marlin2_a10m/Marlin/src/module/stepper.cpp

2515 lines
92 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* stepper.cpp - A singleton object to execute motion plans using stepper motors
* Marlin Firmware
*
* Derived from Grbl
* Copyright (c) 2009-2011 Simen Svale Skogsrud
*
* Grbl is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Grbl is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
/* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
and Philipp Tiefenbacher. */
/* Jerk controlled movements planner added by Eduardo José Tagle in April
2018, Equations based on Synthethos TinyG2 sources, but the fixed-point
implementation is a complete new one, as we are running the ISR with a
variable period.
Also implemented the Bézier velocity curve evaluation in ARM assembler,
to avoid impacting ISR speed. */
#include "stepper.h"
#ifdef __AVR__
#include "speed_lookuptable.h"
#endif
#include "endstops.h"
#include "planner.h"
#include "motion.h"
#include "../module/temperature.h"
#include "../lcd/ultralcd.h"
#include "../core/language.h"
#include "../gcode/queue.h"
#include "../sd/cardreader.h"
#include "../Marlin.h"
#if MB(ALLIGATOR)
#include "../feature/dac/dac_dac084s085.h"
#endif
#if HAS_DIGIPOTSS
#include <SPI.h>
#endif
Stepper stepper; // Singleton
// public:
block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
bool Stepper::abort_on_endstop_hit = false;
#endif
#if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
bool Stepper::performing_homing = false;
#endif
#if HAS_MOTOR_CURRENT_PWM
uint32_t Stepper::motor_current_setting[3]; // Initialized by settings.load()
#endif
// private:
uint8_t Stepper::last_direction_bits = 0; // The next stepping-bits to be output
int16_t Stepper::cleaning_buffer_counter = 0;
#if ENABLED(X_DUAL_ENDSTOPS)
bool Stepper::locked_x_motor = false, Stepper::locked_x2_motor = false;
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
bool Stepper::locked_y_motor = false, Stepper::locked_y2_motor = false;
#endif
#if ENABLED(Z_DUAL_ENDSTOPS)
bool Stepper::locked_z_motor = false, Stepper::locked_z2_motor = false;
#endif
int32_t Stepper::counter_X = 0,
Stepper::counter_Y = 0,
Stepper::counter_Z = 0,
Stepper::counter_E = 0;
volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block
#if ENABLED(BEZIER_JERK_CONTROL)
int32_t __attribute__((used)) Stepper::bezier_A __asm__("bezier_A"); // A coefficient in Bézier speed curve with alias for assembler
int32_t __attribute__((used)) Stepper::bezier_B __asm__("bezier_B"); // B coefficient in Bézier speed curve with alias for assembler
int32_t __attribute__((used)) Stepper::bezier_C __asm__("bezier_C"); // C coefficient in Bézier speed curve with alias for assembler
uint32_t __attribute__((used)) Stepper::bezier_F __asm__("bezier_F"); // F coefficient in Bézier speed curve with alias for assembler
uint32_t __attribute__((used)) Stepper::bezier_AV __asm__("bezier_AV"); // AV coefficient in Bézier speed curve with alias for assembler
#ifdef __AVR__
bool __attribute__((used)) Stepper::A_negative __asm__("A_negative"); // If A coefficient was negative
#endif
bool Stepper::bezier_2nd_half; // =false If Bézier curve has been initialized or not
#endif
#if ENABLED(LIN_ADVANCE)
uint32_t Stepper::LA_decelerate_after;
constexpr hal_timer_t ADV_NEVER = HAL_TIMER_TYPE_MAX;
hal_timer_t Stepper::nextMainISR = 0,
Stepper::nextAdvanceISR = ADV_NEVER,
Stepper::eISR_Rate = ADV_NEVER;
uint16_t Stepper::current_adv_steps = 0,
Stepper::final_adv_steps,
Stepper::max_adv_steps;
int8_t Stepper::e_steps = 0;
#if E_STEPPERS > 1
int8_t Stepper::LA_active_extruder; // Copy from current executed block. Needed because current_block is set to NULL "too early".
#else
constexpr int8_t Stepper::LA_active_extruder;
#endif
bool Stepper::use_advance_lead;
#endif // LIN_ADVANCE
int32_t Stepper::acceleration_time, Stepper::deceleration_time;
volatile int32_t Stepper::count_position[NUM_AXIS] = { 0 };
volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
#if ENABLED(MIXING_EXTRUDER)
int32_t Stepper::counter_m[MIXING_STEPPERS];
#endif
uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
hal_timer_t Stepper::OCR1A_nominal;
#if DISABLED(BEZIER_JERK_CONTROL)
hal_timer_t Stepper::acc_step_rate; // needed for deceleration start point
#endif
volatile int32_t Stepper::endstops_trigsteps[XYZ];
#if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
#define LOCKED_X_MOTOR locked_x_motor
#define LOCKED_Y_MOTOR locked_y_motor
#define LOCKED_Z_MOTOR locked_z_motor
#define LOCKED_X2_MOTOR locked_x2_motor
#define LOCKED_Y2_MOTOR locked_y2_motor
#define LOCKED_Z2_MOTOR locked_z2_motor
#define DUAL_ENDSTOP_APPLY_STEP(AXIS,v) \
if (performing_homing) { \
if (AXIS##_HOME_DIR < 0) { \
if (!(TEST(endstops.old_endstop_bits, AXIS##_MIN) && count_direction[AXIS##_AXIS] < 0) && !LOCKED_##AXIS##_MOTOR) AXIS##_STEP_WRITE(v); \
if (!(TEST(endstops.old_endstop_bits, AXIS##2_MIN) && count_direction[AXIS##_AXIS] < 0) && !LOCKED_##AXIS##2_MOTOR) AXIS##2_STEP_WRITE(v); \
} \
else { \
if (!(TEST(endstops.old_endstop_bits, AXIS##_MAX) && count_direction[AXIS##_AXIS] > 0) && !LOCKED_##AXIS##_MOTOR) AXIS##_STEP_WRITE(v); \
if (!(TEST(endstops.old_endstop_bits, AXIS##2_MAX) && count_direction[AXIS##_AXIS] > 0) && !LOCKED_##AXIS##2_MOTOR) AXIS##2_STEP_WRITE(v); \
} \
} \
else { \
AXIS##_STEP_WRITE(v); \
AXIS##2_STEP_WRITE(v); \
}
#endif
#if ENABLED(X_DUAL_STEPPER_DRIVERS)
#define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)
#if ENABLED(X_DUAL_ENDSTOPS)
#define X_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(X,v)
#else
#define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
#endif
#elif ENABLED(DUAL_X_CARRIAGE)
#define X_APPLY_DIR(v,ALWAYS) \
if (extruder_duplication_enabled || ALWAYS) { \
X_DIR_WRITE(v); \
X2_DIR_WRITE(v); \
} \
else { \
if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
}
#define X_APPLY_STEP(v,ALWAYS) \
if (extruder_duplication_enabled || ALWAYS) { \
X_STEP_WRITE(v); \
X2_STEP_WRITE(v); \
} \
else { \
if (current_block->active_extruder) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
}
#else
#define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
#define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
#endif
#if ENABLED(Y_DUAL_STEPPER_DRIVERS)
#define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0)
#if ENABLED(Y_DUAL_ENDSTOPS)
#define Y_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Y,v)
#else
#define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
#endif
#else
#define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
#define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
#endif
#if ENABLED(Z_DUAL_STEPPER_DRIVERS)
#define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0)
#if ENABLED(Z_DUAL_ENDSTOPS)
#define Z_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Z,v)
#else
#define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
#endif
#else
#define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
#define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
#endif
#if DISABLED(MIXING_EXTRUDER)
#define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
#endif
/**
* __________________________
* /| |\ _________________ ^
* / | | \ /| |\ |
* / | | \ / | | \ s
* / | | | | | \ p
* / | | | | | \ e
* +-----+------------------------+---+--+---------------+----+ e
* | BLOCK 1 | BLOCK 2 | d
*
* time ----->
*
* The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
* first block->accelerate_until step_events_completed, then keeps going at constant speed until
* step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
* The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
*/
void Stepper::wake_up() {
// TCNT1 = 0;
ENABLE_STEPPER_DRIVER_INTERRUPT();
}
/**
* Set the stepper direction of each axis
*
* COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
* COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
* COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
*/
void Stepper::set_directions() {
#define SET_STEP_DIR(AXIS) \
if (motor_direction(AXIS ##_AXIS)) { \
AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
count_direction[AXIS ##_AXIS] = -1; \
} \
else { \
AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \
count_direction[AXIS ##_AXIS] = 1; \
}
#if HAS_X_DIR
SET_STEP_DIR(X); // A
#endif
#if HAS_Y_DIR
SET_STEP_DIR(Y); // B
#endif
#if HAS_Z_DIR
SET_STEP_DIR(Z); // C
#endif
#if DISABLED(LIN_ADVANCE)
if (motor_direction(E_AXIS)) {
REV_E_DIR();
count_direction[E_AXIS] = -1;
}
else {
NORM_E_DIR();
count_direction[E_AXIS] = 1;
}
#endif // !LIN_ADVANCE
}
#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
extern volatile uint8_t e_hit;
#endif
#if ENABLED(BEZIER_JERK_CONTROL)
/**
* We are using a quintic (fifth-degree) Bézier polynomial for the velocity curve.
