3206 lines
101 KiB
C++
3206 lines
101 KiB
C++
/**
|
|
* Marlin 3D Printer Firmware
|
|
* Copyright (C) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
*
|
|
* Based on Sprinter and grbl.
|
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* temperature.cpp - temperature control
|
|
*/
|
|
|
|
#include "temperature.h"
|
|
#include "endstops.h"
|
|
|
|
#include "../Marlin.h"
|
|
#include "../lcd/ultralcd.h"
|
|
#include "planner.h"
|
|
#include "../core/language.h"
|
|
#include "../HAL/shared/Delay.h"
|
|
|
|
#define MAX6675_SEPARATE_SPI (ENABLED(HEATER_0_USES_MAX6675) || ENABLED(HEATER_1_USES_MAX6675)) && PIN_EXISTS(MAX6675_SCK) && PIN_EXISTS(MAX6675_DO)
|
|
|
|
#if MAX6675_SEPARATE_SPI
|
|
#include "../libs/private_spi.h"
|
|
#endif
|
|
|
|
#if ENABLED(BABYSTEPPING) || ENABLED(PID_EXTRUSION_SCALING)
|
|
#include "stepper.h"
|
|
#endif
|
|
|
|
#if ENABLED(BABYSTEPPING)
|
|
#include "../module/motion.h"
|
|
#if ENABLED(BABYSTEP_ALWAYS_AVAILABLE)
|
|
#include "../gcode/gcode.h"
|
|
#endif
|
|
#endif
|
|
|
|
#include "printcounter.h"
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
#include "../feature/filwidth.h"
|
|
#endif
|
|
|
|
#if ENABLED(EMERGENCY_PARSER)
|
|
#include "../feature/emergency_parser.h"
|
|
#endif
|
|
|
|
#if ENABLED(PRINTER_EVENT_LEDS)
|
|
#include "../feature/leds/printer_event_leds.h"
|
|
#endif
|
|
|
|
#if ENABLED(SINGLENOZZLE)
|
|
#include "tool_change.h"
|
|
#endif
|
|
|
|
#if HOTEND_USES_THERMISTOR
|
|
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
|
|
static void* heater_ttbl_map[2] = { (void*)HEATER_0_TEMPTABLE, (void*)HEATER_1_TEMPTABLE };
|
|
static constexpr uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
|
|
#else
|
|
static void* heater_ttbl_map[HOTENDS] = ARRAY_BY_HOTENDS((void*)HEATER_0_TEMPTABLE, (void*)HEATER_1_TEMPTABLE, (void*)HEATER_2_TEMPTABLE, (void*)HEATER_3_TEMPTABLE, (void*)HEATER_4_TEMPTABLE, (void*)HEATER_5_TEMPTABLE);
|
|
static constexpr uint8_t heater_ttbllen_map[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN, HEATER_3_TEMPTABLE_LEN, HEATER_4_TEMPTABLE_LEN, HEATER_5_TEMPTABLE_LEN);
|
|
#endif
|
|
#endif
|
|
|
|
Temperature thermalManager;
|
|
|
|
/**
|
|
* Macros to include the heater id in temp errors. The compiler's dead-code
|
|
* elimination should (hopefully) optimize out the unused strings.
|
|
*/
|
|
|
|
#if HAS_HEATED_BED
|
|
#define _BED_PSTR(E) (E) == -1 ? PSTR(MSG ## _BED) :
|
|
#else
|
|
#define _BED_PSTR(E)
|
|
#endif
|
|
#if HAS_HEATED_CHAMBER
|
|
#define _CHAMBER_PSTR(E) (E) == -2 ? PSTR(MSG ## _CHAMBER) :
|
|
#else
|
|
#define _CHAMBER_PSTR(E)
|
|
#endif
|
|
#define _E_PSTR(M,E,N) (HOTENDS >= (N) && (E) == (N)-1) ? PSTR(MSG_E##N " " M) :
|
|
#define TEMP_ERR_PSTR(M,E) _BED_PSTR(E) _CHAMBER_PSTR(E) _E_PSTR(M,E,2) _E_PSTR(M,E,3) _E_PSTR(M,E,4) _E_PSTR(M,E,5) _E_PSTR(M,E,6) PSTR(MSG_E1 " " M)
|
|
|
|
// public:
|
|
|
|
#if ENABLED(NO_FAN_SLOWING_IN_PID_TUNING)
|
|
bool Temperature::adaptive_fan_slowing = true;
|
|
#endif
|
|
|
|
hotend_info_t Temperature::temp_hotend[HOTENDS]; // = { 0 }
|
|
|
|
#if ENABLED(AUTO_POWER_E_FANS)
|
|
uint8_t Temperature::autofan_speed[HOTENDS]; // = { 0 }
|
|
#endif
|
|
|
|
#if FAN_COUNT > 0
|
|
|
|
uint8_t Temperature::fan_speed[FAN_COUNT]; // = { 0 }
|
|
|
|
#if ENABLED(EXTRA_FAN_SPEED)
|
|
uint8_t Temperature::old_fan_speed[FAN_COUNT], Temperature::new_fan_speed[FAN_COUNT];
|
|
|
|
void Temperature::set_temp_fan_speed(const uint8_t fan, const uint16_t tmp_temp) {
|
|
switch (tmp_temp) {
|
|
case 1:
|
|
set_fan_speed(fan, old_fan_speed[fan]);
|
|
break;
|
|
case 2:
|
|
old_fan_speed[fan] = fan_speed[fan];
|
|
set_fan_speed(fan, new_fan_speed[fan]);
|
|
break;
|
|
default:
|
|
new_fan_speed[fan] = MIN(tmp_temp, 255U);
|
|
break;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#if ENABLED(PROBING_FANS_OFF)
|
|
bool Temperature::fans_paused; // = false;
|
|
uint8_t Temperature::paused_fan_speed[FAN_COUNT]; // = { 0 }
|
|
#endif
|
|
|
|
#if ENABLED(ADAPTIVE_FAN_SLOWING)
|
|
uint8_t Temperature::fan_speed_scaler[FAN_COUNT] = ARRAY_N(FAN_COUNT, 128, 128, 128, 128, 128, 128);
|
|
#endif
|
|
|
|
#if HAS_LCD_MENU
|
|
|
|
uint8_t Temperature::lcd_tmpfan_speed[
|
|
#if ENABLED(SINGLENOZZLE)
|
|
MAX(EXTRUDERS, FAN_COUNT)
|
|
#else
|
|
FAN_COUNT
|
|
#endif
|
|
]; // = { 0 }
|
|
|
|
#endif
|
|
|
|
void Temperature::set_fan_speed(uint8_t target, uint16_t speed) {
|
|
|
|
NOMORE(speed, 255U);
|
|
|
|
#if ENABLED(SINGLENOZZLE)
|
|
if (target != active_extruder) {
|
|
if (target < EXTRUDERS) singlenozzle_fan_speed[target] = speed;
|
|
return;
|
|
}
|
|
target = 0; // Always use fan index 0 with SINGLENOZZLE
|
|
#endif
|
|
|
|
if (target >= FAN_COUNT) return;
|
|
|
|
fan_speed[target] = speed;
|
|
#if HAS_LCD_MENU
|
|
lcd_tmpfan_speed[target] = speed;
|
|
#endif
|
|
}
|
|
|
|
#if ENABLED(PROBING_FANS_OFF)
|
|
|
|
void Temperature::set_fans_paused(const bool p) {
|
|
if (p != fans_paused) {
|
|
fans_paused = p;
|
|
if (p)
|
|
FANS_LOOP(x) { paused_fan_speed[x] = fan_speed[x]; fan_speed[x] = 0; }
|
|
else
|
|
FANS_LOOP(x) fan_speed[x] = paused_fan_speed[x];
|
|
}
|
|
}
|
|
|
|
#endif // PROBING_FANS_OFF
|
|
|
|
#endif // FAN_COUNT > 0
|
|
|
|
#if WATCH_HOTENDS
|
|
heater_watch_t Temperature::watch_hotend[HOTENDS]; // = { { 0 } }
|
|
#endif
|
|
#if HEATER_IDLE_HANDLER
|
|
heater_idle_t Temperature::hotend_idle[HOTENDS]; // = { { 0 } }
|
|
#endif
|
|
|
|
#if HAS_HEATED_BED
|
|
bed_info_t Temperature::temp_bed; // = { 0 }
|
|
// Init min and max temp with extreme values to prevent false errors during startup
|
|
#ifdef BED_MINTEMP
|
|
int16_t Temperature::mintemp_raw_BED = HEATER_BED_RAW_LO_TEMP;
|
|
#endif
|
|
#ifdef BED_MAXTEMP
|
|
int16_t Temperature::maxtemp_raw_BED = HEATER_BED_RAW_HI_TEMP;
|
|
#endif
|
|
#if WATCH_BED
|
|
heater_watch_t Temperature::watch_bed; // = { 0 }
|
|
#endif
|
|
#if DISABLED(PIDTEMPBED)
|
|
millis_t Temperature::next_bed_check_ms;
|
|
#endif
|
|
#if HEATER_IDLE_HANDLER
|
|
heater_idle_t Temperature::bed_idle; // = { 0 }
|
|
#endif
|
|
#endif // HAS_HEATED_BED
|
|
|
|
#if HAS_TEMP_CHAMBER
|
|
chamber_info_t Temperature::temp_chamber; // = { 0 }
|
|
#if HAS_HEATED_CHAMBER
|
|
#ifdef CHAMBER_MINTEMP
|
|
int16_t Temperature::mintemp_raw_CHAMBER = HEATER_CHAMBER_RAW_LO_TEMP;
|
|
#endif
|
|
#ifdef CHAMBER_MAXTEMP
|
|
int16_t Temperature::maxtemp_raw_CHAMBER = HEATER_CHAMBER_RAW_HI_TEMP;
|
|
#endif
|
|
#if WATCH_CHAMBER
|
|
heater_watch_t Temperature::watch_chamber = { 0 };
|
|
millis_t Temperature::next_chamber_check_ms;
|
|
#endif
|
|
#endif // HAS_HEATED_CHAMBER
|
|
#endif // HAS_TEMP_CHAMBER
|
|
|
|
// Initialized by settings.load()
|
|
#if ENABLED(PIDTEMP)
|
|
//hotend_pid_t Temperature::pid[HOTENDS];
|
|
#endif
|
|
|
|
#if ENABLED(BABYSTEPPING)
|
|
volatile int16_t Temperature::babystepsTodo[XYZ] = { 0 };
|
|
#endif
|
|
|
|
#if ENABLED(PREVENT_COLD_EXTRUSION)
|
|
bool Temperature::allow_cold_extrude = false;
|
|
int16_t Temperature::extrude_min_temp = EXTRUDE_MINTEMP;
|
|
#endif
|
|
|
|
// private:
|
|
|
|
#if EARLY_WATCHDOG
|
|
bool Temperature::inited = false;
|
|
#endif
|
|
|
|
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
|
|
uint16_t Temperature::redundant_temperature_raw = 0;
|
|
float Temperature::redundant_temperature = 0.0;
|
|
#endif
|
|
|
|
volatile bool Temperature::temp_meas_ready = false;
|
|
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
int32_t Temperature::last_e_position, Temperature::lpq[LPQ_MAX_LEN];
|
|
lpq_ptr_t Temperature::lpq_ptr = 0;
|
|
#endif
|
|
|
|
#define TEMPDIR(N) ((HEATER_##N##_RAW_LO_TEMP) < (HEATER_##N##_RAW_HI_TEMP) ? 1 : -1)
