marlin2_a10m/Marlin/src/HAL/HAL_DUE/EepromEmulation_Due.cpp
2019-03-17 07:56:35 -05:00

1001 lines
33 KiB
C++

/* EEPROM emulation over flash with reduced wear
*
* We will use 2 contiguous groups of pages as main and alternate.
* We want an structure that allows to read as fast as possible,
* without the need of scanning the whole FLASH memory.
*
* FLASH bits default erased state is 1, and can be set to 0
* on a per bit basis. To reset them to 1, a full page erase
* is needed.
*
* Values are stored as differences that should be applied to a
* completely erased EEPROM (filled with 0xFFs). We just encode
* the starting address of the values to change, the length of
* the block of new values, and the values themselves. All diffs
* are accumulated into a RAM buffer, compacted into the least
* amount of non overlapping diffs possible and sorted by starting
* address before being saved into the next available page of FLASH
* of the current group.
* Once the current group is completely full, we compact it and save
* it into the other group, then erase the current group and switch
* to that new group and set it as current.
*
* The FLASH endurance is about 1/10 ... 1/100 of an EEPROM
* endurance, but EEPROM endurance is specified per byte, not
* per page. We can't emulate EE endurance with FLASH for all
* bytes, but we can emulate endurance for a given percent of
* bytes.
*
*/
#ifdef ARDUINO_ARCH_SAM
#include "../shared/persistent_store_api.h"
#include "../../inc/MarlinConfig.h"
#if ENABLED(EEPROM_SETTINGS) && DISABLED(I2C_EEPROM, SPI_EEPROM)
#include <Arduino.h>
#define EEPROMSize 4096
#define PagesPerGroup 128
#define GroupCount 2
#define PageSize 256u
/* Flash storage */
typedef struct FLASH_SECTOR {
uint8_t page[PageSize];
} FLASH_SECTOR_T;
#define PAGE_FILL \
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF
#define FLASH_INIT_FILL \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL
/* This is the FLASH area used to emulate a 2Kbyte EEPROM -- We need this buffer aligned
to a 256 byte boundary. */
static const uint8_t flashStorage[PagesPerGroup * GroupCount * PageSize] __attribute__ ((aligned (PageSize))) = { FLASH_INIT_FILL };
/* Get the address of an specific page */
static const FLASH_SECTOR_T* getFlashStorage(int page) {
return (const FLASH_SECTOR_T*)&flashStorage[page*PageSize];
}
static uint8_t buffer[256] = {0}, // The RAM buffer to accumulate writes
curPage = 0, // Current FLASH page inside the group
curGroup = 0xFF; // Current FLASH group
//#define EE_EMU_DEBUG
#ifdef EE_EMU_DEBUG
static void ee_Dump(int page,const void* data) {
const uint8_t* c = (const uint8_t*) data;
char buffer[80];
sprintf_P(buffer, PSTR("Page: %d (0x%04x)\n"), page, page);
SERIAL_ECHO(buffer);
char* p = &buffer[0];
for (int i = 0; i< PageSize; ++i) {
if ((i & 0xF) == 0) p += sprintf_P(p, PSTR("%04x] "), i);
p += sprintf_P(p, PSTR(" %02x"), c[i]);
if ((i & 0xF) == 0xF) {
*p++ = '\n';
*p = 0;
SERIAL_ECHO(buffer);
p = &buffer[0];
}
}
}
#endif
/* Flash Writing Protection Key */
#define FWP_KEY 0x5Au
#if SAM4S_SERIES
#define EEFC_FCR_FCMD(value) \
((EEFC_FCR_FCMD_Msk & ((value) << EEFC_FCR_FCMD_Pos)))
#define EEFC_ERROR_FLAGS (EEFC_FSR_FLOCKE | EEFC_FSR_FCMDE | EEFC_FSR_FLERR)
#else
#define EEFC_ERROR_FLAGS (EEFC_FSR_FLOCKE | EEFC_FSR_FCMDE)
#endif
/**
* Writes the contents of the specified page (no previous erase)
* @param page (page #)
* @param data (pointer to the data buffer)
*/
__attribute__ ((long_call, section (".ramfunc")))
static bool ee_PageWrite(uint16_t page,const void* data) {
uint16_t i;
uint32_t addrflash = ((uint32_t)getFlashStorage(page));
// Read the flash contents
uint32_t pageContents[PageSize>>2];
memcpy(pageContents, (void*)addrflash, PageSize);
// We ONLY want to toggle bits that have changed, and that have changed to 0.
