marlin2_a10m/Marlin/src/HAL/HAL_STM32F7/TMC2660.cpp

931 lines
33 KiB
C++

/**
* TMC26XStepper.cpp - - TMC26X Stepper library for Wiring/Arduino
*
* based on the stepper library by Tom Igoe, et. al.
*
* Copyright (c) 2011, Interactive Matter, Marcus Nowotny
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*/
//#include "Arduino.h"
#ifdef STM32F7
#include <stdbool.h>
#include <SPI.h>
#include "TMC2660.h"
#include "../../HAL/HAL_STM32F7/HAL_STM32F7.h"
#include "../../core/serial.h"
#include "../../inc/MarlinConfig.h"
#include "../../Marlin.h"
#include "../../module/stepper_indirection.h"
#include "../../module/printcounter.h"
#include "../../libs/duration_t.h"
#include "../../libs/hex_print_routines.h"
//some default values used in initialization
#define DEFAULT_MICROSTEPPING_VALUE 32
//TMC26X register definitions
#define DRIVER_CONTROL_REGISTER 0x0ul
#define CHOPPER_CONFIG_REGISTER 0x80000ul
#define COOL_STEP_REGISTER 0xA0000ul
#define STALL_GUARD2_LOAD_MEASURE_REGISTER 0xC0000ul
#define DRIVER_CONFIG_REGISTER 0xE0000ul
#define REGISTER_BIT_PATTERN 0xFFFFFul
//definitions for the driver control register
#define MICROSTEPPING_PATTERN 0xFul
#define STEP_INTERPOLATION 0x200ul
#define DOUBLE_EDGE_STEP 0x100ul
#define VSENSE 0x40ul
#define READ_MICROSTEP_POSTION 0x0ul
#define READ_STALL_GUARD_READING 0x10ul
#define READ_STALL_GUARD_AND_COOL_STEP 0x20ul
#define READ_SELECTION_PATTERN 0x30ul
//definitions for the chopper config register
#define CHOPPER_MODE_STANDARD 0x0ul
#define CHOPPER_MODE_T_OFF_FAST_DECAY 0x4000ul
#define T_OFF_PATTERN 0xFul
#define RANDOM_TOFF_TIME 0x2000ul
#define BLANK_TIMING_PATTERN 0x18000ul
#define BLANK_TIMING_SHIFT 15
#define HYSTERESIS_DECREMENT_PATTERN 0x1800ul
#define HYSTERESIS_DECREMENT_SHIFT 11
#define HYSTERESIS_LOW_VALUE_PATTERN 0x780ul
#define HYSTERESIS_LOW_SHIFT 7
#define HYSTERESIS_START_VALUE_PATTERN 0x78ul
#define HYSTERESIS_START_VALUE_SHIFT 4
#define T_OFF_TIMING_PATERN 0xFul
//definitions for cool step register
#define MINIMUM_CURRENT_FOURTH 0x8000ul
#define CURRENT_DOWN_STEP_SPEED_PATTERN 0x6000ul
#define SE_MAX_PATTERN 0xF00ul
#define SE_CURRENT_STEP_WIDTH_PATTERN 0x60ul
#define SE_MIN_PATTERN 0xFul
//definitions for stall guard2 current register
#define STALL_GUARD_FILTER_ENABLED 0x10000ul
#define STALL_GUARD_TRESHHOLD_VALUE_PATTERN 0x17F00ul
#define CURRENT_SCALING_PATTERN 0x1Ful
#define STALL_GUARD_CONFIG_PATTERN 0x17F00ul
#define STALL_GUARD_VALUE_PATTERN 0x7F00ul
//definitions for the input from the TCM260
#define STATUS_STALL_GUARD_STATUS 0x1ul
#define STATUS_OVER_TEMPERATURE_SHUTDOWN 0x2ul
#define STATUS_OVER_TEMPERATURE_WARNING 0x4ul
#define STATUS_SHORT_TO_GROUND_A 0x8ul
#define STATUS_SHORT_TO_GROUND_B 0x10ul
#define STATUS_OPEN_LOAD_A 0x20ul
#define STATUS_OPEN_LOAD_B 0x40ul
#define STATUS_STAND_STILL 0x80ul
#define READOUT_VALUE_PATTERN 0xFFC00ul
#define CPU_32_BIT
//default values
#define INITIAL_MICROSTEPPING 0x3ul //32th microstepping
SPIClass SPI_6(SPI6, SPI6_MOSI_PIN, SPI6_MISO_PIN, SPI6_SCK_PIN);
#define STEPPER_SPI SPI_6
//debuging output
//#define TMC_DEBUG1
unsigned char current_scaling = 0;
/**
* Constructor
* number_of_steps - the steps per rotation
* cs_pin - the SPI client select pin
* dir_pin - the pin where the direction pin is connected