|
|
|
|
// Init mintemp and maxtemp with extreme values to prevent false errors during startup
|
|
constexpr temp_range_t sensor_heater_0 { HEATER_0_RAW_LO_TEMP, HEATER_0_RAW_HI_TEMP, 0, 16383 },
|
|
sensor_heater_1 { HEATER_1_RAW_LO_TEMP, HEATER_1_RAW_HI_TEMP, 0, 16383 },
|
|
sensor_heater_2 { HEATER_2_RAW_LO_TEMP, HEATER_2_RAW_HI_TEMP, 0, 16383 },
|
|
sensor_heater_3 { HEATER_3_RAW_LO_TEMP, HEATER_3_RAW_HI_TEMP, 0, 16383 },
|
|
sensor_heater_4 { HEATER_4_RAW_LO_TEMP, HEATER_4_RAW_HI_TEMP, 0, 16383 },
|
|
sensor_heater_5 { HEATER_5_RAW_LO_TEMP, HEATER_5_RAW_HI_TEMP, 0, 16383 };
|
|
|
|
temp_range_t Temperature::temp_range[HOTENDS] = ARRAY_BY_HOTENDS(sensor_heater_0, sensor_heater_1, sensor_heater_2, sensor_heater_3, sensor_heater_4, sensor_heater_5);
|
|
|
|
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
|
|
uint8_t Temperature::consecutive_low_temperature_error[HOTENDS] = { 0 };
|
|
#endif
|
|
|
|
#ifdef MILLISECONDS_PREHEAT_TIME
|
|
millis_t Temperature::preheat_end_time[HOTENDS] = { 0 };
|
|
#endif
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
int8_t Temperature::meas_shift_index; // Index of a delayed sample in buffer
|
|
#endif
|
|
|
|
#if HAS_AUTO_FAN
|
|
millis_t Temperature::next_auto_fan_check_ms = 0;
|
|
#endif
|
|
|
|
#if ENABLED(FAN_SOFT_PWM)
|
|
uint8_t Temperature::soft_pwm_amount_fan[FAN_COUNT],
|
|
Temperature::soft_pwm_count_fan[FAN_COUNT];
|
|
#endif
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
uint16_t Temperature::current_raw_filwidth = 0; // Measured filament diameter - one extruder only
|
|
#endif
|
|
|
|
#if ENABLED(PROBING_HEATERS_OFF)
|
|
bool Temperature::paused;
|
|
#endif
|
|
|
|
// public:
|
|
|
|
#if HAS_ADC_BUTTONS
|
|
uint32_t Temperature::current_ADCKey_raw = 0;
|
|
uint8_t Temperature::ADCKey_count = 0;
|
|
#endif
|
|
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
int16_t Temperature::lpq_len; // Initialized in configuration_store
|
|
#endif
|
|
|
|
#if HAS_PID_HEATING
|
|
|
|
inline void say_default_() { SERIAL_ECHOPGM("#define DEFAULT_"); }
|
|
|
|
/**
|
|
* PID Autotuning (M303)
|
|
*
|
|
* Alternately heat and cool the nozzle, observing its behavior to
|
|
* determine the best PID values to achieve a stable temperature.
|
|
* Needs sufficient heater power to make some overshoot at target
|
|
* temperature to succeed.
|
|
*/
|
|
void Temperature::PID_autotune(const float &target, const int8_t heater, const int8_t ncycles, const bool set_result/*=false*/) {
|
|
float current = 0.0;
|
|
int cycles = 0;
|
|
bool heating = true;
|
|
|
|
millis_t next_temp_ms = millis(), t1 = next_temp_ms, t2 = next_temp_ms;
|
|
long t_high = 0, t_low = 0;
|
|
|
|
long bias, d;
|
|
PID_t tune_pid = { 0, 0, 0 };
|
|
float max = 0, min = 10000;
|
|
|
|
#if HAS_PID_FOR_BOTH
|
|
#define GHV(B,H) (heater < 0 ? (B) : (H))
|
|
#define SHV(B,H) do{ if (heater < 0) temp_bed.soft_pwm_amount = B; else temp_hotend[heater].soft_pwm_amount = H; }while(0)
|
|
#define ONHEATINGSTART() (heater < 0 ? printerEventLEDs.onBedHeatingStart() : printerEventLEDs.onHotendHeatingStart())
|
|
#define ONHEATING(S,C,T) do{ if (heater < 0) printerEventLEDs.onBedHeating(S,C,T); else printerEventLEDs.onHotendHeating(S,C,T); }while(0)
|
|
#elif ENABLED(PIDTEMPBED)
|
|
#define GHV(B,H) B
|
|
#define SHV(B,H) (temp_bed.soft_pwm_amount = B)
|
|
#define ONHEATINGSTART() printerEventLEDs.onBedHeatingStart()
|
|
#define ONHEATING(S,C,T) printerEventLEDs.onBedHeating(S,C,T)
|
|
#else
|
|
#define GHV(B,H) H
|
|
#define SHV(B,H) (temp_hotend[heater].soft_pwm_amount = H)
|
|
#define ONHEATINGSTART() printerEventLEDs.onHotendHeatingStart()
|
|
#define ONHEATING(S,C,T) printerEventLEDs.onHotendHeating(S,C,T)
|
|
#endif
|
|
|
|
#if WATCH_BED || WATCH_HOTENDS
|
|
#define HAS_TP_BED (ENABLED(THERMAL_PROTECTION_BED) && ENABLED(PIDTEMPBED))
|
|
#if HAS_TP_BED && ENABLED(THERMAL_PROTECTION_HOTENDS) && ENABLED(PIDTEMP)
|
|
#define GTV(B,H) (heater < 0 ? (B) : (H))
|
|
#elif HAS_TP_BED
|
|
#define GTV(B,H) (B)
|
|
#else
|
|
#define GTV(B,H) (H)
|
|
#endif
|
|
const uint16_t watch_temp_period = GTV(WATCH_BED_TEMP_PERIOD, WATCH_TEMP_PERIOD);
|
|
const uint8_t watch_temp_increase = GTV(WATCH_BED_TEMP_INCREASE, WATCH_TEMP_INCREASE);
|
|
const float watch_temp_target = target - float(watch_temp_increase + GTV(TEMP_BED_HYSTERESIS, TEMP_HYSTERESIS) + 1);
|
|
millis_t temp_change_ms = next_temp_ms + watch_temp_period * 1000UL;
|
|
float next_watch_temp = 0.0;
|
|
bool heated = false;
|
|
#endif
|
|
|
|
#if HAS_AUTO_FAN
|
|
next_auto_fan_check_ms = next_temp_ms + 2500UL;
|
|
#endif
|
|
|
|
if (target > GHV(BED_MAXTEMP, temp_range[heater].maxtemp) - 15) {
|
|
SERIAL_ECHOLNPGM(MSG_PID_TEMP_TOO_HIGH);
|
|
return;
|
|
}
|
|
|
|
SERIAL_ECHOLNPGM(MSG_PID_AUTOTUNE_START);
|
|
|
|
disable_all_heaters();
|
|
|
|
SHV(bias = d = (MAX_BED_POWER) >> 1, bias = d = (PID_MAX) >> 1);
|
|
|
|
wait_for_heatup = true; // Can be interrupted with M108
|
|
#if ENABLED(PRINTER_EVENT_LEDS)
|
|
const float start_temp = GHV(temp_bed.current, temp_hotend[heater].current);
|
|
LEDColor color = ONHEATINGSTART();
|
|
#endif
|
|
|
|
#if ENABLED(NO_FAN_SLOWING_IN_PID_TUNING)
|
|
adaptive_fan_slowing = false;
|
|
#endif
|
|
|
|
// PID Tuning loop
|
|
while (wait_for_heatup) {
|
|
|
|
const millis_t ms = millis();
|
|
|
|
if (temp_meas_ready) { // temp sample ready
|
|
updateTemperaturesFromRawValues();
|
|
|
|
// Get the current temperature and constrain it
|
|
current = GHV(temp_bed.current, temp_hotend[heater].current);
|
|
NOLESS(max, current);
|
|
NOMORE(min, current);
|
|
|
|
#if ENABLED(PRINTER_EVENT_LEDS)
|
|
ONHEATING(start_temp, current, target);
|
|
#endif
|
|
|
|
#if HAS_AUTO_FAN
|
|
if (ELAPSED(ms, next_auto_fan_check_ms)) {
|
|
checkExtruderAutoFans();
|
|
next_auto_fan_check_ms = ms + 2500UL;
|
|
}
|
|
#endif
|
|
|
|
if (heating && current > target) {
|
|
if (ELAPSED(ms, t2 + 5000UL)) {
|
|
heating = false;
|
|
SHV((bias - d) >> 1, (bias - d) >> 1);
|
|
t1 = ms;
|
|
t_high = t1 - t2;
|
|
max = target;
|
|
}
|
|
}
|
|
|
|
if (!heating && current < target) {
|
|
if (ELAPSED(ms, t1 + 5000UL)) {
|
|
heating = true;
|
|
t2 = ms;
|
|
t_low = t2 - t1;
|
|
if (cycles > 0) {
|
|
const long max_pow = GHV(MAX_BED_POWER, PID_MAX);
|
|
bias += (d * (t_high - t_low)) / (t_low + t_high);
|
|
bias = constrain(bias, 20, max_pow - 20);
|
|
d = (bias > max_pow >> 1) ? max_pow - 1 - bias : bias;
|
|
|
|
SERIAL_ECHOPAIR(MSG_BIAS, bias, MSG_D, d, MSG_T_MIN, min, MSG_T_MAX, max);
|
|
if (cycles > 2) {
|
|
float Ku = (4.0f * d) / (float(M_PI) * (max - min) * 0.5f),
|
|
Tu = ((float)(t_low + t_high) * 0.001f);
|
|
tune_pid.Kp = 0.6f * Ku;
|
|
tune_pid.Ki = 2 * tune_pid.Kp / Tu;
|
|
tune_pid.Kd = tune_pid.Kp * Tu * 0.125f;
|
|
SERIAL_ECHOPAIR(MSG_KU, Ku, MSG_TU, Tu);
|
|
SERIAL_ECHOLNPGM("\n" MSG_CLASSIC_PID);
|
|
SERIAL_ECHOLNPAIR(MSG_KP, tune_pid.Kp, MSG_KI, tune_pid.Ki, MSG_KD, tune_pid.Kd);
|
|
/**
|
|
tune_pid.Kp = 0.33*Ku;
|
|
tune_pid.Ki = tune_pid.Kp/Tu;
|
|
tune_pid.Kd = tune_pid.Kp*Tu/3;
|
|
SERIAL_ECHOLNPGM(" Some overshoot");
|
|
SERIAL_ECHOLNPAIR(" Kp: ", tune_pid.Kp, " Ki: ", tune_pid.Ki, " Kd: ", tune_pid.Kd, " No overshoot");
|
|
tune_pid.Kp = 0.2*Ku;
|
|
tune_pid.Ki = 2*tune_pid.Kp/Tu;
|
|
tune_pid.Kd = tune_pid.Kp*Tu/3;
|
|
SERIAL_ECHOPAIR(" Kp: ", tune_pid.Kp, " Ki: ", tune_pid.Ki, " Kd: ", tune_pid.Kd);
|
|
*/
|
|
}
|
|
}
|
|
SHV((bias + d) >> 1, (bias + d) >> 1);
|
|
cycles++;
|
|
min = target;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Did the temperature overshoot very far?