// SAM3X8E tends to destroy contiguous bits if reprogrammed without erasing, so
// we try by all means to avoid this. That is why it says: "The Partial
// Programming mode works only with 128-bit (or higher) boundaries. It cannot
// be used with boundaries lower than 128 bits (8, 16 or 32-bit for example)."
// All bits that did not change, set them to 1.
for (i = 0; i <PageSize >> 2; i++)
pageContents[i] = (((uint32_t*)data)[i]) | (~(pageContents[i] ^ ((uint32_t*)data)[i]));
#ifdef EE_EMU_DEBUG
SERIAL_ECHO_START();
SERIAL_ECHOLNPAIR("EEPROM PageWrite ", page);
SERIAL_ECHOLNPAIR(" in FLASH address ", (uint32_t)addrflash);
SERIAL_ECHOLNPAIR(" base address ", (uint32_t)getFlashStorage(0));
SERIAL_FLUSH();
#endif
// Get the page relative to the start of the EFC controller, and the EFC controller to use
Efc *efc;
uint16_t fpage;
if (addrflash >= IFLASH1_ADDR) {
efc = EFC1;
fpage = (addrflash - IFLASH1_ADDR) / IFLASH1_PAGE_SIZE;
}
else {
efc = EFC0;
fpage = (addrflash - IFLASH0_ADDR) / IFLASH0_PAGE_SIZE;
}
// Get the page that must be unlocked, then locked
uint16_t lpage = fpage & (~((IFLASH0_LOCK_REGION_SIZE / IFLASH0_PAGE_SIZE) - 1));
// Disable all interrupts
__disable_irq();
// Get the FLASH wait states
uint32_t orgWS = (efc->EEFC_FMR & EEFC_FMR_FWS_Msk) >> EEFC_FMR_FWS_Pos;
// Set wait states to 6 (SAM errata)
efc->EEFC_FMR = (efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk)) | EEFC_FMR_FWS(6);
// Unlock the flash page
uint32_t status;
efc->EEFC_FCR = EEFC_FCR_FKEY(FWP_KEY) | EEFC_FCR_FARG(lpage) | EEFC_FCR_FCMD(EFC_FCMD_CLB);
while (((status = efc->EEFC_FSR) & EEFC_FSR_FRDY) != EEFC_FSR_FRDY) {
// force compiler to not optimize this -- NOPs don't work!
__asm__ __volatile__("");
};
if ((status & EEFC_ERROR_FLAGS) != 0) {
// Restore original wait states
efc->EEFC_FMR = (efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk)) | EEFC_FMR_FWS(orgWS);
// Reenable interrupts
__enable_irq();
#ifdef EE_EMU_DEBUG
SERIAL_ECHO_START();
SERIAL_ECHOLNPAIR("EEPROM Unlock failure for page ", page);
#endif
return false;
}
// Write page and lock: Writing 8-bit and 16-bit data is not allowed and may lead to unpredictable data corruption.
const uint32_t * aligned_src = (const uint32_t *) &pageContents[0]; /*data;*/
uint32_t * p_aligned_dest = (uint32_t *) addrflash;
for (i = 0; i < (IFLASH0_PAGE_SIZE / sizeof(uint32_t)); ++i) {
*p_aligned_dest++ = *aligned_src++;
}
efc->EEFC_FCR = EEFC_FCR_FKEY(FWP_KEY) | EEFC_FCR_FARG(fpage) | EEFC_FCR_FCMD(EFC_FCMD_WPL);
while (((status = efc->EEFC_FSR) & EEFC_FSR_FRDY) != EEFC_FSR_FRDY) {
// force compiler to not optimize this -- NOPs don't work!
