
|
||||
return rx_buffer.tail;
|
||||
}
|
||||
|
||||
// (called with RX interrupts disabled)
|
||||
FORCE_INLINE void store_rxd_char() {
|
||||
template<typename Cfg>
|
||||
FORCE_INLINE void MarlinSerial<Cfg>::store_rxd_char() {
|
||||
|
||||
#if ENABLED(EMERGENCY_PARSER)
|
||||
static EmergencyParser::State emergency_state; // = EP_RESET
|
||||
#endif
|
||||
|
||||
// Get the tail - Nothing can alter its value while this ISR is executing, but there's
|
||||
// a chance that this ISR interrupted the main process while it was updating the index.
|
||||
|
@ -173,27 +140,17 @@
|
|||
ring_buffer_pos_t h = rx_buffer.head;
|
||||
|
||||
// Get the next element
|
||||
ring_buffer_pos_t i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
|
||||
ring_buffer_pos_t i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
|
||||
|
||||
// This must read the M_UCSRxA register before reading the received byte to detect error causes
|
||||
#if ENABLED(SERIAL_STATS_DROPPED_RX)
|
||||
if (TEST(M_UCSRxA, M_DORx) && !++rx_dropped_bytes) --rx_dropped_bytes;
|
||||
#endif
|
||||
|
||||
#if ENABLED(SERIAL_STATS_RX_BUFFER_OVERRUNS)
|
||||
if (TEST(M_UCSRxA, M_DORx) && !++rx_buffer_overruns) --rx_buffer_overruns;
|
||||
#endif
|
||||
|
||||
#if ENABLED(SERIAL_STATS_RX_FRAMING_ERRORS)
|
||||
if (TEST(M_UCSRxA, M_FEx) && !++rx_framing_errors) --rx_framing_errors;
|
||||
#endif
|
||||
// This must read the R_UCSRA register before reading the received byte to detect error causes
|
||||
if (Cfg::DROPPED_RX && B_DOR && !++rx_dropped_bytes) --rx_dropped_bytes;
|
||||
if (Cfg::RX_OVERRUNS && B_DOR && !++rx_buffer_overruns) --rx_buffer_overruns;
|
||||
if (Cfg::RX_FRAMING_ERRORS && B_FE && !++rx_framing_errors) --rx_framing_errors;
|
||||
|
||||
// Read the character from the USART
|
||||
uint8_t c = M_UDRx;
|
||||
uint8_t c = R_UDR;
|
||||
|
||||
#if ENABLED(EMERGENCY_PARSER)
|
||||
emergency_parser.update(emergency_state, c);
|
||||
#endif
|
||||
if (Cfg::EMERGENCYPARSER) emergency_parser.update(emergency_state, c);
|
||||
|
||||
// If the character is to be stored at the index just before the tail
|
||||
// (such that the head would advance to the current tail), the RX FIFO is
|
||||
|
@ -202,29 +159,28 @@
|
|||
rx_buffer.buffer[h] = c;
|
||||
h = i;
|
||||
}
|
||||
#if ENABLED(SERIAL_STATS_DROPPED_RX)
|
||||
else if (!++rx_dropped_bytes) --rx_dropped_bytes;
|
||||
#endif
|
||||
else if (Cfg::DROPPED_RX && !++rx_dropped_bytes)
|
||||
--rx_dropped_bytes;
|
||||
|
||||
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
|
||||
if (Cfg::MAX_RX_QUEUED) {
|
||||
// Calculate count of bytes stored into the RX buffer
|
||||
const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
|
||||
const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
|
||||
|
||||
// Keep track of the maximum count of enqueued bytes
|
||||
NOLESS(rx_max_enqueued, rx_count);
|
||||
#endif
|
||||
}
|
||||
|
||||
#if ENABLED(SERIAL_XON_XOFF)
|
||||
if (Cfg::XONOFF) {
|
||||
// If the last char that was sent was an XON
|
||||
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XON_CHAR) {
|
||||
|
||||
// Bytes stored into the RX buffer
|
||||
const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
|
||||
const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
|
||||
|
||||
// If over 12.5% of RX buffer capacity, send XOFF before running out of
|
||||
// RX buffer space .. 325 bytes @ 250kbits/s needed to let the host react
|
||||
// and stop sending bytes. This translates to 13mS propagation time.
|
||||
if (rx_count >= (RX_BUFFER_SIZE) / 8) {
|
||||
if (rx_count >= (Cfg::RX_SIZE) / 8) {
|
||||
|
||||
// At this point, definitely no TX interrupt was executing, since the TX ISR can't be preempted.
|
||||
// Don't enable the TX interrupt here as a means to trigger the XOFF char, because if it happens
|
||||
|
@ -238,19 +194,17 @@
|
|||
// Wait until the TX register becomes empty and send it - Here there could be a problem
|
||||
// - While waiting for the TX register to empty, the RX register could receive a new
|
||||
// character. This must also handle that situation!
|
||||
while (!TEST(M_UCSRxA, M_UDREx)) {
|
||||
while (!B_UDRE) {
|
||||
|
||||
if (TEST(M_UCSRxA,M_RXCx)) {
|
||||
if (B_RXC) {
|
||||
// A char arrived while waiting for the TX buffer to be empty - Receive and process it!
|
||||
|
||||
i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
|
||||
i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
|
||||
|
||||
// Read the character from the USART
|
||||
c = M_UDRx;
|
||||
c = R_UDR;
|
||||
|
||||
#if ENABLED(EMERGENCY_PARSER)
|
||||
emergency_parser.update(emergency_state, c);
|
||||
#endif
|
||||
if (Cfg::EMERGENCYPARSER) emergency_parser.update(emergency_state, c);
|
||||
|
||||
// If the character is to be stored at the index just before the tail
|
||||
// (such that the head would advance to the current tail), the FIFO is
|
||||
|
@ -259,19 +213,18 @@
|
|||
rx_buffer.buffer[h] = c;
|
||||
h = i;
|
||||
}
|
||||
#if ENABLED(SERIAL_STATS_DROPPED_RX)
|
||||
else if (!++rx_dropped_bytes) --rx_dropped_bytes;
|
||||
#endif
|
||||
else if (Cfg::DROPPED_RX && !++rx_dropped_bytes)
|
||||
--rx_dropped_bytes;
|
||||
}
|
||||
sw_barrier();
|
||||
}
|
||||
|
||||
M_UDRx = XOFF_CHAR;
|
||||
R_UDR = XOFF_CHAR;
|
||||
|
||||
// Clear the TXC bit -- "can be cleared by writing a one to its bit
|
||||
// location". This makes sure flush() won't return until the bytes
|
||||
// actually got written
|
||||
SBI(M_UCSRxA, M_TXCx);
|
||||
B_TXC = 1;
|
||||
|
||||
// At this point there could be a race condition between the write() function
|
||||
// and this sending of the XOFF char. This interrupt could happen between the
|
||||
|
@ -280,19 +233,18 @@
|
|||
// sure the write() function will succeed is to wait for the XOFF char to be
|
||||
// completely sent. Since an extra character could be received during the wait
|
||||
// it must also be handled!
|
||||
while (!TEST(M_UCSRxA, M_UDREx)) {
|
||||
while (!B_UDRE) {
|
||||
|
||||
if (TEST(M_UCSRxA,M_RXCx)) {
|
||||
if (B_RXC) {
|
||||
// A char arrived while waiting for the TX buffer to be empty - Receive and process it!
|
||||
|
||||
i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
|
||||
i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
|
||||
|
||||
// Read the character from the USART
|
||||
c = M_UDRx;
|
||||
c = R_UDR;
|
||||
|
||||
#if ENABLED(EMERGENCY_PARSER)
|
||||
if (Cfg::EMERGENCYPARSER)
|
||||
emergency_parser.update(emergency_state, c);
|
||||
#endif
|
||||
|
||||
// If the character is to be stored at the index just before the tail
|
||||
// (such that the head would advance to the current tail), the FIFO is
|
||||
|
@ -301,9 +253,8 @@
|
|||
rx_buffer.buffer[h] = c;
|
||||
h = i;
|
||||
}
|
||||
#if ENABLED(SERIAL_STATS_DROPPED_RX)
|
||||
else if (!++rx_dropped_bytes) --rx_dropped_bytes;
|
||||
#endif
|
||||
else if (Cfg::DROPPED_RX && !++rx_dropped_bytes)
|
||||
--rx_dropped_bytes;
|
||||
}
|
||||
sw_barrier();
|
||||
}
|
||||
|
@ -312,78 +263,68 @@
|
|||
// have any issues writing to the UART TX register if it needs to!
|
||||
}
|
||||
}
|
||||
#endif // SERIAL_XON_XOFF
|
||||
}
|
||||
|
||||
// Store the new head value - The main loop will retry until the value is stable
|
||||
rx_buffer.head = h;
|
||||
}
|
||||
|
||||
#if TX_BUFFER_SIZE > 0
|
||||
|
||||
// (called with TX irqs disabled)
|
||||
FORCE_INLINE void _tx_udr_empty_irq(void) {
|
||||
|
||||
template<typename Cfg>
|
||||
FORCE_INLINE void MarlinSerial<Cfg>::_tx_udr_empty_irq(void) {
|
||||
if (Cfg::TX_SIZE > 0) {
|
||||
// Read positions
|
||||
uint8_t t = tx_buffer.tail;
|
||||
const uint8_t h = tx_buffer.head;
|
||||
|
||||
#if ENABLED(SERIAL_XON_XOFF)
|
||||
if (Cfg::XONOFF) {
|
||||
// If an XON char is pending to be sent, do it now
|
||||
if (xon_xoff_state == XON_CHAR) {
|
||||
|
||||
// Send the character
|
||||
M_UDRx = XON_CHAR;
|
||||
R_UDR = XON_CHAR;
|
||||
|
||||
// clear the TXC bit -- "can be cleared by writing a one to its bit
|
||||
// location". This makes sure flush() won't return until the bytes
|
||||
// actually got written
|
||||
SBI(M_UCSRxA, M_TXCx);
|
||||
B_TXC = 1;
|
||||
|
||||
// Remember we sent it.
|
||||
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
|
||||
|
||||
// If nothing else to transmit, just disable TX interrupts.
|
||||
if (h == t) CBI(M_UCSRxB, M_UDRIEx); // (Non-atomic, could be reenabled by the main program, but eventually this will succeed)
|
||||
if (h == t) B_UDRIE = 0; // (Non-atomic, could be reenabled by the main program, but eventually this will succeed)
|
||||
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
// If nothing to transmit, just disable TX interrupts. This could
|
||||
// happen as the result of the non atomicity of the disabling of RX
|
||||
// interrupts that could end reenabling TX interrupts as a side effect.