* step_pin - the pin where the step pin is connected
*/
TMC26XStepper::TMC26XStepper(int number_of_steps, int cs_pin, int dir_pin, int step_pin, unsigned int current, unsigned int resistor) {
// We are not started yet
started = false;
// By default cool step is not enabled
cool_step_enabled = false;
// Save the pins for later use
this->cs_pin = cs_pin;
this->dir_pin = dir_pin;
this->step_pin = step_pin;
// Store the current sense resistor value for later use
this->resistor = resistor;
// Initizalize our status values
this->steps_left = 0;
this->direction = 0;
// Initialize register values
driver_control_register_value = DRIVER_CONTROL_REGISTER | INITIAL_MICROSTEPPING;
chopper_config_register = CHOPPER_CONFIG_REGISTER;
// Setting the default register values
driver_control_register_value = DRIVER_CONTROL_REGISTER|INITIAL_MICROSTEPPING;
microsteps = _BV(INITIAL_MICROSTEPPING);
chopper_config_register = CHOPPER_CONFIG_REGISTER;
cool_step_register_value = COOL_STEP_REGISTER;
stall_guard2_current_register_value = STALL_GUARD2_LOAD_MEASURE_REGISTER;
driver_configuration_register_value = DRIVER_CONFIG_REGISTER | READ_STALL_GUARD_READING;
// Set the current
setCurrent(current);
// Set to a conservative start value
setConstantOffTimeChopper(7, 54, 13,12,1);
// Set a nice microstepping value
setMicrosteps(DEFAULT_MICROSTEPPING_VALUE);
// Save the number of steps
this->number_of_steps = number_of_steps;
}
/**
* start & configure the stepper driver
* just must be called.
*/
void TMC26XStepper::start() {
#ifdef TMC_DEBUG1
SERIAL_ECHOPGM("\n TMC26X stepper library \n");
SERIAL_ECHOPAIR("\n CS pin: ", cs_pin);
SERIAL_ECHOPAIR("\n DIR pin: ", dir_pin);
SERIAL_ECHOPAIR("\n STEP pin: ", step_pin);
SERIAL_PRINTF("\n current scaling: %d", current_scaling);
SERIAL_PRINTF("\n Resistor: %d", resistor);
//SERIAL_PRINTF("\n current: %d", current);
SERIAL_ECHOPAIR("\n Microstepping: ", microsteps);
#endif
//set the pins as output & its initial value
pinMode(step_pin, OUTPUT);
pinMode(dir_pin, OUTPUT);
pinMode(cs_pin, OUTPUT);
//pinMode(STEPPER_ENABLE_PIN, OUTPUT);
digitalWrite(step_pin, LOW);
digitalWrite(dir_pin, LOW);
digitalWrite(cs_pin, HIGH);
STEPPER_SPI.begin();
STEPPER_SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3));
//set the initial values
send262(driver_control_register_value);
send262(chopper_config_register);
send262(cool_step_register_value);
send262(stall_guard2_current_register_value);
send262(driver_configuration_register_value);
//save that we are in running mode
started = true;
}
/**
* Mark the driver as unstarted to be able to start it again
*/
void TMC26XStepper::un_start() { started = false; }
/**
* Sets the speed in revs per minute
*/
void TMC26XStepper::setSpeed(unsigned int whatSpeed) {
this->speed = whatSpeed;
this->step_delay = 60UL * sq(1000UL) / ((unsigned long)this->number_of_steps * (unsigned long)whatSpeed * (unsigned long)this->microsteps);
#ifdef TMC_DEBUG0 // crashes
//SERIAL_PRINTF("Step delay in micros: ");
SERIAL_ECHOPAIR("\nStep delay in micros: ", this->step_delay);
#endif
// Update the next step time
this->next_step_time = this->last_step_time + this->step_delay;
}
unsigned int TMC26XStepper::getSpeed(void) { return this->speed; }
/**
* Moves the motor steps_to_move steps.
* Negative indicates the reverse direction.