* This gives us a "linear pop" velocity curve; with pop being the sixth derivative of position:
* velocity - 1st, acceleration - 2nd, jerk - 3rd, snap - 4th, crackle - 5th, pop - 6th
*
* The Bézier curve takes the form:
*
* V(t) = P_0 * B_0(t) + P_1 * B_1(t) + P_2 * B_2(t) + P_3 * B_3(t) + P_4 * B_4(t) + P_5 * B_5(t)
*
* Where 0 <= t <= 1, and V(t) is the velocity. P_0 through P_5 are the control points, and B_0(t)
* through B_5(t) are the Bernstein basis as follows:
*
* B_0(t) = (1-t)^5 = -t^5 + 5t^4 - 10t^3 + 10t^2 - 5t + 1
* B_1(t) = 5(1-t)^4 * t = 5t^5 - 20t^4 + 30t^3 - 20t^2 + 5t
* B_2(t) = 10(1-t)^3 * t^2 = -10t^5 + 30t^4 - 30t^3 + 10t^2
* B_3(t) = 10(1-t)^2 * t^3 = 10t^5 - 20t^4 + 10t^3
* B_4(t) = 5(1-t) * t^4 = -5t^5 + 5t^4
* B_5(t) = t^5 = t^5
* ^ ^ ^ ^ ^ ^
* | | | | | |
* A B C D E F
*
* Unfortunately, we cannot use forward-differencing to calculate each position through
* the curve, as Marlin uses variable timer periods. So, we require a formula of the form:
*
* V_f(t) = A*t^5 + B*t^4 + C*t^3 + D*t^2 + E*t + F
*
* Looking at the above B_0(t) through B_5(t) expanded forms, if we take the coefficients of t^5
* through t of the Bézier form of V(t), we can determine that:
*
* A = -P_0 + 5*P_1 - 10*P_2 + 10*P_3 - 5*P_4 + P_5
* B = 5*P_0 - 20*P_1 + 30*P_2 - 20*P_3 + 5*P_4
* C = -10*P_0 + 30*P_1 - 30*P_2 + 10*P_3
* D = 10*P_0 - 20*P_1 + 10*P_2
* E = - 5*P_0 + 5*P_1
* F = P_0
*
* Now, since we will (currently) *always* want the initial acceleration and jerk values to be 0,
* We set P_i = P_0 = P_1 = P_2 (initial velocity), and P_t = P_3 = P_4 = P_5 (target velocity),
* which, after simplification, resolves to:
*
* A = - 6*P_i + 6*P_t = 6*(P_t - P_i)
* B = 15*P_i - 15*P_t = 15*(P_i - P_t)
* C = -10*P_i + 10*P_t = 10*(P_t - P_i)
* D = 0
* E = 0
* F = P_i
*
* As the t is evaluated in non uniform steps here, there is no other way rather than evaluating
* the Bézier curve at each point:
*
* V_f(t) = A*t^5 + B*t^4 + C*t^3 + F [0 <= t <= 1]
*
* Floating point arithmetic execution time cost is prohibitive, so we will transform the math to
* use fixed point values to be able to evaluate it in realtime. Assuming a maximum of 250000 steps
* per second (driver pulses should at least be 2uS hi/2uS lo), and allocating 2 bits to avoid
* overflows on the evaluation of the Bézier curve, means we can use
*
* t: unsigned Q0.32 (0 <= t < 1) |range 0 to 0xFFFFFFFF unsigned
* A: signed Q24.7 , |range = +/- 250000 * 6 * 128 = +/- 192000000 = 0x0B71B000 | 28 bits + sign
* B: signed Q24.7 , |range = +/- 250000 *15 * 128 = +/- 480000000 = 0x1C9C3800 | 29 bits + sign
* C: signed Q24.7 , |range = +/- 250000 *10 * 128 = +/- 320000000 = 0x1312D000 | 29 bits + sign
* F: signed Q24.7 , |range = +/- 250000 * 128 = 32000000 = 0x01E84800 | 25 bits + sign
*
* The trapezoid generator state contains the following information, that we will use to create and evaluate
* the Bézier curve:
*
* blk->step_event_count [TS] = The total count of steps for this movement. (=distance)
* blk->initial_rate [VI] = The initial steps per second (=velocity)
* blk->final_rate [VF] = The ending steps per second (=velocity)
* and the count of events completed (step_events_completed) [CS] (=distance until now)
*
* Note the abbreviations we use in the following formulae are between []s
*
* For Any 32bit CPU:
*
* At the start of each trapezoid, we calculate the coefficients A,B,C,F and Advance [AV], as follows:
*
* A = 6*128*(VF - VI) = 768*(VF - VI)
* B = 15*128*(VI - VF) = 1920*(VI - VF)
* C = 10*128*(VF - VI) = 1280*(VF - VI)
* F = 128*VI = 128*VI
* AV = (1<<32)/TS ~= 0xFFFFFFFF / TS (To use ARM UDIV, that is 32 bits) (this is computed at the planner, to offload expensive calculations from the ISR)
*
* And for each point, we will evaluate the curve with the following sequence:
*
* void lsrs(uint32_t& d, uint32_t s, int cnt) {
* d = s >> cnt;
* }
* void lsls(uint32_t& d, uint32_t s, int cnt) {
* d = s << cnt;
* }
* void lsrs(int32_t& d, uint32_t s, int cnt) {
* d = uint32_t(s) >> cnt;
* }
* void lsls(int32_t& d, uint32_t s, int cnt) {
* d = uint32_t(s) << cnt;
* }
* void umull(uint32_t& rlo, uint32_t& rhi, uint32_t op1, uint32_t op2) {
* uint64_t res = uint64_t(op1) * op2;
* rlo = uint32_t(res & 0xFFFFFFFF);
* rhi = uint32_t((res >> 32) & 0xFFFFFFFF);
* }
* void smlal(int32_t& rlo, int32_t& rhi, int32_t op1, int32_t op2) {
* int64_t mul = int64_t(op1) * op2;
* int64_t s = int64_t(uint32_t(rlo) | ((uint64_t(uint32_t(rhi)) << 32U)));
* mul += s;
* rlo = int32_t(mul & 0xFFFFFFFF);
* rhi = int32_t((mul >> 32) & 0xFFFFFFFF);
* }
* int32_t _eval_bezier_curve_arm(uint32_t curr_step) {
* register uint32_t flo = 0;
* register uint32_t fhi = bezier_AV * curr_step;
* register uint32_t t = fhi;
* register int32_t alo = bezier_F;
* register int32_t ahi = 0;
* register int32_t A = bezier_A;
* register int32_t B = bezier_B;
* register int32_t C = bezier_C;
*
* lsrs(ahi, alo, 1); // a = F << 31
* lsls(alo, alo, 31); //
* umull(flo, fhi, fhi, t); // f *= t
* umull(flo, fhi, fhi, t); // f>>=32; f*=t
* lsrs(flo, fhi, 1); //
* smlal(alo, ahi, flo, C); // a+=(f>>33)*C
* umull(flo, fhi, fhi, t); // f>>=32; f*=t
* lsrs(flo, fhi, 1); //
* smlal(alo, ahi, flo, B); // a+=(f>>33)*B
* umull(flo, fhi, fhi, t); // f>>=32; f*=t
* lsrs(flo, fhi, 1); // f>>=33;
* smlal(alo, ahi, flo, A); // a+=(f>>33)*A;
* lsrs(alo, ahi, 6); // a>>=38
*
* return alo;
* }
*
* This will be rewritten in ARM assembly to get peak performance and will take 43 cycles to execute
*
* For AVR, we scale precision of coefficients to make it possible to evaluate the Bézier curve in
* realtime: Let's reduce precision as much as possible. After some experimentation we found that:
*
* Assume t and AV with 24 bits is enough
* A = 6*(VF - VI)
* B = 15*(VI - VF)
* C = 10*(VF - VI)
* F = VI
* AV = (1<<24)/TS (this is computed at the planner, to offload expensive calculations from the ISR)
*
* Instead of storing sign for each coefficient, we will store its absolute value,
* and flag the sign of the A coefficient, so we can save to store the sign bit.
* It always holds that sign(A) = - sign(B) = sign(C)
*
* So, the resulting range of the coefficients are:
*
* t: unsigned (0 <= t < 1) |range 0 to 0xFFFFFF unsigned
* A: signed Q24 , range = 250000 * 6 = 1500000 = 0x16E360 | 21 bits
* B: signed Q24 , range = 250000 *15 = 3750000 = 0x393870 | 22 bits
* C: signed Q24 , range = 250000 *10 = 2500000 = 0x1312D0 | 21 bits
* F: signed Q24 , range = 250000 = 250000 = 0x0ED090 | 20 bits
*
* And for each curve, we estimate its coefficients with:
*
* void _calc_bezier_curve_coeffs(int32_t v0, int32_t v1, uint32_t av) {
* // Calculate the Bézier coefficients
* if (v1 < v0) {
* A_negative = true;
* bezier_A = 6 * (v0 - v1);
* bezier_B = 15 * (v0 - v1);
* bezier_C = 10 * (v0 - v1);
* }
* else {
* A_negative = false;
* bezier_A = 6 * (v1 - v0);
* bezier_B = 15 * (v1 - v0);
* bezier_C = 10 * (v1 - v0);
* }
* bezier_F = v0;
* }
*
* And for each point, we will evaluate the curve with the following sequence:
*
* // unsigned multiplication of 24 bits x 24bits, return upper 16 bits
* void umul24x24to16hi(uint16_t& r, uint24_t op1, uint24_t op2) {
* r = (uint64_t(op1) * op2) >> 8;
* }
* // unsigned multiplication of 16 bits x 16bits, return upper 16 bits
* void umul16x16to16hi(uint16_t& r, uint16_t op1, uint16_t op2) {
* r = (uint32_t(op1) * op2) >> 16;
* }
* // unsigned multiplication of 16 bits x 24bits, return upper 24 bits
* void umul16x24to24hi(uint24_t& r, uint16_t op1, uint24_t op2) {
* r = uint24_t((uint64_t(op1) * op2) >> 16);
* }
*
* int32_t _eval_bezier_curve(uint32_t curr_step) {
* // To save computing, the first step is always the initial speed
* if (!curr_step)
* return bezier_F;
*
* uint16_t t;
* umul24x24to16hi(t, bezier_AV, curr_step); // t: Range 0 - 1^16 = 16 bits
* uint16_t f = t;
* umul16x16to16hi(f, f, t); // Range 16 bits (unsigned)
* umul16x16to16hi(f, f, t); // Range 16 bits : f = t^3 (unsigned)
* uint24_t acc = bezier_F; // Range 20 bits (unsigned)
* if (A_negative) {
* uint24_t v;
* umul16x24to24hi(v, f, bezier_C); // Range 21bits
* acc -= v;
* umul16x16to16hi(f, f, t); // Range 16 bits : f = t^4 (unsigned)
* umul16x24to24hi(v, f, bezier_B); // Range 22bits
* acc += v;
* umul16x16to16hi(f, f, t); // Range 16 bits : f = t^5 (unsigned)
* umul16x24to24hi(v, f, bezier_A); // Range 21bits + 15 = 36bits (plus sign)
* acc -= v;
* }
* else {
* uint24_t v;
* umul16x24to24hi(v, f, bezier_C); // Range 21bits
* acc += v;
* umul16x16to16hi(f, f, t); // Range 16 bits : f = t^4 (unsigned)
* umul16x24to24hi(v, f, bezier_B); // Range 22bits
* acc -= v;
* umul16x16to16hi(f, f, t); // Range 16 bits : f = t^5 (unsigned)
* umul16x24to24hi(v, f, bezier_A); // Range 21bits + 15 = 36bits (plus sign)
* acc += v;
* }
* return acc;
* }
* Those functions will be translated into assembler to get peak performance. coefficient calculations takes 70 cycles,
* Bezier point evaluation takes 150 cycles
*
*/
#ifdef __AVR__
// For AVR we use assembly to maximize speed
void Stepper::_calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av) {
// Store advance
bezier_AV = av;
// Calculate the rest of the coefficients
register uint8_t r2 = v0 & 0xFF;
register uint8_t r3 = (v0 >> 8) & 0xFF;
register uint8_t r12 = (v0 >> 16) & 0xFF;
register uint8_t r5 = v1 & 0xFF;
register uint8_t r6 = (v1 >> 8) & 0xFF;
register uint8_t r7 = (v1 >> 16) & 0xFF;