|
||||
if (h == t) {
|
||||
CBI(M_UCSRxB, M_UDRIEx); // (Non-atomic, could be reenabled by the main program, but eventually this will succeed)
|
||||
B_UDRIE = 0; // (Non-atomic, could be reenabled by the main program, but eventually this will succeed)
|
||||
return;
|
||||
}
|
||||
|
||||
// There is something to TX, Send the next byte
|
||||
const uint8_t c = tx_buffer.buffer[t];
|
||||
t = (t + 1) & (TX_BUFFER_SIZE - 1);
|
||||
M_UDRx = c;
|
||||
t = (t + 1) & (Cfg::TX_SIZE - 1);
|
||||
R_UDR = c;
|
||||
tx_buffer.tail = t;
|
||||
|
||||
// Clear the TXC bit (by writing a one to its bit location).
|
||||
// Ensures flush() won't return until the bytes are actually written/
|
||||
SBI(M_UCSRxA, M_TXCx);
|
||||
B_TXC = 1;
|
||||
|
||||
// Disable interrupts if there is nothing to transmit following this byte
|
||||
if (h == t) CBI(M_UCSRxB, M_UDRIEx); // (Non-atomic, could be reenabled by the main program, but eventually this will succeed)
|
||||
if (h == t) B_UDRIE = 0; // (Non-atomic, could be reenabled by the main program, but eventually this will succeed)
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef M_USARTx_UDRE_vect
|
||||
ISR(M_USARTx_UDRE_vect) { _tx_udr_empty_irq(); }
|
||||
#endif
|
||||
|
||||
#endif // TX_BUFFER_SIZE
|
||||
|
||||
#ifdef M_USARTx_RX_vect
|
||||
ISR(M_USARTx_RX_vect) { store_rxd_char(); }
|
||||
#endif
|
||||
|
||||
// Public Methods
|
||||
|
||||
void MarlinSerial::begin(const long baud) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::begin(const long baud) {
|
||||
uint16_t baud_setting;
|
||||
bool useU2X = true;
|
||||
|
||||
|
@ -394,41 +335,41 @@
|
|||
if (baud == 57600) useU2X = false;
|
||||
#endif
|
||||
|
||||
R_UCSRA = 0;
|
||||
if (useU2X) {
|
||||
M_UCSRxA = _BV(M_U2Xx);
|
||||
B_U2X = 1;
|
||||
baud_setting = (F_CPU / 4 / baud - 1) / 2;
|
||||
}
|
||||
else {
|
||||
M_UCSRxA = 0;
|
||||
else
|
||||
baud_setting = (F_CPU / 8 / baud - 1) / 2;
|
||||
}
|
||||
|
||||
// assign the baud_setting, a.k.a. ubbr (USART Baud Rate Register)
|
||||
M_UBRRxH = baud_setting >> 8;
|
||||
M_UBRRxL = baud_setting;
|
||||
R_UBRRH = baud_setting >> 8;
|
||||
R_UBRRL = baud_setting;
|
||||
|
||||
SBI(M_UCSRxB, M_RXENx);
|
||||
SBI(M_UCSRxB, M_TXENx);
|
||||
SBI(M_UCSRxB, M_RXCIEx);
|
||||
#if TX_BUFFER_SIZE > 0
|
||||
CBI(M_UCSRxB, M_UDRIEx);
|
||||
#endif
|
||||
B_RXEN = 1;
|
||||
B_TXEN = 1;
|
||||
B_RXCIE = 1;
|
||||
if (Cfg::TX_SIZE > 0) B_UDRIE = 0;
|
||||
_written = false;
|
||||
}
|
||||
|
||||
void MarlinSerial::end() {
|
||||
CBI(M_UCSRxB, M_RXENx);
|
||||
CBI(M_UCSRxB, M_TXENx);
|
||||
CBI(M_UCSRxB, M_RXCIEx);
|
||||
CBI(M_UCSRxB, M_UDRIEx);
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::end() {
|
||||
B_RXEN = 0;
|
||||
B_TXEN = 0;
|
||||
B_RXCIE = 0;
|
||||
B_UDRIE = 0;
|
||||
}
|
||||
|
||||
int MarlinSerial::peek(void) {
|
||||
template<typename Cfg>
|
||||
int MarlinSerial<Cfg>::peek(void) {
|
||||
const ring_buffer_pos_t h = atomic_read_rx_head(), t = rx_buffer.tail;
|
||||
return h == t ? -1 : rx_buffer.buffer[t];
|
||||
}
|
||||
|
||||
int MarlinSerial::read(void) {
|
||||
template<typename Cfg>
|
||||
int MarlinSerial<Cfg>::read(void) {
|
||||
const ring_buffer_pos_t h = atomic_read_rx_head();
|
||||
|
||||
// Read the tail. Main thread owns it, so it is safe to directly read it
|
||||
|
@ -439,42 +380,45 @@
|
|||
|
||||
// Get the next char
|
||||
const int v = rx_buffer.buffer[t];
|
||||
t = (ring_buffer_pos_t)(t + 1) & (RX_BUFFER_SIZE - 1);
|
||||
t = (ring_buffer_pos_t)(t + 1) & (Cfg::RX_SIZE - 1);
|
||||
|
||||
// Advance tail - Making sure the RX ISR will always get an stable value, even
|
||||
// if it interrupts the writing of the value of that variable in the middle.
|
||||
atomic_set_rx_tail(t);
|
||||
|
||||
#if ENABLED(SERIAL_XON_XOFF)
|
||||
if (Cfg::XONOFF) {
|
||||
// If the XOFF char was sent, or about to be sent...
|
||||
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) {
|
||||
// Get count of bytes in the RX buffer
|
||||
const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
|
||||
if (rx_count < (RX_BUFFER_SIZE) / 10) {
|
||||
#if TX_BUFFER_SIZE > 0
|
||||
const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
|
||||
if (rx_count < (Cfg::RX_SIZE) / 10) {
|
||||
if (Cfg::TX_SIZE > 0) {
|
||||
// Signal we want an XON character to be sent.
|
||||
xon_xoff_state = XON_CHAR;
|
||||
// Enable TX ISR. Non atomic, but it will eventually enable them
|
||||
SBI(M_UCSRxB, M_UDRIEx);
|
||||
#else
|
||||
B_UDRIE = 1;
|
||||
}
|
||||
else {
|
||||
// If not using TX interrupts, we must send the XON char now
|
||||
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
|
||||
while (!TEST(M_UCSRxA, M_UDREx)) sw_barrier();
|
||||
M_UDRx = XON_CHAR;
|
||||
#endif
|
||||
while (!B_UDRE) sw_barrier();
|
||||
R_UDR = XON_CHAR;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
return v;
|
||||
}
|
||||
|
||||
ring_buffer_pos_t MarlinSerial::available(void) {
|
||||
template<typename Cfg>
|
||||
typename MarlinSerial<Cfg>::ring_buffer_pos_t MarlinSerial<Cfg>::available(void) {
|
||||
const ring_buffer_pos_t h = atomic_read_rx_head(), t = rx_buffer.tail;
|
||||
return (ring_buffer_pos_t)(RX_BUFFER_SIZE + h - t) & (RX_BUFFER_SIZE - 1);
|
||||
return (ring_buffer_pos_t)(Cfg::RX_SIZE + h - t) & (Cfg::RX_SIZE - 1);
|
||||
}
|
||||
|
||||
void MarlinSerial::flush(void) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::flush(void) {
|
||||
|
||||
// Set the tail to the head:
|
||||
// - Read the RX head index in a safe way. (See atomic_read_rx_head.)
|
||||
|
@ -482,26 +426,36 @@
|
|||
// if it interrupts the writing of the value of that variable in the middle.
|
||||
atomic_set_rx_tail(atomic_read_rx_head());
|
||||
|
||||
#if ENABLED(SERIAL_XON_XOFF)
|
||||
if (Cfg::XONOFF) {
|
||||
// If the XOFF char was sent, or about to be sent...
|
||||
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) {
|
||||
#if TX_BUFFER_SIZE > 0
|
||||
if (Cfg::TX_SIZE > 0) {
|
||||
// Signal we want an XON character to be sent.
|
||||
xon_xoff_state = XON_CHAR;
|
||||
// Enable TX ISR. Non atomic, but it will eventually enable it.
|
||||
SBI(M_UCSRxB, M_UDRIEx);
|
||||
#else
|
||||
B_UDRIE = 1;
|
||||
}
|
||||
else {
|
||||
// If not using TX interrupts, we must send the XON char now
|
||||
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
|
||||
while (!TEST(M_UCSRxA, M_UDREx)) sw_barrier();
|
||||
M_UDRx = XON_CHAR;
|
||||
#endif
|
||||
while (!B_UDRE) sw_barrier();
|
||||
R_UDR = XON_CHAR;
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
#if TX_BUFFER_SIZE > 0
|
||||
void MarlinSerial::write(const uint8_t c) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::write(const uint8_t c) {
|
||||
if (Cfg::TX_SIZE == 0) {
|
||||
|
||||
_written = true;
|
||||
while (!B_UDRE) sw_barrier();
|
||||
R_UDR = c;
|
||||
|
||||
}
|
||||
else {
|
||||
|
||||
_written = true;
|
||||
|
||||
// If the TX interrupts are disabled and the data register
|
||||
|
@ -511,17 +465,17 @@
|
|||
// interrupt overhead becomes a slowdown.
|
||||
// Yes, there is a race condition between the sending of the
|
||||
// XOFF char at the RX ISR, but it is properly handled there
|
||||
if (!TEST(M_UCSRxB, M_UDRIEx) && TEST(M_UCSRxA, M_UDREx)) {
|
||||
M_UDRx = c;
|
||||
if (!B_UDRIE && B_UDRE) {
|
||||
R_UDR = c;
|
||||
|
||||
// clear the TXC bit -- "can be cleared by writing a one to its bit
|
||||
// location". This makes sure flush() won't return until the bytes
|
||||
// actually got written
|
||||
SBI(M_UCSRxA, M_TXCx);
|
||||
B_TXC = 1;
|
||||
return;
|
||||
}
|
||||
|
||||
const uint8_t i = (tx_buffer.head + 1) & (TX_BUFFER_SIZE - 1);
|
||||
const uint8_t i = (tx_buffer.head + 1) & (Cfg::TX_SIZE - 1);
|
||||
|
||||
// If global interrupts are disabled (as the result of being called from an ISR)...
|
||||
if (!ISRS_ENABLED()) {
|
||||
|
@ -530,7 +484,7 @@
|
|||
while (i == tx_buffer.tail) {
|
||||
|
||||
// If we can transmit another byte, do it.
