/*************************************************************************** * ARM Stack Unwinder, Michael.McTernan.2001@cs.bris.ac.uk * Updated, adapted and several bug fixes on 2018 by Eduardo José Tagle * * This program is PUBLIC DOMAIN. * This means that there is no copyright and anyone is able to take a copy * for free and use it as they wish, with or without modifications, and in * any context, commercially or otherwise. The only limitation is that I * don't guarantee that the software is fit for any purpose or accept any * liability for it's use or misuse - this software is without warranty. *************************************************************************** * File Description: Abstract interpreter for ARM mode. **************************************************************************/ #if defined(__arm__) || defined(__thumb__) #define MODULE_NAME "UNWARM_ARM" #include #include "unwarm.h" /** Check if some instruction is a data-processing instruction. * Decodes the passed instruction, checks if it is a data-processing and * verifies that the parameters and operation really indicate a data- * processing instruction. This is needed because some parts of the * instruction space under this instruction can be extended or represent * other operations such as MRS, MSR. * * \param[in] inst The instruction word. * \retval true Further decoding of the instruction indicates that this is * a valid data-processing instruction. * \retval false This is not a data-processing instruction, */ static bool isDataProc(uint32_t instr) { uint8_t opcode = (instr & 0x01E00000) >> 21; bool S = (instr & 0x00100000) ? true : false; if ((instr & 0xFC000000) != 0xE0000000) { return false; } else if (!S && opcode >= 8 && opcode <= 11) { /* TST, TEQ, CMP and CMN all require S to be set */ return false; } else return true; } UnwResult UnwStartArm(UnwState * const state) { bool found = false; uint16_t t = UNW_MAX_INSTR_COUNT; do { uint32_t instr; /* Attempt to read the instruction */ if (!state->cb->readW(state->regData[15].v, &instr)) { return UNWIND_IREAD_W_FAIL; } UnwPrintd4("A %x %x %08x:", state->regData[13].v, state->regData[15].v, instr); /* Check that the PC is still on Arm alignment */ if (state->regData[15].v & 0x3) { UnwPrintd1("\nError: PC misalignment\n"); return UNWIND_INCONSISTENT; } /* Check that the SP and PC have not been invalidated */ if (!M_IsOriginValid(state->regData[13].o) || !M_IsOriginValid(state->regData[15].o)) { UnwPrintd1("\nError: PC or SP invalidated\n"); return UNWIND_INCONSISTENT; } /* Branch and Exchange (BX) * This is tested prior to data processing to prevent * mis-interpretation as an invalid TEQ instruction. */ if ((instr & 0xFFFFFFF0) == 0xE12FFF10) { uint8_t rn = instr & 0xF; UnwPrintd4("BX r%d\t ; r%d %s\n", rn, rn, M_Origin2Str(state->regData[rn].o)); if (!M_IsOriginValid(state->regData[rn].o)) { UnwPrintd1("\nUnwind failure: BX to untracked register\n"); return UNWIND_FAILURE; } /* Set the new PC value */ state->regData[15].v = state->regData[rn].v; /* Check if the return value is from the stack */ if (state->regData[rn].o == REG_VAL_FROM_STACK) { /* Now have the return address */ UnwPrintd2(" Return PC=%x\n", state->regData[15].v & (~0x1)); /* Report the return address */ if (!UnwReportRetAddr(state, state->regData[rn].v)) return UNWIND_TRUNCATED; } /* Determine the return mode */ if (state->regData[rn].v & 0x1) { /* Branching to THUMB */ return UnwStartThumb(state); } else { /* Branch to ARM */ /* Account for the auto-increment which isn't needed */ state->regData[15].v -= 4; } } /* Branch */ else if ((instr & 0xFF000000) == 0xEA000000) { int32_t offset = (instr & 0x00FFFFFF); /* Shift value */ offset = offset << 2; /* Sign extend if needed */ if (offset & 0x02000000) { offset |= 0xFC000000; } UnwPrintd2("B %d\n", offset); /* Adjust PC */ state->regData[15].v += offset; /* Account for pre-fetch, where normally the PC is 8 bytes * ahead of the instruction just executed. */ state->regData[15].v += 4; } /* MRS */ else if ((instr & 0xFFBF0FFF) == 0xE10F0000) { #if defined(UNW_DEBUG) bool R = (instr & 0x00400000) ? true : false; #endif uint8_t rd = (instr & 0x0000F000) >> 12; UnwPrintd4("MRS r%d,%s\t; r%d invalidated", rd, R ? "SPSR" : "CPSR", rd); /* Status registers untracked */ state->regData[rd].o = REG_VAL_INVALID; } /* MSR */ else if ((instr & 0xFFB0F000) == 0xE120F000) { #if defined(UNW_DEBUG) bool R = (instr & 0x00400000) ? true : false; UnwPrintd2("MSR %s_?, ???", R ? "SPSR" : "CPSR"); #endif /* Status registers untracked. * Potentially this could change processor mode and switch * banked registers r8-r14. Most likely is that r13 (sp) will * be banked. However, invalidating r13 will stop unwinding * when potentially this write is being used to disable/enable * interrupts (a common case). Therefore no invalidation is * performed. */ } /* Data processing */ else if (isDataProc(instr)) { bool I = (instr & 0x02000000) ? true : false; uint8_t opcode = (instr & 0x01E00000) >> 21; #if defined(UNW_DEBUG) bool S = (instr & 0x00100000) ? true : false; #endif uint8_t rn = (instr & 0x000F0000) >> 16; uint8_t rd = (instr & 0x0000F000) >> 12; uint16_t operand2 = (instr & 0x00000FFF); uint32_t op2val; int op2origin; switch(opcode) { case 0: UnwPrintd4("AND%s r%d,r%d,", S ? "S" : "", rd, rn); break; case 1: UnwPrintd4("EOR%s r%d,r%d,", S ? "S" : "", rd, rn); break; case 2: UnwPrintd4("SUB%s r%d,r%d,", S ? "S" : "", rd, rn); break; case 3: UnwPrintd4("RSB%s r%d,r%d,", S ? "S" : "", rd, rn); break; case 4: UnwPrintd4("ADD%s r%d,r%d,", S ? "S" : "", rd, rn); break; case 5: UnwPrintd4("ADC%s r%d,r%d,", S ? "S" : "", rd, rn); break; case 6: UnwPrintd4("SBC%s r%d,r%d,", S ? "S" : "", rd, rn); break; case 7: UnwPrintd4("RSC%s r%d,r%d,", S ? "S" : "", rd, rn); break; case 8: UnwPrintd3("TST%s r%d,", S ? "S" : "", rn); break; case 9: UnwPrintd3("TEQ%s r%d,", S ? "S" : "", rn); break; case 10: UnwPrintd3("CMP%s r%d,", S ? "S" : "", rn); break; case 11: UnwPrintd3("CMN%s r%d,", S ? "S" : "", rn); break; case 12: UnwPrintd3("ORR%s r%d,", S ? "S" : "", rn); break; case 13: UnwPrintd3("MOV%s r%d,", S ? "S" : "", rd); break; case 14: UnwPrintd4("BIC%s r%d,r%d", S ? "S" : "", rd, rn); break; case 15: UnwPrintd3("MVN%s r%d,", S ? "S" : "", rd); break; } /* Decode operand 2 */ if (I) { uint8_t shiftDist = (operand2 & 0x0F00) >> 8; uint8_t shiftConst = (operand2 & 0x00FF); /* rotate const right by 2 * shiftDist */ shiftDist *= 2; op2val = (shiftConst >> shiftDist) | (shiftConst << (32 - shiftDist)); op2origin = REG_VAL_FROM_CONST; UnwPrintd2("#0x%x", op2val); } else { /* Register and shift */ uint8_t rm = (operand2 & 0x000F); uint8_t regShift = (operand2 & 0x0010) ? true : false; uint8_t shiftType = (operand2 & 0x0060) >> 5; uint32_t shiftDist; #if defined(UNW_DEBUG) const char * const shiftMnu[4] = { "LSL", "LSR", "ASR", "ROR" }; #endif UnwPrintd2("r%d ", rm); /* Get the shift distance */ if (regShift) { uint8_t rs = (operand2 & 0x0F00) >> 8; if (operand2 & 0x00800) { UnwPrintd1("\nError: Bit should be zero\n"); return UNWIND_ILLEGAL_INSTR; } else if (rs == 15) { UnwPrintd1("\nError: Cannot use R15 with register shift\n"); return UNWIND_ILLEGAL_INSTR; } /* Get shift distance */ shiftDist = state->regData[rs].v; op2origin = state->regData[rs].o; UnwPrintd7("%s r%d\t; r%d %s r%d %s", shiftMnu[shiftType], rs, rm, M_Origin2Str(state->regData[rm].o), rs, M_Origin2Str(state->regData[rs].o)); } else { shiftDist = (operand2 & 0x0F80) >> 7; op2origin = REG_VAL_FROM_CONST; if (shiftDist) { UnwPrintd3("%s #%d", shiftMnu[shiftType], shiftDist); } UnwPrintd3("\t; r%d %s", rm, M_Origin2Str(state->regData[rm].o)); } /* Apply the shift type to the source register */ switch(shiftType) { case 