register uint8_t r4,r8,r9,r10,r11;
__asm__ __volatile__(
/* Calculate the Bézier coefficients */
/* %10:%1:%0 = v0*/
/* %5:%4:%3 = v1*/
/* %7:%6:%10 = temporary*/
/* %9 = val (must be high register!)*/
/* %10 (must be high register!)*/
/* Store initial velocity*/
A("sts bezier_F, %0")
A("sts bezier_F+1, %1")
A("sts bezier_F+2, %10") /* bezier_F = %10:%1:%0 = v0 */
/* Get delta speed */
A("ldi %2,-1") /* %2 = 0xFF, means A_negative = true */
A("clr %8") /* %8 = 0 */
A("sub %0,%3")
A("sbc %1,%4")
A("sbc %10,%5") /* v0 -= v1, C=1 if result is negative */
A("brcc 1f") /* branch if result is positive (C=0), that means v0 >= v1 */
/* Result was negative, get the absolute value*/
A("com %10")
A("com %1")
A("neg %0")
A("sbc %1,%2")
A("sbc %10,%2") /* %10:%1:%0 +1 -> %10:%1:%0 = -(v0 - v1) = (v1 - v0) */
A("clr %2") /* %2 = 0, means A_negative = false */
/* Store negative flag*/
L("1")
A("sts A_negative, %2") /* Store negative flag */
/* Compute coefficients A,B and C [20 cycles worst case]*/
A("ldi %9,6") /* %9 = 6 */
A("mul %0,%9") /* r1:r0 = 6*LO(v0-v1) */
A("sts bezier_A, r0")
A("mov %6,r1")
A("clr %7") /* %7:%6:r0 = 6*LO(v0-v1) */
A("mul %1,%9") /* r1:r0 = 6*MI(v0-v1) */
A("add %6,r0")
A("adc %7,r1") /* %7:%6:?? += 6*MI(v0-v1) << 8 */
A("mul %10,%9") /* r1:r0 = 6*HI(v0-v1) */
A("add %7,r0") /* %7:%6:?? += 6*HI(v0-v1) << 16 */
A("sts bezier_A+1, %6")
A("sts bezier_A+2, %7") /* bezier_A = %7:%6:?? = 6*(v0-v1) [35 cycles worst] */
A("ldi %9,15") /* %9 = 15 */
A("mul %0,%9") /* r1:r0 = 5*LO(v0-v1) */
A("sts bezier_B, r0")
A("mov %6,r1")
A("clr %7") /* %7:%6:?? = 5*LO(v0-v1) */
A("mul %1,%9") /* r1:r0 = 5*MI(v0-v1) */
A("add %6,r0")
A("adc %7,r1") /* %7:%6:?? += 5*MI(v0-v1) << 8 */
A("mul %10,%9") /* r1:r0 = 5*HI(v0-v1) */
A("add %7,r0") /* %7:%6:?? += 5*HI(v0-v1) << 16 */
A("sts bezier_B+1, %6")
A("sts bezier_B+2, %7") /* bezier_B = %7:%6:?? = 5*(v0-v1) [50 cycles worst] */
A("ldi %9,10") /* %9 = 10 */
A("mul %0,%9") /* r1:r0 = 10*LO(v0-v1) */
A("sts bezier_C, r0")
A("mov %6,r1")
A("clr %7") /* %7:%6:?? = 10*LO(v0-v1) */
A("mul %1,%9") /* r1:r0 = 10*MI(v0-v1) */
A("add %6,r0")
A("adc %7,r1") /* %7:%6:?? += 10*MI(v0-v1) << 8 */
A("mul %10,%9") /* r1:r0 = 10*HI(v0-v1) */
A("add %7,r0") /* %7:%6:?? += 10*HI(v0-v1) << 16 */
A("sts bezier_C+1, %6")
" sts bezier_C+2, %7" /* bezier_C = %7:%6:?? = 10*(v0-v1) [65 cycles worst] */
: "+r" (r2),
"+d" (r3),
"=r" (r4),
"+r" (r5),
"+r" (r6),
"+r" (r7),
"=r" (r8),
"=r" (r9),
"=r" (r10),
"=d" (r11),
"+r" (r12)
:
: "r0", "r1", "cc", "memory"
);
}
FORCE_INLINE int32_t Stepper::_eval_bezier_curve(const uint32_t curr_step) {
// If dealing with the first step, save expensive computing and return the initial speed
if (!curr_step)
return bezier_F;
register uint8_t r0 = 0; /* Zero register */
register uint8_t r2 = (curr_step) & 0xFF;
register uint8_t r3 = (curr_step >> 8) & 0xFF;
register uint8_t r4 = (curr_step >> 16) & 0xFF;
register uint8_t r1,r5,r6,r7,r8,r9,r10,r11; /* Temporary registers */
__asm__ __volatile(
/* umul24x24to16hi(t, bezier_AV, curr_step); t: Range 0 - 1^16 = 16 bits*/
A("lds %9,bezier_AV") /* %9 = LO(AV)*/
A("mul %9,%2") /* r1:r0 = LO(bezier_AV)*LO(curr_step)*/
A("mov %7,r1") /* %7 = LO(bezier_AV)*LO(curr_step) >> 8*/
A("clr %8") /* %8:%7 = LO(bezier_AV)*LO(curr_step) >> 8*/
A("lds %10,bezier_AV+1") /* %10 = MI(AV)*/
A("mul %10,%2") /* r1:r0 = MI(bezier_AV)*LO(curr_step)*/
A("add %7,r0")
A("adc %8,r1") /* %8:%7 += MI(bezier_AV)*LO(curr_step)*/
A("lds r1,bezier_AV+2") /* r11 = HI(AV)*/
A("mul r1,%2") /* r1:r0 = HI(bezier_AV)*LO(curr_step)*/
A("add %8,r0") /* %8:%7 += HI(bezier_AV)*LO(curr_step) << 8*/
A("mul %9,%3") /* r1:r0 = LO(bezier_AV)*MI(curr_step)*/
A("add %7,r0")
A("adc %8,r1") /* %8:%7 += LO(bezier_AV)*MI(curr_step)*/
A("mul %10,%3") /* r1:r0 = MI(bezier_AV)*MI(curr_step)*/
A("add %8,r0") /* %8:%7 += LO(bezier_AV)*MI(curr_step) << 8*/
A("mul %9,%4") /* r1:r0 = LO(bezier_AV)*HI(curr_step)*/
A("add %8,r0") /* %8:%7 += LO(bezier_AV)*HI(curr_step) << 8*/
/* %8:%7 = t*/
/* uint16_t f = t;*/
A("mov %5,%7") /* %6:%5 = f*/
A("mov %6,%8")
/* %6:%5 = f*/
/* umul16x16to16hi(f, f, t); / Range 16 bits (unsigned) [17] */
A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
A("mov %9,r1") /* store MIL(LO(f) * LO(t)) in %9, we need it for rounding*/
A("clr %10") /* %10 = 0*/
A("clr %11") /* %11 = 0*/
A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
A("add %9,r0") /* %9 += LO(LO(f) * HI(t))*/
A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
A("adc %11,%0") /* %11 += carry*/
A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
A("add %9,r0") /* %9 += LO(HI(f) * LO(t))*/
A("adc %10,r1") /* %10 += HI(HI(f) * LO(t)) */
A("adc %11,%0") /* %11 += carry*/
A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
A("mov %5,%10") /* %6:%5 = */
A("mov %6,%11") /* f = %10:%11*/
/* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
A("clr %10") /* %10 = 0*/
A("clr %11") /* %11 = 0*/
A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
A("adc %11,%0") /* %11 += carry*/
A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
A("adc %11,%0") /* %11 += carry*/
A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
A("mov %5,%10") /* %6:%5 =*/
A("mov %6,%11") /* f = %10:%11*/
/* [15 +17*2] = [49]*/
/* %4:%3:%2 will be acc from now on*/
/* uint24_t acc = bezier_F; / Range 20 bits (unsigned)*/
A("clr %9") /* "decimal place we get for free"*/
A("lds %2,bezier_F")
A("lds %3,bezier_F+1")
A("lds %4,bezier_F+2") /* %4:%3:%2 = acc*/
/* if (A_negative) {*/
A("lds r0,A_negative")
A("or r0,%0") /* Is flag signalling negative? */
A("brne 3f") /* If yes, Skip next instruction if A was negative*/
A("rjmp 1f") /* Otherwise, jump */
/* uint24_t v; */
/* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29] */
/* acc -= v; */
L("3")
A("lds %10, bezier_C") /* %10 = LO(bezier_C)*/
A("mul %10,%5") /* r1:r0 = LO(bezier_C) * LO(f)*/
A("sub %9,r1")
A("sbc %2,%0")
A("sbc %3,%0")
A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_C) * LO(f))*/
A("lds %11, bezier_C+1") /* %11 = MI(bezier_C)*/
A("mul %11,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
A("sub %9,r0")
A("sbc %2,r1")
A("sbc %3,%0")
A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_C) * LO(f)*/
A("lds %1, bezier_C+2") /* %1 = HI(bezier_C)*/
A("mul %1,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
A("sub %2,r0")
A("sbc %3,r1")
A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 8*/
A("mul %10,%6") /* r1:r0 = LO(bezier_C) * MI(f)*/
A("sub %9,r0")
A("sbc %2,r1")
A("sbc %3,%0")
A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_C) * MI(f)*/
A("mul %11,%6") /* r1:r0 = MI(bezier_C) * MI(f)*/
A("sub %2,r0")
A("sbc %3,r1")
A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_C) * MI(f) << 8*/
A("mul %1,%6") /* r1:r0 = HI(bezier_C) * LO(f)*/
A("sub %3,r0")
A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 16*/
/* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
A("clr %10") /* %10 = 0*/
A("clr %11") /* %11 = 0*/
A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
A("adc %11,%0") /* %11 += carry*/
A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
A("adc %11,%0") /* %11 += carry*/
A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
A("mov %5,%10") /* %6:%5 =*/
A("mov %6,%11") /* f = %10:%11*/
/* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*/
/* acc += v; */
A("lds %10, bezier_B") /* %10 = LO(bezier_B)*/
A("mul %10,%5") /* r1:r0 = LO(bezier_B) * LO(f)*/
A("add %9,r1")
A("adc %2,%0")
A("adc %3,%0")
A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_B) * LO(f))*/
A("lds %11, bezier_B+1") /* %11 = MI(bezier_B)*/
A("mul %11,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
A("add %9,r0")
A("adc %2,r1")
A("adc %3,%0")
A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_B) * LO(f)*/
A("lds %1, bezier_B+2") /* %1 = HI(bezier_B)*/
A("mul %1,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
A("add %2,r0")
A("adc %3,r1")
A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 8*/
A("mul %10,%6") /* r1:r0 = LO(bezier_B) * MI(f)*/
A("add %9,r0")
A("adc %2,r1")
A("adc %3,%0")
A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_B) * MI(f)*/
A("mul %11,%6") /* r1:r0 = MI(bezier_B) * MI(f)*/
A("add %2,r0")
A("adc %3,r1")
A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_B) * MI(f) << 8*/
A("mul %1,%6") /* r1:r0 = HI(bezier_B) * LO(f)*/
A("add %3,r0")
A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 16*/
/* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5 (unsigned) [17]*/
A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
A("clr %10") /* %10 = 0*/
A("clr %11") /* %11 = 0*/
A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
A("adc %11,%0") /* %11 += carry*/
A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
A("adc %11,%0") /* %11 += carry*/
A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
A("mov %5,%10") /* %6:%5 =*/
A("mov %6,%11") /* f = %10:%11*/
/* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*/
/* acc -= v; */
A("lds %10, bezier_A") /* %10 = LO(bezier_A)*/
A("mul %10,%5") /* r1:r0 = LO(bezier_A) * LO(f)*/
A("sub %9,r1")
A("sbc %2,%0")
A("sbc %3,%0")
A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_A) * LO(f))*/
A("lds %11, bezier_A+1") /* %11 = MI(bezier_A)*/
A("mul %11,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
A("sub %9,r0")
A("sbc %2,r1")
A("sbc %3,%0")