*/
char TMC26XStepper::step(int steps_to_move) {
if (this->steps_left == 0) {
this->steps_left = ABS(steps_to_move); // how many steps to take
// determine direction based on whether steps_to_move is + or -:
if (steps_to_move > 0)
this->direction = 1;
else if (steps_to_move < 0)
this->direction = 0;
return 0;
}
return -1;
}
char TMC26XStepper::move(void) {
// decrement the number of steps, moving one step each time:
if (this->steps_left > 0) {
unsigned long time = micros();
// move only if the appropriate delay has passed:
// rem if (time >= this->next_step_time) {
if (ABS(time - this->last_step_time) > this->step_delay) {
// increment or decrement the step number,
// depending on direction:
if (this->direction == 1)
digitalWrite(step_pin, HIGH);
else {
digitalWrite(dir_pin, HIGH);
digitalWrite(step_pin, HIGH);
}
// get the timeStamp of when you stepped:
this->last_step_time = time;
this->next_step_time = time + this->step_delay;
// decrement the steps left:
steps_left--;
//disable the step & dir pins
digitalWrite(step_pin, LOW);
digitalWrite(dir_pin, LOW);
}
return -1;
}
return 0;
}
char TMC26XStepper::isMoving(void) { return this->steps_left > 0; }
unsigned int TMC26XStepper::getStepsLeft(void) { return this->steps_left; }
char TMC26XStepper::stop(void) {
//note to self if the motor is currently moving
char state = isMoving();
//stop the motor
this->steps_left = 0;
this->direction = 0;
//return if it was moving
return state;
}
void TMC26XStepper::setCurrent(unsigned int current) {
unsigned char current_scaling = 0;
//calculate the current scaling from the max current setting (in mA)
float mASetting = (float)current,
resistor_value = (float)this->resistor;
// remove vsense flag
this->driver_configuration_register_value &= ~(VSENSE);
// Derived from I = (cs + 1) / 32 * (Vsense / Rsense)
// leading to cs = 32 * R * I / V (with V = 0,31V oder 0,165V and I = 1000 * current)
// with Rsense = 0,15
// for vsense = 0,310V (VSENSE not set)
// or vsense = 0,165V (VSENSE set)
current_scaling = (byte)((resistor_value * mASetting * 32.0 / (0.31 * sq(1000.0))) - 0.5); //theoretically - 1.0 for better rounding it is 0.5
// Check if the current scalingis too low
if (current_scaling < 16) {
// Set the csense bit to get a use half the sense voltage (to support lower motor currents)
this->driver_configuration_register_value |= VSENSE;
// and recalculate the current setting
current_scaling = (byte)((resistor_value * mASetting * 32.0 / (0.165 * sq(1000.0))) - 0.5); //theoretically - 1.0 for better rounding it is 0.5
#ifdef TMC_DEBUG0 // crashes
//SERIAL_PRINTF("CS (Vsense=1): ");
SERIAL_ECHOPAIR("\nCS (Vsense=1): ",current_scaling);
} else {
//SERIAL_PRINTF("CS: ");
SERIAL_ECHOPAIR("\nCS: ", current_scaling);
#endif
}
// do some sanity checks
NOMORE(current_scaling, 31);
// delete the old value
stall_guard2_current_register_value &= ~(CURRENT_SCALING_PATTERN);
// set the new current scaling
stall_guard2_current_register_value |= current_scaling;
// if started we directly send it to the motor
if (started) {
send262(driver_configuration_register_value);
send262(stall_guard2_current_register_value);
}
}
unsigned int TMC26XStepper::getCurrent(void) {
// Calculate the current according to the datasheet to be on the safe side.
// This is not the fastest but the most accurate and illustrative way.
float result = (float)(stall_guard2_current_register_value & CURRENT_SCALING_PATTERN),
resistor_value = (float)this->resistor,
voltage = (driver_configuration_register_value & VSENSE) ? 0.165 : 0.31;
result = (result + 1.0) / 32.0 * voltage / resistor_value * sq(1000.0);
return (unsigned int)result;
}
void TMC26XStepper::setStallGuardThreshold(char stall_guard_threshold, char stall_guard_filter_enabled) {
// We just have 5 bits
LIMIT(stall_guard_threshold, -64, 63);
// Add trim down to 7 bits
stall_guard_threshold &= 0x7F;
// Delete old stall guard settings
stall_guard2_current_register_value &= ~(STALL_GUARD_CONFIG_PATTERN);
if (stall_guard_filter_enabled)
stall_guard2_current_register_value |= STALL_GUARD_FILTER_ENABLED;
// Set the new stall guard threshold
stall_guard2_current_register_value |= (((unsigned long)stall_guard_threshold << 8) & STALL_GUARD_CONFIG_PATTERN);
// If started we directly send it to the motor
if (started) send262(stall_guard2_current_register_value);
}
char TMC26XStepper::getStallGuardThreshold(void) {
unsigned long stall_guard_threshold = stall_guard2_current_register_value & STALL_GUARD_VALUE_PATTERN;
//shift it down to bit 0
stall_guard_threshold >>= 8;
//convert the value to an int to correctly handle the negative numbers
char result = stall_guard_threshold;
//check if it is negative and fill it up with leading 1 for proper negative number representation
//rem if (result & _BV(6)) {
if (TEST(result, 6)) result |= 0xC0;
return result;
}
char TMC26XStepper::getStallGuardFilter(void) {
if (stall_guard2_current_register_value & STALL_GUARD_FILTER_ENABLED)
return -1;
return 0;
}
/**
* Set the number of microsteps per step.