__asm__ __volatile__("");
};
if ((status & EEFC_ERROR_FLAGS) != 0) {
// Restore original wait states
efc->EEFC_FMR = (efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk)) | EEFC_FMR_FWS(orgWS);
// Reenable interrupts
__enable_irq();
#ifdef EE_EMU_DEBUG
SERIAL_ECHO_START();
SERIAL_ECHOLNPAIR("EEPROM Write failure for page ", page);
#endif
return false;
}
// Restore original wait states
efc->EEFC_FMR = (efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk)) | EEFC_FMR_FWS(orgWS);
// Reenable interrupts
__enable_irq();
// Compare contents
if (memcmp(getFlashStorage(page),data,PageSize)) {
#ifdef EE_EMU_DEBUG
SERIAL_ECHO_START();
SERIAL_ECHOLNPAIR("EEPROM Verify Write failure for page ", page);
ee_Dump( page,(uint32_t *) addrflash);
ee_Dump(-page,data);
// Calculate count of changed bits
uint32_t* p1 = (uint32_t*)addrflash;
uint32_t* p2 = (uint32_t*)data;
int count = 0;
for (i =0; i<PageSize >> 2; i++) {
if (p1[i] != p2[i]) {
uint32_t delta = p1[i] ^ p2[i];
while (delta) {
if ((delta&1) != 0)
count++;
delta >>= 1;
}
}
}
SERIAL_ECHOLNPAIR("--> Differing bits: ", count);
#endif
return false;
}
return true;
}
/**
* Erases the contents of the specified page
* @param page (page #)
*/
__attribute__ ((long_call, section (".ramfunc")))
static bool ee_PageErase(uint16_t page) {
uint16_t i;
uint32_t addrflash = ((uint32_t)getFlashStorage(page));
#ifdef EE_EMU_DEBUG
SERIAL_ECHO_START();
SERIAL_ECHOLNPAIR("EEPROM PageErase ", page);
SERIAL_ECHOLNPAIR(" in FLASH address ", (uint32_t)addrflash);
SERIAL_ECHOLNPAIR(" base address ", (uint32_t)getFlashStorage(0));
SERIAL_FLUSH();
#endif
// Get the page relative to the start of the EFC controller, and the EFC controller to use
Efc *efc;
uint16_t fpage;
if (addrflash >= IFLASH1_ADDR) {
efc = EFC1;
fpage = (addrflash - IFLASH1_ADDR) / IFLASH1_PAGE_SIZE;
}
else {
efc = EFC0;
fpage = (addrflash - IFLASH0_ADDR) / IFLASH0_PAGE_SIZE;
}
// Get the page that must be unlocked, then locked
uint16_t lpage = fpage & (~((IFLASH0_LOCK_REGION_SIZE / IFLASH0_PAGE_SIZE) - 1));
// Disable all interrupts
__disable_irq();
// Get the FLASH wait states
uint32_t orgWS = (efc->EEFC_FMR & EEFC_FMR_FWS_Msk) >> EEFC_FMR_FWS_Pos;
// Set wait states to 6 (SAM errata)
efc->EEFC_FMR = (efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk)) | EEFC_FMR_FWS(6);
// Unlock the flash page
uint32_t status;
efc->EEFC_FCR = EEFC_FCR_FKEY(FWP_KEY) | EEFC_FCR_FARG(lpage) | EEFC_FCR_FCMD(EFC_FCMD_CLB);
while (((status = efc->EEFC_FSR) & EEFC_FSR_FRDY) != EEFC_FSR_FRDY) {
// force compiler to not optimize this -- NOPs don't work!