|
|
#ifndef MAX_OVERSHOOT_PID_AUTOTUNE
|
|
#define MAX_OVERSHOOT_PID_AUTOTUNE 20
|
|
#endif
|
|
if (current > target + MAX_OVERSHOOT_PID_AUTOTUNE) {
|
|
SERIAL_ECHOLNPGM(MSG_PID_TEMP_TOO_HIGH);
|
|
break;
|
|
}
|
|
|
|
// Report heater states every 2 seconds
|
|
if (ELAPSED(ms, next_temp_ms)) {
|
|
#if HAS_TEMP_SENSOR
|
|
print_heater_states(heater >= 0 ? heater : active_extruder);
|
|
SERIAL_EOL();
|
|
#endif
|
|
next_temp_ms = ms + 2000UL;
|
|
|
|
// Make sure heating is actually working
|
|
#if WATCH_BED || WATCH_HOTENDS
|
|
if (
|
|
#if WATCH_BED && WATCH_HOTENDS
|
|
true
|
|
#elif WATCH_HOTENDS
|
|
heater >= 0
|
|
#else
|
|
heater < 0
|
|
#endif
|
|
) {
|
|
if (!heated) { // If not yet reached target...
|
|
if (current > next_watch_temp) { // Over the watch temp?
|
|
next_watch_temp = current + watch_temp_increase; // - set the next temp to watch for
|
|
temp_change_ms = ms + watch_temp_period * 1000UL; // - move the expiration timer up
|
|
if (current > watch_temp_target) heated = true; // - Flag if target temperature reached
|
|
}
|
|
else if (ELAPSED(ms, temp_change_ms)) // Watch timer expired
|
|
_temp_error(heater, PSTR(MSG_T_HEATING_FAILED), TEMP_ERR_PSTR(MSG_HEATING_FAILED_LCD, heater));
|
|
}
|
|
else if (current < target - (MAX_OVERSHOOT_PID_AUTOTUNE)) // Heated, then temperature fell too far?
|
|
_temp_error(heater, PSTR(MSG_T_THERMAL_RUNAWAY), TEMP_ERR_PSTR(MSG_THERMAL_RUNAWAY, heater));
|
|
}
|
|
#endif
|
|
} // every 2 seconds
|
|
|
|
// Timeout after MAX_CYCLE_TIME_PID_AUTOTUNE minutes since the last undershoot/overshoot cycle
|
|
#ifndef MAX_CYCLE_TIME_PID_AUTOTUNE
|
|
#define MAX_CYCLE_TIME_PID_AUTOTUNE 20L
|
|
#endif
|
|
if (((ms - t1) + (ms - t2)) > (MAX_CYCLE_TIME_PID_AUTOTUNE * 60L * 1000L)) {
|
|
SERIAL_ECHOLNPGM(MSG_PID_TIMEOUT);
|
|
break;
|
|
}
|
|
|
|
if (cycles > ncycles && cycles > 2) {
|
|
SERIAL_ECHOLNPGM(MSG_PID_AUTOTUNE_FINISHED);
|
|
|
|
#if HAS_PID_FOR_BOTH
|
|
const char * const estring = GHV(PSTR("bed"), PSTR(""));
|
|
say_default_(); serialprintPGM(estring); SERIAL_ECHOLNPAIR("Kp ", tune_pid.Kp);
|
|
say_default_(); serialprintPGM(estring); SERIAL_ECHOLNPAIR("Ki ", tune_pid.Ki);
|
|
say_default_(); serialprintPGM(estring); SERIAL_ECHOLNPAIR("Kd ", tune_pid.Kd);
|
|
#elif ENABLED(PIDTEMP)
|
|
say_default_(); SERIAL_ECHOLNPAIR("Kp ", tune_pid.Kp);
|
|
say_default_(); SERIAL_ECHOLNPAIR("Ki ", tune_pid.Ki);
|
|
say_default_(); SERIAL_ECHOLNPAIR("Kd ", tune_pid.Kd);
|
|
#else
|
|
say_default_(); SERIAL_ECHOLNPAIR("bedKp ", tune_pid.Kp);
|
|
say_default_(); SERIAL_ECHOLNPAIR("bedKi ", tune_pid.Ki);
|
|
say_default_(); SERIAL_ECHOLNPAIR("bedKd ", tune_pid.Kd);
|
|
#endif
|
|
|
|
#define _SET_BED_PID() do { \
|
|
temp_bed.pid.Kp = tune_pid.Kp; \
|
|
temp_bed.pid.Ki = scalePID_i(tune_pid.Ki); \
|
|
temp_bed.pid.Kd = scalePID_d(tune_pid.Kd); \
|
|
}while(0)
|
|
|
|
#define _SET_EXTRUDER_PID() do { \
|
|
PID_PARAM(Kp, heater) = tune_pid.Kp; \
|
|
PID_PARAM(Ki, heater) = scalePID_i(tune_pid.Ki); \
|
|
PID_PARAM(Kd, heater) = scalePID_d(tune_pid.Kd); \
|
|
updatePID(); }while(0)
|
|
|
|
// Use the result? (As with "M303 U1")
|
|
if (set_result) {
|
|
#if HAS_PID_FOR_BOTH
|
|
if (heater < 0) _SET_BED_PID(); else _SET_EXTRUDER_PID();
|
|
#elif ENABLED(PIDTEMP)
|
|
_SET_EXTRUDER_PID();
|
|
#else
|
|
_SET_BED_PID();
|
|
#endif
|
|
}
|
|
|
|
#if ENABLED(PRINTER_EVENT_LEDS)
|
|
printerEventLEDs.onPidTuningDone(color);
|
|
#endif
|
|
|
|
goto EXIT_M303;
|
|
}
|
|
ui.update();
|
|
}
|
|
|
|
disable_all_heaters();
|
|
|
|
#if ENABLED(PRINTER_EVENT_LEDS)
|
|
printerEventLEDs.onPidTuningDone(color);
|
|
#endif
|
|
|
|
EXIT_M303:
|
|
#if ENABLED(NO_FAN_SLOWING_IN_PID_TUNING)
|
|
adaptive_fan_slowing = true;
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
#endif // HAS_PID_HEATING
|
|
|
|
/**
|
|
* Class and Instance Methods
|
|
*/
|
|
|
|
Temperature::Temperature() { }
|
|
|
|
int Temperature::getHeaterPower(const int heater) {
|
|
return (
|
|
#if HAS_HEATED_BED
|
|
heater < 0 ? temp_bed.soft_pwm_amount :
|
|
#endif
|
|
temp_hotend[heater].soft_pwm_amount
|
|
);
|
|
}
|
|
|
|
#if HAS_AUTO_FAN
|
|
|
|
#define AUTO_1_IS_0 (E1_AUTO_FAN_PIN == E0_AUTO_FAN_PIN)
|
|
#define AUTO_2_IS_0 (E2_AUTO_FAN_PIN == E0_AUTO_FAN_PIN)
|
|
#define AUTO_2_IS_1 (E2_AUTO_FAN_PIN == E1_AUTO_FAN_PIN)
|
|
#define AUTO_3_IS_0 (E3_AUTO_FAN_PIN == E0_AUTO_FAN_PIN)
|
|
#define AUTO_3_IS_1 (E3_AUTO_FAN_PIN == E1_AUTO_FAN_PIN)
|
|
#define AUTO_3_IS_2 (E3_AUTO_FAN_PIN == E2_AUTO_FAN_PIN)
|
|
#define AUTO_4_IS_0 (E4_AUTO_FAN_PIN == E0_AUTO_FAN_PIN)
|
|
#define AUTO_4_IS_1 (E4_AUTO_FAN_PIN == E1_AUTO_FAN_PIN)
|
|
#define AUTO_4_IS_2 (E4_AUTO_FAN_PIN == E2_AUTO_FAN_PIN)
|
|
#define AUTO_4_IS_3 (E4_AUTO_FAN_PIN == E3_AUTO_FAN_PIN)
|
|
#define AUTO_5_IS_0 (E5_AUTO_FAN_PIN == E0_AUTO_FAN_PIN)
|
|
#define AUTO_5_IS_1 (E5_AUTO_FAN_PIN == E1_AUTO_FAN_PIN)
|
|
#define AUTO_5_IS_2 (E5_AUTO_FAN_PIN == E2_AUTO_FAN_PIN)
|
|
#define AUTO_5_IS_3 (E5_AUTO_FAN_PIN == E3_AUTO_FAN_PIN)
|
|
#define AUTO_5_IS_4 (E5_AUTO_FAN_PIN == E4_AUTO_FAN_PIN)
|
|
#define AUTO_CHAMBER_IS_0 (CHAMBER_AUTO_FAN_PIN == E0_AUTO_FAN_PIN)
|
|
#define AUTO_CHAMBER_IS_1 (CHAMBER_AUTO_FAN_PIN == E1_AUTO_FAN_PIN)
|
|
#define AUTO_CHAMBER_IS_2 (CHAMBER_AUTO_FAN_PIN == E2_AUTO_FAN_PIN)
|
|
#define AUTO_CHAMBER_IS_3 (CHAMBER_AUTO_FAN_PIN == E3_AUTO_FAN_PIN)
|
|
#define AUTO_CHAMBER_IS_4 (CHAMBER_AUTO_FAN_PIN == E4_AUTO_FAN_PIN)
|
|
#define AUTO_CHAMBER_IS_5 (CHAMBER_AUTO_FAN_PIN == E5_AUTO_FAN_PIN)
|
|
|
|
void Temperature::checkExtruderAutoFans() {
|
|
static const uint8_t fanBit[] PROGMEM = {
|
|
0,
|
|
AUTO_1_IS_0 ? 0 : 1,
|
|
AUTO_2_IS_0 ? 0 : AUTO_2_IS_1 ? 1 : 2,
|
|
AUTO_3_IS_0 ? 0 : AUTO_3_IS_1 ? 1 : AUTO_3_IS_2 ? 2 : 3,
|
|
AUTO_4_IS_0 ? 0 : AUTO_4_IS_1 ? 1 : AUTO_4_IS_2 ? 2 : AUTO_4_IS_3 ? 3 : 4,
|
|
AUTO_5_IS_0 ? 0 : AUTO_5_IS_1 ? 1 : AUTO_5_IS_2 ? 2 : AUTO_5_IS_3 ? 3 : AUTO_5_IS_4 ? 4 : 5
|
|
#if HAS_TEMP_CHAMBER
|
|
, AUTO_CHAMBER_IS_0 ? 0 : AUTO_CHAMBER_IS_1 ? 1 : AUTO_CHAMBER_IS_2 ? 2 : AUTO_CHAMBER_IS_3 ? 3 : AUTO_CHAMBER_IS_4 ? 4 : AUTO_CHAMBER_IS_5 ? 5 : 6
|
|
#endif
|
|
};
|
|
uint8_t fanState = 0;
|
|
|
|
HOTEND_LOOP()
|
|
if (temp_hotend[e].current > EXTRUDER_AUTO_FAN_TEMPERATURE)
|
|
SBI(fanState, pgm_read_byte(&fanBit[e]));
|
|
|
|
#if HAS_TEMP_CHAMBER
|
|
if (temp_chamber.current > EXTRUDER_AUTO_FAN_TEMPERATURE)
|
|
SBI(fanState, pgm_read_byte(&fanBit[6]));
|
|
#endif
|
|
|
|
#define _UPDATE_AUTO_FAN(P,D,A) do{ \
|
|
if (PWM_PIN(P##_AUTO_FAN_PIN) && EXTRUDER_AUTO_FAN_SPEED < 255) \
|
|
analogWrite(P##_AUTO_FAN_PIN, A); \
|
|
else \
|
|
WRITE(P##_AUTO_FAN_PIN, D); \
|
|
}while(0)
|
|
|
|