* 0,2,4,8,16,32,64,128,256 is supported
* any value in between will be mapped to the next smaller value
* 0 and 1 set the motor in full step mode
*/
void TMC26XStepper::setMicrosteps(int number_of_steps) {
long setting_pattern;
//poor mans log
if (number_of_steps >= 256) {
setting_pattern = 0;
microsteps = 256;
}
else if (number_of_steps >= 128) {
setting_pattern = 1;
microsteps = 128;
}
else if (number_of_steps >= 64) {
setting_pattern = 2;
microsteps = 64;
}
else if (number_of_steps >= 32) {
setting_pattern = 3;
microsteps = 32;
}
else if (number_of_steps >= 16) {
setting_pattern = 4;
microsteps = 16;
}
else if (number_of_steps >= 8) {
setting_pattern = 5;
microsteps = 8;
}
else if (number_of_steps >= 4) {
setting_pattern = 6;
microsteps = 4;
}
else if (number_of_steps >= 2) {
setting_pattern = 7;
microsteps = 2;
//1 and 0 lead to full step
}
else if (number_of_steps <= 1) {
setting_pattern = 8;
microsteps = 1;
}
#ifdef TMC_DEBUG0 // crashes
//SERIAL_PRINTF("Microstepping: ");
SERIAL_ECHOPAIR("\n Microstepping: ", microsteps);
#endif
// Delete the old value
this->driver_control_register_value &= 0xFFFF0UL;
// Set the new value
this->driver_control_register_value |= setting_pattern;
// If started we directly send it to the motor
if (started) send262(driver_control_register_value);
// Recalculate the stepping delay by simply setting the speed again
this->setSpeed(this->speed);
}
/**
* returns the effective number of microsteps at the moment
*/
int TMC26XStepper::getMicrosteps(void) { return microsteps }
/**
* constant_off_time: The off time setting controls the minimum chopper frequency.
* For most applications an off time within the range of 5μs to 20μs will fit.
* 2...15: off time setting
*
* blank_time: Selects the comparator blank time. This time needs to safely cover the switching event and the
* duration of the ringing on the sense resistor. For
* 0: min. setting 3: max. setting
*
* fast_decay_time_setting: Fast decay time setting. With CHM=1, these bits control the portion of fast decay for each chopper cycle.
* 0: slow decay only
* 1...15: duration of fast decay phase
*
* sine_wave_offset: Sine wave offset. With CHM=1, these bits control the sine wave offset.
* A positive offset corrects for zero crossing error.
* -3..-1: negative offset 0: no offset 1...12: positive offset
*
* use_current_comparator: Selects usage of the current comparator for termination of the fast decay cycle.
* If current comparator is enabled, it terminates the fast decay cycle in case the current
* reaches a higher negative value than the actual positive value.