__asm__ __volatile__("");
};
if ((status & EEFC_ERROR_FLAGS) != 0) {
// Restore original wait states
efc->EEFC_FMR = (efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk)) | EEFC_FMR_FWS(orgWS);
// Reenable interrupts
__enable_irq();
#ifdef EE_EMU_DEBUG
SERIAL_ECHO_START();
SERIAL_ECHOLNPAIR("EEPROM Unlock failure for page ",page);
#endif
return false;
}
// Erase Write page and lock: Writing 8-bit and 16-bit data is not allowed and may lead to unpredictable data corruption.
uint32_t * p_aligned_dest = (uint32_t *) addrflash;
for (i = 0; i < (IFLASH0_PAGE_SIZE / sizeof(uint32_t)); ++i) {
*p_aligned_dest++ = 0xFFFFFFFF;
}
efc->EEFC_FCR = EEFC_FCR_FKEY(FWP_KEY) | EEFC_FCR_FARG(fpage) | EEFC_FCR_FCMD(EFC_FCMD_EWPL);
while (((status = efc->EEFC_FSR) & EEFC_FSR_FRDY) != EEFC_FSR_FRDY) {
// force compiler to not optimize this -- NOPs don't work!
__asm__ __volatile__("");
};
if ((status & EEFC_ERROR_FLAGS) != 0) {
// Restore original wait states
efc->EEFC_FMR = (efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk)) | EEFC_FMR_FWS(orgWS);
// Reenable interrupts
__enable_irq();
#ifdef EE_EMU_DEBUG
SERIAL_ECHO_START();
SERIAL_ECHOLNPAIR("EEPROM Erase failure for page ",page);
#endif
return false;
}
// Restore original wait states
efc->EEFC_FMR = (efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk)) | EEFC_FMR_FWS(orgWS);
// Reenable interrupts
__enable_irq();
// Check erase
uint32_t * aligned_src = (uint32_t *) addrflash;
for (i = 0; i < PageSize >> 2; i++) {
if (*aligned_src++ != 0xFFFFFFFF) {
#ifdef EE_EMU_DEBUG
SERIAL_ECHO_START();
SERIAL_ECHOLNPAIR("EEPROM Verify Erase failure for page ",page);
ee_Dump( page,(uint32_t *) addrflash);
#endif
return false;
}
}
return true;
}
static uint8_t ee_Read(uint32_t address, bool excludeRAMBuffer = false) {
uint32_t baddr;
uint32_t blen;
// If we were requested an address outside of the emulated range, fail now
if (address >= EEPROMSize)
return false;
// Check that the value is not contained in the RAM buffer
if (!excludeRAMBuffer) {
uint16_t i = 0;
while (i <= (PageSize - 4)) { /* (PageSize - 4) because otherwise, there is not enough room for data and headers */
// Get the address of the block
baddr = buffer[i] | (buffer[i + 1] << 8);
// Get the length of the block
blen = buffer[i + 2];
// If we reach the end of the list, break loop
if (blen == 0xFF)
break;
// Check if data is contained in this block
if (address >= baddr &&
address < (baddr + blen)) {
// Yes, it is contained. Return it!
return buffer[i + 3 + address - baddr];
}
// As blocks are always sorted, if the starting address of this block is higher
// than the address we are looking for, break loop now - We wont find the value
// associated to the address
if (baddr > address)
break;
// Jump to the next block
i += 3 + blen;
}
}
// It is NOT on the RAM buffer. It could be stored in FLASH. We are
// ensured on a given FLASH page, address contents are never repeated
// but on different pages, there is no such warranty, so we must go
// backwards from the last written FLASH page to the first one.
for (int page = curPage - 1; page >= 0; --page) {
// Get a pointer to the flash page
uint8_t* pflash = (uint8_t*)getFlashStorage(page + curGroup * PagesPerGroup);
uint16_t i = 0;
while (i <= (PageSize - 4)) { /* (PageSize - 4) because otherwise, there is not enough room for data and headers */
// Get the address of the block
baddr = pflash[i] | (pflash[i + 1] << 8);
// Get the length of the block
blen = pflash[i + 2];
// If we reach the end of the list, break loop
if (blen == 0xFF)
break;
// Check if data is contained in this block
if (address >= baddr && address < (baddr + blen))
return pflash[i + 3 + address - baddr]; // Yes, it is contained. Return it!