A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_A) * LO(f)*/
A("lds %1, bezier_A+2") /* %1 = HI(bezier_A)*/
A("mul %1,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
A("sub %2,r0")
A("sbc %3,r1")
A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 8*/
A("mul %10,%6") /* r1:r0 = LO(bezier_A) * MI(f)*/
A("sub %9,r0")
A("sbc %2,r1")
A("sbc %3,%0")
A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_A) * MI(f)*/
A("mul %11,%6") /* r1:r0 = MI(bezier_A) * MI(f)*/
A("sub %2,r0")
A("sbc %3,r1")
A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_A) * MI(f) << 8*/
A("mul %1,%6") /* r1:r0 = HI(bezier_A) * LO(f)*/
A("sub %3,r0")
A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 16*/
A("jmp 2f") /* Done!*/
L("1")
/* uint24_t v; */
/* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29]*/
/* acc += v; */
A("lds %10, bezier_C") /* %10 = LO(bezier_C)*/
A("mul %10,%5") /* r1:r0 = LO(bezier_C) * LO(f)*/
A("add %9,r1")
A("adc %2,%0")
A("adc %3,%0")
A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_C) * LO(f))*/
A("lds %11, bezier_C+1") /* %11 = MI(bezier_C)*/
A("mul %11,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
A("add %9,r0")
A("adc %2,r1")
A("adc %3,%0")
A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_C) * LO(f)*/
A("lds %1, bezier_C+2") /* %1 = HI(bezier_C)*/
A("mul %1,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
A("add %2,r0")
A("adc %3,r1")
A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 8*/
A("mul %10,%6") /* r1:r0 = LO(bezier_C) * MI(f)*/
A("add %9,r0")
A("adc %2,r1")
A("adc %3,%0")
A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_C) * MI(f)*/
A("mul %11,%6") /* r1:r0 = MI(bezier_C) * MI(f)*/
A("add %2,r0")
A("adc %3,r1")
A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_C) * MI(f) << 8*/
A("mul %1,%6") /* r1:r0 = HI(bezier_C) * LO(f)*/
A("add %3,r0")
A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 16*/
/* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
A("clr %10") /* %10 = 0*/
A("clr %11") /* %11 = 0*/
A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
A("adc %11,%0") /* %11 += carry*/
A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
A("adc %11,%0") /* %11 += carry*/
A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
A("mov %5,%10") /* %6:%5 =*/
A("mov %6,%11") /* f = %10:%11*/
/* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*/
/* acc -= v;*/
A("lds %10, bezier_B") /* %10 = LO(bezier_B)*/
A("mul %10,%5") /* r1:r0 = LO(bezier_B) * LO(f)*/
A("sub %9,r1")
A("sbc %2,%0")
A("sbc %3,%0")
A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_B) * LO(f))*/
A("lds %11, bezier_B+1") /* %11 = MI(bezier_B)*/
A("mul %11,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
A("sub %9,r0")
A("sbc %2,r1")
A("sbc %3,%0")
A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_B) * LO(f)*/
A("lds %1, bezier_B+2") /* %1 = HI(bezier_B)*/
A("mul %1,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
A("sub %2,r0")
A("sbc %3,r1")
A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 8*/
A("mul %10,%6") /* r1:r0 = LO(bezier_B) * MI(f)*/
A("sub %9,r0")
A("sbc %2,r1")
A("sbc %3,%0")
A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_B) * MI(f)*/
A("mul %11,%6") /* r1:r0 = MI(bezier_B) * MI(f)*/
A("sub %2,r0")
A("sbc %3,r1")
A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_B) * MI(f) << 8*/
A("mul %1,%6") /* r1:r0 = HI(bezier_B) * LO(f)*/
A("sub %3,r0")
A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 16*/
/* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5 (unsigned) [17]*/
A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
A("clr %10") /* %10 = 0*/
A("clr %11") /* %11 = 0*/
A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
A("adc %11,%0") /* %11 += carry*/
A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
A("adc %11,%0") /* %11 += carry*/
A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
A("mov %5,%10") /* %6:%5 =*/
A("mov %6,%11") /* f = %10:%11*/
/* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*/
/* acc += v; */
A("lds %10, bezier_A") /* %10 = LO(bezier_A)*/
A("mul %10,%5") /* r1:r0 = LO(bezier_A) * LO(f)*/
A("add %9,r1")
A("adc %2,%0")
A("adc %3,%0")
A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_A) * LO(f))*/
A("lds %11, bezier_A+1") /* %11 = MI(bezier_A)*/
A("mul %11,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
A("add %9,r0")
A("adc %2,r1")
A("adc %3,%0")
A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_A) * LO(f)*/
A("lds %1, bezier_A+2") /* %1 = HI(bezier_A)*/
A("mul %1,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
A("add %2,r0")
A("adc %3,r1")
A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 8*/
A("mul %10,%6") /* r1:r0 = LO(bezier_A) * MI(f)*/
A("add %9,r0")
A("adc %2,r1")
A("adc %3,%0")
A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_A) * MI(f)*/
A("mul %11,%6") /* r1:r0 = MI(bezier_A) * MI(f)*/
A("add %2,r0")
A("adc %3,r1")
A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_A) * MI(f) << 8*/
A("mul %1,%6") /* r1:r0 = HI(bezier_A) * LO(f)*/
A("add %3,r0")
A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 16*/
L("2")
" clr __zero_reg__" /* C runtime expects r1 = __zero_reg__ = 0 */
: "+r"(r0),
"+r"(r1),
"+r"(r2),
"+r"(r3),
"+r"(r4),
"+r"(r5),
"+r"(r6),
"+r"(r7),
"+r"(r8),
"+r"(r9),
"+r"(r10),
"+r"(r11)
:
:"cc","r0","r1"
);
return (r2 | (uint16_t(r3) << 8)) | (uint32_t(r4) << 16);
}
#else
// For all the other 32bit CPUs
FORCE_INLINE void Stepper::_calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av) {
// Calculate the Bézier coefficients
bezier_A = 768 * (v1 - v0);
bezier_B = 1920 * (v0 - v1);
bezier_C = 1280 * (v1 - v0);
bezier_F = 128 * v0;
bezier_AV = av;
}
FORCE_INLINE int32_t Stepper::_eval_bezier_curve(const uint32_t curr_step) {
#if defined(__ARM__) || defined(__thumb__)
// For ARM Cortex M3/M4 CPUs, we have the optimized assembler version, that takes 43 cycles to execute
register uint32_t flo = 0;
register uint32_t fhi = bezier_AV * curr_step;
register uint32_t t = fhi;
register int32_t alo = bezier_F;
register int32_t ahi = 0;
register int32_t A = bezier_A;
register int32_t B = bezier_B;
register int32_t C = bezier_C;
__asm__ __volatile__(
".syntax unified" "\n\t" // is to prevent CM0,CM1 non-unified syntax
A("lsrs %[ahi],%[alo],#1") // a = F << 31 1 cycles
A("lsls %[alo],%[alo],#31") // 1 cycles
A("umull %[flo],%[fhi],%[fhi],%[t]") // f *= t 5 cycles [fhi:flo=64bits]
A("umull %[flo],%[fhi],%[fhi],%[t]") // f>>=32; f*=t 5 cycles [fhi:flo=64bits]
A("lsrs %[flo],%[fhi],#1") // 1 cycles [31bits]
A("smlal %[alo],%[ahi],%[flo],%[C]") // a+=(f>>33)*C; 5 cycles
A("umull %[flo],%[fhi],%[fhi],%[t]") // f>>=32; f*=t 5 cycles [fhi:flo=64bits]
A("lsrs %[flo],%[fhi],#1") // 1 cycles [31bits]
A("smlal %[alo],%[ahi],%[flo],%[B]") // a+=(f>>33)*B; 5 cycles
A("umull %[flo],%[fhi],%[fhi],%[t]") // f>>=32; f*=t 5 cycles [fhi:flo=64bits]
A("lsrs %[flo],%[fhi],#1") // f>>=33; 1 cycles [31bits]
A("smlal %[alo],%[ahi],%[flo],%[A]") // a+=(f>>33)*A; 5 cycles
A("lsrs %[alo],%[ahi],#6") // a>>=38 1 cycles
: [alo]"+r"( alo ) ,
[flo]"+r"( flo ) ,
[fhi]"+r"( fhi ) ,
[ahi]"+r"( ahi ) ,
[A]"+r"( A ) , // <== Note: Even if A, B, C, and t registers are INPUT ONLY
[B]"+r"( B ) , // GCC does bad optimizations on the code if we list them as
[C]"+r"( C ) , // such, breaking this function. So, to avoid that problem,
[t]"+r"( t ) // we list all registers as input-outputs.
:
: "cc"
);
return alo;
#else
// For non ARM targets, we provide a fallback implementation. Really doubt it
// will be useful, unless the processor is fast and 32bit
uint32_t t = bezier_AV * curr_step; // t: Range 0 - 1^32 = 32 bits
uint64_t f = t;
f *= t; // Range 32*2 = 64 bits (unsigned)
f >>= 32; // Range 32 bits (unsigned)
f *= t; // Range 32*2 = 64 bits (unsigned)
f >>= 32; // Range 32 bits : f = t^3 (unsigned)
int64_t acc = (int64_t) bezier_F << 31; // Range 63 bits (signed)
acc += ((uint32_t) f >> 1) * (int64_t) bezier_C; // Range 29bits + 31 = 60bits (plus sign)
f *= t; // Range 32*2 = 64 bits
f >>= 32; // Range 32 bits : f = t^3 (unsigned)
acc += ((uint32_t) f >> 1) * (int64_t) bezier_B; // Range 29bits + 31 = 60bits (plus sign)
f *= t; // Range 32*2 = 64 bits
f >>= 32; // Range 32 bits : f = t^3 (unsigned)
acc += ((uint32_t) f >> 1) * (int64_t) bezier_A; // Range 28bits + 31 = 59bits (plus sign)
acc >>= (31 + 7); // Range 24bits (plus sign)
return (int32_t) acc;
#endif
}
#endif
#endif // BEZIER_JERK_CONTROL
/**
* Stepper Driver Interrupt
*
* Directly pulses the stepper motors at high frequency.
*
* AVR :
* Timer 1 runs at a base frequency of 2MHz, with this ISR using OCR1A compare mode.
*
* OCR1A Frequency
* 1 2 MHz
* 50 40 KHz
* 100 20 KHz - capped max rate
* 200 10 KHz - nominal max rate
* 2000 1 KHz - sleep rate
* 4000 500 Hz - init rate
*/
HAL_STEP_TIMER_ISR {
HAL_timer_isr_prologue(STEP_TIMER_NUM);
#if ENABLED(LIN_ADVANCE)
Stepper::advance_isr_scheduler();
#else
Stepper::isr();
#endif
HAL_timer_isr_epilogue(STEP_TIMER_NUM);
}
void Stepper::isr() {
#define ENDSTOP_NOMINAL_OCR_VAL 1500 * HAL_TICKS_PER_US // Check endstops every 1.5ms to guarantee two stepper ISRs within 5ms for BLTouch
#define OCR_VAL_TOLERANCE 500 * HAL_TICKS_PER_US // First max delay is 2.0ms, last min delay is 0.5ms, all others 1.5ms
hal_timer_t ocr_val;
static uint32_t step_remaining = 0; // SPLIT function always runs. This allows 16 bit timers to be
// used to generate the stepper ISR.
