marlin2_a10m/Marlin/src/feature/Max7219_Debug_LEDs.cpp
2018-06-18 22:04:03 -05:00

468 lines
15 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* This module is off by default, but can be enabled to facilitate the display of
* extra debug information during code development.
*
* Just connect up 5V and GND to give it power, then connect up the pins assigned
* in Configuration_adv.h. For example, on the Re-ARM you could use:
*
* #define MAX7219_CLK_PIN 77
* #define MAX7219_DIN_PIN 78
* #define MAX7219_LOAD_PIN 79
*
* Max7219_init() is called automatically at startup, and then there are a number of
* support functions available to control the LEDs in the 8x8 grid.
*/
#include "../inc/MarlinConfigPre.h"
#if ENABLED(MAX7219_DEBUG)
#define MAX7219_ERRORS // Disable to save 406 bytes of Program Memory
#include "Max7219_Debug_LEDs.h"
#include "../module/planner.h"
#include "../module/stepper.h"
#include "../Marlin.h"
#include "../HAL/Delay.h"
static uint8_t LEDs[8] = { 0 };
#ifndef MAX7219_ROTATE
#define MAX7219_ROTATE 0
#endif
#define _ROT ((MAX7219_ROTATE + 360) % 360)
#if _ROT == 0
#define _ROW_ y
#define _COL_ x
#define XOR_7219(x, y) LEDs[y] ^= _BV(7 - x)
#define BIT_7219(x, y) TEST(LEDs[y], 7 - x)
#define SEND_7219(R,V) Max7219(max7219_reg_digit0 + R, V)
#elif _ROT == 90
#define _ROW_ x
#define _COL_ y
#define XOR_7219(x, y) LEDs[x] ^= _BV(y)
#define BIT_7219(x, y) TEST(LEDs[x], y)
#define SEND_7219(R,V) Max7219(max7219_reg_digit0 + R, V)
#elif _ROT == 180
#define _ROW_ y
#define _COL_ x
#define XOR_7219(x, y) LEDs[y] ^= _BV(x)
#define BIT_7219(x, y) TEST(LEDs[y], x)
#define SEND_7219(R,V) Max7219(max7219_reg_digit7 - R, V)
#elif _ROT == 270
#define _ROW_ x
#define _COL_ y
#define XOR_7219(x, y) LEDs[x] ^= _BV(7 - y)
#define BIT_7219(x, y) TEST(LEDs[x], 7 - y)
#define SEND_7219(R,V) Max7219(max7219_reg_digit7 - R, V)
#else
#error "MAX7219_ROTATE must be a multiple of +/- 90°."
#endif
#ifdef CPU_32_BIT
// Approximate a 1µs delay on 32-bit ARM
#define SIG_DELAY() DELAY_US(1)
#else
// Delay for 0.1875µs (16MHz AVR) or 0.15µs (20MHz AVR)
#define SIG_DELAY() DELAY_NS(188)
#endif
void Max7219_PutByte(uint8_t data) {
#ifndef CPU_32_BIT
CRITICAL_SECTION_START;
#endif
for (uint8_t i = 8; i--;) {
SIG_DELAY();
WRITE(MAX7219_CLK_PIN, LOW); // tick
SIG_DELAY();
WRITE(MAX7219_DIN_PIN, (data & 0x80) ? HIGH : LOW); // send 1 or 0 based on data bit
SIG_DELAY();
WRITE(MAX7219_CLK_PIN, HIGH); // tock
SIG_DELAY();
data <<= 1;
}
#ifndef CPU_32_BIT
CRITICAL_SECTION_END;
#endif
}
void Max7219(const uint8_t reg, const uint8_t data) {