uint8_t fanDone = 0;
|
|
for (uint8_t f = 0; f < COUNT(fanBit); f++) {
|
|
const uint8_t bit = pgm_read_byte(&fanBit[f]);
|
|
if (TEST(fanDone, bit)) continue;
|
|
const bool fan_on = TEST(fanState, bit);
|
|
const uint8_t speed = fan_on ? EXTRUDER_AUTO_FAN_SPEED : 0;
|
|
#if ENABLED(AUTO_POWER_E_FANS)
|
|
autofan_speed[f] = speed;
|
|
#endif
|
|
switch (f) {
|
|
#if HAS_AUTO_FAN_0
|
|
case 0: _UPDATE_AUTO_FAN(E0, fan_on, speed); break;
|
|
#endif
|
|
#if HAS_AUTO_FAN_1
|
|
case 1: _UPDATE_AUTO_FAN(E1, fan_on, speed); break;
|
|
#endif
|
|
#if HAS_AUTO_FAN_2
|
|
case 2: _UPDATE_AUTO_FAN(E2, fan_on, speed); break;
|
|
#endif
|
|
#if HAS_AUTO_FAN_3
|
|
case 3: _UPDATE_AUTO_FAN(E3, fan_on, speed); break;
|
|
#endif
|
|
#if HAS_AUTO_FAN_4
|
|
case 4: _UPDATE_AUTO_FAN(E4, fan_on, speed); break;
|
|
#endif
|
|
#if HAS_AUTO_FAN_5
|
|
case 5: _UPDATE_AUTO_FAN(E5, fan_on, speed); break;
|
|
#endif
|
|
#if HAS_AUTO_CHAMBER_FAN
|
|
case 6: _UPDATE_AUTO_FAN(CHAMBER, fan_on, speed); break;
|
|
#endif
|
|
}
|
|
SBI(fanDone, bit);
|
|
UNUSED(fan_on); UNUSED(speed);
|
|
}
|
|
}
|
|
|
|
#endif // HAS_AUTO_FAN
|
|
|
|
//
|
|
// Temperature Error Handlers
|
|
//
|
|
void Temperature::_temp_error(const int8_t heater, PGM_P const serial_msg, PGM_P const lcd_msg) {
|
|
static bool killed = false;
|
|
if (IsRunning()) {
|
|
SERIAL_ERROR_START();
|
|
serialprintPGM(serial_msg);
|
|
SERIAL_ECHOPGM(MSG_STOPPED_HEATER);
|
|
if (heater >= 0) SERIAL_ECHO((int)heater);
|
|
#if HAS_HEATED_CHAMBER
|
|
else if (heater == -2) SERIAL_ECHOPGM(MSG_HEATER_CHAMBER);
|
|
#endif
|
|
else SERIAL_ECHOPGM(MSG_HEATER_BED);
|
|
SERIAL_EOL();
|
|
}
|
|
#if DISABLED(BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE)
|
|
if (!killed) {
|
|
Running = false;
|
|
killed = true;
|
|
kill(lcd_msg);
|
|
}
|
|
else
|
|
disable_all_heaters(); // paranoia
|
|
#endif
|
|
}
|
|
|
|
void Temperature::max_temp_error(const int8_t heater) {
|
|
_temp_error(heater, PSTR(MSG_T_MAXTEMP), TEMP_ERR_PSTR(MSG_ERR_MAXTEMP, heater));
|
|
}
|
|
|
|
void Temperature::min_temp_error(const int8_t heater) {
|
|
_temp_error(heater, PSTR(MSG_T_MINTEMP), TEMP_ERR_PSTR(MSG_ERR_MINTEMP, heater));
|
|
}
|
|
|
|
float Temperature::get_pid_output(const int8_t e) {
|
|
#if HOTENDS == 1
|
|
#define _HOTEND_TEST true
|
|
#else
|
|
#define _HOTEND_TEST (e == active_extruder)
|
|
#endif
|
|
E_UNUSED();
|
|
float pid_output;
|
|
#if ENABLED(PIDTEMP)
|
|
#if DISABLED(PID_OPENLOOP)
|
|
static hotend_pid_t work_pid[HOTENDS];
|
|
static float temp_iState[HOTENDS] = { 0 },
|
|
temp_dState[HOTENDS] = { 0 };
|
|
static bool pid_reset[HOTENDS] = { false };
|
|
float pid_error = temp_hotend[HOTEND_INDEX].target - temp_hotend[HOTEND_INDEX].current;
|
|
work_pid[HOTEND_INDEX].Kd = PID_K2 * PID_PARAM(Kd, HOTEND_INDEX) * (temp_hotend[HOTEND_INDEX].current - temp_dState[HOTEND_INDEX]) + float(PID_K1) * work_pid[HOTEND_INDEX].Kd;
|
|
temp_dState[HOTEND_INDEX] = temp_hotend[HOTEND_INDEX].current;
|
|
|
|
if (temp_hotend[HOTEND_INDEX].target == 0
|
|
|| pid_error < -(PID_FUNCTIONAL_RANGE)
|
|
#if HEATER_IDLE_HANDLER
|
|
|| hotend_idle[HOTEND_INDEX].timed_out
|
|
#endif
|
|
) {
|
|
pid_output = 0;
|
|
pid_reset[HOTEND_INDEX] = true;
|
|
}
|
|
else if (pid_error > PID_FUNCTIONAL_RANGE) {
|
|
pid_output = BANG_MAX;
|
|
pid_reset[HOTEND_INDEX] = true;
|
|
}
|
|
else {
|
|
if (pid_reset[HOTEND_INDEX]) {
|
|
temp_iState[HOTEND_INDEX] = 0.0;
|
|
pid_reset[HOTEND_INDEX] = false;
|
|
}
|
|
temp_iState[HOTEND_INDEX] += pid_error;
|
|
work_pid[HOTEND_INDEX].Kp = PID_PARAM(Kp, HOTEND_INDEX) * pid_error;
|
|
work_pid[HOTEND_INDEX].Ki = PID_PARAM(Ki, HOTEND_INDEX) * temp_iState[HOTEND_INDEX];
|
|
|
|
pid_output = work_pid[HOTEND_INDEX].Kp + work_pid[HOTEND_INDEX].Ki - work_pid[HOTEND_INDEX].Kd;
|
|
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
work_pid[HOTEND_INDEX].Kc = 0;
|
|
if (_HOTEND_TEST) {
|
|
const long e_position = stepper.position(E_AXIS);
|
|
if (e_position > last_e_position) {
|
|
lpq[lpq_ptr] = e_position - last_e_position;
|
|
last_e_position = e_position;
|
|
}
|
|
else
|
|
lpq[lpq_ptr] = 0;
|
|
|
|
if (++lpq_ptr >= lpq_len) lpq_ptr = 0;
|
|
work_pid[HOTEND_INDEX].Kc = (lpq[lpq_ptr] * planner.steps_to_mm[E_AXIS]) * PID_PARAM(Kc, HOTEND_INDEX);
|
|
pid_output += work_pid[HOTEND_INDEX].Kc;
|
|
}
|
|
#endif // PID_EXTRUSION_SCALING
|
|
|
|
if (pid_output > PID_MAX) {
|
|
if (pid_error > 0) temp_iState[HOTEND_INDEX] -= pid_error; // conditional un-integration
|
|
pid_output = PID_MAX;
|
|
}
|
|
else if (pid_output < 0) {
|
|
if (pid_error < 0) temp_iState[HOTEND_INDEX] -= pid_error; // conditional un-integration
|
|
pid_output = 0;
|
|
}
|
|
}
|
|
|
|
#else // PID_OPENLOOP
|
|
|
|
const float pid_output = constrain(temp_hotend[HOTEND_INDEX].target, 0, PID_MAX);
|
|
|
|
#endif // PID_OPENLOOP
|
|
|
|
#if ENABLED(PID_DEBUG)
|
|
SERIAL_ECHO_START();
|
|
SERIAL_ECHOPAIR(
|
|
MSG_PID_DEBUG, HOTEND_INDEX,
|
|
MSG_PID_DEBUG_INPUT, temp_hotend[HOTEND_INDEX].current,
|
|
MSG_PID_DEBUG_OUTPUT, pid_output
|
|
);
|
|
#if DISABLED(PID_OPENLOOP)
|
|
SERIAL_ECHOPAIR(
|
|
MSG_PID_DEBUG_PTERM, work_pid[HOTEND_INDEX].Kp,
|
|
MSG_PID_DEBUG_ITERM, work_pid[HOTEND_INDEX].Ki,
|
|
MSG_PID_DEBUG_DTERM, work_pid[HOTEND_INDEX].Kd
|
|
#if ENABLED(PID_EXTRUSION_SCALING),
|
|
MSG_PID_DEBUG_CTERM, work_pid[HOTEND_INDEX].Kc
|
|
#endif
|
|
);
|
|
#endif
|
|
SERIAL_EOL();
|
|
#endif // PID_DEBUG
|
|
|
|
#else /* PID off */
|
|
#if HEATER_IDLE_HANDLER
|
|
#define _TIMED_OUT_TEST hotend_idle[HOTEND_INDEX].timed_out
|
|
#else
|
|
#define _TIMED_OUT_TEST false
|
|
#endif
|
|
pid_output = (!_TIMED_OUT_TEST && temp_hotend[HOTEND_INDEX].current < temp_hotend[HOTEND_INDEX].target) ? BANG_MAX : 0;
|
|
#undef _TIMED_OUT_TEST
|
|
#endif
|
|
|
|
return pid_output;
|
|
}
|
|
|
|
#if ENABLED(PIDTEMPBED)
|
|
|
|
float Temperature::get_pid_output_bed() {
|
|
|
|
#if DISABLED(PID_OPENLOOP)
|
|
|
|
static PID_t work_pid = { 0 };
|
|
static float temp_iState = 0, temp_dState = 0;
|
|
|
|
float pid_error = temp_bed.target - temp_bed.current;
|
|
temp_iState += pid_error;
|
|
work_pid.Kp = temp_bed.pid.Kp * pid_error;
|
|
work_pid.Ki = temp_bed.pid.Ki * temp_iState;
|
|
work_pid.Kd = PID_K2 * temp_bed.pid.Kd * (temp_bed.current - temp_dState) + PID_K1 * work_pid.Kd;
|
|
|
|
temp_dState = temp_bed.current;
|
|
|
|
float pid_output = work_pid.Kp + work_pid.Ki - work_pid.Kd;
|
|
if (pid_output > MAX_BED_POWER) {
|
|
if (pid_error > 0) temp_iState -= pid_error; // conditional un-integration
|
|
pid_output = MAX_BED_POWER;
|
|
}
|
|
else if (pid_output < 0) {
|
|
if (pid_error < 0) temp_iState -= pid_error; // conditional un-integration