#define SPLIT(L) do { \
if (L > ENDSTOP_NOMINAL_OCR_VAL) { \
const uint32_t remainder = (uint32_t)L % (ENDSTOP_NOMINAL_OCR_VAL); \
ocr_val = (remainder < OCR_VAL_TOLERANCE) ? ENDSTOP_NOMINAL_OCR_VAL + remainder : ENDSTOP_NOMINAL_OCR_VAL; \
step_remaining = (uint32_t)L - ocr_val; \
} \
else \
ocr_val = L;\
}while(0)
// Time remaining before the next step?
if (step_remaining) {
// Make sure endstops are updated
if (ENDSTOPS_ENABLED) endstops.update();
// Next ISR either for endstops or stepping
ocr_val = step_remaining <= ENDSTOP_NOMINAL_OCR_VAL ? step_remaining : ENDSTOP_NOMINAL_OCR_VAL;
step_remaining -= ocr_val;
_NEXT_ISR(ocr_val);
#if DISABLED(LIN_ADVANCE)
HAL_timer_restrain(STEP_TIMER_NUM, STEP_TIMER_MIN_INTERVAL * HAL_TICKS_PER_US);
#endif
return;
}
//
// When cleaning, discard the current block and run fast
//
if (cleaning_buffer_counter) {
if (cleaning_buffer_counter < 0) { // Count up for endstop hit
if (current_block) planner.discard_current_block(); // Discard the active block that led to the trigger
if (!planner.discard_continued_block()) // Discard next CONTINUED block
cleaning_buffer_counter = 0; // Keep discarding until non-CONTINUED
}
else {
planner.discard_current_block();
--cleaning_buffer_counter; // Count down for abort print
#if ENABLED(SD_FINISHED_STEPPERRELEASE) && defined(SD_FINISHED_RELEASECOMMAND)
if (!cleaning_buffer_counter) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
#endif
}
current_block = NULL; // Prep to get a new block after cleaning
_NEXT_ISR(HAL_STEPPER_TIMER_RATE / 10000); // Run at max speed - 10 KHz
return;
}
// If there is no current block, attempt to pop one from the buffer
if (!current_block) {
// Anything in the buffer?
if ((current_block = planner.get_current_block())) {
// Sync block? Sync the stepper counts and return
while (TEST(current_block->flag, BLOCK_BIT_SYNC_POSITION)) {
_set_position(
current_block->steps[A_AXIS], current_block->steps[B_AXIS],
current_block->steps[C_AXIS], current_block->steps[E_AXIS]
);
planner.discard_current_block();
if (!(current_block = planner.get_current_block())) return;
}
// Initialize the trapezoid generator from the current block.
static int8_t last_extruder = -1;
#if ENABLED(LIN_ADVANCE)
#if E_STEPPERS > 1
if (current_block->active_extruder != last_extruder) {
current_adv_steps = 0; // If the now active extruder wasn't in use during the last move, its pressure is most likely gone.
LA_active_extruder = current_block->active_extruder;
}
#endif
if ((use_advance_lead = current_block->use_advance_lead)) {
LA_decelerate_after = current_block->decelerate_after;
final_adv_steps = current_block->final_adv_steps;
max_adv_steps = current_block->max_adv_steps;
}
#endif
if (current_block->direction_bits != last_direction_bits || current_block->active_extruder != last_extruder) {
last_direction_bits = current_block->direction_bits;
last_extruder = current_block->active_extruder;
set_directions();
}
// No acceleration / deceleration time elapsed so far
acceleration_time = deceleration_time = 0;
// No step events completed so far
step_events_completed = 0;
// step_rate to timer interval
OCR1A_nominal = calc_timer_interval(current_block->nominal_rate);
// make a note of the number of step loops required at nominal speed
step_loops_nominal = step_loops;
#if DISABLED(BEZIER_JERK_CONTROL)
// Set as deceleration point the initial rate of the block
acc_step_rate = current_block->initial_rate;
#endif
#if ENABLED(BEZIER_JERK_CONTROL)
// Initialize the Bézier speed curve
_calc_bezier_curve_coeffs(current_block->initial_rate, current_block->cruise_rate, current_block->acceleration_time_inverse);
// We have not started the 2nd half of the trapezoid
bezier_2nd_half = false;
#endif
// Initialize Bresenham counters to 1/2 the ceiling
counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1);
#if ENABLED(MIXING_EXTRUDER)
MIXING_STEPPERS_LOOP(i)
counter_m[i] = -(current_block->mix_event_count[i] >> 1);
#endif
#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
e_hit = 2; // Needed for the case an endstop is already triggered before the new move begins.
// No 'change' can be detected.
#endif
#if ENABLED(Z_LATE_ENABLE)
// If delayed Z enable, postpone move for 1mS
if (current_block->steps[Z_AXIS] > 0) {
enable_Z();
_NEXT_ISR(HAL_STEPPER_TIMER_RATE / 1000); // Run at slow speed - 1 KHz
return;
}
#endif
}
else {
// If no more queued moves, postpone next check for 1mS
_NEXT_ISR(HAL_STEPPER_TIMER_RATE / 1000); // Run at slow speed - 1 KHz
return;
}
}
// Update endstops state, if enabled
#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
if (e_hit && ENDSTOPS_ENABLED) {
endstops.update();
e_hit--;
}
#else
if (ENDSTOPS_ENABLED) endstops.update();
#endif
// Take multiple steps per interrupt (For high speed moves)
bool all_steps_done = false;
for (uint8_t i = step_loops; i--;) {
#define _COUNTER(AXIS) counter_## AXIS
#define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
#define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
// Advance the Bresenham counter; start a pulse if the axis needs a step
#define PULSE_START(AXIS) do{ \
_COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), 0); } \
}while(0)
// Advance the Bresenham counter; start a pulse if the axis needs a step
#define STEP_TICK(AXIS) do { \
if (_COUNTER(AXIS) > 0) { \
_COUNTER(AXIS) -= current_block->step_event_count; \
count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
} \
}while(0)
// Stop an active pulse, if any
#define PULSE_STOP(AXIS) _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), 0)
/**
* Estimate the number of cycles that the stepper logic already takes
* up between the start and stop of the X stepper pulse.
*
* Currently this uses very modest estimates of around 5 cycles.
* True values may be derived by careful testing.
*
* Once any delay is added, the cost of the delay code itself
* may be subtracted from this value to get a more accurate delay.
* Delays under 20 cycles (1.25µs) will be very accurate, using NOPs.
* Longer delays use a loop. The resolution is 8 cycles.
*/
#if HAS_X_STEP
#define _CYCLE_APPROX_1 5
#else
#define _CYCLE_APPROX_1 0
#endif
#if ENABLED(X_DUAL_STEPPER_DRIVERS)
#define _CYCLE_APPROX_2 _CYCLE_APPROX_1 + 4
#else
#define _CYCLE_APPROX_2 _CYCLE_APPROX_1
#endif
#if HAS_Y_STEP
#define _CYCLE_APPROX_3 _CYCLE_APPROX_2 + 5
#else
#define _CYCLE_APPROX_3 _CYCLE_APPROX_2
#endif
#if ENABLED(Y_DUAL_STEPPER_DRIVERS)
#define _CYCLE_APPROX_4 _CYCLE_APPROX_3 + 4
#else
#define _CYCLE_APPROX_4 _CYCLE_APPROX_3
#endif
#if HAS_Z_STEP
#define _CYCLE_APPROX_5 _CYCLE_APPROX_4 + 5
#else
#define _CYCLE_APPROX_5 _CYCLE_APPROX_4
#endif
#if ENABLED(Z_DUAL_STEPPER_DRIVERS)
#define _CYCLE_APPROX_6 _CYCLE_APPROX_5 + 4
#else
#define _CYCLE_APPROX_6 _CYCLE_APPROX_5
#endif
#if DISABLED(LIN_ADVANCE)
#if ENABLED(MIXING_EXTRUDER)
#define _CYCLE_APPROX_7 _CYCLE_APPROX_6 + (MIXING_STEPPERS) * 6
#else
#define _CYCLE_APPROX_7 _CYCLE_APPROX_6 + 5
#endif
#else
#define _CYCLE_APPROX_7 _CYCLE_APPROX_6
#endif
#define CYCLES_EATEN_XYZE _CYCLE_APPROX_7
#define EXTRA_CYCLES_XYZE (STEP_PULSE_CYCLES - (CYCLES_EATEN_XYZE))
/**
* If a minimum pulse time was specified get the timer 0 value.
*
* On AVR the TCNT0 timer has an 8x prescaler, so it increments every 8 cycles.
* That's every 0.5µs on 16MHz and every 0.4µs on 20MHz.
* 20 counts of TCNT0 -by itself- is a good pulse delay.
* 10µs = 160 or 200 cycles.
*/
#if EXTRA_CYCLES_XYZE > 20
hal_timer_t pulse_start = HAL_timer_get_count(PULSE_TIMER_NUM);
#endif
#if HAS_X_STEP
PULSE_START(X);
#endif
#if HAS_Y_STEP
PULSE_START(Y);
#endif
#if HAS_Z_STEP
PULSE_START(Z);
#endif
#if ENABLED(LIN_ADVANCE)
counter_E += current_block->steps[E_AXIS];
if (counter_E > 0) {
#if DISABLED(MIXING_EXTRUDER)
// Don't step E here for mixing extruder
motor_direction(E_AXIS) ? --e_steps : ++e_steps;
#endif
}
#if ENABLED(MIXING_EXTRUDER)
// Step mixing steppers proportionally
const bool dir = motor_direction(E_AXIS);
MIXING_STEPPERS_LOOP(j) {
counter_m[j] += current_block->steps[E_AXIS];
if (counter_m[j] > 0) {
counter_m[j] -= current_block->mix_event_count[j];
dir ? --e_steps[j] : ++e_steps[j];
}
}
#endif
#else // !LIN_ADVANCE - use linear interpolation for E also
#if ENABLED(MIXING_EXTRUDER)
// Keep updating the single E axis
counter_E += current_block->steps[E_AXIS];
// Tick the counters used for this mix
MIXING_STEPPERS_LOOP(j) {
// Step mixing steppers (proportionally)
counter_m[j] += current_block->steps[E_AXIS];
// Step when the counter goes over zero
if (counter_m[j] > 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN);
}
#else // !MIXING_EXTRUDER
PULSE_START(E);
#endif
#endif // !LIN_ADVANCE
#if HAS_X_STEP
STEP_TICK(X);
#endif
#if HAS_Y_STEP
STEP_TICK(Y);
#endif
#if HAS_Z_STEP
STEP_TICK(Z);
#endif
STEP_TICK(E); // Always tick the single E axis
// For minimum pulse time wait before stopping pulses
#if EXTRA_CYCLES_XYZE > 20
while (EXTRA_CYCLES_XYZE > (uint32_t)(HAL_timer_get_count(PULSE_TIMER_NUM) - pulse_start) * (PULSE_TIMER_PRESCALE)) { /* nada */ }
pulse_start = HAL_timer_get_count(PULSE_TIMER_NUM);
#elif EXTRA_CYCLES_XYZE > 0
DELAY_NOPS(EXTRA_CYCLES_XYZE);
#endif
#if HAS_X_STEP
PULSE_STOP(X);
#endif
#if HAS_Y_STEP
PULSE_STOP(Y);
#endif
#if HAS_Z_STEP
PULSE_STOP(Z);
#endif
#if DISABLED(LIN_ADVANCE)
#if ENABLED(MIXING_EXTRUDER)
MIXING_STEPPERS_LOOP(j) {
if (counter_m[j] > 0) {
counter_m[j] -= current_block->mix_event_count[j];
En_STEP_WRITE(j, INVERT_E_STEP_PIN);
}
}
#else // !MIXING_EXTRUDER
PULSE_STOP(E);
#endif
#endif // !LIN_ADVANCE
if (++step_events_completed >= current_block->step_event_count) {
all_steps_done = true;
break;
}
// For minimum pulse time wait after stopping pulses also
#if EXTRA_CYCLES_XYZE > 20
if (i) while (EXTRA_CYCLES_XYZE > (uint32_t)(HAL_timer_get_count(PULSE_TIMER_NUM) - pulse_start) * (PULSE_TIMER_PRESCALE)) { /* nada */ }
#elif EXTRA_CYCLES_XYZE > 0
if (i) DELAY_NOPS(EXTRA_CYCLES_XYZE);
#endif
} // steps_loop
// Calculate new timer value
if (step_events_completed <= (uint32_t)current_block->accelerate_until) {
#if ENABLED(BEZIER_JERK_CONTROL)
// Get the next speed to use (Jerk limited!)