|
||||
if (TEST(M_UCSRxA, M_UDREx)) _tx_udr_empty_irq();
|
||||
if (B_UDRE) _tx_udr_empty_irq();
|
||||
|
||||
// Make sure compiler rereads tx_buffer.tail
|
||||
sw_barrier();
|
||||
|
@ -538,7 +492,7 @@
|
|||
}
|
||||
else {
|
||||
// Interrupts are enabled, just wait until there is space
|
||||
while (i == tx_buffer.tail) { sw_barrier(); }
|
||||
while (i == tx_buffer.tail) sw_barrier();
|
||||
}
|
||||
|
||||
// Store new char. head is always safe to move
|
||||
|
@ -546,10 +500,27 @@
|
|||
tx_buffer.head = i;
|
||||
|
||||
// Enable TX ISR - Non atomic, but it will eventually enable TX ISR
|
||||
SBI(M_UCSRxB, M_UDRIEx);
|
||||
B_UDRIE = 1;
|
||||
}
|
||||
}
|
||||
|
||||
void MarlinSerial::flushTX(void) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::flushTX(void) {
|
||||
|
||||
if (Cfg::TX_SIZE == 0) {
|
||||
// No bytes written, no need to flush. This special case is needed since there's
|
||||
// no way to force the TXC (transmit complete) bit to 1 during initialization.
|
||||
if (!_written) return;
|
||||
|
||||
// Wait until everything was transmitted
|
||||
while (!B_TXC) sw_barrier();
|
||||
|
||||
// At this point nothing is queued anymore (DRIE is disabled) and
|
||||
// the hardware finished transmission (TXC is set).
|
||||
|
||||
}
|
||||
else {
|
||||
|
||||
// No bytes written, no need to flush. This special case is needed since there's
|
||||
// no way to force the TXC (transmit complete) bit to 1 during initialization.
|
||||
if (!_written) return;
|
||||
|
@ -558,11 +529,10 @@
|
|||
if (!ISRS_ENABLED()) {
|
||||
|
||||
// Wait until everything was transmitted - We must do polling, as interrupts are disabled
|
||||
while (tx_buffer.head != tx_buffer.tail || !TEST(M_UCSRxA, M_TXCx)) {
|
||||
while (tx_buffer.head != tx_buffer.tail || !B_TXC) {
|
||||
|
||||
// If there is more space, send an extra character
|
||||
if (TEST(M_UCSRxA, M_UDREx))
|
||||
_tx_udr_empty_irq();
|
||||
if (B_UDRE) _tx_udr_empty_irq();
|
||||
|
||||
sw_barrier();
|
||||
}
|
||||
|
@ -570,55 +540,40 @@
|
|||
}
|
||||
else {
|
||||
// Wait until everything was transmitted
|
||||
while (tx_buffer.head != tx_buffer.tail || !TEST(M_UCSRxA, M_TXCx)) sw_barrier();
|
||||
while (tx_buffer.head != tx_buffer.tail || !B_TXC) sw_barrier();
|
||||
}
|
||||
|
||||
// At this point nothing is queued anymore (DRIE is disabled) and
|
||||
// the hardware finished transmission (TXC is set).
|
||||
}
|
||||
|
||||
#else // TX_BUFFER_SIZE == 0
|
||||
|
||||
void MarlinSerial::write(const uint8_t c) {
|
||||
_written = true;
|
||||
while (!TEST(M_UCSRxA, M_UDREx)) sw_barrier();
|
||||
M_UDRx = c;
|
||||
}
|
||||
|
||||
void MarlinSerial::flushTX(void) {
|
||||
// No bytes written, no need to flush. This special case is needed since there's
|
||||
// no way to force the TXC (transmit complete) bit to 1 during initialization.
|
||||
if (!_written) return;
|
||||
|
||||
// Wait until everything was transmitted
|
||||
while (!TEST(M_UCSRxA, M_TXCx)) sw_barrier();
|
||||
|
||||
// At this point nothing is queued anymore (DRIE is disabled) and
|
||||
// the hardware finished transmission (TXC is set).
|
||||
}
|
||||
#endif // TX_BUFFER_SIZE == 0
|
||||
|
||||
/**
|
||||
* Imports from print.h
|
||||
*/
|
||||
|
||||
void MarlinSerial::print(char c, int base) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::print(char c, int base) {
|
||||
print((long)c, base);
|
||||
}
|
||||
|
||||
void MarlinSerial::print(unsigned char b, int base) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::print(unsigned char b, int base) {
|
||||
print((unsigned long)b, base);
|
||||
}
|
||||
|
||||
void MarlinSerial::print(int n, int base) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::print(int n, int base) {
|
||||
print((long)n, base);
|
||||
}
|
||||
|
||||
void MarlinSerial::print(unsigned int n, int base) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::print(unsigned int n, int base) {
|
||||
print((unsigned long)n, base);
|
||||
}
|
||||
|
||||
void MarlinSerial::print(long n, int base) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::print(long n, int base) {
|
||||
if (base == 0) write(n);
|
||||
else if (base == 10) {
|
||||
if (n < 0) { print('-'); n = -n; }
|
||||
|
@ -628,68 +583,81 @@
|
|||
printNumber(n, base);
|
||||
}
|
||||
|
||||
void MarlinSerial::print(unsigned long n, int base) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::print(unsigned long n, int base) {
|
||||
if (base == 0) write(n);
|
||||
else printNumber(n, base);
|
||||
}
|
||||
|
||||
void MarlinSerial::print(double n, int digits) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::print(double n, int digits) {
|
||||
printFloat(n, digits);
|
||||
}
|
||||
|
||||
void MarlinSerial::println(void) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::println(void) {
|
||||
print('\r');
|
||||
print('\n');
|
||||
}
|
||||
|
||||
void MarlinSerial::println(const String& s) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::println(const String& s) {
|
||||
print(s);
|
||||
println();
|
||||
}
|
||||
|
||||
void MarlinSerial::println(const char c[]) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::println(const char c[]) {
|
||||
print(c);
|
||||
println();
|
||||
}
|
||||
|
||||
void MarlinSerial::println(char c, int base) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::println(char c, int base) {
|
||||
print(c, base);
|
||||
println();
|
||||
}
|
||||
|
||||
void MarlinSerial::println(unsigned char b, int base) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::println(unsigned char b, int base) {
|
||||
print(b, base);
|
||||
println();
|
||||
}
|
||||
|
||||
void MarlinSerial::println(int n, int base) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::println(int n, int base) {
|
||||
print(n, base);
|
||||
println();
|
||||
}
|
||||
|
||||
void MarlinSerial::println(unsigned int n, int base) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::println(unsigned int n, int base) {
|
||||
print(n, base);
|
||||
println();
|
||||
}
|
||||
|
||||
void MarlinSerial::println(long n, int base) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::println(long n, int base) {
|
||||
print(n, base);
|
||||
println();
|
||||
}
|
||||
|
||||
void MarlinSerial::println(unsigned long n, int base) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::println(unsigned long n, int base) {
|
||||
print(n, base);
|
||||
println();
|
||||
}
|
||||
|
||||
void MarlinSerial::println(double n, int digits) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::println(double n, int digits) {
|
||||
print(n, digits);
|
||||
println();
|
||||
}
|
||||
|
||||
// Private Methods
|
||||
|
||||
void MarlinSerial::printNumber(unsigned long n, uint8_t base) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::printNumber(unsigned long n, uint8_t base) {
|
||||
if (n) {
|
||||
unsigned char buf[8 * sizeof(long)]; // Enough space for base 2
|
||||
int8_t i = 0;
|
||||
|
@ -704,7 +672,8 @@
|
|||
print('0');
|
||||
}
|
||||
|
||||
void MarlinSerial::printFloat(double number, uint8_t digits) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::printFloat(double number, uint8_t digits) {
|
||||
// Handle negative numbers
|
||||
if (number < 0.0) {
|
||||
print('-');
|
||||
|
@ -713,9 +682,7 @@
|
|||
|
||||
// Round correctly so that print(1.999, 2) prints as "2.00"
|
||||
double rounding = 0.5;
|
||||
for (uint8_t i = 0; i < digits; ++i)
|
||||
rounding *= 0.1;
|
||||
|
||||
for (uint8_t i = 0; i < digits; ++i) rounding *= 0.1;
|
||||
number += rounding;
|
||||
|
||||
// Extract the integer part of the number and print it
|
||||
|
@ -736,8 +703,20 @@
|
|||
}
|
||||
}
|
||||
|
||||
// Hookup ISR handlers
|
||||
ISR(SERIAL_REGNAME(USART,SERIAL_PORT,_RX_vect)) {
|
||||
MarlinSerial<MarlinSerialCfg>::store_rxd_char();
|
||||
}
|
||||
|
||||
ISR(SERIAL_REGNAME(USART,SERIAL_PORT,_UDRE_vect)) {
|
||||
MarlinSerial<MarlinSerialCfg>::_tx_udr_empty_irq();
|
||||
}
|
||||
|
||||
// Preinstantiate
|
||||
MarlinSerial customizedSerial;
|
||||
template class MarlinSerial<MarlinSerialCfg>;
|
||||
|
||||
// Instantiate
|
||||
MarlinSerial<MarlinSerialCfg> customizedSerial;
|
||||
|
||||
#endif // !USBCON && (UBRRH || UBRR0H || UBRR1H || UBRR2H || UBRR3H)
|
||||
|
||||
|
|
|
@ -27,12 +27,13 @@
|
|||
* Modified 28 September 2010 by Mark Sproul
|
||||
* Modified 14 February 2016 by Andreas Hardtung (added tx buffer)
|
||||
* Modified 01 October 2017 by Eduardo José Tagle (added XON/XOFF)
|
||||
* Templatized 01 October 2018 by Eduardo José Tagle to allow multiple instances
|
||||
*/
|
||||
|
||||
#ifndef _MARLINSERIAL_H_
|
||||
#define _MARLINSERIAL_H_
|
||||
|
||||
#include "../../inc/MarlinConfigPre.h"
|
||||
#include "../shared/MarlinSerial.h"
|
||||
|
||||
#include <WString.h>
|
||||
|
||||
|
@ -40,73 +41,173 @@
|
|||
#define SERIAL_PORT 0
|
||||
#endif
|
||||
|
||||
// The presence of the UBRRH register is used to detect a UART.
|
||||
#define UART_PRESENT(port) ((port == 0 && (defined(UBRRH) || defined(UBRR0H))) || \
|
||||
#ifndef USBCON
|
||||
|
||||
// The presence of the UBRRH register is used to detect a UART.