* 1: enable comparator termination of fast decay cycle
* 0: end by time only
*/
void TMC26XStepper::setConstantOffTimeChopper(char constant_off_time, char blank_time, char fast_decay_time_setting, char sine_wave_offset, unsigned char use_current_comparator) {
// Perform some sanity checks
LIMIT(constant_off_time, 2, 15);
// Save the constant off time
this->constant_off_time = constant_off_time;
// Calculate the value acc to the clock cycles
const char blank_value = blank_time >= 54 ? 3 :
blank_time >= 36 ? 2 :
blank_time >= 24 ? 1 : 0;
LIMIT(fast_decay_time_setting, 0, 15);
LIMIT(sine_wave_offset, -3, 12);
// Shift the sine_wave_offset
sine_wave_offset += 3;
// Calculate the register setting
// First of all delete all the values for this
chopper_config_register &= ~(_BV(12) | BLANK_TIMING_PATTERN | HYSTERESIS_DECREMENT_PATTERN | HYSTERESIS_LOW_VALUE_PATTERN | HYSTERESIS_START_VALUE_PATTERN | T_OFF_TIMING_PATERN);
// Set the constant off pattern
chopper_config_register |= CHOPPER_MODE_T_OFF_FAST_DECAY;
// Set the blank timing value
chopper_config_register |= ((unsigned long)blank_value) << BLANK_TIMING_SHIFT;
// Setting the constant off time
chopper_config_register |= constant_off_time;
// Set the fast decay time
// Set msb
chopper_config_register |= (((unsigned long)(fast_decay_time_setting & 0x8)) << HYSTERESIS_DECREMENT_SHIFT);
// Other bits
chopper_config_register |= (((unsigned long)(fast_decay_time_setting & 0x7)) << HYSTERESIS_START_VALUE_SHIFT);
// Set the sine wave offset
chopper_config_register |= (unsigned long)sine_wave_offset << HYSTERESIS_LOW_SHIFT;
// Using the current comparator?
if (!use_current_comparator)
chopper_config_register |= _BV(12);
// If started we directly send it to the motor
if (started) {
// rem send262(driver_control_register_value);
send262(chopper_config_register);
}
}
/**
* constant_off_time: The off time setting controls the minimum chopper frequency.
* For most applications an off time within the range of 5μs to 20μs will fit.
* 2...15: off time setting
*
* blank_time: Selects the comparator blank time. This time needs to safely cover the switching event and the
* duration of the ringing on the sense resistor. For
* 0: min. setting 3: max. setting
*
* hysteresis_start: Hysteresis start setting. Please remark, that this value is an offset to the hysteresis end value HEND.
* 1...8
*
* hysteresis_end: Hysteresis end setting. Sets the hysteresis end value after a number of decrements. Decrement interval time is controlled by HDEC.
* The sum HSTRT+HEND must be <16. At a current setting CS of max. 30 (amplitude reduced to 240), the sum is not limited.
* -3..-1: negative HEND 0: zero HEND 1...12: positive HEND
*
* hysteresis_decrement: Hysteresis decrement setting. This setting determines the slope of the hysteresis during on time and during fast decay time.
* 0: fast decrement 3: very slow decrement
*/
void TMC26XStepper::setSpreadCycleChopper(char constant_off_time, char blank_time, char hysteresis_start, char hysteresis_end, char hysteresis_decrement) {
// Perform some sanity checks
LIMIT(constant_off_time, 2, 15);
// Save the constant off time
this->constant_off_time = constant_off_time;
// Calculate the value acc to the clock cycles
const char blank_value = blank_time >= 54 ? 3 :
blank_time >= 36 ? 2 :
blank_time >= 24 ? 1 : 0;
LIMIT(hysteresis_start, 1, 8);
hysteresis_start--;
LIMIT(hysteresis_start, -3, 12);
// Shift the hysteresis_end
hysteresis_end += 3;
LIMIT(hysteresis_decrement, 0, 3);
//first of all delete all the values for this
chopper_config_register &= ~(CHOPPER_MODE_T_OFF_FAST_DECAY | BLANK_TIMING_PATTERN | HYSTERESIS_DECREMENT_PATTERN | HYSTERESIS_LOW_VALUE_PATTERN | HYSTERESIS_START_VALUE_PATTERN | T_OFF_TIMING_PATERN);
//set the blank timing value
chopper_config_register |= ((unsigned long)blank_value) << BLANK_TIMING_SHIFT;
//setting the constant off time
chopper_config_register |= constant_off_time;
//set the hysteresis_start
chopper_config_register |= ((unsigned long)hysteresis_start) << HYSTERESIS_START_VALUE_SHIFT;
//set the hysteresis end
chopper_config_register |= ((unsigned long)hysteresis_end) << HYSTERESIS_LOW_SHIFT;
//set the hystereis decrement
chopper_config_register |= ((unsigned long)blank_value) << BLANK_TIMING_SHIFT;
//if started we directly send it to the motor
if (started) {
//rem send262(driver_control_register_value);
send262(chopper_config_register);
}
}
/**
* In a constant off time chopper scheme both coil choppers run freely, i.e. are not synchronized.
* The frequency of each chopper mainly depends on the coil current and the position dependant motor coil inductivity, thus it depends on the microstep position.
* With some motors a slightly audible beat can occur between the chopper frequencies, especially when they are near to each other. This typically occurs at a
* few microstep positions within each quarter wave. This effect normally is not audible when compared to mechanical noise generated by ball bearings, etc.