// As blocks are always sorted, if the starting address of this block is higher
// than the address we are looking for, break loop now - We wont find the value
// associated to the address
if (baddr > address) break;
// Jump to the next block
i += 3 + blen;
}
}
// If reached here, value is not stored, so return its default value
return 0xFF;
}
static uint32_t ee_GetAddrRange(uint32_t address, bool excludeRAMBuffer = false) {
uint32_t baddr,
blen,
nextAddr = 0xFFFF,
nextRange = 0;
// Check that the value is not contained in the RAM buffer
if (!excludeRAMBuffer) {
uint16_t i = 0;
while (i <= (PageSize - 4)) { /* (PageSize - 4) because otherwise, there is not enough room for data and headers */
// Get the address of the block
baddr = buffer[i] | (buffer[i + 1] << 8);
// Get the length of the block
blen = buffer[i + 2];
// If we reach the end of the list, break loop
if (blen == 0xFF) break;
// Check if address and address + 1 is contained in this block
if (address >= baddr && address < (baddr + blen))
return address | ((blen - address + baddr) << 16); // Yes, it is contained. Return it!
// Otherwise, check if we can use it as a limit
if (baddr > address && baddr < nextAddr) {
nextAddr = baddr;
nextRange = blen;
}
// As blocks are always sorted, if the starting address of this block is higher
// than the address we are looking for, break loop now - We wont find the value
// associated to the address
if (baddr > address) break;
// Jump to the next block
i += 3 + blen;
}
}
// It is NOT on the RAM buffer. It could be stored in FLASH. We are
// ensured on a given FLASH page, address contents are never repeated
// but on different pages, there is no such warranty, so we must go
// backwards from the last written FLASH page to the first one.
for (int page = curPage - 1; page >= 0; --page) {
// Get a pointer to the flash page
uint8_t* pflash = (uint8_t*)getFlashStorage(page + curGroup * PagesPerGroup);
uint16_t i = 0;
while (i <= (PageSize - 4)) { /* (PageSize - 4) because otherwise, there is not enough room for data and headers */
// Get the address of the block
baddr = pflash[i] | (pflash[i + 1] << 8);
// Get the length of the block
blen = pflash[i + 2];
// If we reach the end of the list, break loop
if (blen == 0xFF) break;
// Check if data is contained in this block
if (address >= baddr && address < (baddr + blen))
return address | ((blen - address + baddr) << 16); // Yes, it is contained. Return it!
// Otherwise, check if we can use it as a limit
if (baddr > address && baddr < nextAddr) {
nextAddr = baddr;
nextRange = blen;
}
// As blocks are always sorted, if the starting address of this block is higher
// than the address we are looking for, break loop now - We wont find the value
// associated to the address
if (baddr > address) break;
// Jump to the next block
i += 3 + blen;
}
}
// If reached here, we will return the next valid address
return nextAddr | (nextRange << 16);
}
static bool ee_IsPageClean(int page) {
uint32_t* pflash = (uint32_t*) getFlashStorage(page);
for (uint16_t i = 0; i < (PageSize >> 2); ++i)
if (*pflash++ != 0xFFFFFFFF) return false;
return true;
}
static bool ee_Flush(uint32_t overrideAddress = 0xFFFFFFFF, uint8_t overrideData = 0xFF) {
// Check if RAM buffer has something to be written
bool isEmpty = true;
uint32_t* p = (uint32_t*) &buffer[0];
for (uint16_t j = 0; j < (PageSize >> 2); j++) {
if (*p++ != 0xFFFFFFFF) {
isEmpty = false;
break;
}
}
// If something has to be written, do so!