|
||||
#define UART_PRESENT(port) ((port == 0 && (defined(UBRRH) || defined(UBRR0H))) || \
|
||||
(port == 1 && defined(UBRR1H)) || (port == 2 && defined(UBRR2H)) || \
|
||||
(port == 3 && defined(UBRR3H)))
|
||||
|
||||
// These are macros to build serial port register names for the selected SERIAL_PORT (C preprocessor
|
||||
// requires two levels of indirection to expand macro values properly)
|
||||
#define SERIAL_REGNAME(registerbase,number,suffix) SERIAL_REGNAME_INTERNAL(registerbase,number,suffix)
|
||||
#if SERIAL_PORT == 0 && (!defined(UBRR0H) || !defined(UDR0)) // use un-numbered registers if necessary
|
||||
// These are macros to build serial port register names for the selected SERIAL_PORT (C preprocessor
|
||||
// requires two levels of indirection to expand macro values properly)
|
||||
#define SERIAL_REGNAME(registerbase,number,suffix) SERIAL_REGNAME_INTERNAL(registerbase,number,suffix)
|
||||
#if SERIAL_PORT == 0 && (!defined(UBRR0H) || !defined(UDR0)) // use un-numbered registers if necessary
|
||||
#define SERIAL_REGNAME_INTERNAL(registerbase,number,suffix) registerbase##suffix
|
||||
#else
|
||||
#define SERIAL_REGNAME_INTERNAL(registerbase,number,suffix) registerbase##number##suffix
|
||||
#endif
|
||||
|
||||
// Registers used by MarlinSerial class (expanded depending on selected serial port)
|
||||
#define M_UCSRxA SERIAL_REGNAME(UCSR,SERIAL_PORT,A) // defines M_UCSRxA to be UCSRnA where n is the serial port number
|
||||
#define M_UCSRxB SERIAL_REGNAME(UCSR,SERIAL_PORT,B)
|
||||
#define M_RXENx SERIAL_REGNAME(RXEN,SERIAL_PORT,)
|
||||
#define M_TXENx SERIAL_REGNAME(TXEN,SERIAL_PORT,)
|
||||
#define M_TXCx SERIAL_REGNAME(TXC,SERIAL_PORT,)
|
||||
#define M_RXCIEx SERIAL_REGNAME(RXCIE,SERIAL_PORT,)
|
||||
#define M_UDREx SERIAL_REGNAME(UDRE,SERIAL_PORT,)
|
||||
#define M_FEx SERIAL_REGNAME(FE,SERIAL_PORT,)
|
||||
#define M_DORx SERIAL_REGNAME(DOR,SERIAL_PORT,)
|
||||
#define M_UPEx SERIAL_REGNAME(UPE,SERIAL_PORT,)
|
||||
#define M_UDRIEx SERIAL_REGNAME(UDRIE,SERIAL_PORT,)
|
||||
#define M_UDRx SERIAL_REGNAME(UDR,SERIAL_PORT,)
|
||||
#define M_UBRRxH SERIAL_REGNAME(UBRR,SERIAL_PORT,H)
|
||||
#define M_UBRRxL SERIAL_REGNAME(UBRR,SERIAL_PORT,L)
|
||||
#define M_RXCx SERIAL_REGNAME(RXC,SERIAL_PORT,)
|
||||
#define M_USARTx_RX_vect SERIAL_REGNAME(USART,SERIAL_PORT,_RX_vect)
|
||||
#define M_U2Xx SERIAL_REGNAME(U2X,SERIAL_PORT,)
|
||||
#define M_USARTx_UDRE_vect SERIAL_REGNAME(USART,SERIAL_PORT,_UDRE_vect)
|
||||
|
||||
#define DEC 10
|
||||
#define HEX 16
|
||||
#define OCT 8
|
||||
#define BIN 2
|
||||
#define BYTE 0
|
||||
|
||||
#ifndef USBCON
|
||||
// We're using a ring buffer (I think), in which rx_buffer_head is the index of the
|
||||
// location to which to write the next incoming character and rx_buffer_tail is the
|
||||
// index of the location from which to read.
|
||||
#if RX_BUFFER_SIZE > 256
|
||||
typedef uint16_t ring_buffer_pos_t;
|
||||
#else
|
||||
typedef uint8_t ring_buffer_pos_t;
|
||||
#define SERIAL_REGNAME_INTERNAL(registerbase,number,suffix) registerbase##number##suffix
|
||||
#endif
|
||||
|
||||
#if ENABLED(SERIAL_STATS_DROPPED_RX)
|
||||
extern uint8_t rx_dropped_bytes;
|
||||
// Registers used by MarlinSerial class (expanded depending on selected serial port)
|
||||
|
||||
// Templated 8bit register (generic)
|
||||
#define UART_REGISTER_DECL_BASE(registerbase, suffix) \
|
||||
template<int portNr> struct R_##registerbase##x##suffix {}
|
||||
|
||||
// Templated 8bit register (specialization for each port)
|
||||
#define UART_REGISTER_DECL(port, registerbase, suffix) \
|
||||
template<> struct R_##registerbase##x##suffix<port> { \
|
||||
constexpr R_##registerbase##x##suffix(int) {} \
|
||||
FORCE_INLINE void operator=(uint8_t newVal) const { SERIAL_REGNAME(registerbase,port,suffix) = newVal; } \
|
||||
FORCE_INLINE operator uint8_t() const { return SERIAL_REGNAME(registerbase,port,suffix); } \
|
||||
}
|
||||
|
||||
// Templated 1bit register (generic)
|
||||
#define UART_BIT_DECL_BASE(registerbase, suffix, bit) \
|
||||
template<int portNr>struct B_##bit##x {}
|
||||
|
||||
// Templated 1bit register (specialization for each port)
|
||||
#define UART_BIT_DECL(port, registerbase, suffix, bit) \
|
||||
template<> struct B_##bit##x<port> { \
|
||||
constexpr B_##bit##x(int) {} \
|
||||
FORCE_INLINE void operator=(int newVal) const { \
|
||||
if (newVal) \
|
||||
SBI(SERIAL_REGNAME(registerbase,port,suffix),SERIAL_REGNAME(bit,port,)); \
|
||||
else \
|
||||
CBI(SERIAL_REGNAME(registerbase,port,suffix),SERIAL_REGNAME(bit,port,)); \
|
||||
} \
|
||||
FORCE_INLINE operator bool() const { return TEST(SERIAL_REGNAME(registerbase,port,suffix),SERIAL_REGNAME(bit,port,)); } \
|
||||
}
|
||||
|
||||
#define UART_DECL_BASE() \
|
||||
UART_REGISTER_DECL_BASE(UCSR,A);\
|
||||
UART_REGISTER_DECL_BASE(UDR,);\
|
||||
UART_REGISTER_DECL_BASE(UBRR,H);\
|
||||
UART_REGISTER_DECL_BASE(UBRR,L);\
|
||||
UART_BIT_DECL_BASE(UCSR,B,RXEN);\
|
||||
UART_BIT_DECL_BASE(UCSR,B,TXEN);\
|
||||
UART_BIT_DECL_BASE(UCSR,A,TXC);\
|
||||
UART_BIT_DECL_BASE(UCSR,B,RXCIE);\
|
||||
UART_BIT_DECL_BASE(UCSR,A,UDRE);\
|
||||
UART_BIT_DECL_BASE(UCSR,A,FE);\
|
||||
UART_BIT_DECL_BASE(UCSR,A,DOR);\
|
||||
UART_BIT_DECL_BASE(UCSR,B,UDRIE);\
|
||||
UART_BIT_DECL_BASE(UCSR,A,RXC);\
|
||||
UART_BIT_DECL_BASE(UCSR,A,U2X)
|
||||
|
||||
#define UART_DECL(port) \
|
||||
UART_REGISTER_DECL(port,UCSR,A);\
|
||||
UART_REGISTER_DECL(port,UDR,);\
|
||||
UART_REGISTER_DECL(port,UBRR,H);\
|
||||
UART_REGISTER_DECL(port,UBRR,L);\
|
||||
UART_BIT_DECL(port,UCSR,B,RXEN);\
|
||||
UART_BIT_DECL(port,UCSR,B,TXEN);\
|
||||
UART_BIT_DECL(port,UCSR,A,TXC);\
|
||||
UART_BIT_DECL(port,UCSR,B,RXCIE);\
|
||||
UART_BIT_DECL(port,UCSR,A,UDRE);\
|
||||
UART_BIT_DECL(port,UCSR,A,FE);\
|
||||
UART_BIT_DECL(port,UCSR,A,DOR);\
|
||||
UART_BIT_DECL(port,UCSR,B,UDRIE);\
|
||||
UART_BIT_DECL(port,UCSR,A,RXC);\
|
||||
UART_BIT_DECL(port,UCSR,A,U2X)
|
||||
|
||||
// Declare empty templates
|
||||
UART_DECL_BASE();
|
||||
|
||||
// And all the specializations for each possible serial port
|
||||
#if UART_PRESENT(0)
|
||||
UART_DECL(0);
|
||||
#endif
|
||||
#if UART_PRESENT(1)
|
||||
UART_DECL(1);
|
||||
#endif
|
||||
#if UART_PRESENT(2)
|
||||
UART_DECL(2);
|
||||
#endif
|
||||
#if UART_PRESENT(3)
|
||||
UART_DECL(3);
|
||||
#endif
|
||||
|
||||
#if ENABLED(SERIAL_STATS_RX_BUFFER_OVERRUNS)
|
||||
extern uint8_t rx_buffer_overruns;
|
||||
#endif
|
||||
#define DEC 10
|
||||
#define HEX 16
|
||||
#define OCT 8
|
||||
#define BIN 2
|
||||
#define BYTE 0
|
||||
|
||||
#if ENABLED(SERIAL_STATS_RX_FRAMING_ERRORS)
|
||||
extern uint8_t rx_framing_errors;
|
||||
#endif
|
||||
|
||||
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
|
||||
extern ring_buffer_pos_t rx_max_enqueued;
|
||||
#endif
|
||||
// Templated type selector
|
||||
template<bool b, typename T, typename F> struct TypeSelector { typedef T type;} ;
|
||||
template<typename T, typename F> struct TypeSelector<false, T, F> { typedef F type; };
|
||||
|
||||
template<typename Cfg>