|
|
pid_output = 0;
|
|
}
|
|
|
|
#else // PID_OPENLOOP
|
|
|
|
const float pid_output = constrain(temp_bed.target, 0, MAX_BED_POWER);
|
|
|
|
#endif // PID_OPENLOOP
|
|
|
|
#if ENABLED(PID_BED_DEBUG)
|
|
SERIAL_ECHO_START();
|
|
SERIAL_ECHOLNPAIR(
|
|
" PID_BED_DEBUG : Input ", temp_bed.current, " Output ", pid_output,
|
|
#if DISABLED(PID_OPENLOOP)
|
|
MSG_PID_DEBUG_PTERM, work_pid.Kp,
|
|
MSG_PID_DEBUG_ITERM, work_pid.Ki,
|
|
MSG_PID_DEBUG_DTERM, work_pid.Kd,
|
|
#endif
|
|
);
|
|
#endif
|
|
|
|
return pid_output;
|
|
}
|
|
|
|
#endif // PIDTEMPBED
|
|
|
|
/**
|
|
* Manage heating activities for extruder hot-ends and a heated bed
|
|
* - Acquire updated temperature readings
|
|
* - Also resets the watchdog timer
|
|
* - Invoke thermal runaway protection
|
|
* - Manage extruder auto-fan
|
|
* - Apply filament width to the extrusion rate (may move)
|
|
* - Update the heated bed PID output value
|
|
*/
|
|
void Temperature::manage_heater() {
|
|
|
|
#if EARLY_WATCHDOG
|
|
// If thermal manager is still not running, make sure to at least reset the watchdog!
|
|
if (!inited) {
|
|
watchdog_reset();
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(PROBING_HEATERS_OFF) && ENABLED(BED_LIMIT_SWITCHING)
|
|
static bool last_pause_state;
|
|
#endif
|
|
|
|
#if ENABLED(EMERGENCY_PARSER)
|
|
if (emergency_parser.killed_by_M112) kill();
|
|
#endif
|
|
|
|
if (!temp_meas_ready) return;
|
|
|
|
updateTemperaturesFromRawValues(); // also resets the watchdog
|
|
|
|
#if ENABLED(HEATER_0_USES_MAX6675)
|
|
if (temp_hotend[0].current > MIN(HEATER_0_MAXTEMP, HEATER_0_MAX6675_TMAX - 1.0)) max_temp_error(0);
|
|
if (temp_hotend[0].current < MAX(HEATER_0_MINTEMP, HEATER_0_MAX6675_TMIN + .01)) min_temp_error(0);
|
|
#endif
|
|
|
|
#if ENABLED(HEATER_1_USES_MAX6675)
|
|
if (temp_hotend[1].current > MIN(HEATER_1_MAXTEMP, HEATER_1_MAX6675_TMAX - 1.0)) max_temp_error(1);
|
|
if (temp_hotend[1].current < MAX(HEATER_1_MINTEMP, HEATER_1_MAX6675_TMIN + .01)) min_temp_error(1);
|
|
#endif
|
|
|
|
#if WATCH_HOTENDS || WATCH_BED || DISABLED(PIDTEMPBED) || HAS_AUTO_FAN || HEATER_IDLE_HANDLER || WATCH_CHAMBER
|
|
millis_t ms = millis();
|
|
#endif
|
|
|
|
HOTEND_LOOP() {
|
|
|
|
#if HEATER_IDLE_HANDLER
|
|
hotend_idle[e].update(ms);
|
|
#endif
|
|
|
|
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
|
|
// Check for thermal runaway
|
|
thermal_runaway_protection(tr_state_machine[e], temp_hotend[e].current, temp_hotend[e].target, e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);
|
|
#endif
|
|
|
|
temp_hotend[e].soft_pwm_amount = (temp_hotend[e].current > temp_range[e].mintemp || is_preheating(e)) && temp_hotend[e].current < temp_range[e].maxtemp ? (int)get_pid_output(e) >> 1 : 0;
|
|
|
|
#if WATCH_HOTENDS
|
|
// Make sure temperature is increasing
|
|
if (watch_hotend[e].next_ms && ELAPSED(ms, watch_hotend[e].next_ms)) { // Time to check this extruder?
|
|
if (degHotend(e) < watch_hotend[e].target) // Failed to increase enough?
|
|
_temp_error(e, PSTR(MSG_T_HEATING_FAILED), TEMP_ERR_PSTR(MSG_HEATING_FAILED_LCD, e));
|
|
else // Start again if the target is still far off
|
|
start_watching_heater(e);
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
|
|
// Make sure measured temperatures are close together
|
|
if (ABS(temp_hotend[0].current - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF)
|
|
_temp_error(0, PSTR(MSG_REDUNDANCY), PSTR(MSG_ERR_REDUNDANT_TEMP));
|
|
#endif
|
|
|
|
} // HOTEND_LOOP
|
|
|
|
#if HAS_AUTO_FAN
|
|
if (ELAPSED(ms, next_auto_fan_check_ms)) { // only need to check fan state very infrequently
|
|
checkExtruderAutoFans();
|
|
next_auto_fan_check_ms = ms + 2500UL;
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
/**
|
|
* Filament Width Sensor dynamically sets the volumetric multiplier
|
|
* based on a delayed measurement of the filament diameter.
|
|
*/
|
|
if (filament_sensor) {
|
|
meas_shift_index = filwidth_delay_index[0] - meas_delay_cm;
|
|
if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed
|
|
meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
|
|
planner.calculate_volumetric_for_width_sensor(measurement_delay[meas_shift_index]);
|
|
}
|
|
#endif // FILAMENT_WIDTH_SENSOR
|
|
|
|
#if HAS_HEATED_BED
|
|
|
|
#if WATCH_BED
|
|
// Make sure temperature is increasing
|
|
if (watch_bed.elapsed(ms)) { // Time to check the bed?
|
|
if (degBed() < watch_bed.target) // Failed to increase enough?
|
|
_temp_error(-1, PSTR(MSG_T_HEATING_FAILED), TEMP_ERR_PSTR(MSG_HEATING_FAILED_LCD, -1));
|
|
else // Start again if the target is still far off
|
|
start_watching_bed();
|
|
}
|
|
#endif // WATCH_BED
|
|
|
|
#if DISABLED(PIDTEMPBED)
|
|
if (PENDING(ms, next_bed_check_ms)
|
|
#if ENABLED(PROBING_HEATERS_OFF) && ENABLED(BED_LIMIT_SWITCHING)
|
|
&& paused == last_pause_state
|
|
#endif
|
|
) return;
|
|
next_bed_check_ms = ms + BED_CHECK_INTERVAL;
|
|
#if ENABLED(PROBING_HEATERS_OFF) && ENABLED(BED_LIMIT_SWITCHING)
|
|
last_pause_state = paused;
|
|
#endif
|
|
#endif
|
|
|
|
#if HEATER_IDLE_HANDLER
|
|
bed_idle.update(ms);
|
|
#endif
|
|
|
|
#if HAS_THERMALLY_PROTECTED_BED
|
|
thermal_runaway_protection(tr_state_machine_bed, temp_bed.current, temp_bed.target, -1, THERMAL_PROTECTION_BED_PERIOD, THERMAL_PROTECTION_BED_HYSTERESIS);
|
|
#endif
|
|
|
|
#if HEATER_IDLE_HANDLER
|
|
if (bed_idle.timed_out) {
|
|
temp_bed.soft_pwm_amount = 0;
|
|
#if DISABLED(PIDTEMPBED)
|
|
WRITE_HEATER_BED(LOW);
|
|
#endif
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
#if ENABLED(PIDTEMPBED)
|
|
temp_bed.soft_pwm_amount = WITHIN(temp_bed.current, BED_MINTEMP, BED_MAXTEMP) ? (int)get_pid_output_bed() >> 1 : 0;
|
|
#else
|
|
// Check if temperature is within the correct band
|
|
if (WITHIN(temp_bed.current, BED_MINTEMP, BED_MAXTEMP)) {
|
|
#if ENABLED(BED_LIMIT_SWITCHING)
|
|
if (temp_bed.current >= temp_bed.target + BED_HYSTERESIS)
|
|
temp_bed.soft_pwm_amount = 0;
|
|
else if (temp_bed.current <= temp_bed.target - (BED_HYSTERESIS))
|
|
temp_bed.soft_pwm_amount = MAX_BED_POWER >> 1;
|
|
#else // !PIDTEMPBED && !BED_LIMIT_SWITCHING
|
|
temp_bed.soft_pwm_amount = temp_bed.current < temp_bed.target ? MAX_BED_POWER >> 1 : 0;
|
|
#endif
|
|
}
|
|
else {
|
|
temp_bed.soft_pwm_amount = 0;
|
|
WRITE_HEATER_BED(LOW);
|
|
}
|
|
#endif
|
|
}
|
|
#endif // HAS_HEATED_BED
|
|
|
|
#if HAS_TEMP_CHAMBER
|
|
|
|
#ifndef CHAMBER_CHECK_INTERVAL
|
|
#define CHAMBER_CHECK_INTERVAL 1000UL
|
|
#endif
|
|
|
|
#if HAS_HEATED_CHAMBER
|
|
|
|
#if WATCH_CHAMBER
|
|
// Make sure temperature is increasing
|
|
if (watch_chamber.elapsed(ms)) { // Time to check the chamber?