if (!isEmpty) {
// Write the current ram buffer into FLASH
ee_PageWrite(curPage + curGroup * PagesPerGroup, buffer);
// Clear the RAM buffer
memset(buffer, 0xFF, sizeof(buffer));
// Increment the page to use the next time
++curPage;
}
// Did we reach the maximum count of available pages per group for storage ?
if (curPage < PagesPerGroup) {
// Do we have an override address ?
if (overrideAddress < EEPROMSize) {
// Yes, just store the value into the RAM buffer
buffer[0] = overrideAddress & 0xFF;
buffer[0 + 1] = (overrideAddress >> 8) & 0xFF;
buffer[0 + 2] = 1;
buffer[0 + 3] = overrideData;
}
// Done!
return true;
}
// We have no space left on the current group - We must compact the values
uint16_t i = 0;
// Compute the next group to use
int curwPage = 0, curwGroup = curGroup + 1;
if (curwGroup >= GroupCount) curwGroup = 0;
uint32_t rdAddr = 0;
do {
// Get the next valid range
uint32_t addrRange = ee_GetAddrRange(rdAddr, true);
// Make sure not to skip the override address, if specified
int rdRange;
if (overrideAddress < EEPROMSize &&
rdAddr <= overrideAddress &&
(addrRange & 0xFFFF) > overrideAddress) {
rdAddr = overrideAddress;
rdRange = 1;
}
else {
rdAddr = addrRange & 0xFFFF;
rdRange = addrRange >> 16;
}
// If no range, break loop
if (rdRange == 0)
break;
do {
// Get the value
uint8_t rdValue = overrideAddress == rdAddr ? overrideData : ee_Read(rdAddr, true);
// Do not bother storing default values
if (rdValue != 0xFF) {
// If we have room, add it to the buffer
if (buffer[i + 2] == 0xFF) {
// Uninitialized buffer, just add it!
buffer[i] = rdAddr & 0xFF;
buffer[i + 1] = (rdAddr >> 8) & 0xFF;
buffer[i + 2] = 1;
buffer[i + 3] = rdValue;
}
else {
// Buffer already has contents. Check if we can extend it
// Get the address of the block
uint32_t baddr = buffer[i] | (buffer[i + 1] << 8);
// Get the length of the block
uint32_t blen = buffer[i + 2];
// Can we expand it ?
if (rdAddr == (baddr + blen) &&
i < (PageSize - 4) && /* This block has a chance to contain data AND */
buffer[i + 2] < (PageSize - i - 3)) {/* There is room for this block to be expanded */
// Yes, do it
++buffer[i + 2];
// And store the value
buffer[i + 3 + rdAddr - baddr] = rdValue;
}
else {
// No, we can't expand it - Skip the existing block
i += 3 + blen;
// Can we create a new slot ?
if (i > (PageSize - 4)) {
// Not enough space - Write the current buffer to FLASH
ee_PageWrite(curwPage + curwGroup * PagesPerGroup, buffer);
// Advance write page (as we are compacting, should never overflow!)
++curwPage;
// Clear RAM buffer
memset(buffer, 0xFF, sizeof(buffer));
// Start fresh */
i = 0;
}
// Enough space, add the new block
buffer[i] = rdAddr & 0xFF;
buffer[i + 1] = (rdAddr >> 8) & 0xFF;
buffer[i + 2] = 1;
buffer[i + 3] = rdValue;
}
}
}
// Go to the next address
++rdAddr;
// Repeat for bytes of this range
} while (--rdRange);
// Repeat until we run out of ranges
} while (rdAddr < EEPROMSize);
// We must erase the previous group, in preparation for the next swap
for (int page = 0; page < curPage; page++) {
ee_PageErase(page + curGroup * PagesPerGroup);
}
// Finally, Now the active group is the created new group
curGroup = curwGroup;
curPage = curwPage;
// Done!