hal_timer_t acc_step_rate =
acceleration_time < current_block->acceleration_time
? _eval_bezier_curve(acceleration_time)
: current_block->cruise_rate;
#else
#ifdef CPU_32_BIT
MultiU32X24toH32(acc_step_rate, acceleration_time, current_block->acceleration_rate);
#else
MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
#endif
acc_step_rate += current_block->initial_rate;
// upper limit
NOMORE(acc_step_rate, current_block->nominal_rate);
#endif
// step_rate to timer interval
const hal_timer_t interval = calc_timer_interval(acc_step_rate);
SPLIT(interval); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
_NEXT_ISR(ocr_val);
acceleration_time += interval;
#if ENABLED(LIN_ADVANCE)
if (current_block->use_advance_lead) {
if (step_events_completed == step_loops || (e_steps && eISR_Rate != current_block->advance_speed)) {
nextAdvanceISR = 0; // Wake up eISR on first acceleration loop and fire ISR if final adv_rate is reached
eISR_Rate = current_block->advance_speed;
}
}
else {
eISR_Rate = ADV_NEVER;
if (e_steps) nextAdvanceISR = 0;
}
#endif // LIN_ADVANCE
}
else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
hal_timer_t step_rate;
#if ENABLED(BEZIER_JERK_CONTROL)
// If this is the 1st time we process the 2nd half of the trapezoid...
if (!bezier_2nd_half) {
// Initialize the Bézier speed curve
_calc_bezier_curve_coeffs(current_block->cruise_rate, current_block->final_rate, current_block->deceleration_time_inverse);
bezier_2nd_half = true;
}
// Calculate the next speed to use
step_rate = deceleration_time < current_block->deceleration_time
? _eval_bezier_curve(deceleration_time)
: current_block->final_rate;
#else
// Using the old trapezoidal control
#ifdef CPU_32_BIT
MultiU32X24toH32(step_rate, deceleration_time, current_block->acceleration_rate);
#else
MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
#endif
if (step_rate < acc_step_rate) { // Still decelerating?
step_rate = acc_step_rate - step_rate;
NOLESS(step_rate, current_block->final_rate);
}
else
step_rate = current_block->final_rate;
#endif
// step_rate to timer interval
const hal_timer_t interval = calc_timer_interval(step_rate);
SPLIT(interval); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
_NEXT_ISR(ocr_val);
deceleration_time += interval;
#if ENABLED(LIN_ADVANCE)
if (current_block->use_advance_lead) {
if (step_events_completed <= (uint32_t)current_block->decelerate_after + step_loops || (e_steps && eISR_Rate != current_block->advance_speed)) {
nextAdvanceISR = 0; // Wake up eISR on first deceleration loop
eISR_Rate = current_block->advance_speed;
}
}
else {
eISR_Rate = ADV_NEVER;
if (e_steps) nextAdvanceISR = 0;
}
#endif // LIN_ADVANCE
}
else {
#if ENABLED(LIN_ADVANCE)
// If we have esteps to execute, fire the next advance_isr "now"
if (e_steps && eISR_Rate != current_block->advance_speed) nextAdvanceISR = 0;
#endif
SPLIT(OCR1A_nominal); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
_NEXT_ISR(ocr_val);
// ensure we're running at the correct step rate, even if we just came off an acceleration
step_loops = step_loops_nominal;
}
#if DISABLED(LIN_ADVANCE)
// Make sure stepper ISR doesn't monopolize the CPU
HAL_timer_restrain(STEP_TIMER_NUM, STEP_TIMER_MIN_INTERVAL * HAL_TICKS_PER_US);
#endif
// If current block is finished, reset pointer
if (all_steps_done) {
current_block = NULL;
planner.discard_current_block();
}
}
#if ENABLED(LIN_ADVANCE)
#define CYCLES_EATEN_E (E_STEPPERS * 5)
#define EXTRA_CYCLES_E (STEP_PULSE_CYCLES - (CYCLES_EATEN_E))
// Timer interrupt for E. e_steps is set in the main routine;
void Stepper::advance_isr() {
#if ENABLED(MK2_MULTIPLEXER) // For SNMM even-numbered steppers are reversed
#define SET_E_STEP_DIR(INDEX) do{ if (e_steps) E0_DIR_WRITE(e_steps < 0 ? !INVERT_E## INDEX ##_DIR ^ TEST(INDEX, 0) : INVERT_E## INDEX ##_DIR ^ TEST(INDEX, 0)); }while(0)
#elif ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
#define SET_E_STEP_DIR(INDEX) do{ if (e_steps) { if (e_steps < 0) REV_E_DIR(); else NORM_E_DIR(); } }while(0)
#elif ENABLED(SWITCHING_EXTRUDER)
#define SET_E_STEP_DIR(INDEX) do{ if (e_steps) { switch (INDEX) { \
case 0: case 1: E0_DIR_WRITE(!INVERT_E0_DIR ^ TEST(INDEX, 0) ^ (e_steps < 0)); break; \
case 2: case 3: E1_DIR_WRITE(!INVERT_E1_DIR ^ TEST(INDEX, 0) ^ (e_steps < 0)); break; \
case 4: E2_DIR_WRITE(!INVERT_E2_DIR ^ TEST(INDEX, 0) ^ (e_steps < 0)); \
} } }while(0)
#else
#define SET_E_STEP_DIR(INDEX) do{ if (e_steps) E## INDEX ##_DIR_WRITE(e_steps < 0 ? INVERT_E## INDEX ##_DIR : !INVERT_E## INDEX ##_DIR); }while(0)
#endif
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
#define START_E_PULSE(INDEX) do{ if (e_steps) E_STEP_WRITE(!INVERT_E_STEP_PIN); }while(0)
#define STOP_E_PULSE(INDEX) do{ if (e_steps) { E_STEP_WRITE(INVERT_E_STEP_PIN); e_steps < 0 ? ++e_steps : --e_steps; } }while(0)
#else
#define START_E_PULSE(INDEX) do{ if (e_steps) E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN); }while(0)
#define STOP_E_PULSE(INDEX) do { if (e_steps) { e_steps < 0 ? ++e_steps : --e_steps; E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); } }while(0)
#endif
if (use_advance_lead) {
if (step_events_completed > LA_decelerate_after && current_adv_steps > final_adv_steps) {
e_steps--;
current_adv_steps--;
nextAdvanceISR = eISR_Rate;
}
else if (step_events_completed < LA_decelerate_after && current_adv_steps < max_adv_steps) {
//step_events_completed <= (uint32_t)current_block->accelerate_until) {
e_steps++;
current_adv_steps++;
nextAdvanceISR = eISR_Rate;
}
else {
nextAdvanceISR = ADV_NEVER;
eISR_Rate = ADV_NEVER;
}
}
else
nextAdvanceISR = ADV_NEVER;
switch (LA_active_extruder) {
case 0: SET_E_STEP_DIR(0); break;
#if EXTRUDERS > 1
case 1: SET_E_STEP_DIR(1); break;
#if EXTRUDERS > 2
case 2: SET_E_STEP_DIR(2); break;
#if EXTRUDERS > 3
case 3: SET_E_STEP_DIR(3); break;
#if EXTRUDERS > 4
case 4: SET_E_STEP_DIR(4); break;
#endif // EXTRUDERS > 4
#endif // EXTRUDERS > 3
#endif // EXTRUDERS > 2
#endif // EXTRUDERS > 1
}
// Step E stepper if we have steps
while (e_steps) {
#if EXTRA_CYCLES_E > 20
hal_timer_t pulse_start = HAL_timer_get_count(PULSE_TIMER_NUM);
#endif
switch (LA_active_extruder) {
case 0: START_E_PULSE(0); break;
#if EXTRUDERS > 1
case 1: START_E_PULSE(1); break;
#if EXTRUDERS > 2
case 2: START_E_PULSE(2); break;
#if EXTRUDERS > 3
case 3: START_E_PULSE(3); break;
#if EXTRUDERS > 4
case 4: START_E_PULSE(4); break;
#endif // EXTRUDERS > 4
#endif // EXTRUDERS > 3
#endif // EXTRUDERS > 2
#endif // EXTRUDERS > 1
}
// For minimum pulse time wait before stopping pulses
#if EXTRA_CYCLES_E > 20
while (EXTRA_CYCLES_E > (hal_timer_t)(HAL_timer_get_count(PULSE_TIMER_NUM) - pulse_start) * (PULSE_TIMER_PRESCALE)) { /* nada */ }
pulse_start = HAL_timer_get_count(PULSE_TIMER_NUM);
#elif EXTRA_CYCLES_E > 0
DELAY_NOPS(EXTRA_CYCLES_E);
#endif
switch (LA_active_extruder) {
case 0: STOP_E_PULSE(0); break;
#if EXTRUDERS > 1
case 1: STOP_E_PULSE(1); break;
#if EXTRUDERS > 2
case 2: STOP_E_PULSE(2); break;
#if EXTRUDERS > 3
case 3: STOP_E_PULSE(3); break;
#if EXTRUDERS > 4
case 4: STOP_E_PULSE(4); break;
#endif // EXTRUDERS > 4
#endif // EXTRUDERS > 3
#endif // EXTRUDERS > 2
#endif // EXTRUDERS > 1
}
// For minimum pulse time wait before looping
#if EXTRA_CYCLES_E > 20
if (e_steps) while (EXTRA_CYCLES_E > (hal_timer_t)(HAL_timer_get_count(PULSE_TIMER_NUM) - pulse_start) * (PULSE_TIMER_PRESCALE)) { /* nada */ }
#elif EXTRA_CYCLES_E > 0
if (e_steps) DELAY_NOPS(EXTRA_CYCLES_E);
#endif
} // e_steps
}
void Stepper::advance_isr_scheduler() {
// Run main stepping ISR if flagged
if (!nextMainISR) isr();
// Run Advance stepping ISR if flagged
if (!nextAdvanceISR) advance_isr();
// Is the next advance ISR scheduled before the next main ISR?