|
|
if (degChamber() < watch_chamber.target) // Failed to increase enough?
|
|
_temp_error(-2, PSTR(MSG_T_HEATING_FAILED), TEMP_ERR_PSTR(MSG_HEATING_FAILED_LCD, -2));
|
|
else
|
|
start_watching_chamber(); // Start again if the target is still far off
|
|
}
|
|
#endif // WATCH_CHAMBER
|
|
|
|
if (PENDING(ms, next_chamber_check_ms)) return;
|
|
next_chamber_check_ms = ms + CHAMBER_CHECK_INTERVAL;
|
|
|
|
if (WITHIN(temp_chamber.current, CHAMBER_MINTEMP, CHAMBER_MAXTEMP)) {
|
|
#if ENABLED(CHAMBER_LIMIT_SWITCHING)
|
|
if (temp_chamber.current >= temp_chamber.target + CHAMBER_HYSTERESIS)
|
|
temp_chamber.soft_pwm_amount = 0;
|
|
else if (temp_chamber.current <= temp_chamber.target - (CHAMBER_HYSTERESIS))
|
|
temp_chamber.soft_pwm_amount = MAX_CHAMBER_POWER >> 1;
|
|
#else // !PIDTEMPCHAMBER && !CHAMBER_LIMIT_SWITCHING
|
|
temp_chamber.soft_pwm_amount = temp_chamber.current < temp_chamber.target ? MAX_CHAMBER_POWER >> 1 : 0;
|
|
#endif
|
|
}
|
|
else {
|
|
temp_chamber.soft_pwm_amount = 0;
|
|
WRITE_HEATER_CHAMBER(LOW);
|
|
}
|
|
|
|
#if ENABLED(THERMAL_PROTECTION_CHAMBER)
|
|
thermal_runaway_protection(tr_state_machine_chamber, temp_chamber.current, temp_chamber.target, -2, THERMAL_PROTECTION_CHAMBER_PERIOD, THERMAL_PROTECTION_CHAMBER_HYSTERESIS);
|
|
#endif
|
|
|
|
// TODO: Implement true PID pwm
|
|
//temp_bed.soft_pwm_amount = WITHIN(temp_chamber.current, CHAMBER_MINTEMP, CHAMBER_MAXTEMP) ? (int)get_pid_output_chamber() >> 1 : 0;
|
|
|
|
#endif // HAS_HEATED_CHAMBER
|
|
|
|
#endif // HAS_TEMP_CHAMBER
|
|
}
|
|
|
|
#define TEMP_AD595(RAW) ((RAW) * 5.0 * 100.0 / 1024.0 / (OVERSAMPLENR) * (TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET)
|
|
#define TEMP_AD8495(RAW) ((RAW) * 6.6 * 100.0 / 1024.0 / (OVERSAMPLENR) * (TEMP_SENSOR_AD8495_GAIN) + TEMP_SENSOR_AD8495_OFFSET)
|
|
|
|
/**
|
|
* Bisect search for the range of the 'raw' value, then interpolate
|
|
* proportionally between the under and over values.
|
|
*/
|
|
#define SCAN_THERMISTOR_TABLE(TBL,LEN) do{ \
|
|
uint8_t l = 0, r = LEN, m; \
|
|
for (;;) { \
|
|
m = (l + r) >> 1; \
|
|
if (m == l || m == r) return (short)pgm_read_word(&TBL[LEN-1][1]); \
|
|
short v00 = pgm_read_word(&TBL[m-1][0]), \
|
|
v10 = pgm_read_word(&TBL[m-0][0]); \
|
|
if (raw < v00) r = m; \
|
|
else if (raw > v10) l = m; \
|
|
else { \
|
|
const short v01 = (short)pgm_read_word(&TBL[m-1][1]), \
|
|
v11 = (short)pgm_read_word(&TBL[m-0][1]); \
|
|
return v01 + (raw - v00) * float(v11 - v01) / float(v10 - v00); \
|
|
} \
|
|
} \
|
|
}while(0)
|
|
|
|
// Derived from RepRap FiveD extruder::getTemperature()
|
|
// For hot end temperature measurement.
|
|
float Temperature::analog_to_celsius_hotend(const int raw, const uint8_t e) {
|
|
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
|
|
if (e > HOTENDS)
|
|
#else
|
|
if (e >= HOTENDS)
|
|
#endif
|
|
{
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ECHO((int)e);
|
|
SERIAL_ECHOLNPGM(MSG_INVALID_EXTRUDER_NUM);
|
|
kill();
|
|
return 0.0;
|
|
}
|
|
|
|
switch (e) {
|
|
case 0:
|
|
#if ENABLED(HEATER_0_USES_MAX6675)
|
|
return raw * 0.25;
|
|
#elif ENABLED(HEATER_0_USES_AD595)
|
|
return TEMP_AD595(raw);
|
|
#elif ENABLED(HEATER_0_USES_AD8495)
|
|
return TEMP_AD8495(raw);
|
|
#else
|
|
break;
|
|
#endif
|
|
case 1:
|
|
#if ENABLED(HEATER_1_USES_MAX6675)
|
|
return raw * 0.25;
|
|
#elif ENABLED(HEATER_1_USES_AD595)
|
|
return TEMP_AD595(raw);
|
|
#elif ENABLED(HEATER_1_USES_AD8495)
|
|
return TEMP_AD8495(raw);
|
|
#else
|
|
break;
|
|
#endif
|
|
case 2:
|
|
#if ENABLED(HEATER_2_USES_AD595)
|
|
return TEMP_AD595(raw);
|
|
#elif ENABLED(HEATER_2_USES_AD8495)
|
|
return TEMP_AD8495(raw);
|
|
#else
|
|
break;
|
|
#endif
|
|
case 3:
|
|
#if ENABLED(HEATER_3_USES_AD595)
|
|
return TEMP_AD595(raw);
|
|
#elif ENABLED(HEATER_3_USES_AD8495)
|
|
return TEMP_AD8495(raw);
|
|
#else
|
|
break;
|
|
#endif
|
|
case 4:
|
|
#if ENABLED(HEATER_4_USES_AD595)
|
|
return TEMP_AD595(raw);
|
|
#elif ENABLED(HEATER_4_USES_AD8495)
|
|
return TEMP_AD8495(raw);
|
|
#else
|
|
break;
|
|
#endif
|
|
case 5:
|
|
#if ENABLED(HEATER_5_USES_AD595)
|
|
return TEMP_AD595(raw);
|
|
#elif ENABLED(HEATER_5_USES_AD8495)
|
|
return TEMP_AD8495(raw);
|
|
#else
|
|
break;
|
|
#endif
|
|
default: break;
|
|
}
|
|
|
|
#if HOTEND_USES_THERMISTOR
|
|
// Thermistor with conversion table?
|
|
const short(*tt)[][2] = (short(*)[][2])(heater_ttbl_map[e]);
|
|
SCAN_THERMISTOR_TABLE((*tt), heater_ttbllen_map[e]);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if HAS_HEATED_BED
|
|
// Derived from RepRap FiveD extruder::getTemperature()
|
|
// For bed temperature measurement.
|
|
float Temperature::analog_to_celsius_bed(const int raw) {
|
|
#if ENABLED(HEATER_BED_USES_THERMISTOR)
|
|
SCAN_THERMISTOR_TABLE(BEDTEMPTABLE, BEDTEMPTABLE_LEN);
|
|
#elif ENABLED(HEATER_BED_USES_AD595)
|
|
return TEMP_AD595(raw);
|
|
#elif ENABLED(HEATER_BED_USES_AD8495)
|
|
return TEMP_AD8495(raw);
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
#endif // HAS_HEATED_BED
|
|
|
|
#if HAS_TEMP_CHAMBER
|
|
// Derived from RepRap FiveD extruder::getTemperature()
|
|
// For chamber temperature measurement.
|
|
float Temperature::analog_to_celsius_chamber(const int raw) {
|
|
#if ENABLED(HEATER_CHAMBER_USES_THERMISTOR)
|
|
SCAN_THERMISTOR_TABLE(CHAMBERTEMPTABLE, CHAMBERTEMPTABLE_LEN);
|
|
#elif ENABLED(HEATER_CHAMBER_USES_AD595)
|
|
return TEMP_AD595(raw);
|
|
#elif ENABLED(HEATER_CHAMBER_USES_AD8495)
|
|
return TEMP_AD8495(raw);
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
#endif // HAS_TEMP_CHAMBER
|
|
|
|
/**
|
|
* Get the raw values into the actual temperatures.
|
|
* The raw values are created in interrupt context,
|
|
* and this function is called from normal context
|
|
* as it would block the stepper routine.
|
|
*/
|
|
void Temperature::updateTemperaturesFromRawValues() {
|
|
#if ENABLED(HEATER_0_USES_MAX6675)
|
|
temp_hotend[0].raw = READ_MAX6675(0);
|
|
#endif
|
|
#if ENABLED(HEATER_1_USES_MAX6675)
|
|
temp_hotend[1].raw = READ_MAX6675(1);
|
|
#endif
|
|
HOTEND_LOOP() temp_hotend[e].current = analog_to_celsius_hotend(temp_hotend[e].raw, e);
|
|
#if HAS_HEATED_BED
|
|
temp_bed.current = analog_to_celsius_bed(temp_bed.raw);
|
|
#endif
|
|
#if HAS_TEMP_CHAMBER
|
|
temp_chamber.current = analog_to_celsius_chamber(temp_chamber.raw);
|
|
#endif
|
|
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
|
|
redundant_temperature = analog_to_celsius_hotend(redundant_temperature_raw, 1);
|
|
#endif
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
filament_width_meas = analog_to_mm_fil_width();
|
|
#endif
|
|
|
|
#if ENABLED(USE_WATCHDOG)
|
|
// Reset the watchdog after we know we have a temperature measurement.
|
|
watchdog_reset();
|
|
#endif
|
|
|
|
temp_meas_ready = false;
|
|
}
|
|
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
|
|
// Convert raw Filament Width to millimeters
|
|
float Temperature::analog_to_mm_fil_width() {
|
|
return current_raw_filwidth * 5.0f * (1.0f / 16383.0f);
|
|
}
|
|
|
|
/**
|
|
* Convert Filament Width (mm) to a simple ratio
|
|
* and reduce to an 8 bit value.
|
|
*
|
|
* A nominal width of 1.75 and measured width of 1.73
|
|
* gives (100 * 1.75 / 1.73) for a ratio of 101 and
|
|
* a return value of 1.