|
||||
class MarlinSerial {
|
||||
protected:
|
||||
// Registers
|
||||
static constexpr R_UCSRxA<Cfg::PORT> R_UCSRA = 0;
|
||||
static constexpr R_UDRx<Cfg::PORT> R_UDR = 0;
|
||||
static constexpr R_UBRRxH<Cfg::PORT> R_UBRRH = 0;
|
||||
static constexpr R_UBRRxL<Cfg::PORT> R_UBRRL = 0;
|
||||
|
||||
// Bits
|
||||
static constexpr B_RXENx<Cfg::PORT> B_RXEN = 0;
|
||||
static constexpr B_TXENx<Cfg::PORT> B_TXEN = 0;
|
||||
static constexpr B_TXCx<Cfg::PORT> B_TXC = 0;
|
||||
static constexpr B_RXCIEx<Cfg::PORT> B_RXCIE = 0;
|
||||
static constexpr B_UDREx<Cfg::PORT> B_UDRE = 0;
|
||||
static constexpr B_FEx<Cfg::PORT> B_FE = 0;
|
||||
static constexpr B_DORx<Cfg::PORT> B_DOR = 0;
|
||||
static constexpr B_UDRIEx<Cfg::PORT> B_UDRIE = 0;
|
||||
static constexpr B_RXCx<Cfg::PORT> B_RXC = 0;
|
||||
static constexpr B_U2Xx<Cfg::PORT> B_U2X = 0;
|
||||
|
||||
// Base size of type on buffer size
|
||||
typedef typename TypeSelector<(Cfg::RX_SIZE>256), uint16_t, uint8_t>::type ring_buffer_pos_t;
|
||||
|
||||
struct ring_buffer_r {
|
||||
volatile ring_buffer_pos_t head, tail;
|
||||
unsigned char buffer[Cfg::RX_SIZE];
|
||||
};
|
||||
|
||||
struct ring_buffer_t {
|
||||
volatile uint8_t head, tail;
|
||||
unsigned char buffer[Cfg::TX_SIZE];
|
||||
};
|
||||
|
||||
static ring_buffer_r rx_buffer;
|
||||
static ring_buffer_t tx_buffer;
|
||||
static bool _written;
|
||||
|
||||
static constexpr uint8_t XON_XOFF_CHAR_SENT = 0x80, // XON / XOFF Character was sent
|
||||
XON_XOFF_CHAR_MASK = 0x1F; // XON / XOFF character to send
|
||||
|
||||
// XON / XOFF character definitions
|
||||
static constexpr uint8_t XON_CHAR = 17, XOFF_CHAR = 19;
|
||||
static uint8_t xon_xoff_state,
|
||||
rx_dropped_bytes,
|
||||
rx_buffer_overruns,
|
||||
rx_framing_errors;
|
||||
static ring_buffer_pos_t rx_max_enqueued;
|
||||
|
||||
static FORCE_INLINE ring_buffer_pos_t atomic_read_rx_head();
|
||||
|
||||
static volatile bool rx_tail_value_not_stable;
|
||||
static volatile uint16_t rx_tail_value_backup;
|
||||
|
||||
static FORCE_INLINE void atomic_set_rx_tail(ring_buffer_pos_t value);
|
||||
static FORCE_INLINE ring_buffer_pos_t atomic_read_rx_tail();
|
||||
|
||||
public:
|
||||
|
||||
FORCE_INLINE static void store_rxd_char();
|
||||
FORCE_INLINE static void _tx_udr_empty_irq(void);
|
||||
|
||||
public:
|
||||
MarlinSerial() {};
|
||||
|
@ -119,21 +220,10 @@
|
|||
static void write(const uint8_t c);
|
||||
static void flushTX(void);
|
||||
|
||||
#if ENABLED(SERIAL_STATS_DROPPED_RX)
|
||||
FORCE_INLINE static uint32_t dropped() { return rx_dropped_bytes; }
|
||||
#endif
|
||||
|
||||
#if ENABLED(SERIAL_STATS_RX_BUFFER_OVERRUNS)
|
||||
FORCE_INLINE static uint32_t buffer_overruns() { return rx_buffer_overruns; }
|
||||
#endif
|
||||
|
||||
#if ENABLED(SERIAL_STATS_RX_FRAMING_ERRORS)
|
||||
FORCE_INLINE static uint32_t framing_errors() { return rx_framing_errors; }
|
||||
#endif
|
||||
|
||||
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
|
||||
FORCE_INLINE static ring_buffer_pos_t rxMaxEnqueued() { return rx_max_enqueued; }
|
||||
#endif
|
||||
FORCE_INLINE static uint8_t dropped() { return Cfg::DROPPED_RX ? rx_dropped_bytes : 0; }
|
||||
FORCE_INLINE static uint8_t buffer_overruns() { return Cfg::RX_OVERRUNS ? rx_buffer_overruns : 0; }
|
||||
FORCE_INLINE static uint8_t framing_errors() { return Cfg::RX_FRAMING_ERRORS ? rx_framing_errors : 0; }
|
||||
FORCE_INLINE static ring_buffer_pos_t rxMaxEnqueued() { return Cfg::MAX_RX_QUEUED ? rx_max_enqueued : 0; }
|
||||
|
||||
FORCE_INLINE static void write(const char* str) { while (*str) write(*str++); }
|
||||
FORCE_INLINE static void write(const uint8_t* buffer, size_t size) { while (size--) write(*buffer++); }
|
||||
|
@ -165,7 +255,20 @@
|
|||
static void printFloat(double, uint8_t);
|
||||
};
|
||||
|
||||
extern MarlinSerial customizedSerial;
|
||||
// Serial port configuration
|
||||
struct MarlinSerialCfg {
|
||||
static constexpr int PORT = SERIAL_PORT;
|
||||
static constexpr unsigned int RX_SIZE = RX_BUFFER_SIZE;
|
||||
static constexpr unsigned int TX_SIZE = TX_BUFFER_SIZE;
|
||||
static constexpr bool XONOFF = bSERIAL_XON_XOFF;
|
||||
static constexpr bool EMERGENCYPARSER = bEMERGENCY_PARSER;
|
||||
static constexpr bool DROPPED_RX = bSERIAL_STATS_DROPPED_RX;
|
||||
static constexpr bool RX_OVERRUNS = bSERIAL_STATS_RX_BUFFER_OVERRUNS;
|
||||
static constexpr bool RX_FRAMING_ERRORS = bSERIAL_STATS_RX_FRAMING_ERRORS;
|
||||
static constexpr bool MAX_RX_QUEUED = bSERIAL_STATS_MAX_RX_QUEUED;
|
||||
};
|
||||
|
||||
extern MarlinSerial<MarlinSerialCfg> customizedSerial;
|
||||
|
||||
#endif // !USBCON
|
||||
|
||||
|
|
|
@ -29,100 +29,32 @@
|
|||
|
||||
#include "../../inc/MarlinConfig.h"
|
||||
|
||||
#include "MarlinSerial_Due.h"
|
||||
#include "InterruptVectors_Due.h"
|
||||
#include "../../Marlin.h"
|
||||
|
||||
// If not using the USB port as serial port
|
||||
#if SERIAL_PORT >= 0
|
||||
|
||||
// Based on selected port, use the proper configuration
|
||||
#if SERIAL_PORT == 0
|
||||
#define HWUART UART
|
||||
#define HWUART_IRQ UART_IRQn
|
||||
#define HWUART_IRQ_ID ID_UART
|
||||
#elif SERIAL_PORT == 1
|
||||
#define HWUART ((Uart*)USART0)
|
||||
#define HWUART_IRQ USART0_IRQn
|
||||
#define HWUART_IRQ_ID ID_USART0
|
||||
#elif SERIAL_PORT == 2
|
||||
#define HWUART ((Uart*)USART1)
|
||||
#define HWUART_IRQ USART1_IRQn
|
||||
#define HWUART_IRQ_ID ID_USART1
|
||||
#elif SERIAL_PORT == 3
|
||||
#define HWUART ((Uart*)USART2)
|
||||
#define HWUART_IRQ USART2_IRQn
|
||||
#define HWUART_IRQ_ID ID_USART2
|
||||
#elif SERIAL_PORT == 4
|
||||
#define HWUART ((Uart*)USART3)
|
||||
#define HWUART_IRQ USART3_IRQn
|
||||
#define HWUART_IRQ_ID ID_USART3
|
||||
#endif
|
||||
#include "MarlinSerial_Due.h"
|
||||
#include "InterruptVectors_Due.h"
|
||||
#include "../../Marlin.h"
|
||||
|
||||
struct ring_buffer_r {
|
||||
unsigned char buffer[RX_BUFFER_SIZE];
|
||||
volatile ring_buffer_pos_t head, tail;
|
||||
};
|
||||
|
||||
#if TX_BUFFER_SIZE > 0
|
||||
struct ring_buffer_t {
|
||||
unsigned char buffer[TX_BUFFER_SIZE];
|
||||
volatile uint8_t head, tail;
|
||||
};
|
||||
#endif
|
||||
|
||||
ring_buffer_r rx_buffer = { { 0 }, 0, 0 };
|
||||
#if TX_BUFFER_SIZE > 0
|
||||
ring_buffer_t tx_buffer = { { 0 }, 0, 0 };
|
||||
#endif
|
||||
static bool _written;
|
||||
|
||||
#if ENABLED(SERIAL_XON_XOFF)
|
||||
constexpr uint8_t XON_XOFF_CHAR_SENT = 0x80, // XON / XOFF Character was sent
|
||||
XON_XOFF_CHAR_MASK = 0x1F; // XON / XOFF character to send
|
||||
// XON / XOFF character definitions
|
||||
constexpr uint8_t XON_CHAR = 17, XOFF_CHAR = 19;
|
||||
uint8_t xon_xoff_state = XON_XOFF_CHAR_SENT | XON_CHAR;
|
||||
|
||||
// Validate that RX buffer size is at least 4096 bytes- According to several experiments, on
|
||||
// the original Arduino Due that uses a ATmega16U2 as USB to serial bridge, due to the introduced
|
||||
// latencies, at least 2959 bytes of RX buffering (when transmitting at 250kbits/s) are required
|
||||
// to avoid overflows.