* Further factors which can cause a similar effect are a poor layout of sense resistor GND connection.
* Hint: A common factor, which can cause motor noise, is a bad PCB layout causing coupling of both sense resistor voltages
* (please refer to sense resistor layout hint in chapter 8.1).
* In order to minimize the effect of a beat between both chopper frequencies, an internal random generator is provided.
* It modulates the slow decay time setting when switched on by the RNDTF bit. The RNDTF feature further spreads the chopper spectrum,
* reducing electromagnetic emission on single frequencies.
*/
void TMC26XStepper::setRandomOffTime(char value) {
if (value)
chopper_config_register |= RANDOM_TOFF_TIME;
else
chopper_config_register &= ~(RANDOM_TOFF_TIME);
//if started we directly send it to the motor
if (started) {
//rem send262(driver_control_register_value);
send262(chopper_config_register);
}
}
void TMC26XStepper::setCoolStepConfiguration(
unsigned int lower_SG_threshold,
unsigned int SG_hysteresis,
unsigned char current_decrement_step_size,
unsigned char current_increment_step_size,
unsigned char lower_current_limit)
{
// Sanitize the input values
NOMORE(lower_SG_threshold, 480);
// Divide by 32
lower_SG_threshold >>= 5;
NOMORE(SG_hysteresis, 480);
// Divide by 32
SG_hysteresis >>= 5;
NOMORE(current_decrement_step_size, 3);
NOMORE(current_increment_step_size, 3);
NOMORE(lower_current_limit, 1);
// Store the lower level in order to enable/disable the cool step
this->cool_step_lower_threshold=lower_SG_threshold;
// If cool step is not enabled we delete the lower value to keep it disabled
if (!this->cool_step_enabled) lower_SG_threshold = 0;
// The good news is that we can start with a complete new cool step register value
// And simply set the values in the register
cool_step_register_value = ((unsigned long)lower_SG_threshold)
| (((unsigned long)SG_hysteresis) << 8)
| (((unsigned long)current_decrement_step_size) << 5)
| (((unsigned long)current_increment_step_size) << 13)
| (((unsigned long)lower_current_limit) << 15)
| COOL_STEP_REGISTER; // Register signature
//SERIAL_PRINTFln(cool_step_register_value,HEX);
if (started) send262(cool_step_register_value);
}
void TMC26XStepper::setCoolStepEnabled(boolean enabled) {
// Simply delete the lower limit to disable the cool step
cool_step_register_value &= ~SE_MIN_PATTERN;
// And set it to the proper value if cool step is to be enabled
if (enabled)
cool_step_register_value |= this->cool_step_lower_threshold;
// And save the enabled status
this->cool_step_enabled = enabled;
// Save the register value
if (started) send262(cool_step_register_value);
}
boolean TMC26XStepper::isCoolStepEnabled(void) { return this->cool_step_enabled; }
unsigned int TMC26XStepper::getCoolStepLowerSgThreshold() {
// We return our internally stored value - in order to provide the correct setting even if cool step is not enabled
return this->cool_step_lower_threshold<<5;
}
unsigned int TMC26XStepper::getCoolStepUpperSgThreshold() {
return (unsigned char)((cool_step_register_value & SE_MAX_PATTERN) >> 8) << 5;
}
unsigned char TMC26XStepper::getCoolStepCurrentIncrementSize() {
return (unsigned char)((cool_step_register_value & CURRENT_DOWN_STEP_SPEED_PATTERN) >> 13);
}
unsigned char TMC26XStepper::getCoolStepNumberOfSGReadings() {
return (unsigned char)((cool_step_register_value & SE_CURRENT_STEP_WIDTH_PATTERN) >> 5);
}
unsigned char TMC26XStepper::getCoolStepLowerCurrentLimit() {
return (unsigned char)((cool_step_register_value & MINIMUM_CURRENT_FOURTH) >> 15);
}
void TMC26XStepper::setEnabled(boolean enabled) {
//delete the t_off in the chopper config to get sure
chopper_config_register &= ~(T_OFF_PATTERN);
if (enabled) {
//and set the t_off time
chopper_config_register |= this->constant_off_time;
}
//if not enabled we don't have to do anything since we already delete t_off from the register
if (started) send262(chopper_config_register);
}
boolean TMC26XStepper::isEnabled() { return !!(chopper_config_register & T_OFF_PATTERN); }
/**
* reads a value from the TMC26X status register. The value is not obtained directly but can then
* be read by the various status routines.