|
|
*/
|
|
int8_t Temperature::widthFil_to_size_ratio() {
|
|
if (ABS(filament_width_nominal - filament_width_meas) <= FILWIDTH_ERROR_MARGIN)
|
|
return int(100.0f * filament_width_nominal / filament_width_meas) - 100;
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
#if MAX6675_SEPARATE_SPI
|
|
SPIclass<MAX6675_DO_PIN, MOSI_PIN, MAX6675_SCK_PIN> max6675_spi;
|
|
#endif
|
|
|
|
// Init fans according to whether they're native PWM or Software PWM
|
|
#define _INIT_SOFT_FAN(P) OUT_WRITE(P, FAN_INVERTING ? LOW : HIGH)
|
|
#if ENABLED(FAN_SOFT_PWM)
|
|
#define _INIT_FAN_PIN(P) _INIT_SOFT_FAN(P)
|
|
#else
|
|
#define _INIT_FAN_PIN(P) do{ if (PWM_PIN(P)) SET_PWM(P); else _INIT_SOFT_FAN(P); }while(0)
|
|
#endif
|
|
#if ENABLED(FAST_PWM_FAN)
|
|
#define SET_FAST_PWM_FREQ(P) set_pwm_frequency(P, FAST_PWM_FAN_FREQUENCY)
|
|
#else
|
|
#define SET_FAST_PWM_FREQ(P) NOOP
|
|
#endif
|
|
#define INIT_FAN_PIN(P) do{ _INIT_FAN_PIN(P); SET_FAST_PWM_FREQ(P); }while(0)
|
|
#if EXTRUDER_AUTO_FAN_SPEED != 255
|
|
#define INIT_AUTO_FAN_PIN(P) do{ if (P == FAN1_PIN || P == FAN2_PIN) { SET_PWM(P); SET_FAST_PWM_FREQ(FAST_PWM_FAN_FREQUENCY); } else SET_OUTPUT(P); }while(0)
|
|
#else
|
|
#define INIT_AUTO_FAN_PIN(P) SET_OUTPUT(P)
|
|
#endif
|
|
|
|
/**
|
|
* Initialize the temperature manager
|
|
* The manager is implemented by periodic calls to manage_heater()
|
|
*/
|
|
void Temperature::init() {
|
|
|
|
#if EARLY_WATCHDOG
|
|
// Flag that the thermalManager should be running
|
|
if (inited) return;
|
|
inited = true;
|
|
#endif
|
|
|
|
#if MB(RUMBA)
|
|
#define _AD(N) (ENABLED(HEATER_##N##_USES_AD595) || ENABLED(HEATER_##N##_USES_AD8495))
|
|
#if _AD(0) || _AD(1) || _AD(2) || _AD(3) || _AD(4) || _AD(5) || _AD(BED) || _AD(CHAMBER)
|
|
// Disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
|
|
MCUCR = _BV(JTD);
|
|
MCUCR = _BV(JTD);
|
|
#endif
|
|
#endif
|
|
|
|
#if ENABLED(PIDTEMP) && ENABLED(PID_EXTRUSION_SCALING)
|
|
last_e_position = 0;
|
|
#endif
|
|
|
|
#if HAS_HEATER_0
|
|
OUT_WRITE(HEATER_0_PIN, HEATER_0_INVERTING);
|
|
#endif
|
|
#if HAS_HEATER_1
|
|
OUT_WRITE(HEATER_1_PIN, HEATER_1_INVERTING);
|
|
#endif
|
|
#if HAS_HEATER_2
|
|
OUT_WRITE(HEATER_2_PIN, HEATER_2_INVERTING);
|
|
#endif
|
|
#if HAS_HEATER_3
|
|
OUT_WRITE(HEATER_3_PIN, HEATER_3_INVERTING);
|
|
#endif
|
|
#if HAS_HEATER_4
|
|
OUT_WRITE(HEATER_4_PIN, HEATER_4_INVERTING);
|
|
#endif
|
|
#if HAS_HEATER_5
|
|
OUT_WRITE(HEATER_5_PIN, HEATER_5_INVERTING);
|
|
#endif
|
|
#if HAS_HEATED_BED
|
|
OUT_WRITE(HEATER_BED_PIN, HEATER_BED_INVERTING);
|
|
#endif
|
|
#if HAS_HEATED_CHAMBER
|
|
OUT_WRITE(HEATER_CHAMBER_PIN, HEATER_CHAMBER_INVERTING);
|
|
#endif
|
|
|
|
#if HAS_FAN0
|
|
INIT_FAN_PIN(FAN_PIN);
|
|
#endif
|
|
#if HAS_FAN1
|
|
INIT_FAN_PIN(FAN1_PIN);
|
|
#endif
|
|
#if HAS_FAN2
|
|
INIT_FAN_PIN(FAN2_PIN);
|
|
#endif
|
|
#if ENABLED(USE_CONTROLLER_FAN)
|
|
INIT_FAN_PIN(CONTROLLER_FAN_PIN);
|
|
#endif
|
|
|
|
#if MAX6675_SEPARATE_SPI
|
|
|
|
OUT_WRITE(SCK_PIN, LOW);
|
|
OUT_WRITE(MOSI_PIN, HIGH);
|
|
SET_INPUT_PULLUP(MISO_PIN);
|
|
|
|
max6675_spi.init();
|
|
|
|
OUT_WRITE(SS_PIN, HIGH);
|
|
OUT_WRITE(MAX6675_SS_PIN, HIGH);
|
|
|
|
#endif
|
|
|
|
#if ENABLED(HEATER_1_USES_MAX6675)
|
|
OUT_WRITE(MAX6675_SS2_PIN, HIGH);
|
|
#endif
|
|
|
|
HAL_adc_init();
|
|
|
|
#if HAS_TEMP_ADC_0
|
|
HAL_ANALOG_SELECT(TEMP_0_PIN);
|
|
#endif
|
|
#if HAS_TEMP_ADC_1
|
|
HAL_ANALOG_SELECT(TEMP_1_PIN);
|
|
#endif
|
|
#if HAS_TEMP_ADC_2
|
|
HAL_ANALOG_SELECT(TEMP_2_PIN);
|
|
#endif
|
|
#if HAS_TEMP_ADC_3
|
|
HAL_ANALOG_SELECT(TEMP_3_PIN);
|
|
#endif
|
|
#if HAS_TEMP_ADC_4
|
|
HAL_ANALOG_SELECT(TEMP_4_PIN);
|
|
#endif
|
|
#if HAS_TEMP_ADC_5
|
|
HAL_ANALOG_SELECT(TEMP_5_PIN);
|
|
#endif
|
|
#if HAS_HEATED_BED
|
|
HAL_ANALOG_SELECT(TEMP_BED_PIN);
|
|
#endif
|
|
#if HAS_TEMP_CHAMBER
|
|
HAL_ANALOG_SELECT(TEMP_CHAMBER_PIN);
|
|
#endif
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
HAL_ANALOG_SELECT(FILWIDTH_PIN);
|
|
#endif
|
|
|
|
HAL_timer_start(TEMP_TIMER_NUM, TEMP_TIMER_FREQUENCY);
|
|
ENABLE_TEMPERATURE_INTERRUPT();
|
|
|
|
#if HAS_AUTO_FAN_0
|
|
INIT_AUTO_FAN_PIN(E0_AUTO_FAN_PIN);
|
|
#endif
|
|
#if HAS_AUTO_FAN_1 && !AUTO_1_IS_0
|
|
INIT_AUTO_FAN_PIN(E1_AUTO_FAN_PIN);
|
|
#endif
|
|
#if HAS_AUTO_FAN_2 && !(AUTO_2_IS_0 || AUTO_2_IS_1)
|
|
INIT_AUTO_FAN_PIN(E2_AUTO_FAN_PIN);
|
|
#endif
|
|
#if HAS_AUTO_FAN_3 && !(AUTO_3_IS_0 || AUTO_3_IS_1 || AUTO_3_IS_2)
|
|
INIT_AUTO_FAN_PIN(E3_AUTO_FAN_PIN);
|
|
#endif
|
|
#if HAS_AUTO_FAN_4 && !(AUTO_4_IS_0 || AUTO_4_IS_1 || AUTO_4_IS_2 || AUTO_4_IS_3)
|
|
INIT_AUTO_FAN_PIN(E4_AUTO_FAN_PIN);
|
|
#endif
|
|
#if HAS_AUTO_FAN_5 && !(AUTO_5_IS_0 || AUTO_5_IS_1 || AUTO_5_IS_2 || AUTO_5_IS_3 || AUTO_5_IS_4)
|
|
INIT_AUTO_FAN_PIN(E5_AUTO_FAN_PIN);
|
|
#endif
|
|
#if HAS_AUTO_CHAMBER_FAN && !(AUTO_CHAMBER_IS_0 || AUTO_CHAMBER_IS_1 || AUTO_CHAMBER_IS_2 || AUTO_CHAMBER_IS_3 || AUTO_CHAMBER_IS_4 || AUTO_CHAMBER_IS_5)
|
|
INIT_AUTO_FAN_PIN(CHAMBER_AUTO_FAN_PIN);
|
|
#endif
|
|
|
|
// Wait for temperature measurement to settle
|
|
delay(250);
|
|
|
|
#if HOTENDS
|
|
|
|
#define _TEMP_MIN_E(NR) do{ \
|
|
temp_range[NR].mintemp = HEATER_ ##NR## _MINTEMP; \
|
|
while (analog_to_celsius_hotend(temp_range[NR].raw_min, NR) < HEATER_ ##NR## _MINTEMP) \
|
|
temp_range[NR].raw_min += TEMPDIR(NR) * (OVERSAMPLENR); \
|
|
}while(0)
|
|
#define _TEMP_MAX_E(NR) do{ \
|
|
temp_range[NR].maxtemp = HEATER_ ##NR## _MAXTEMP; \
|
|
while (analog_to_celsius_hotend(temp_range[NR].raw_min, NR) > HEATER_ ##NR## _MAXTEMP) \
|
|
temp_range[NR].raw_max -= TEMPDIR(NR) * (OVERSAMPLENR); \
|
|
}while(0)
|
|
|
|
#ifdef HEATER_0_MINTEMP
|
|
_TEMP_MIN_E(0);
|
|
#endif
|
|
#ifdef HEATER_0_MAXTEMP
|
|
_TEMP_MAX_E(0);
|
|
#endif
|
|
#if HOTENDS > 1
|
|
#ifdef HEATER_1_MINTEMP
|
|
_TEMP_MIN_E(1);
|
|
#endif
|
|
#ifdef HEATER_1_MAXTEMP
|
|
_TEMP_MAX_E(1);
|
|
#endif
|
|
#if HOTENDS > 2
|
|
#ifdef HEATER_2_MINTEMP
|
|
_TEMP_MIN_E(2);
|
|
#endif
|
|
#ifdef HEATER_2_MAXTEMP
|
|
_TEMP_MAX_E(2);
|
|
#endif
|
|
#if HOTENDS > 3
|
|
#ifdef HEATER_3_MINTEMP
|
|
_TEMP_MIN_E(3);
|
|
#endif
|
|
#ifdef HEATER_3_MAXTEMP
|
|
_TEMP_MAX_E(3);
|
|
#endif
|
|
#if HOTENDS > 4
|
|
#ifdef HEATER_4_MINTEMP
|
|
_TEMP_MIN_E(4);
|
|
#endif