|
||||
|
||||
#if RX_BUFFER_SIZE < 4096
|
||||
#error Arduino DUE requires at least 4096 bytes of RX buffer to avoid buffer overflows when using XON/XOFF handshake
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if ENABLED(SERIAL_STATS_DROPPED_RX)
|
||||
uint8_t rx_dropped_bytes = 0;
|
||||
#endif
|
||||
|
||||
#if ENABLED(SERIAL_STATS_RX_BUFFER_OVERRUNS)
|
||||
uint8_t rx_buffer_overruns = 0;
|
||||
#endif
|
||||
|
||||
#if ENABLED(SERIAL_STATS_RX_FRAMING_ERRORS)
|
||||
uint8_t rx_framing_errors = 0;
|
||||
#endif
|
||||
|
||||
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
|
||||
ring_buffer_pos_t rx_max_enqueued = 0;
|
||||
#endif
|
||||
template<typename Cfg> typename MarlinSerial<Cfg>::ring_buffer_r MarlinSerial<Cfg>::rx_buffer = { 0 };
|
||||
template<typename Cfg> typename MarlinSerial<Cfg>::ring_buffer_t MarlinSerial<Cfg>::tx_buffer = { 0 };
|
||||
template<typename Cfg> bool MarlinSerial<Cfg>::_written = false;
|
||||
template<typename Cfg> uint8_t MarlinSerial<Cfg>::xon_xoff_state = MarlinSerial<Cfg>::XON_XOFF_CHAR_SENT | MarlinSerial<Cfg>::XON_CHAR;
|
||||
template<typename Cfg> uint8_t MarlinSerial<Cfg>::rx_dropped_bytes = 0;
|
||||
template<typename Cfg> uint8_t MarlinSerial<Cfg>::rx_buffer_overruns = 0;
|
||||
template<typename Cfg> uint8_t MarlinSerial<Cfg>::rx_framing_errors = 0;
|
||||
template<typename Cfg> typename MarlinSerial<Cfg>::ring_buffer_pos_t MarlinSerial<Cfg>::rx_max_enqueued = 0;
|
||||
|
||||
// A SW memory barrier, to ensure GCC does not overoptimize loops
|
||||
#define sw_barrier() asm volatile("": : :"memory");
|
||||
|
||||
#if ENABLED(EMERGENCY_PARSER)
|
||||
#include "../../feature/emergency_parser.h"
|
||||
#endif
|
||||
|
||||
// (called with RX interrupts disabled)
|
||||
FORCE_INLINE void store_rxd_char() {
|
||||
template<typename Cfg>
|
||||
FORCE_INLINE void MarlinSerial<Cfg>::store_rxd_char() {
|
||||
|
||||
#if ENABLED(EMERGENCY_PARSER)
|
||||
static EmergencyParser::State emergency_state; // = EP_RESET
|
||||
#endif
|
||||
|
||||
// Get the tail - Nothing can alter its value while we are at this ISR
|
||||
const ring_buffer_pos_t t = rx_buffer.tail;
|
||||
|
@ -131,14 +63,12 @@
|
|||
ring_buffer_pos_t h = rx_buffer.head;
|
||||
|
||||
// Get the next element
|
||||
ring_buffer_pos_t i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
|
||||
ring_buffer_pos_t i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
|
||||
|
||||
// Read the character from the USART
|
||||
uint8_t c = HWUART->UART_RHR;
|
||||
|
||||
#if ENABLED(EMERGENCY_PARSER)
|
||||
emergency_parser.update(emergency_state, c);
|
||||
#endif
|
||||
if (Cfg::EMERGENCYPARSER) emergency_parser.update(emergency_state, c);
|
||||
|
||||
// If the character is to be stored at the index just before the tail
|
||||
// (such that the head would advance to the current tail), the RX FIFO is
|
||||
|
@ -147,29 +77,26 @@
|
|||
rx_buffer.buffer[h] = c;
|
||||
h = i;
|
||||
}
|
||||
#if ENABLED(SERIAL_STATS_DROPPED_RX)
|
||||
else if (!++rx_dropped_bytes) --rx_dropped_bytes;
|
||||
#endif
|
||||
else if (Cfg::DROPPED_RX && !++rx_dropped_bytes)
|
||||
--rx_dropped_bytes;
|
||||
|
||||
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
|
||||
const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
|
||||
const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
|
||||
// Calculate count of bytes stored into the RX buffer
|
||||
|
||||
// Keep track of the maximum count of enqueued bytes
|
||||
NOLESS(rx_max_enqueued, rx_count);
|
||||
#endif
|
||||
if (Cfg::MAX_RX_QUEUED) NOLESS(rx_max_enqueued, rx_count);
|
||||
|
||||
#if ENABLED(SERIAL_XON_XOFF)
|
||||
if (Cfg::XONOFF) {
|
||||
// If the last char that was sent was an XON
|
||||
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XON_CHAR) {
|
||||
|
||||
// Bytes stored into the RX buffer
|
||||
const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
|
||||
const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
|
||||
|
||||
// If over 12.5% of RX buffer capacity, send XOFF before running out of
|
||||
// RX buffer space .. 325 bytes @ 250kbits/s needed to let the host react
|
||||
// and stop sending bytes. This translates to 13mS propagation time.
|
||||
if (rx_count >= (RX_BUFFER_SIZE) / 8) {
|
||||
if (rx_count >= (Cfg::RX_SIZE) / 8) {
|
||||
|
||||
// At this point, definitely no TX interrupt was executing, since the TX isr can't be preempted.
|
||||
// Don't enable the TX interrupt here as a means to trigger the XOFF char, because if it happens
|
||||
|
@ -189,14 +116,12 @@
|
|||
if (status & UART_SR_RXRDY) {
|
||||
// We received a char while waiting for the TX buffer to be empty - Receive and process it!
|
||||
|
||||
i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
|
||||
i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
|
||||
|
||||
// Read the character from the USART
|
||||
c = HWUART->UART_RHR;
|
||||
|
||||
#if ENABLED(EMERGENCY_PARSER)
|
||||
emergency_parser.update(emergency_state, c);
|
||||
#endif
|
||||
if (Cfg::EMERGENCYPARSER) emergency_parser.update(emergency_state, c);
|
||||
|
||||
// If the character is to be stored at the index just before the tail
|
||||
// (such that the head would advance to the current tail), the FIFO is
|
||||
|
@ -205,9 +130,8 @@
|
|||
rx_buffer.buffer[h] = c;
|
||||
h = i;
|
||||
}
|
||||
#if ENABLED(SERIAL_STATS_DROPPED_RX)
|
||||
else if (!++rx_dropped_bytes) --rx_dropped_bytes;
|
||||
#endif
|
||||
else if (Cfg::DROPPED_RX && !++rx_dropped_bytes)
|
||||
--rx_dropped_bytes;
|
||||
}
|
||||
sw_barrier();
|
||||
}
|
||||
|
@ -226,14 +150,12 @@
|
|||
if (status & UART_SR_RXRDY) {
|
||||
// A char arrived while waiting for the TX buffer to be empty - Receive and process it!
|
||||
|
||||
i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
|
||||
i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
|
||||
|
||||
// Read the character from the USART
|
||||
c = HWUART->UART_RHR;
|
||||
|
||||
#if ENABLED(EMERGENCY_PARSER)
|
||||
emergency_parser.update(emergency_state, c);
|
||||
#endif
|
||||
if (Cfg::EMERGENCYPARSER) emergency_parser.update(emergency_state, c);
|
||||
|
||||
// If the character is to be stored at the index just before the tail
|
||||
// (such that the head would advance to the current tail), the FIFO is
|
||||
|
@ -242,9 +164,8 @@
|
|||
rx_buffer.buffer[h] = c;
|
||||
h = i;
|
||||
}
|
||||
#if ENABLED(SERIAL_STATS_DROPPED_RX)
|
||||
else if (!++rx_dropped_bytes) --rx_dropped_bytes;
|
||||
#endif
|
||||
else if (Cfg::DROPPED_RX && !++rx_dropped_bytes)
|
||||
--rx_dropped_bytes;
|
||||
}
|
||||
sw_barrier();
|
||||
}
|
||||
|
@ -253,20 +174,20 @@
|
|||
// have any issues writing to the UART TX register if it needs to!
|
||||
}
|
||||
}
|
||||
#endif // SERIAL_XON_XOFF
|
||||
}
|
||||
|
||||
// Store the new head value
|
||||
rx_buffer.head = h;
|
||||
}
|
||||
|
||||
#if TX_BUFFER_SIZE > 0
|
||||
|
||||
FORCE_INLINE void _tx_thr_empty_irq(void) {
|
||||
template<typename Cfg>
|
||||
FORCE_INLINE void MarlinSerial<Cfg>::_tx_thr_empty_irq(void) {
|
||||
if (Cfg::TX_SIZE > 0) {
|
||||
// Read positions
|
||||
uint8_t t = tx_buffer.tail;
|
||||
const uint8_t h = tx_buffer.head;
|
||||
|
||||
#if ENABLED(SERIAL_XON_XOFF)
|
||||
if (Cfg::XONOFF) {
|
||||
// If an XON char is pending to be sent, do it now
|
||||
if (xon_xoff_state == XON_CHAR) {
|
||||
|
||||
|
@ -281,7 +202,7 @@
|
|||
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
// If nothing to transmit, just disable TX interrupts. This could
|
||||
// happen as the result of the non atomicity of the disabling of RX
|
||||
|
@ -293,41 +214,32 @@
|
|||
|
||||
// There is something to TX, Send the next byte
|
||||
const uint8_t c = tx_buffer.buffer[t];
|
||||
t = (t + 1) & (TX_BUFFER_SIZE - 1);
|
||||
t = (t + 1) & (Cfg::TX_SIZE - 1);
|
||||
HWUART->UART_THR = c;
|
||||
tx_buffer.tail = t;
|
||||
|
||||
// Disable interrupts if there is nothing to transmit following this byte
|
||||
if (h == t) HWUART->UART_IDR = UART_IDR_TXRDY;
|
||||
}
|
||||
}
|
||||
|
||||
#endif // TX_BUFFER_SIZE > 0
|
||||
|
||||
static void UART_ISR(void) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::UART_ISR(void) {
|
||||
const uint32_t status = HWUART->UART_SR;
|
||||
|
||||
// Data received?
|
||||
if (status & UART_SR_RXRDY) store_rxd_char();
|
||||
|
||||
#if TX_BUFFER_SIZE > 0
|
||||
if (Cfg::TX_SIZE > 0) {
|
||||
// Something to send, and TX interrupts are enabled (meaning something to send)?
|
||||
if ((status & UART_SR_TXRDY) && (HWUART->UART_IMR & UART_IMR_TXRDY)) _tx_thr_empty_irq();
|
||||
#endif
|
||||
}
|
||||
|
||||
// Acknowledge errors
|
||||
if ((status & UART_SR_OVRE) || (status & UART_SR_FRAME)) {
|
||||
|
||||
#if ENABLED(SERIAL_STATS_DROPPED_RX)
|
||||
if (status & UART_SR_OVRE && !++rx_dropped_bytes) --rx_dropped_bytes;
|
||||
#endif
|
||||
|
||||
#if ENABLED(SERIAL_STATS_RX_BUFFER_OVERRUNS)
|
||||
if (status & UART_SR_OVRE && !++rx_buffer_overruns) --rx_buffer_overruns;
|
||||
#endif
|
||||
|
||||
#if ENABLED(SERIAL_STATS_RX_FRAMING_ERRORS)
|
||||
if (status & UART_SR_FRAME && !++rx_framing_errors) --rx_framing_errors;
|
||||
#endif
|
||||
if (Cfg::DROPPED_RX && (status & UART_SR_OVRE) && !++rx_dropped_bytes) --rx_dropped_bytes;
|
||||
if (Cfg::RX_OVERRUNS && (status & UART_SR_OVRE) && !++rx_buffer_overruns) --rx_buffer_overruns;
|
||||
if (Cfg::RX_FRAMING_ERRORS && (status & UART_SR_FRAME) && !++rx_framing_errors) --rx_framing_errors;
|
||||
|
||||
// TODO: error reporting outside ISR
|
||||
HWUART->UART_CR = UART_CR_RSTSTA;
|
||||
|
@ -335,8 +247,8 @@
|
|||
}
|
||||
|
||||
// Public Methods
|
||||
|
||||
void MarlinSerial::begin(const long baud_setting) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::begin(const long baud_setting) {
|
||||
|
||||
// Disable UART interrupt in NVIC
|
||||
NVIC_DisableIRQ( HWUART_IRQ );
|
||||
|
@ -382,12 +294,11 @@
|
|||
// Enable receiver and transmitter
|
||||
HWUART->UART_CR = UART_CR_RXEN | UART_CR_TXEN;
|
||||
|
||||
#if TX_BUFFER_SIZE > 0
|
||||
_written = false;
|
||||
#endif
|
||||
if (Cfg::TX_SIZE > 0) _written = false;
|
||||
}
|
||||
|
||||
void MarlinSerial::end() {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::end() {
|
||||
// Disable UART interrupt in NVIC
|
||||
NVIC_DisableIRQ( HWUART_IRQ );
|
||||
|
||||
|
@ -399,12 +310,14 @@
|
|||
pmc_disable_periph_clk( HWUART_IRQ_ID );
|
||||
}
|
||||
|
||||
int MarlinSerial::peek(void) {
|
||||
template<typename Cfg>
|
||||
int MarlinSerial<Cfg>::peek(void) {
|
||||
const int v = rx_buffer.head == rx_buffer.tail ? -1 : rx_buffer.buffer[rx_buffer.tail];
|
||||
return v;
|
||||
}
|
||||
|
||||
int MarlinSerial::read(void) {
|
||||
template<typename Cfg>
|
||||
int MarlinSerial<Cfg>::read(void) {
|
||||
|
||||
const ring_buffer_pos_t h = rx_buffer.head;
|
||||
ring_buffer_pos_t t = rx_buffer.tail;
|
||||
|
@ -412,65 +325,75 @@
|
|||
if (h == t) return -1;
|
||||
|
||||
int v = rx_buffer.buffer[t];
|
||||
t = (ring_buffer_pos_t)(t + 1) & (RX_BUFFER_SIZE - 1);
|
||||
t = (ring_buffer_pos_t)(t + 1) & (Cfg::RX_SIZE - 1);
|
||||
|
||||
// Advance tail
|
||||
rx_buffer.tail = t;
|
||||
|
||||
#if ENABLED(SERIAL_XON_XOFF)
|
||||
if (Cfg::XONOFF) {
|
||||
// If the XOFF char was sent, or about to be sent...