return true;
}
static bool ee_Write(uint32_t address, uint8_t data) {
// If we were requested an address outside of the emulated range, fail now
if (address >= EEPROMSize) return false;
// Lets check if we have a block with that data previously defined. Block
// start addresses are always sorted in ascending order
uint16_t i = 0;
while (i <= (PageSize - 4)) { /* (PageSize - 4) because otherwise, there is not enough room for data and headers */
// Get the address of the block
uint32_t baddr = buffer[i] | (buffer[i + 1] << 8);
// Get the length of the block
uint32_t blen = buffer[i + 2];
// If we reach the end of the list, break loop
if (blen == 0xFF)
break;
// Check if data is contained in this block
if (address >= baddr &&
address < (baddr + blen)) {
// Yes, it is contained. Just modify it
buffer[i + 3 + address - baddr] = data;
// Done!
return true;
}
// Maybe we could add it to the front or to the back
// of this block ?
if ((address + 1) == baddr || address == (baddr + blen)) {
// Potentially, it could be done. But we must ensure there is room
// so we can expand the block. Lets find how much free space remains
uint32_t iend = i;
do {
uint32_t ln = buffer[iend + 2];
if (ln == 0xFF) break;
iend += 3 + ln;
} while (iend <= (PageSize - 4)); /* (PageSize - 4) because otherwise, there is not enough room for data and headers */
// Here, inxt points to the first free address in the buffer. Do we have room ?
if (iend < PageSize) {
// Yes, at least a byte is free - We can expand the block
// Do we have to insert at the beginning ?
if ((address + 1) == baddr) {
// Insert at the beginning
// Make room at the beginning for our byte
memmove(&buffer[i + 3 + 1], &buffer[i + 3], iend - i - 3);
// Adjust the header and store the data
buffer[i] = address & 0xFF;
buffer[i + 1] = (address >> 8) & 0xFF;
buffer[i + 2]++;
buffer[i + 3] = data;
}
else {
// Insert at the end - There is a very interesting thing that could happen here:
// Maybe we could coalesce the next block with this block. Let's try to do it!
uint16_t inext = i + 3 + blen;
if (inext <= (PageSize - 4) &&
(buffer[inext] | uint16_t(buffer[inext + 1] << 8)) == (baddr + blen + 1)) {
// YES! ... we can coalesce blocks! . Do it!
// Adjust this block header to include the next one
buffer[i + 2] += buffer[inext + 2] + 1;
// Store data at the right place
buffer[i + 3 + blen] = data;
// Remove the next block header and append its data
memmove(&buffer[inext + 1], &buffer[inext + 3], iend - inext - 3);
// Finally, as we have saved 2 bytes at the end, make sure to clean them
buffer[iend - 2] = 0xFF;
buffer[iend - 1] = 0xFF;
}
else {
// NO ... No coalescing possible yet
// Make room at the end for our byte
memmove(&buffer[i + 3 + blen + 1], &buffer[i + 3 + blen], iend - i - 3 - blen);
// And add the data to the block
buffer[i + 2]++;
buffer[i + 3 + blen] = data;
}
}
// Done!
return true;
}
}
// As blocks are always sorted, if the starting address of this block is higher
// than the address we are looking for, break loop now - We wont find the value
// associated to the address
if (baddr > address) break;
// Jump to the next block
i += 3 + blen;
}
// Value is not stored AND we can't expand previous block to contain it. We must create a new block
// First, lets find how much free space remains
uint32_t iend = i;
while (iend <= (PageSize - 4)) { /* (PageSize - 4) because otherwise, there is not enough room for data and headers */
uint32_t ln = buffer[iend + 2];
if (ln == 0xFF) break;
iend += 3 + ln;
}
// If there is room for a new block, insert it at the proper place
if (iend <= (PageSize - 4)) {
// We have room to create a new block. Do so --- But add
// the block at the proper position, sorted by starting
// address, so it will be possible to compact it with other blocks.