if (nextAdvanceISR <= nextMainISR) {
// Set up the next interrupt
HAL_timer_set_compare(STEP_TIMER_NUM, nextAdvanceISR);
// New interval for the next main ISR
if (nextMainISR) nextMainISR -= nextAdvanceISR;
// Will call Stepper::advance_isr on the next interrupt
nextAdvanceISR = 0;
}
else {
// The next main ISR comes first
HAL_timer_set_compare(STEP_TIMER_NUM, nextMainISR);
// New interval for the next advance ISR, if any
if (nextAdvanceISR && nextAdvanceISR != ADV_NEVER)
nextAdvanceISR -= nextMainISR;
// Will call Stepper::isr on the next interrupt
nextMainISR = 0;
}
// Make sure stepper ISR doesn't monopolize the CPU
HAL_timer_restrain(STEP_TIMER_NUM, STEP_TIMER_MIN_INTERVAL * HAL_TICKS_PER_US);
}
#endif // LIN_ADVANCE
void Stepper::init() {
// Init Digipot Motor Current
#if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
digipot_init();
#endif
#if MB(ALLIGATOR)
const float motor_current[] = MOTOR_CURRENT;
unsigned int digipot_motor = 0;
for (uint8_t i = 0; i < 3 + EXTRUDERS; i++) {
digipot_motor = 255 * (motor_current[i] / 2.5);
dac084s085::setValue(i, digipot_motor);
}
#endif//MB(ALLIGATOR)
// Init Microstepping Pins
#if HAS_MICROSTEPS
microstep_init();
#endif
// Init Dir Pins
#if HAS_X_DIR
X_DIR_INIT;
#endif
#if HAS_X2_DIR
X2_DIR_INIT;
#endif
#if HAS_Y_DIR
Y_DIR_INIT;
#if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
Y2_DIR_INIT;
#endif
#endif
#if HAS_Z_DIR
Z_DIR_INIT;
#if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
Z2_DIR_INIT;
#endif
#endif
#if HAS_E0_DIR
E0_DIR_INIT;
#endif
#if HAS_E1_DIR
E1_DIR_INIT;
#endif
#if HAS_E2_DIR
E2_DIR_INIT;
#endif
#if HAS_E3_DIR
E3_DIR_INIT;
#endif
#if HAS_E4_DIR
E4_DIR_INIT;
#endif
// Init Enable Pins - steppers default to disabled.
#if HAS_X_ENABLE
X_ENABLE_INIT;
if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
#if (ENABLED(DUAL_X_CARRIAGE) || ENABLED(X_DUAL_STEPPER_DRIVERS)) && HAS_X2_ENABLE
X2_ENABLE_INIT;
if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
#endif
#endif
#if HAS_Y_ENABLE
Y_ENABLE_INIT;
if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
#if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
Y2_ENABLE_INIT;
if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
#endif
#endif
#if HAS_Z_ENABLE
Z_ENABLE_INIT;
if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
#if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
Z2_ENABLE_INIT;
if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
#endif
#endif
#if HAS_E0_ENABLE
E0_ENABLE_INIT;
if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
#endif
#if HAS_E1_ENABLE
E1_ENABLE_INIT;
if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
#endif
#if HAS_E2_ENABLE
E2_ENABLE_INIT;
if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
#endif
#if HAS_E3_ENABLE
E3_ENABLE_INIT;
if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
#endif
#if HAS_E4_ENABLE
E4_ENABLE_INIT;
if (!E_ENABLE_ON) E4_ENABLE_WRITE(HIGH);
#endif
// Init endstops and pullups
endstops.init();
#define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
#define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
#define _DISABLE(AXIS) disable_## AXIS()
#define AXIS_INIT(AXIS, PIN) \
_STEP_INIT(AXIS); \
_WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
_DISABLE(AXIS)
#define E_AXIS_INIT(NUM) AXIS_INIT(E## NUM, E)
// Init Step Pins
#if HAS_X_STEP
#if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE)
X2_STEP_INIT;
X2_STEP_WRITE(INVERT_X_STEP_PIN);
#endif
AXIS_INIT(X, X);
#endif
#if HAS_Y_STEP
#if ENABLED(Y_DUAL_STEPPER_DRIVERS)
Y2_STEP_INIT;
Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
#endif
AXIS_INIT(Y, Y);
#endif
#if HAS_Z_STEP
#if ENABLED(Z_DUAL_STEPPER_DRIVERS)
Z2_STEP_INIT;
Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
#endif
AXIS_INIT(Z, Z);
#endif
#if HAS_E0_STEP
E_AXIS_INIT(0);
#endif
#if HAS_E1_STEP
E_AXIS_INIT(1);
#endif
#if HAS_E2_STEP
E_AXIS_INIT(2);
#endif
#if HAS_E3_STEP
E_AXIS_INIT(3);
#endif
#if HAS_E4_STEP
E_AXIS_INIT(4);
#endif
#ifdef __AVR__
// waveform generation = 0100 = CTC
SET_WGM(1, CTC_OCRnA);
// output mode = 00 (disconnected)
SET_COMA(1, NORMAL);
// Set the timer pre-scaler
// Generally we use a divider of 8, resulting in a 2MHz timer
// frequency on a 16MHz MCU. If you are going to change this, be
// sure to regenerate speed_lookuptable.h with
// create_speed_lookuptable.py
SET_CS(1, PRESCALER_8); // CS 2 = 1/8 prescaler
// Init Stepper ISR to 122 Hz for quick starting
OCR1A = 0x4000;
TCNT1 = 0;
#else
// Init Stepper ISR to 122 Hz for quick starting
HAL_timer_start(STEP_TIMER_NUM, 122);
#endif
ENABLE_STEPPER_DRIVER_INTERRUPT();
endstops.enable(true); // Start with endstops active. After homing they can be disabled
sei();
set_directions(); // Init directions to last_direction_bits = 0
}
/**
* Block until all buffered steps are executed / cleaned
*/
void Stepper::synchronize() { while (planner.has_blocks_queued() || cleaning_buffer_counter) idle(); }
/**
* Set the stepper positions directly in steps
*
* The input is based on the typical per-axis XYZ steps.
* For CORE machines XYZ needs to be translated to ABC.
*
* This allows get_axis_position_mm to correctly
* derive the current XYZ position later on.
*/
void Stepper::_set_position(const int32_t &a, const int32_t &b, const int32_t &c, const int32_t &e) {
#if CORE_IS_XY
// corexy positioning
// these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
count_position[A_AXIS] = a + b;
count_position[B_AXIS] = CORESIGN(a - b);
count_position[Z_AXIS] = c;
#elif CORE_IS_XZ
// corexz planning
count_position[A_AXIS] = a + c;
count_position[Y_AXIS] = b;
count_position[C_AXIS] = CORESIGN(a - c);
#elif CORE_IS_YZ
// coreyz planning
count_position[X_AXIS] = a;
count_position[B_AXIS] = b + c;
count_position[C_AXIS] = CORESIGN(b - c);
#else
// default non-h-bot planning
count_position[X_AXIS] = a;
count_position[Y_AXIS] = b;
count_position[Z_AXIS] = c;
#endif
count_position[E_AXIS] = e;
}
/**
* Get a stepper's position in steps.
*/
int32_t Stepper::position(const AxisEnum axis) {
CRITICAL_SECTION_START;
const int32_t count_pos = count_position[axis];
CRITICAL_SECTION_END;
return count_pos;
}
/**
* Get an axis position according to stepper position(s)
* For CORE machines apply translation from ABC to XYZ.
*/
float Stepper::get_axis_position_mm(const AxisEnum axis) {
float axis_steps;
#if IS_CORE
// Requesting one of the "core" axes?
if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
CRITICAL_SECTION_START;
// ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
// ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
axis_steps = 0.5f * (
axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
: count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
);
CRITICAL_SECTION_END;
}
else
axis_steps = position(axis);
#else
axis_steps = position(axis);
#endif
return axis_steps * planner.steps_to_mm[axis];
}
void Stepper::finish_and_disable() {
synchronize();
disable_all_steppers();
}
void Stepper::quick_stop() {
DISABLE_STEPPER_DRIVER_INTERRUPT();
kill_current_block();
current_block = NULL;
cleaning_buffer_counter = 5000;
planner.clear_block_buffer();
ENABLE_STEPPER_DRIVER_INTERRUPT();
#if ENABLED(ULTRA_LCD)
planner.clear_block_buffer_runtime();
#endif
}
void Stepper::endstop_triggered(const AxisEnum axis) {
#if IS_CORE
endstops_trigsteps[axis] = 0.5f * (
axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
: count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
);
#else // !COREXY && !COREXZ && !COREYZ
endstops_trigsteps[axis] = count_position[axis];
#endif // !COREXY && !COREXZ && !COREYZ
kill_current_block();
cleaning_buffer_counter = -1; // Discard the rest of the move
}
void Stepper::report_positions() {
CRITICAL_SECTION_START;
const int32_t xpos = count_position[X_AXIS],
ypos = count_position[Y_AXIS],
zpos = count_position[Z_AXIS];
CRITICAL_SECTION_END;
#if CORE_IS_XY || CORE_IS_XZ || IS_DELTA || IS_SCARA
SERIAL_PROTOCOLPGM(MSG_COUNT_A);
#else
SERIAL_PROTOCOLPGM(MSG_COUNT_X);
#endif
SERIAL_PROTOCOL(xpos);
#if CORE_IS_XY || CORE_IS_YZ || IS_DELTA || IS_SCARA
SERIAL_PROTOCOLPGM(" B:");
#else
SERIAL_PROTOCOLPGM(" Y:");
#endif
SERIAL_PROTOCOL(ypos);
#if CORE_IS_XZ || CORE_IS_YZ || IS_DELTA
SERIAL_PROTOCOLPGM(" C:");
#else
SERIAL_PROTOCOLPGM(" Z:");
#endif
SERIAL_PROTOCOL(zpos);
SERIAL_EOL();
}
#if ENABLED(BABYSTEPPING)
#if ENABLED(DELTA)
#define CYCLES_EATEN_BABYSTEP (2 * 15)
#else
#define CYCLES_EATEN_BABYSTEP 0
#endif
#define EXTRA_CYCLES_BABYSTEP (STEP_PULSE_CYCLES - (CYCLES_EATEN_BABYSTEP))
#define _ENABLE(AXIS) enable_## AXIS()
#define _READ_DIR(AXIS) AXIS ##_DIR_READ
#define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
#define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
#if EXTRA_CYCLES_BABYSTEP > 20
#define _SAVE_START const hal_timer_t pulse_start = HAL_timer_get_count(STEP_TIMER_NUM)
#define _PULSE_WAIT while (EXTRA_CYCLES_BABYSTEP > (uint32_t)(HAL_timer_get_count(STEP_TIMER_NUM) - pulse_start) * (PULSE_TIMER_PRESCALE)) { /* nada */ }
#else
#define _SAVE_START NOOP
#if EXTRA_CYCLES_BABYSTEP > 0
#define _PULSE_WAIT DELAY_NOPS(EXTRA_CYCLES_BABYSTEP)
#elif STEP_PULSE_CYCLES > 0
#define _PULSE_WAIT NOOP
#elif ENABLED(DELTA)
#define _PULSE_WAIT delayMicroseconds(2);
#else
#define _PULSE_WAIT delayMicroseconds(4);
#endif
#endif
#define BABYSTEP_AXIS(AXIS, INVERT, DIR) { \
const uint8_t old_dir = _READ_DIR(AXIS); \
_ENABLE(AXIS); \
_SAVE_START; \
_APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^DIR^INVERT); \
_PULSE_WAIT; \
_APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
_PULSE_WAIT; \
_APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
_APPLY_DIR(AXIS, old_dir); \
}
// MUST ONLY BE CALLED BY AN ISR,
// No other ISR should ever interrupt this!