|
||||
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) {
|
||||
// Get count of bytes in the RX buffer
|
||||
const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
|
||||
const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
|
||||
// When below 10% of RX buffer capacity, send XON before running out of RX buffer bytes
|
||||
if (rx_count < (RX_BUFFER_SIZE) / 10) {
|
||||
#if TX_BUFFER_SIZE > 0
|
||||
if (rx_count < (Cfg::RX_SIZE) / 10) {
|
||||
if (Cfg::TX_SIZE > 0) {
|
||||
// Signal we want an XON character to be sent.
|
||||
xon_xoff_state = XON_CHAR;
|
||||
// Enable TX isr.
|
||||
HWUART->UART_IER = UART_IER_TXRDY;
|
||||
#else
|
||||
}
|
||||
else {
|
||||
// If not using TX interrupts, we must send the XON char now
|
||||
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
|
||||
while (!(HWUART->UART_SR & UART_SR_TXRDY)) sw_barrier();
|
||||
HWUART->UART_THR = XON_CHAR;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
return v;
|
||||
}
|
||||
|
||||
ring_buffer_pos_t MarlinSerial::available(void) {
|
||||
template<typename Cfg>
|
||||
typename MarlinSerial<Cfg>::ring_buffer_pos_t MarlinSerial<Cfg>::available(void) {
|
||||
const ring_buffer_pos_t h = rx_buffer.head, t = rx_buffer.tail;
|
||||
return (ring_buffer_pos_t)(RX_BUFFER_SIZE + h - t) & (RX_BUFFER_SIZE - 1);
|
||||
return (ring_buffer_pos_t)(Cfg::RX_SIZE + h - t) & (Cfg::RX_SIZE - 1);
|
||||
}
|
||||
|
||||
void MarlinSerial::flush(void) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::flush(void) {
|
||||
rx_buffer.tail = rx_buffer.head;
|
||||
|
||||
#if ENABLED(SERIAL_XON_XOFF)
|
||||
if (Cfg::XONOFF) {
|
||||
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) {
|
||||
#if TX_BUFFER_SIZE > 0
|
||||
if (Cfg::TX_SIZE > 0) {
|
||||
// Signal we want an XON character to be sent.
|
||||
xon_xoff_state = XON_CHAR;
|
||||
// Enable TX isr.
|
||||
HWUART->UART_IER = UART_IER_TXRDY;
|
||||
#else
|
||||
}
|
||||
else {
|
||||
// If not using TX interrupts, we must send the XON char now
|
||||
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
|
||||
while (!(HWUART->UART_SR & UART_SR_TXRDY)) sw_barrier();
|
||||
HWUART->UART_THR = XON_CHAR;
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#if TX_BUFFER_SIZE > 0
|
||||
void MarlinSerial::write(const uint8_t c) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::write(const uint8_t c) {
|
||||
_written = true;
|
||||
|
||||
if (Cfg::TX_SIZE == 0) {
|
||||
while (!(HWUART->UART_SR & UART_SR_TXRDY)) sw_barrier();
|
||||
HWUART->UART_THR = c;
|
||||
}
|
||||
else {
|
||||
|
||||
// If the TX interrupts are disabled and the data register
|
||||
// is empty, just write the byte to the data register and
|
||||
// be done. This shortcut helps significantly improve the
|
||||
|
@ -483,7 +406,7 @@
|
|||
return;
|
||||
}
|
||||
|
||||
const uint8_t i = (tx_buffer.head + 1) & (TX_BUFFER_SIZE - 1);
|
||||
const uint8_t i = (tx_buffer.head + 1) & (Cfg::TX_SIZE - 1);
|
||||
|
||||
// If global interrupts are disabled (as the result of being called from an ISR)...
|
||||
if (!ISRS_ENABLED()) {
|
||||
|
@ -508,10 +431,25 @@
|
|||
// Enable TX isr - Non atomic, but it will eventually enable TX isr
|
||||
HWUART->UART_IER = UART_IER_TXRDY;
|
||||
}
|
||||
}
|
||||
|
||||
void MarlinSerial::flushTX(void) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::flushTX(void) {
|
||||
// TX
|
||||
|
||||
if (Cfg::TX_SIZE == 0) {
|
||||
// No bytes written, no need to flush. This special case is needed since there's
|
||||
// no way to force the TXC (transmit complete) bit to 1 during initialization.
|
||||
if (!_written) return;
|
||||
|
||||
// Wait until everything was transmitted
|
||||
while (!(HWUART->UART_SR & UART_SR_TXEMPTY)) sw_barrier();
|
||||
|
||||
// At this point nothing is queued anymore (DRIE is disabled) and
|
||||
// the hardware finished transmission (TXC is set).
|
||||
|
||||
}
|
||||
else {
|
||||
// If we have never written a byte, no need to flush. This special
|
||||
// case is needed since there is no way to force the TXC (transmit
|
||||
// complete) bit to 1 during initialization
|
||||
|
@ -536,51 +474,34 @@
|
|||
// At this point nothing is queued anymore (DRIE is disabled) and
|
||||
// the hardware finished transmission (TXC is set).
|
||||
}
|
||||
|
||||
#else // TX_BUFFER_SIZE == 0
|
||||
|
||||
void MarlinSerial::write(const uint8_t c) {
|
||||
_written = true;
|
||||
while (!(HWUART->UART_SR & UART_SR_TXRDY)) sw_barrier();
|
||||
HWUART->UART_THR = c;
|
||||
}
|
||||
|
||||
void MarlinSerial::flushTX(void) {
|
||||
// TX
|
||||
|
||||
// No bytes written, no need to flush. This special case is needed since there's
|
||||
// no way to force the TXC (transmit complete) bit to 1 during initialization.
|
||||
if (!_written) return;
|
||||
|
||||
// Wait until everything was transmitted
|
||||
while (!(HWUART->UART_SR & UART_SR_TXEMPTY)) sw_barrier();
|
||||
|
||||
// At this point nothing is queued anymore (DRIE is disabled) and
|
||||
// the hardware finished transmission (TXC is set).
|
||||
}
|
||||
#endif // TX_BUFFER_SIZE == 0
|
||||
|
||||
/**
|
||||
* Imports from print.h
|
||||
*/
|
||||
|
||||
void MarlinSerial::print(char c, int base) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::print(char c, int base) {
|
||||
print((long)c, base);
|
||||
}
|
||||
|
||||
void MarlinSerial::print(unsigned char b, int base) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::print(unsigned char b, int base) {
|
||||
print((unsigned long)b, base);
|
||||
}
|
||||
|
||||
void MarlinSerial::print(int n, int base) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::print(int n, int base) {
|
||||
print((long)n, base);
|
||||
}
|
||||
|
||||
void MarlinSerial::print(unsigned int n, int base) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::print(unsigned int n, int base) {
|
||||
print((unsigned long)n, base);
|
||||
}
|
||||
|
||||
void MarlinSerial::print(long n, int base) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::print(long n, int base) {
|
||||
if (base == 0) write(n);
|
||||
else if (base == 10) {
|
||||
if (n < 0) { print('-'); n = -n; }
|
||||
|
@ -590,68 +511,80 @@
|
|||
printNumber(n, base);
|
||||
}
|
||||
|
||||
void MarlinSerial::print(unsigned long n, int base) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::print(unsigned long n, int base) {
|
||||
if (base == 0) write(n);
|
||||
else printNumber(n, base);
|
||||
}
|
||||
|
||||
void MarlinSerial::print(double n, int digits) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::print(double n, int digits) {
|
||||
printFloat(n, digits);
|
||||
}
|
||||
|
||||
void MarlinSerial::println(void) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::println(void) {
|
||||
print('\r');
|
||||
print('\n');
|
||||
}
|
||||
|
||||
void MarlinSerial::println(const String& s) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::println(const String& s) {
|
||||
print(s);
|
||||
println();
|
||||
}
|
||||
|
||||
void MarlinSerial::println(const char c[]) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::println(const char c[]) {
|
||||
print(c);
|
||||
println();
|
||||
}
|
||||
|
||||
void MarlinSerial::println(char c, int base) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::println(char c, int base) {
|
||||
print(c, base);
|
||||
println();
|
||||
}
|
||||
|
||||
void MarlinSerial::println(unsigned char b, int base) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::println(unsigned char b, int base) {
|
||||
print(b, base);
|
||||
println();
|
||||
}
|
||||
|
||||
void MarlinSerial::println(int n, int base) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::println(int n, int base) {
|
||||
print(n, base);
|
||||
println();
|
||||
}
|
||||
|
||||
void MarlinSerial::println(unsigned int n, int base) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::println(unsigned int n, int base) {
|
||||
print(n, base);
|
||||
println();
|
||||
}
|
||||
|
||||
void MarlinSerial::println(long n, int base) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::println(long n, int base) {
|
||||
print(n, base);
|
||||
println();
|
||||
}
|
||||
|
||||
void MarlinSerial::println(unsigned long n, int base) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::println(unsigned long n, int base) {
|
||||
print(n, base);
|
||||
println();
|
||||
}
|
||||
|
||||
void MarlinSerial::println(double n, int digits) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::println(double n, int digits) {
|
||||
print(n, digits);
|
||||
println();
|
||||
}
|
||||
|
||||
// Private Methods
|
||||
|
||||
void MarlinSerial::printNumber(unsigned long n, uint8_t base) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::printNumber(unsigned long n, uint8_t base) {
|
||||
if (n) {
|
||||
unsigned char buf[8 * sizeof(long)]; // Enough space for base 2
|
||||
int8_t i = 0;
|
||||
|
@ -666,7 +599,8 @@
|
|||
print('0');
|
||||
}
|
||||
|
||||
void MarlinSerial::printFloat(double number, uint8_t digits) {
|
||||
template<typename Cfg>
|
||||
void MarlinSerial<Cfg>::printFloat(double number, uint8_t digits) {
|
||||
// Handle negative numbers
|
||||
if (number < 0.0) {
|
||||
print('-');
|
||||
|
@ -697,7 +631,11 @@
|
|||
}
|
||||
|
||||
// Preinstantiate
|
||||
MarlinSerial customizedSerial;
|
||||
template class MarlinSerial<MarlinSerialCfg>;
|
||||
|
||||
// Instantiate
|
||||
MarlinSerial<MarlinSerialCfg> customizedSerial;
|
||||
|
||||
#endif
|
||||
|
||||
#endif // ARDUINO_ARCH_SAM
|
||||
|
|
|
@ -29,7 +29,7 @@
|
|||
#ifndef MARLINSERIAL_DUE_H
|
||||
#define MARLINSERIAL_DUE_H
|
||||
|
||||
#include "../../inc/MarlinConfig.h"
|
||||
#include "../shared/MarlinSerial.h"
|
||||
|
||||
#if SERIAL_PORT >= 0
|
||||
|
||||
|
@ -60,29 +60,60 @@
|
|||
// #error "TX_BUFFER_SIZE must be 0, a power of 2 greater than 1, and no greater than 256."