SIG_DELAY();
#ifndef CPU_32_BIT
CRITICAL_SECTION_START;
#endif
WRITE(MAX7219_LOAD_PIN, LOW); // begin
SIG_DELAY();
Max7219_PutByte(reg); // specify register
SIG_DELAY();
Max7219_PutByte(data); // put data
SIG_DELAY();
WRITE(MAX7219_LOAD_PIN, LOW); // and tell the chip to load the data
SIG_DELAY();
WRITE(MAX7219_LOAD_PIN, HIGH);
#ifndef CPU_32_BIT
CRITICAL_SECTION_END;
#endif
SIG_DELAY();
}
#if ENABLED(MAX7219_NUMERIC)
// Draw an integer with optional leading zeros and optional decimal point
void Max7219_Print(const uint8_t start, int16_t value, uint8_t size, const bool leadzero=false, bool dec=false) {
constexpr uint8_t led_numeral[10] = { 0x7E, 0x60, 0x6D, 0x79, 0x63, 0x5B, 0x5F, 0x70, 0x7F, 0x7A },
led_decimal = 0x80, led_minus = 0x01;
bool blank = false, neg = value < 0;
if (neg) value *= -1;
while (size--) {
const bool minus = neg && blank;
if (minus) neg = false;
Max7219(
max7219_reg_digit0 + start + size,
minus ? led_minus : blank ? 0x00 : led_numeral[value % 10] | (dec ? led_decimal : 0x00)
);
value /= 10;
if (!value && !leadzero) blank = true;
dec = false;
}
}
// Draw a float with a decimal point and optional digits
void Max7219_Print(const uint8_t start, const float value, const uint8_t pre_size, const uint8_t post_size, const bool leadzero=false) {
if (pre_size) Max7219_Print(start, value, pre_size, leadzero, !!post_size);
if (post_size) {
const int16_t after = ABS(value) * (10 ^ post_size);
Max7219_Print(start + pre_size, after, post_size, true);
}
}
#endif // MAX7219_NUMERIC
inline void Max7219_Error(const char * const func, const int32_t v1, const int32_t v2=-1) {
#if ENABLED(MAX7219_ERRORS)
SERIAL_ECHOPGM("??? ");
serialprintPGM(func);
SERIAL_CHAR('(');
SERIAL_ECHO(v1);
if (v2 > 0) SERIAL_ECHOPAIR(", ", v2);
SERIAL_CHAR(')');
SERIAL_EOL();
#else
UNUSED(func); UNUSED(v1); UNUSED(v2);
#endif
}
inline uint8_t flipped(const uint8_t bits) {
uint8_t outbits = 0;
for (uint8_t b = 0; b < 8; b++)
if (bits & _BV(b)) outbits |= _BV(7 - b);
return outbits;
}
// Modify a single LED bit and send the changed line
void Max7219_LED_Set(const uint8_t x, const uint8_t y, const bool on) {
if (x > 7 || y > 7) return Max7219_Error(PSTR("Max7219_LED_Set"), x, y);
if (BIT_7219(x, y) == on) return;
XOR_7219(x, y);
SEND_7219(_ROW_, LEDs[_ROW_]);
}
void Max7219_LED_On(const uint8_t x, const uint8_t y) {
if (x > 7 || y > 7) return Max7219_Error(PSTR("Max7219_LED_On"), x, y);
Max7219_LED_Set(x, y, true);
}
void Max7219_LED_Off(const uint8_t x, const uint8_t y) {
if (x > 7 || y > 7) return Max7219_Error(PSTR("Max7219_LED_Off"), x, y);