// Make space
memmove(&buffer[i + 4], &buffer[i], iend - i);
// And add the block
buffer[i] = address & 0xFF;
buffer[i + 1] = (address >> 8) & 0xFF;
buffer[i + 2] = 1;
buffer[i + 3] = data;
// Done!
return true;
}
// Not enough room to store this information on this FLASH page - Perform a
// flush and override the address with the specified contents
return ee_Flush(address, data);
}
static void ee_Init() {
// Just init once!
if (curGroup != 0xFF) return;
// Clean up the SRAM buffer
memset(buffer, 0xFF, sizeof(buffer));
// Now, we must find out the group where settings are stored
for (curGroup = 0; curGroup < GroupCount; curGroup++)
if (!ee_IsPageClean(curGroup * PagesPerGroup)) break;
// If all groups seem to be used, default to first group
if (curGroup >= GroupCount) curGroup = 0;
#ifdef EE_EMU_DEBUG
SERIAL_ECHO_START();
SERIAL_ECHOLNPAIR("EEPROM Current Group: ",curGroup);
SERIAL_FLUSH();
#endif
// Now, validate that all the other group pages are empty
for (int grp = 0; grp < GroupCount; grp++) {
if (grp == curGroup) continue;
for (int page = 0; page < PagesPerGroup; page++) {
if (!ee_IsPageClean(grp * PagesPerGroup + page)) {
#ifdef EE_EMU_DEBUG
SERIAL_ECHO_START();
SERIAL_ECHOPAIR("EEPROM Page ",page);
SERIAL_ECHOLNPAIR(" not clean on group ",grp);
SERIAL_FLUSH();
#endif
ee_PageErase(grp * PagesPerGroup + page);
}
}
}
// Finally, for the active group, determine the first unused page
// and also validate that all the other ones are clean
for (curPage = 0; curPage < PagesPerGroup; curPage++) {
if (ee_IsPageClean(curGroup * PagesPerGroup + curPage)) {
#ifdef EE_EMU_DEBUG
ee_Dump(curGroup * PagesPerGroup + curPage, getFlashStorage(curGroup * PagesPerGroup + curPage));
#endif
break;
}
}
#ifdef EE_EMU_DEBUG
SERIAL_ECHO_START();
SERIAL_ECHOLNPAIR("EEPROM Active page: ",curPage);
SERIAL_FLUSH();
#endif
// Make sure the pages following the first clean one are also clean
for (int page = curPage + 1; page < PagesPerGroup; page++) {
if (!ee_IsPageClean(curGroup * PagesPerGroup + page)) {
#ifdef EE_EMU_DEBUG
SERIAL_ECHO_START();
SERIAL_ECHOPAIR("EEPROM Page ",page);
SERIAL_ECHOLNPAIR(" not clean on active group ",curGroup);
SERIAL_FLUSH();
ee_Dump(curGroup * PagesPerGroup + page, getFlashStorage(curGroup * PagesPerGroup + page));
#endif
ee_PageErase(curGroup * PagesPerGroup + page);
}
}
}
uint8_t eeprom_read_byte(uint8_t* addr) {
ee_Init();
return ee_Read((uint32_t)addr);
}
void eeprom_write_byte(uint8_t* addr, uint8_t value) {
ee_Init();
ee_Write((uint32_t)addr, value);
}
void eeprom_update_block(const void* __src, void* __dst, size_t __n) {
uint8_t* dst = (uint8_t*)__dst;
const uint8_t* src = (const uint8_t*)__src;
while (__n--) {
eeprom_write_byte(dst, *src);
++dst;
++src;
}
}
void eeprom_read_block(void* __dst, const void* __src, size_t __n) {
uint8_t* dst = (uint8_t*)__dst;
uint8_t* src = (uint8_t*)__src;
while (__n--) {
*dst = eeprom_read_byte(src);
++dst;
++src;
}
}
void eeprom_flush(void) {
ee_Flush();
}
#endif // EEPROM_SETTINGS && (!I2C_EEPROM && !SPI_EEPROM)
#endif // ARDUINO_ARCH_AVR