|
||||
//#endif
|
||||
|
||||
#if RX_BUFFER_SIZE > 256
|
||||
typedef uint16_t ring_buffer_pos_t;
|
||||
#else
|
||||
typedef uint8_t ring_buffer_pos_t;
|
||||
#endif
|
||||
// Templated type selector
|
||||
template<bool b, typename T, typename F> struct TypeSelector { typedef T type;} ;
|
||||
template<typename T, typename F> struct TypeSelector<false, T, F> { typedef F type; };
|
||||
|
||||
#if ENABLED(SERIAL_STATS_DROPPED_RX)
|
||||
extern uint8_t rx_dropped_bytes;
|
||||
#endif
|
||||
|
||||
#if ENABLED(SERIAL_STATS_RX_BUFFER_OVERRUNS)
|
||||
extern uint8_t rx_buffer_overruns;
|
||||
#endif
|
||||
|
||||
#if ENABLED(SERIAL_STATS_RX_FRAMING_ERRORS)
|
||||
extern uint8_t rx_framing_errors;
|
||||
#endif
|
||||
|
||||
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
|
||||
extern ring_buffer_pos_t rx_max_enqueued;
|
||||
#endif
|
||||
// Templated structure wrapper
|
||||
template<typename S, unsigned int addr> struct StructWrapper {
|
||||
constexpr StructWrapper(int) {}
|
||||
FORCE_INLINE S* operator->() const { return (S*)addr; }
|
||||
};
|
||||
|
||||
template<typename Cfg>
|
||||
class MarlinSerial {
|
||||
protected:
|
||||
// Information for all supported UARTs
|
||||
static constexpr uint32_t BASES[] = {0x400E0800U, 0x40098000U, 0x4009C000U, 0x400A0000U, 0x400A4000U};
|
||||
static constexpr IRQn_Type IRQS[] = { UART_IRQn, USART0_IRQn, USART1_IRQn, USART2_IRQn, USART3_IRQn};
|
||||
static constexpr int IRQ_IDS[] = { ID_UART, ID_USART0, ID_USART1, ID_USART2, ID_USART3};
|
||||
|
||||
// Alias for shorter code
|
||||
static constexpr StructWrapper<Uart,BASES[Cfg::PORT]> HWUART = 0;
|
||||
static constexpr IRQn_Type HWUART_IRQ = IRQS[Cfg::PORT];
|
||||
static constexpr int HWUART_IRQ_ID = IRQ_IDS[Cfg::PORT];
|
||||
|
||||
// Base size of type on buffer size
|
||||
typedef typename TypeSelector<(Cfg::RX_SIZE>256), uint16_t, uint8_t>::type ring_buffer_pos_t;
|
||||
|
||||
struct ring_buffer_r {
|
||||
volatile ring_buffer_pos_t head, tail;
|
||||
unsigned char buffer[Cfg::RX_SIZE];
|
||||
};
|
||||
|
||||
struct ring_buffer_t {
|
||||
volatile uint8_t head, tail;
|
||||
unsigned char buffer[Cfg::TX_SIZE];
|
||||
};
|
||||
|
||||
static ring_buffer_r rx_buffer;
|
||||
static ring_buffer_t tx_buffer;
|
||||
static bool _written;
|
||||
|
||||
static constexpr uint8_t XON_XOFF_CHAR_SENT = 0x80, // XON / XOFF Character was sent
|
||||
XON_XOFF_CHAR_MASK = 0x1F; // XON / XOFF character to send
|
||||
|
||||
// XON / XOFF character definitions
|
||||
static constexpr uint8_t XON_CHAR = 17, XOFF_CHAR = 19;
|
||||
static uint8_t xon_xoff_state,
|
||||
rx_dropped_bytes,
|
||||
rx_buffer_overruns,
|
||||
rx_framing_errors;
|
||||
static ring_buffer_pos_t rx_max_enqueued;
|
||||
|
||||
FORCE_INLINE static void store_rxd_char();
|
||||
FORCE_INLINE static void _tx_thr_empty_irq(void);
|
||||
static void UART_ISR(void);
|
||||
|
||||
public:
|
||||
MarlinSerial() {};
|
||||
|
@ -95,21 +126,10 @@ public:
|
|||
static void write(const uint8_t c);
|
||||
static void flushTX(void);
|
||||
|
||||
#if ENABLED(SERIAL_STATS_DROPPED_RX)
|
||||
FORCE_INLINE static uint32_t dropped() { return rx_dropped_bytes; }
|
||||
#endif
|
||||
|
||||
#if ENABLED(SERIAL_STATS_RX_BUFFER_OVERRUNS)
|
||||
FORCE_INLINE static uint32_t buffer_overruns() { return rx_buffer_overruns; }
|
||||
#endif
|
||||
|
||||
#if ENABLED(SERIAL_STATS_RX_FRAMING_ERRORS)
|
||||
FORCE_INLINE static uint32_t framing_errors() { return rx_framing_errors; }
|
||||
#endif
|
||||
|
||||
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
|
||||
FORCE_INLINE static ring_buffer_pos_t rxMaxEnqueued() { return rx_max_enqueued; }
|
||||
#endif
|
||||
FORCE_INLINE static uint8_t dropped() { return Cfg::DROPPED_RX ? rx_dropped_bytes : 0; }
|
||||
FORCE_INLINE static uint8_t buffer_overruns() { return Cfg::RX_OVERRUNS ? rx_buffer_overruns : 0; }
|
||||
FORCE_INLINE static uint8_t framing_errors() { return Cfg::RX_FRAMING_ERRORS ? rx_framing_errors : 0; }
|
||||
FORCE_INLINE static ring_buffer_pos_t rxMaxEnqueued() { return Cfg::MAX_RX_QUEUED ? rx_max_enqueued : 0; }
|
||||
|
||||
FORCE_INLINE static void write(const char* str) { while (*str) write(*str++); }
|
||||
FORCE_INLINE static void write(const uint8_t* buffer, size_t size) { while (size--) write(*buffer++); }
|
||||
|
@ -141,7 +161,20 @@ private:
|
|||
static void printFloat(double, uint8_t);
|
||||
};
|
||||
|
||||
extern MarlinSerial customizedSerial;
|
||||
// Serial port configuration
|
||||
struct MarlinSerialCfg {
|
||||
static constexpr int PORT = SERIAL_PORT;
|
||||
static constexpr unsigned int RX_SIZE = RX_BUFFER_SIZE;
|
||||
static constexpr unsigned int TX_SIZE = TX_BUFFER_SIZE;
|
||||
static constexpr bool XONOFF = bSERIAL_XON_XOFF;
|
||||
static constexpr bool EMERGENCYPARSER = bEMERGENCY_PARSER;
|
||||
static constexpr bool DROPPED_RX = bSERIAL_STATS_DROPPED_RX;
|
||||
static constexpr bool RX_OVERRUNS = bSERIAL_STATS_RX_BUFFER_OVERRUNS;
|
||||
static constexpr bool RX_FRAMING_ERRORS = bSERIAL_STATS_RX_FRAMING_ERRORS;
|
||||
static constexpr bool MAX_RX_QUEUED = bSERIAL_STATS_MAX_RX_QUEUED;
|
||||
};
|
||||
|
||||
extern MarlinSerial<MarlinSerialCfg> customizedSerial;
|
||||
|
||||
#endif // SERIAL_PORT >= 0
|
||||
|
||||
|
|
61
Marlin/src/HAL/shared/MarlinSerial.h
Normal file
61
Marlin/src/HAL/shared/MarlinSerial.h
Normal file
|
@ -0,0 +1,61 @@
|
|||
/**
|
||||
* Marlin 3D Printer Firmware
|
||||
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
||||
*
|
||||
* Based on Sprinter and grbl.
|
||||
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
/**
|
||||
* HAL/shared/MarlinSerial.h
|
||||
*/
|
||||
|
||||
#include "../../inc/MarlinConfigPre.h"
|
||||
|
||||
constexpr bool
|
||||
bSERIAL_XON_XOFF = (false
|
||||
#if ENABLED(SERIAL_XON_XOFF)
|
||||
|| true
|
||||
#endif
|
||||
),
|
||||
bEMERGENCY_PARSER = (false
|
||||
#if ENABLED(EMERGENCY_PARSER)
|
||||
|| true
|
||||
#endif
|
||||
),
|
||||
bSERIAL_STATS_DROPPED_RX = (false
|
||||
#if ENABLED(SERIAL_STATS_DROPPED_RX)
|
||||
|| true
|
||||
#endif
|
||||
),
|
||||
bSERIAL_STATS_RX_BUFFER_OVERRUNS = (false
|
||||
#if ENABLED(SERIAL_STATS_RX_BUFFER_OVERRUNS)
|
||||
|| true
|
||||
#endif
|
||||
),
|
||||
bSERIAL_STATS_RX_FRAMING_ERRORS = (false
|
||||
#if ENABLED(SERIAL_STATS_RX_FRAMING_ERRORS)
|
||||
|| true
|
||||
#endif
|
||||
),
|
||||
bSERIAL_STATS_MAX_RX_QUEUED = (false
|
||||
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
|
||||
|| true
|
||||
#endif
|
||||
);
|
||||
|
Loading…
Add table
Reference in a new issue