Max7219_LED_Set(x, y, false);
}
void Max7219_LED_Toggle(const uint8_t x, const uint8_t y) {
if (x > 7 || y > 7) return Max7219_Error(PSTR("Max7219_LED_Toggle"), x, y);
Max7219_LED_Set(x, y, !BIT_7219(x, y));
}
inline void _Max7219_Set_Reg(const uint8_t reg, const uint8_t val) {
LEDs[reg] = val;
SEND_7219(reg, val);
}
void Max7219_Set_Row(const uint8_t _ROW_, const uint8_t val) {
if (_ROW_ > 7) return Max7219_Error(PSTR("Max7219_Set_Row"), _ROW_);
#if _ROT == 90
for (uint8_t _COL_ = 0; _COL_ <= 7; _COL_++) Max7219_LED_Set(7 - _COL_, _ROW_, TEST(val, _COL_));
#elif _ROT == 180
_Max7219_Set_Reg(_ROW_, flipped(val));
#elif _ROT == 270
for (uint8_t _COL_ = 0; _COL_ <= 7; _COL_++) Max7219_LED_Set(_COL_, _ROW_, TEST(val, _COL_));
#else
_Max7219_Set_Reg(_ROW_, val);
#endif
}
void Max7219_Clear_Row(const uint8_t _ROW_) {
if (_ROW_ > 7) return Max7219_Error(PSTR("Max7219_Clear_Row"), _ROW_);
#if _ROT == 90 || _ROT == 270
for (uint8_t _COL_ = 0; _COL_ <= 7; _COL_++) Max7219_LED_Off(_COL_, _ROW_);
#else
_Max7219_Set_Reg(_ROW_, 0);
#endif
}
void Max7219_Set_Column(const uint8_t _COL_, const uint8_t val) {
if (_COL_ > 7) return Max7219_Error(PSTR("Max7219_Set_Column"), _COL_);
#if _ROT == 90
_Max7219_Set_Reg(_COL_, val);
#elif _ROT == 180
for (uint8_t _ROW_ = 0; _ROW_ <= 7; _ROW_++) Max7219_LED_Set(_COL_, _ROW_, TEST(val, _ROW_));
#elif _ROT == 270
_Max7219_Set_Reg(_COL_, flipped(val));
#else
for (uint8_t _ROW_ = 0; _ROW_ <= 7; _ROW_++) Max7219_LED_Set(_COL_, _ROW_, TEST(val, _ROW_));
#endif
}
void Max7219_Clear_Column(const uint8_t _COL_) {
if (_COL_ > 7) return Max7219_Error(PSTR("Max7219_Clear_Column"), _COL_);
#if _ROT == 90 || _ROT == 270
_Max7219_Set_Reg(_COL_, 0);
#else
for (uint8_t _ROW_ = 0; _ROW_ <= 7; _ROW_++) Max7219_LED_Off(_COL_, _ROW_);
#endif
}
void Max7219_Set_2_Rows(const uint8_t y, uint16_t val) {
if (y > 6) return Max7219_Error(PSTR("Max7219_Set_2_Rows"), y, val);
Max7219_Set_Row(y + 0, val & 0xFF); val >>= 8;
Max7219_Set_Row(y + 1, val & 0xFF);
}
void Max7219_Set_4_Rows(const uint8_t y, uint32_t val) {
if (y > 4) return Max7219_Error(PSTR("Max7219_Set_4_Rows"), y, val);
Max7219_Set_Row(y + 0, val & 0xFF); val >>= 8;
Max7219_Set_Row(y + 1, val & 0xFF); val >>= 8;
Max7219_Set_Row(y + 2, val & 0xFF); val >>= 8;
Max7219_Set_Row(y + 3, val & 0xFF);
}
void Max7219_Set_2_Columns(const uint8_t x, uint16_t val) {
if (x > 6) return Max7219_Error(PSTR("Max7219_Set_2_Columns"), x, val);
Max7219_Set_Column(x + 0, val & 0xFF); val >>= 8;
Max7219_Set_Column(x + 1, val & 0xFF);
}