*
*/
void TMC26XStepper::readStatus(char read_value) {
unsigned long old_driver_configuration_register_value = driver_configuration_register_value;
//reset the readout configuration
driver_configuration_register_value &= ~(READ_SELECTION_PATTERN);
//this now equals TMC26X_READOUT_POSITION - so we just have to check the other two options
if (read_value == TMC26X_READOUT_STALLGUARD)
driver_configuration_register_value |= READ_STALL_GUARD_READING;
else if (read_value == TMC26X_READOUT_CURRENT)
driver_configuration_register_value |= READ_STALL_GUARD_AND_COOL_STEP;
//all other cases are ignored to prevent funny values
//check if the readout is configured for the value we are interested in
if (driver_configuration_register_value != old_driver_configuration_register_value) {
//because then we need to write the value twice - one time for configuring, second time to get the value, see below
send262(driver_configuration_register_value);
}
//write the configuration to get the last status
send262(driver_configuration_register_value);
}
int TMC26XStepper::getMotorPosition(void) {
//we read it out even if we are not started yet - perhaps it is useful information for somebody
readStatus(TMC26X_READOUT_POSITION);
return getReadoutValue();
}
//reads the stall guard setting from last status
//returns -1 if stallguard information is not present
int TMC26XStepper::getCurrentStallGuardReading(void) {
//if we don't yet started there cannot be a stall guard value
if (!started) return -1;
//not time optimal, but solution optiomal:
//first read out the stall guard value
readStatus(TMC26X_READOUT_STALLGUARD);
return getReadoutValue();
}
unsigned char TMC26XStepper::getCurrentCSReading(void) {
//if we don't yet started there cannot be a stall guard value
if (!started) return 0;
//not time optimal, but solution optiomal:
//first read out the stall guard value
readStatus(TMC26X_READOUT_CURRENT);
return (getReadoutValue() & 0x1F);
}
unsigned int TMC26XStepper::getCurrentCurrent(void) {
float result = (float)getCurrentCSReading(),
resistor_value = (float)this->resistor,
voltage = (driver_configuration_register_value & VSENSE)? 0.165 : 0.31;
result = (result + 1.0) / 32.0 * voltage / resistor_value * sq(1000.0);
return (unsigned int)result;
}
/**
* Return true if the stallguard threshold has been reached
*/
boolean TMC26XStepper::isStallGuardOverThreshold(void) {
if (!this->started) return false;
return (driver_status_result & STATUS_STALL_GUARD_STATUS);
}
/**
* returns if there is any over temperature condition:
* OVER_TEMPERATURE_PREWARING if pre warning level has been reached
* OVER_TEMPERATURE_SHUTDOWN if the temperature is so hot that the driver is shut down
* Any of those levels are not too good.
*/
char TMC26XStepper::getOverTemperature(void) {
if (!this->started) return 0;
if (driver_status_result & STATUS_OVER_TEMPERATURE_SHUTDOWN)
return TMC26X_OVERTEMPERATURE_SHUTDOWN;
if (driver_status_result & STATUS_OVER_TEMPERATURE_WARNING)
return TMC26X_OVERTEMPERATURE_PREWARING;
return 0;
}
// Is motor channel A shorted to ground
boolean TMC26XStepper::isShortToGroundA(void) {
if (!this->started) return false;
return (driver_status_result & STATUS_SHORT_TO_GROUND_A);
}
// Is motor channel B shorted to ground
boolean TMC26XStepper::isShortToGroundB(void) {
if (!this->started) return false;
return (driver_status_result & STATUS_SHORT_TO_GROUND_B);
}
// Is motor channel A connected
boolean TMC26XStepper::isOpenLoadA(void) {
if (!this->started) return false;
return (driver_status_result & STATUS_OPEN_LOAD_A);
}
// Is motor channel B connected
boolean TMC26XStepper::isOpenLoadB(void) {
if (!this->started) return false;
return (driver_status_result & STATUS_OPEN_LOAD_B);
}
// Is chopper inactive since 2^20 clock cycles - defaults to ~0,08s
boolean TMC26XStepper::isStandStill(void) {