void Stepper::babystep(const AxisEnum axis, const bool direction) {
cli();
switch (axis) {
#if ENABLED(BABYSTEP_XY)
case X_AXIS:
#if CORE_IS_XY
BABYSTEP_AXIS(X, false, direction);
BABYSTEP_AXIS(Y, false, direction);
#elif CORE_IS_XZ
BABYSTEP_AXIS(X, false, direction);
BABYSTEP_AXIS(Z, false, direction);
#else
BABYSTEP_AXIS(X, false, direction);
#endif
break;
case Y_AXIS:
#if CORE_IS_XY
BABYSTEP_AXIS(X, false, direction);
BABYSTEP_AXIS(Y, false, direction^(CORESIGN(1)<0));
#elif CORE_IS_YZ
BABYSTEP_AXIS(Y, false, direction);
BABYSTEP_AXIS(Z, false, direction^(CORESIGN(1)<0));
#else
BABYSTEP_AXIS(Y, false, direction);
#endif
break;
#endif
case Z_AXIS: {
#if CORE_IS_XZ
BABYSTEP_AXIS(X, BABYSTEP_INVERT_Z, direction);
BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z, direction^(CORESIGN(1)<0));
#elif CORE_IS_YZ
BABYSTEP_AXIS(Y, BABYSTEP_INVERT_Z, direction);
BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z, direction^(CORESIGN(1)<0));
#elif DISABLED(DELTA)
BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z, direction);
#else // DELTA
const bool z_direction = direction ^ BABYSTEP_INVERT_Z;
enable_X();
enable_Y();
enable_Z();
const uint8_t old_x_dir_pin = X_DIR_READ,
old_y_dir_pin = Y_DIR_READ,
old_z_dir_pin = Z_DIR_READ;
X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
_SAVE_START;
X_STEP_WRITE(!INVERT_X_STEP_PIN);
Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
_PULSE_WAIT;
X_STEP_WRITE(INVERT_X_STEP_PIN);
Y_STEP_WRITE(INVERT_Y_STEP_PIN);
Z_STEP_WRITE(INVERT_Z_STEP_PIN);
// Restore direction bits
X_DIR_WRITE(old_x_dir_pin);
Y_DIR_WRITE(old_y_dir_pin);
Z_DIR_WRITE(old_z_dir_pin);
#endif
} break;
default: break;
}
sei();
}
#endif // BABYSTEPPING
/**
* Software-controlled Stepper Motor Current
*/
#if HAS_DIGIPOTSS
// From Arduino DigitalPotControl example
void Stepper::digitalPotWrite(const int16_t address, const int16_t value) {
WRITE(DIGIPOTSS_PIN, LOW); // Take the SS pin low to select the chip
SPI.transfer(address); // Send the address and value via SPI
SPI.transfer(value);
WRITE(DIGIPOTSS_PIN, HIGH); // Take the SS pin high to de-select the chip
//delay(10);
}
#endif // HAS_DIGIPOTSS
#if HAS_MOTOR_CURRENT_PWM
void Stepper::refresh_motor_power() {
for (uint8_t i = 0; i < COUNT(motor_current_setting); ++i) {
switch (i) {
#if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
case 0:
#endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
case 1:
#endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
case 2:
#endif
digipot_current(i, motor_current_setting[i]);
default: break;
}
}
}
#endif // HAS_MOTOR_CURRENT_PWM
#if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
void Stepper::digipot_current(const uint8_t driver, const int current) {
#if HAS_DIGIPOTSS
const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
digitalPotWrite(digipot_ch[driver], current);
#elif HAS_MOTOR_CURRENT_PWM
if (WITHIN(driver, 0, 2))
motor_current_setting[driver] = current; // update motor_current_setting
#define _WRITE_CURRENT_PWM(P) analogWrite(MOTOR_CURRENT_PWM_## P ##_PIN, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
switch (driver) {
#if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
case 0: _WRITE_CURRENT_PWM(XY); break;
#endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
case 1: _WRITE_CURRENT_PWM(Z); break;
#endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
case 2: _WRITE_CURRENT_PWM(E); break;
#endif
}
#endif
}
void Stepper::digipot_init() {
#if HAS_DIGIPOTSS
static const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
SPI.begin();
SET_OUTPUT(DIGIPOTSS_PIN);
for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) {
//digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
digipot_current(i, digipot_motor_current[i]);
}
#elif HAS_MOTOR_CURRENT_PWM
#if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
SET_OUTPUT(MOTOR_CURRENT_PWM_XY_PIN);
#endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
SET_OUTPUT(MOTOR_CURRENT_PWM_Z_PIN);
#endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
SET_OUTPUT(MOTOR_CURRENT_PWM_E_PIN);
#endif
refresh_motor_power();
// Set Timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
SET_CS5(PRESCALER_1);
#endif
}
#endif
#if HAS_MICROSTEPS
/**
* Software-controlled Microstepping
*/
void Stepper::microstep_init() {
SET_OUTPUT(X_MS1_PIN);
SET_OUTPUT(X_MS2_PIN);
#if HAS_Y_MICROSTEPS
SET_OUTPUT(Y_MS1_PIN);
SET_OUTPUT(Y_MS2_PIN);
#endif
#if HAS_Z_MICROSTEPS
SET_OUTPUT(Z_MS1_PIN);
SET_OUTPUT(Z_MS2_PIN);
#endif
#if HAS_E0_MICROSTEPS
SET_OUTPUT(E0_MS1_PIN);
SET_OUTPUT(E0_MS2_PIN);
#endif
#if HAS_E1_MICROSTEPS
SET_OUTPUT(E1_MS1_PIN);
SET_OUTPUT(E1_MS2_PIN);
#endif
#if HAS_E2_MICROSTEPS
SET_OUTPUT(E2_MS1_PIN);
SET_OUTPUT(E2_MS2_PIN);
#endif
#if HAS_E3_MICROSTEPS
SET_OUTPUT(E3_MS1_PIN);
SET_OUTPUT(E3_MS2_PIN);
#endif
#if HAS_E4_MICROSTEPS
SET_OUTPUT(E4_MS1_PIN);
SET_OUTPUT(E4_MS2_PIN);
#endif
static const uint8_t microstep_modes[] = MICROSTEP_MODES;
for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
microstep_mode(i, microstep_modes[i]);
}
void Stepper::microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2) {
if (ms1 >= 0) switch (driver) {
case 0: WRITE(X_MS1_PIN, ms1); break;
#if HAS_Y_MICROSTEPS
case 1: WRITE(Y_MS1_PIN, ms1); break;
#endif
#if HAS_Z_MICROSTEPS
case 2: WRITE(Z_MS1_PIN, ms1); break;
#endif
#if HAS_E0_MICROSTEPS
case 3: WRITE(E0_MS1_PIN, ms1); break;
#endif
#if HAS_E1_MICROSTEPS
case 4: WRITE(E1_MS1_PIN, ms1); break;
#endif
#if HAS_E2_MICROSTEPS
case 5: WRITE(E2_MS1_PIN, ms1); break;
#endif
#if HAS_E3_MICROSTEPS
case 6: WRITE(E3_MS1_PIN, ms1); break;
#endif
#if HAS_E4_MICROSTEPS
case 7: WRITE(E4_MS1_PIN, ms1); break;
#endif
}
if (ms2 >= 0) switch (driver) {
case 0: WRITE(X_MS2_PIN, ms2); break;
#if HAS_Y_MICROSTEPS
case 1: WRITE(Y_MS2_PIN, ms2); break;
#endif
#if HAS_Z_MICROSTEPS
case 2: WRITE(Z_MS2_PIN, ms2); break;
#endif
#if HAS_E0_MICROSTEPS
case 3: WRITE(E0_MS2_PIN, ms2); break;
#endif
#if HAS_E1_MICROSTEPS
case 4: WRITE(E1_MS2_PIN, ms2); break;
#endif
#if HAS_E2_MICROSTEPS
case 5: WRITE(E2_MS2_PIN, ms2); break;
#endif
#if HAS_E3_MICROSTEPS
case 6: WRITE(E3_MS2_PIN, ms2); break;
#endif
#if HAS_E4_MICROSTEPS
case 7: WRITE(E4_MS2_PIN, ms2); break;
#endif
}
}
void Stepper::microstep_mode(const uint8_t driver, const uint8_t stepping_mode) {
switch (stepping_mode) {
case 1: microstep_ms(driver, MICROSTEP1); break;
#if ENABLED(HEROIC_STEPPER_DRIVERS)
case 128: microstep_ms(driver, MICROSTEP128); break;
#else
case 2: microstep_ms(driver, MICROSTEP2); break;
case 4: microstep_ms(driver, MICROSTEP4); break;
#endif
case 8: microstep_ms(driver, MICROSTEP8); break;
case 16: microstep_ms(driver, MICROSTEP16); break;
#if MB(ALLIGATOR)
case 32: microstep_ms(driver, MICROSTEP32); break;
#endif
default: SERIAL_ERROR_START(); SERIAL_ERRORLNPGM("Microsteps unavailable"); break;
}
}
void Stepper::microstep_readings() {
SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins");
SERIAL_PROTOCOLPGM("X: ");
SERIAL_PROTOCOL(READ(X_MS1_PIN));
SERIAL_PROTOCOLLN(READ(X_MS2_PIN));
#if HAS_Y_MICROSTEPS
SERIAL_PROTOCOLPGM("Y: ");
SERIAL_PROTOCOL(READ(Y_MS1_PIN));
SERIAL_PROTOCOLLN(READ(Y_MS2_PIN));
#endif
#if HAS_Z_MICROSTEPS
SERIAL_PROTOCOLPGM("Z: ");
SERIAL_PROTOCOL(READ(Z_MS1_PIN));
SERIAL_PROTOCOLLN(READ(Z_MS2_PIN));
#endif
#if HAS_E0_MICROSTEPS
SERIAL_PROTOCOLPGM("E0: ");
SERIAL_PROTOCOL(READ(E0_MS1_PIN));
SERIAL_PROTOCOLLN(READ(E0_MS2_PIN));
#endif
#if HAS_E1_MICROSTEPS
SERIAL_PROTOCOLPGM("E1: ");
SERIAL_PROTOCOL(READ(E1_MS1_PIN));
SERIAL_PROTOCOLLN(READ(E1_MS2_PIN));
#endif
#if HAS_E2_MICROSTEPS
SERIAL_PROTOCOLPGM("E2: ");
SERIAL_PROTOCOL(READ(E2_MS1_PIN));
SERIAL_PROTOCOLLN(READ(E2_MS2_PIN));
#endif
#if HAS_E3_MICROSTEPS
SERIAL_PROTOCOLPGM("E3: ");
SERIAL_PROTOCOL(READ(E3_MS1_PIN));
SERIAL_PROTOCOLLN(READ(E3_MS2_PIN));
#endif
#if HAS_E4_MICROSTEPS
SERIAL_PROTOCOLPGM("E4: ");
SERIAL_PROTOCOL(READ(E4_MS1_PIN));
SERIAL_PROTOCOLLN(READ(E4_MS2_PIN));
#endif
}
#endif // HAS_MICROSTEPS