void Max7219_Set_4_Columns(const uint8_t x, uint32_t val) {
if (x > 4) return Max7219_Error(PSTR("Max7219_Set_4_Columns"), x, val);
Max7219_Set_Column(x + 0, val & 0xFF); val >>= 8;
Max7219_Set_Column(x + 1, val & 0xFF); val >>= 8;
Max7219_Set_Column(x + 2, val & 0xFF); val >>= 8;
Max7219_Set_Column(x + 3, val & 0xFF);
}
void Max7219_register_setup() {
// Initialize the Max7219
Max7219(max7219_reg_scanLimit, 0x07);
Max7219(max7219_reg_decodeMode, 0x00); // using an led matrix (not digits)
Max7219(max7219_reg_shutdown, 0x01); // not in shutdown mode
Max7219(max7219_reg_displayTest, 0x00); // no display test
Max7219(max7219_reg_intensity, 0x01 & 0x0F); // the first 0x0F is the value you can set
// range: 0x00 to 0x0F
}
#ifdef MAX7219_INIT_TEST
#if (MAX7219_INIT_TEST + 0) == 2
inline void Max7219_spiral(const bool on, const uint16_t del) {
constexpr int8_t way[] = { 1, 0, 0, 1, -1, 0, 0, -1 };
int8_t px = 0, py = 0, dir = 0;
for (uint8_t i = 64; i--;) {
Max7219_LED_Set(px, py, on);
delay(del);
const int8_t x = px + way[dir], y = py + way[dir + 1];
if (!WITHIN(x, 0, 7) || !WITHIN(y, 0, 7) || BIT_7219(x, y) == on) dir = (dir + 2) & 0x7;
px += way[dir]; py += way[dir + 1];
}
}
#else
inline void Max7219_colset(const uint8_t x, const bool on) {
for (uint8_t y = 0; y <= 7; y++) Max7219_LED_Set(x, y, on);
}
inline void Max7219_sweep(const int8_t dir, const uint16_t ms, const bool on) {
uint8_t x = dir > 0 ? 0 : 7;
for (uint8_t i = 8; i--; x += dir) {
Max7219_Set_Column(x, on ? 0xFF : 0x00);
delay(ms);
}
}
#endif
#endif // MAX7219_INIT_TEST
void Max7219_init() {
SET_OUTPUT(MAX7219_DIN_PIN);
SET_OUTPUT(MAX7219_CLK_PIN);
OUT_WRITE(MAX7219_LOAD_PIN, HIGH);
delay(1);
Max7219_register_setup();
for (uint8_t i = 0; i <= 7; i++) { // Empty registers to turn all LEDs off
LEDs[i] = 0x00;
Max7219(max7219_reg_digit0 + i, 0);
}
#ifdef MAX7219_INIT_TEST
#if (MAX7219_INIT_TEST + 0) == 2
Max7219_spiral(true, 8);
delay(150);
Max7219_spiral(false, 8);
#else
// Do an aesthetically-pleasing pattern to fully test the Max7219 module and LEDs.
// Light up and turn off columns, both forward and backward.
Max7219_sweep(1, 20, true);
Max7219_sweep(1, 20, false);
delay(150);
Max7219_sweep(-1, 20, true);
Max7219_sweep(-1, 20, false);
#endif
#endif
}
/**
* This code demonstrates some simple debugging using a single 8x8 LED Matrix. If your feature could
* benefit from matrix display, add its code here. Very little processing is required, so the 7219 is
* ideal for debugging when realtime feedback is important but serial output can't be used.