if (!this->started) return false;
return (driver_status_result & STATUS_STAND_STILL);
}
//is chopper inactive since 2^20 clock cycles - defaults to ~0,08s
boolean TMC26XStepper::isStallGuardReached(void) {
if (!this->started) return false;
return (driver_status_result & STATUS_STALL_GUARD_STATUS);
}
//reads the stall guard setting from last status
//returns -1 if stallguard inforamtion is not present
int TMC26XStepper::getReadoutValue(void) {
return (int)(driver_status_result >> 10);
}
int TMC26XStepper::getResistor() { return this->resistor; }
boolean TMC26XStepper::isCurrentScalingHalfed() {
return !!(this->driver_configuration_register_value & VSENSE);
}
/**
* version() returns the version of the library:
*/
int TMC26XStepper::version(void) { return 1; }
void TMC26XStepper::debugLastStatus() {
#ifdef TMC_DEBUG1
if (this->started) {
if (this->getOverTemperature()&TMC26X_OVERTEMPERATURE_PREWARING)
SERIAL_ECHOLNPGM("\n WARNING: Overtemperature Prewarning!");
else if (this->getOverTemperature()&TMC26X_OVERTEMPERATURE_SHUTDOWN)
SERIAL_ECHOLNPGM("\n ERROR: Overtemperature Shutdown!");
if (this->isShortToGroundA())
SERIAL_ECHOLNPGM("\n ERROR: SHORT to ground on channel A!");
if (this->isShortToGroundB())
SERIAL_ECHOLNPGM("\n ERROR: SHORT to ground on channel B!");
if (this->isOpenLoadA())
SERIAL_ECHOLNPGM("\n ERROR: Channel A seems to be unconnected!");
if (this->isOpenLoadB())
SERIAL_ECHOLNPGM("\n ERROR: Channel B seems to be unconnected!");
if (this->isStallGuardReached())
SERIAL_ECHOLNPGM("\n INFO: Stall Guard level reached!");
if (this->isStandStill())
SERIAL_ECHOLNPGM("\n INFO: Motor is standing still.");
unsigned long readout_config = driver_configuration_register_value & READ_SELECTION_PATTERN;
const int value = getReadoutValue();
if (readout_config == READ_MICROSTEP_POSTION) {
//SERIAL_PRINTF("Microstep postion phase A: ");
SERIAL_ECHOPAIR("\n Microstep postion phase A: ", value);
}
else if (readout_config == READ_STALL_GUARD_READING) {
//SERIAL_PRINTF("Stall Guard value:");
SERIAL_ECHOPAIR("\n Stall Guard value:", value);
}
else if (readout_config == READ_STALL_GUARD_AND_COOL_STEP) {
int stallGuard = value & 0xF, current = value & 0x1F0;
//SERIAL_PRINTF("Approx Stall Guard: ");
SERIAL_ECHOPAIR("\n Approx Stall Guard: ", stallGuard);
//SERIAL_PRINTF("Current level");
SERIAL_ECHOPAIR("\n Current level", current);
}
}
#endif
}
/**
* send register settings to the stepper driver via SPI
* returns the current status
*/
inline void TMC26XStepper::send262(unsigned long datagram) {
unsigned long i_datagram;
//preserver the previous spi mode
//unsigned char oldMode = SPCR & SPI_MODE_MASK;
//if the mode is not correct set it to mode 3
//if (oldMode != SPI_MODE3) {
// SPI.setDataMode(SPI_MODE3);
//}
//select the TMC driver
digitalWrite(cs_pin,LOW);
//ensure that only valid bist are set (0-19)
//datagram &=REGISTER_BIT_PATTERN;
#ifdef TMC_DEBUG1
//SERIAL_PRINTF("Sending ");
//SERIAL_PRINTF("Sending ", datagram,HEX);
//SERIAL_ECHOPAIR("\n\nSending \n", print_hex_long(datagram));
SERIAL_PRINTF("\n\nSending %x", datagram);
#endif
//write/read the values
i_datagram = STEPPER_SPI.transfer((datagram >> 16) & 0xFF);
i_datagram <<= 8;
i_datagram |= STEPPER_SPI.transfer((datagram >> 8) & 0xFF);
i_datagram <<= 8;
i_datagram |= STEPPER_SPI.transfer((datagram) & 0xFF);
i_datagram >>= 4;
#ifdef TMC_DEBUG1
//SERIAL_PRINTF("Received ");
//SERIAL_PRINTF("Received ", i_datagram,HEX);
//SERIAL_ECHOPAIR("\n\nReceived \n", i_datagram);
SERIAL_PRINTF("\n\nReceived %x", i_datagram);
debugLastStatus();
#endif
//deselect the TMC chip
digitalWrite(cs_pin,HIGH);
//restore the previous SPI mode if neccessary
//if the mode is not correct set it to mode 3
//if (oldMode != SPI_MODE3) {
// SPI.setDataMode(oldMode);
//}
//store the datagram as status result
driver_status_result = i_datagram;
}
#endif // STM32F7