0: /* logical left */ op2val = state->regData[rm].v << shiftDist; break; case 1: /* logical right */ if (!regShift && shiftDist == 0) { shiftDist = 32; } op2val = state->regData[rm].v >> shiftDist; break; case 2: /* arithmetic right */ if (!regShift && shiftDist == 0) { shiftDist = 32; } if (state->regData[rm].v & 0x80000000) { /* Register shifts maybe greater than 32 */ if (shiftDist >= 32) { op2val = 0xFFFFFFFF; } else { op2val = state->regData[rm].v >> shiftDist; op2val |= 0xFFFFFFFF << (32 - shiftDist); } } else { op2val = state->regData[rm].v >> shiftDist; } break; case 3: /* rotate right */ if (!regShift && shiftDist == 0) { /* Rotate right with extend. * This uses the carry bit and so always has an * untracked result. */ op2origin = REG_VAL_INVALID; op2val = 0; } else { /* Limit shift distance to 0-31 incase of register shift */ shiftDist &= 0x1F; op2val = (state->regData[rm].v >> shiftDist) | (state->regData[rm].v << (32 - shiftDist)); } break; default: UnwPrintd2("\nError: Invalid shift type: %d\n", shiftType); return UNWIND_FAILURE; } /* Decide the data origin */ if (M_IsOriginValid(op2origin) && M_IsOriginValid(state->regData[rm].o)) { op2origin = state->regData[rm].o; op2origin |= REG_VAL_ARITHMETIC; } else { op2origin = REG_VAL_INVALID; } } /* Propagate register validity */ switch(opcode) { case 0: /* AND: Rd := Op1 AND Op2 */ case 1: /* EOR: Rd := Op1 EOR Op2 */ case 2: /* SUB: Rd:= Op1 - Op2 */ case 3: /* RSB: Rd:= Op2 - Op1 */ case 4: /* ADD: Rd:= Op1 + Op2 */ case 12: /* ORR: Rd:= Op1 OR Op2 */ case 14: /* BIC: Rd:= Op1 AND NOT Op2 */ if (!M_IsOriginValid(state->regData[rn].o) || !M_IsOriginValid(op2origin)) { state->regData[rd].o = REG_VAL_INVALID; } else { state->regData[rd].o = state->regData[rn].o; state->regData[rd].o = (RegValOrigin)(state->regData[rd].o | op2origin); } break; case 5: /* ADC: Rd:= Op1 + Op2 + C */ case 6: /* SBC: Rd:= Op1 - Op2 + C */ case 7: /* RSC: Rd:= Op2 - Op1 + C */ /* CPSR is not tracked */ state->regData[rd].o = REG_VAL_INVALID; break; case 8: /* TST: set condition codes on Op1 AND Op2 */ case 9: /* TEQ: set condition codes on Op1 EOR Op2 */ case 10: /* CMP: set condition codes on Op1 - Op2 */ case 11: /* CMN: set condition codes on Op1 + Op2 */ break; case 13: /* MOV: Rd:= Op2 */ case 15: /* MVN: Rd:= NOT Op2 */ state->regData[rd].o = (RegValOrigin) op2origin; break; } /* Account for pre-fetch by temporarily adjusting PC */ if (rn == 15) { /* If the shift amount is specified in the instruction, * the PC will be 8 bytes ahead. If a register is used * to specify the shift amount the PC will be 12 bytes * ahead. */ if (!I && (operand2 & 0x0010)) state->regData[rn].v += 12; else state->regData[rn].v += 8; } /* Compute values */ switch(opcode) { case 0: /* AND: Rd := Op1 AND Op2 */ state->regData[rd].v = state->regData[rn].v & op2val; break; case 1: /* EOR: Rd := Op1 EOR Op2 */ state->regData[rd].v = state->regData[rn].v ^ op2val; break; case 2: /* SUB: Rd:= Op1 - Op2 */ state->regData[rd].v = state->regData[rn].v - op2val; break; case 3: /* RSB: Rd:= Op2 - Op1 */ state->regData[rd].v = op2val - state->regData[rn].v; break; case 4: /* ADD: Rd:= Op1 + Op2 */ state->regData[rd].v = state->regData[rn].v + op2val; break; case 5: /* ADC: Rd:= Op1 + Op2 + C */ case 6: /* SBC: Rd:= Op1 - Op2 + C */ case 7: /* RSC: Rd:= Op2 - Op1 + C */ case 8: /* TST: set condition codes on Op1 AND Op2 */ case 9: /* TEQ: set condition codes on Op1 EOR Op2 */ case 10: /* CMP: set condition codes on Op1 - Op2 */ case 11: /* CMN: set condition codes on Op1 + Op2 */ UnwPrintd1("\t; ????"); break; case 12: /* ORR: Rd:= Op1 OR Op2 */ state->regData[rd].v = state->regData[rn].v | op2val; break; case 13: /* MOV: Rd:= Op2 */ state->regData[rd].v = op2val; break; case 14: /* BIC: Rd:= Op1 AND NOT Op2 */ state->regData[rd].v = state->regData[rn].v & (~op2val); break; case 15: /* MVN: Rd:= NOT Op2 */ state->regData[rd].v = ~op2val; break; } /* Remove the prefetch offset from the PC */ if (rd != 15 && rn == 15) { if (!I && (operand2 & 0x0010)) state->regData[rn].v -= 12; else state->regData[rn].v -= 8; } } /* Block Data Transfer * LDM, STM */ else if ((instr & 0xFE000000) == 0xE8000000) { bool P = (instr & 0x01000000) ? true : false; bool U = (instr & 0x00800000) ? true : false; bool S = (instr & 0x00400000) ? true : false; bool W = (instr & 0x00200000) ? true : false; bool L = (instr & 0x00100000) ? true : false; uint16_t baseReg = (instr & 0x000F0000) >> 16; uint16_t regList = (instr & 0x0000FFFF); uint32_t addr = state->regData[baseReg].v; bool addrValid = M_IsOriginValid(state->regData[baseReg].o); int8_t r; #if defined(UNW_DEBUG) /* Display the instruction */ if (L) { UnwPrintd6("LDM%c%c r%d%s, {reglist}%s\n", P ? 'E' : 'F', U ? 'D' : 'A', baseReg, W ? "!" : "", S ? "^" : ""); } else { UnwPrintd6("STM%c%c r%d%s, {reglist}%s\n", !P ? 'E' : 'F', !U ? 'D' : 'A', baseReg, W ? "!" : "", S ? "^" : ""); } #endif /* S indicates that banked registers (untracked) are used, unless * this is a load including the PC when the S-bit indicates that * that CPSR is loaded from SPSR (also untracked, but ignored). */ if (S && (!L || (regList & (0x01 << 15)) == 0)) { UnwPrintd1("\nError:S-bit set requiring banked registers\n"); return UNWIND_FAILURE; } else if (baseReg == 15) { UnwPrintd1("\nError: r15 used as base register\n"); return UNWIND_FAILURE; } else if (regList == 0) { UnwPrintd1("\nError: Register list empty\n"); return UNWIND_FAILURE; } /* Check if ascending or descending. * Registers are loaded/stored in order of address. * i.e. r0 is at the lowest address, r15 at the highest. */ r = U ? 0 : 15; do { /* Check if the register is to be transferred */ if (regList & (0x01 << r)) { if (P) addr += U ? 4 : -4; if (L) { if (addrValid) { if (!UnwMemReadRegister(state, addr, &state->regData[r])) { return UNWIND_DREAD_W_FAIL; } /* Update the origin if read via the stack pointer */ if (M_IsOriginValid(state->regData[r].o) && baseReg == 13) { state->regData[r].o = REG_VAL_FROM_STACK; } UnwPrintd5(" R%d = 0x%08x\t; r%d %s\n",r,state->regData[r].v,r, M_Origin2Str(state->regData[r].o)); } else { /* Invalidate the register as the base reg was invalid */ state->regData[r].o = REG_VAL_INVALID; UnwPrintd2(" R%d = ???\n", r); } } else { if (addrValid) { if (!UnwMemWriteRegister(state, state->regData[13].v, &state->regData[r])) { return UNWIND_DWRITE_W_FAIL; } } UnwPrintd2(" R%d = 0x%08x\n", r); } if (!P) addr += U ? 4 : -4; } /* Check the next register */ r += U ? 1 : -1; } while (r >= 0 && r <= 15); /* Check the writeback bit */ if (W) state->regData[baseReg].v = addr; /* Check if the PC was loaded */ if (L && (regList & (0x01 << 15))) { if (!M_IsOriginValid(state->regData[15].o)) { /* Return address is not valid */ UnwPrintd1("PC popped with invalid address\n"); return UNWIND_FAILURE; } else { /* Store the return address */ if (!UnwReportRetAddr(state, state->regData[15].v)) { return UNWIND_TRUNCATED; } UnwPrintd2(" Return PC=0x%x", state->regData[15].v); /* Determine the return mode */ if (state->regData[15].v & 0x1) { /* Branching to THUMB */ return UnwStartThumb(state); } else { /* Branch to ARM */ /* Account for the auto-increment which isn't needed */ state->regData[15].v -= 4; } } } } else { UnwPrintd1("????"); /* Unknown/undecoded. May alter some register, so invalidate file */ UnwInvalidateRegisterFile(state->regData); } UnwPrintd1("\n"); /* Should never hit the reset vector */ if (state->regData[15].v == 0) return UNWIND_RESET; /* Check next address */ state->regData[15].v += 4; /* Garbage collect the memory hash (used only for the stack) */ UnwMemHashGC(state); t--; if (t == 0) return UNWIND_EXHAUSTED; } while (!found); return UNWIND_UNSUPPORTED; } #endif // __arm__ || __thumb__