*/
// Apply changes to update a marker
inline void Max7219_Mark16(const uint8_t y, const uint8_t v1, const uint8_t v2) {
Max7219_LED_Off(v1 & 0x7, y + (v1 >= 8));
Max7219_LED_On(v2 & 0x7, y + (v2 >= 8));
}
// Apply changes to update a tail-to-head range
inline void Max7219_Range16(const uint8_t y, const uint8_t ot, const uint8_t nt, const uint8_t oh, const uint8_t nh) {
if (ot != nt) for (uint8_t n = ot & 0xF; n != (nt & 0xF) && n != (nh & 0xF); n = (n + 1) & 0xF)
Max7219_LED_Off(n & 0x7, y + (n >= 8));
if (oh != nh) for (uint8_t n = (oh + 1) & 0xF; n != ((nh + 1) & 0xF); n = (n + 1) & 0xF)
Max7219_LED_On(n & 0x7, y + (n >= 8));
}
// Apply changes to update a quantity
inline void Max7219_Quantity16(const uint8_t y, const uint8_t ov, const uint8_t nv) {
for (uint8_t i = MIN(nv, ov); i < MAX(nv, ov); i++)
Max7219_LED_Set(i >> 1, y + (i & 1), nv >= ov);
}
void Max7219_idle_tasks() {
#define MAX7219_USE_HEAD (defined(MAX7219_DEBUG_PLANNER_HEAD) || defined(MAX7219_DEBUG_PLANNER_QUEUE))
#define MAX7219_USE_TAIL (defined(MAX7219_DEBUG_PLANNER_TAIL) || defined(MAX7219_DEBUG_PLANNER_QUEUE))
#if MAX7219_USE_HEAD || MAX7219_USE_TAIL
#ifndef CPU_32_BIT
CRITICAL_SECTION_START;
#endif
#if MAX7219_USE_HEAD
const uint8_t head = planner.block_buffer_head;
#endif
#if MAX7219_USE_TAIL
const uint8_t tail = planner.block_buffer_tail;
#endif
#ifndef CPU_32_BIT
CRITICAL_SECTION_END;
#endif
#endif
#if ENABLED(MAX7219_DEBUG_PRINTER_ALIVE)
static uint8_t refresh_cnt; // = 0
constexpr uint16_t refresh_limit = 5;
static millis_t next_blink = 0;
const millis_t ms = millis();
const bool do_blink = ELAPSED(ms, next_blink);
#else
static uint16_t refresh_cnt; // = 0
constexpr bool do_blink = true;
constexpr uint16_t refresh_limit = 50000;
#endif
// Some Max7219 units are vulnerable to electrical noise, especially
// with long wires next to high current wires. If the display becomes
// corrupted, this will fix it within a couple seconds.
if (do_blink && ++refresh_cnt >= refresh_limit) {
refresh_cnt = 0;
Max7219_register_setup();
}
#if ENABLED(MAX7219_DEBUG_PRINTER_ALIVE)
if (do_blink) {
Max7219_LED_Toggle(7, 7);
next_blink = ms + 1000;
}
#endif
#if defined(MAX7219_DEBUG_PLANNER_HEAD) && defined(MAX7219_DEBUG_PLANNER_TAIL) && MAX7219_DEBUG_PLANNER_HEAD == MAX7219_DEBUG_PLANNER_TAIL
static int16_t last_head_cnt = 0xF, last_tail_cnt = 0xF;
if (last_head_cnt != head || last_tail_cnt != tail) {
Max7219_Range16(MAX7219_DEBUG_PLANNER_HEAD, last_tail_cnt, tail, last_head_cnt, head);
last_head_cnt = head;
last_tail_cnt = tail;
}
#else
#ifdef MAX7219_DEBUG_PLANNER_HEAD
static int16_t last_head_cnt = 0x1;
if (last_head_cnt != head) {
Max7219_Mark16(MAX7219_DEBUG_PLANNER_HEAD, last_head_cnt, head);
last_head_cnt = head;
}
#endif
#ifdef MAX7219_DEBUG_PLANNER_TAIL
static int16_t last_tail_cnt = 0x1;
if (last_tail_cnt != tail) {
Max7219_Mark16(MAX7219_DEBUG_PLANNER_TAIL, last_tail_cnt, tail);
last_tail_cnt = tail;
}
#endif
#endif
#ifdef MAX7219_DEBUG_PLANNER_QUEUE
static int16_t last_depth = 0;
const int16_t current_depth = (head - tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1) & 0xF;
if (current_depth != last_depth) {
Max7219_Quantity16(MAX7219_DEBUG_PLANNER_QUEUE, last_depth, current_depth);
last_depth = current_depth;
}
#endif
}
#endif // MAX7219_DEBUG