|
|
#ifdef HEATER_4_MAXTEMP
|
|
_TEMP_MAX_E(4);
|
|
#endif
|
|
#if HOTENDS > 5
|
|
#ifdef HEATER_5_MINTEMP
|
|
_TEMP_MIN_E(5);
|
|
#endif
|
|
#ifdef HEATER_5_MAXTEMP
|
|
_TEMP_MAX_E(5);
|
|
#endif
|
|
#endif // HOTENDS > 5
|
|
#endif // HOTENDS > 4
|
|
#endif // HOTENDS > 3
|
|
#endif // HOTENDS > 2
|
|
#endif // HOTENDS > 1
|
|
|
|
#endif // HOTENDS > 1
|
|
|
|
#if HAS_HEATED_BED
|
|
#ifdef BED_MINTEMP
|
|
while (analog_to_celsius_bed(mintemp_raw_BED) < BED_MINTEMP) mintemp_raw_BED += TEMPDIR(BED) * (OVERSAMPLENR);
|
|
#endif
|
|
#ifdef BED_MAXTEMP
|
|
while (analog_to_celsius_bed(maxtemp_raw_BED) > BED_MAXTEMP) mintemp_raw_BED -= TEMPDIR(BED) * (OVERSAMPLENR);
|
|
#endif
|
|
#endif // HAS_HEATED_BED
|
|
|
|
#if HAS_HEATED_CHAMBER
|
|
#ifdef CHAMBER_MINTEMP
|
|
while (analog_to_celsius_chamber(mintemp_raw_CHAMBER) < CHAMBER_MINTEMP) mintemp_raw_CHAMBER += TEMPDIR(CHAMBER) * (OVERSAMPLENR);
|
|
#endif
|
|
#ifdef CHAMBER_MAXTEMP
|
|
while (analog_to_celsius_chamber(maxtemp_raw_CHAMBER) > CHAMBER_MAXTEMP) mintemp_raw_CHAMBER -= TEMPDIR(CHAMBER) * (OVERSAMPLENR);
|
|
#endif
|
|
#endif
|
|
|
|
#if ENABLED(PROBING_HEATERS_OFF)
|
|
paused = false;
|
|
#endif
|
|
}
|
|
|
|
|
|
#if ENABLED(FAST_PWM_FAN)
|
|
Temperature::Timer Temperature::get_pwm_timer(pin_t pin) {
|
|
#if defined(ARDUINO) && !defined(ARDUINO_ARCH_SAM)
|
|
uint8_t q = 0;
|
|
switch (digitalPinToTimer(pin)) {
|
|
// Protect reserved timers (TIMER0 & TIMER1)
|
|
#ifdef TCCR0A
|
|
#if !AVR_AT90USB1286_FAMILY
|
|
case TIMER0A:
|
|
#endif
|
|
case TIMER0B:
|
|
#endif
|
|
#ifdef TCCR1A
|
|
case TIMER1A: case TIMER1B:
|
|
#endif
|
|
break;
|
|
#if defined(TCCR2) || defined(TCCR2A)
|
|
#ifdef TCCR2
|
|
case TIMER2: {
|
|
Temperature::Timer timer = {
|
|
/*TCCRnQ*/ { &TCCR2, NULL, NULL},
|
|
/*OCRnQ*/ { (uint16_t*)&OCR2, NULL, NULL},
|
|
/*ICRn*/ NULL,
|
|
/*n, q*/ 2, 0
|
|
};
|
|
}
|
|
#elif defined TCCR2A
|
|
#if ENABLED(USE_OCR2A_AS_TOP)
|
|
case TIMER2A: break; // protect TIMER2A
|
|
case TIMER2B: {
|
|
Temperature::Timer timer = {
|
|
/*TCCRnQ*/ { &TCCR2A, &TCCR2B, NULL},
|
|
/*OCRnQ*/ { (uint16_t*)&OCR2A, (uint16_t*)&OCR2B, NULL},
|
|
/*ICRn*/ NULL,
|
|
/*n, q*/ 2, 1
|
|
};
|
|
return timer;
|
|
}
|
|
#else
|
|
case TIMER2B: q += 1;
|
|
case TIMER2A: {
|
|
Temperature::Timer timer = {
|
|
/*TCCRnQ*/ { &TCCR2A, &TCCR2B, NULL},
|
|
/*OCRnQ*/ { (uint16_t*)&OCR2A, (uint16_t*)&OCR2B, NULL},
|
|
/*ICRn*/ NULL,
|
|
2, q
|
|
};
|
|
return timer;
|
|
}
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#ifdef TCCR3A
|
|
case TIMER3C: q += 1;
|
|
case TIMER3B: q += 1;
|
|
case TIMER3A: {
|
|
Temperature::Timer timer = {
|
|
/*TCCRnQ*/ { &TCCR3A, &TCCR3B, &TCCR3C},
|
|
/*OCRnQ*/ { &OCR3A, &OCR3B, &OCR3C},
|
|
/*ICRn*/ &ICR3,
|
|
/*n, q*/ 3, q
|
|
};
|
|
return timer;
|
|
}
|
|
#endif
|
|
#ifdef TCCR4A
|
|
case TIMER4C: q += 1;
|
|
case TIMER4B: q += 1;
|
|
case TIMER4A: {
|
|
Temperature::Timer timer = {
|
|
/*TCCRnQ*/ { &TCCR4A, &TCCR4B, &TCCR4C},
|
|
/*OCRnQ*/ { &OCR4A, &OCR4B, &OCR4C},
|
|
/*ICRn*/ &ICR4,
|
|
/*n, q*/ 4, q
|
|
};
|
|
return timer;
|
|
}
|
|
#endif
|
|
#ifdef TCCR5A
|
|
case TIMER5C: q += 1;
|
|
case TIMER5B: q += 1;
|
|
case TIMER5A: {
|
|
Temperature::Timer timer = {
|
|
/*TCCRnQ*/ { &TCCR5A, &TCCR5B, &TCCR5C},
|
|
/*OCRnQ*/ { &OCR5A, &OCR5B, &OCR5C },
|
|
/*ICRn*/ &ICR5,
|
|
/*n, q*/ 5, q
|
|
};
|
|
return timer;
|
|
}
|
|
#endif
|
|
}
|
|
Temperature::Timer timer = {
|
|
/*TCCRnQ*/ { NULL, NULL, NULL},
|
|
/*OCRnQ*/ { NULL, NULL, NULL},
|
|
/*ICRn*/ NULL,
|
|
0, 0
|
|
};
|
|
return timer;
|
|
#endif // ARDUINO && !ARDUINO_ARCH_SAM
|
|
}
|
|
|
|
void Temperature::set_pwm_frequency(const pin_t pin, int f_desired) {
|
|
#if defined(ARDUINO) && !defined(ARDUINO_ARCH_SAM)
|
|
Temperature::Timer timer = get_pwm_timer(pin);
|
|
if (timer.n == 0) return; // Don't proceed if protected timer or not recognised
|
|
uint16_t size;
|
|
if (timer.n == 2) size = 255; else size = 65535;
|
|
|
|
uint16_t res = 255; // resolution (TOP value)
|
|
uint8_t j = 0; // prescaler index
|
|
uint8_t wgm = 1; // waveform generation mode
|
|
|
|
// Calculating the prescaler and resolution to use to achieve closest frequency
|
|
if (f_desired != 0) {
|
|
int f = F_CPU/(2*1024*size) + 1; // Initialize frequency as lowest (non-zero) achievable
|
|
uint16_t prescaler[] = {0, 1, 8, /*TIMER2 ONLY*/32, 64, /*TIMER2 ONLY*/128, 256, 1024};
|
|
|
|
// loop over prescaler values
|
|
for (uint8_t i = 1; i < 8; i++) {
|
|
uint16_t res_temp_fast = 255, res_temp_phase_correct = 255;
|
|
if (timer.n == 2) {
|
|
// No resolution calculation for TIMER2 unless enabled USE_OCR2A_AS_TOP
|
|
#if ENABLED(USE_OCR2A_AS_TOP)
|
|
res_temp_fast = (F_CPU / (prescaler[i] * f_desired)) - 1;
|
|
res_temp_phase_correct = F_CPU / (2 * prescaler[i] * f_desired);
|
|
#endif
|
|
}
|
|
else {
|
|
// Skip TIMER2 specific prescalers when not TIMER2
|
|
if (i == 3 || i == 5) continue;
|
|
res_temp_fast = (F_CPU / (prescaler[i] * f_desired)) - 1;
|
|
res_temp_phase_correct = F_CPU / (2 * prescaler[i] * f_desired);
|
|
}
|
|
|
|
LIMIT(res_temp_fast, 1u, size);
|
|
LIMIT(res_temp_phase_correct, 1u, size);
|
|
// Calculate frequncies of test prescaler and resolution values
|
|
int f_temp_fast = F_CPU / (prescaler[i] * (1 + res_temp_fast));
|
|
int f_temp_phase_correct = F_CPU / (2 * prescaler[i] * res_temp_phase_correct);
|
|
|
|
// If FAST values are closest to desired f
|
|
if (ABS(f_temp_fast - f_desired) < ABS(f - f_desired)
|
|
&& ABS(f_temp_fast - f_desired) <= ABS(f_temp_phase_correct - f_desired)) {
|
|
// Remember this combination
|
|
f = f_temp_fast;
|
|
res = res_temp_fast;
|
|
j = i;
|
|
// Set the Wave Generation Mode to FAST PWM
|
|
if(timer.n == 2){
|
|
wgm =
|
|
#if ENABLED(USE_OCR2A_AS_TOP)
|
|
WGM2_FAST_PWM_OCR2A;
|
|
#else
|
|
WGM2_FAST_PWM;
|
|
#endif
|
|
}
|
|
else wgm = WGM_FAST_PWM_ICRn;
|
|
}
|
|
// If PHASE CORRECT values are closes to desired f
|
|
else if (ABS(f_temp_phase_correct - f_desired) < ABS(f - f_desired)) {
|
|
f = f_temp_phase_correct;
|
|
res = res_temp_phase_correct;
|
|
j = i;
|
|
// Set the Wave Generation Mode to PWM PHASE CORRECT
|
|
if (timer.n == 2) {
|
|
wgm =
|
|
#if ENABLED(USE_OCR2A_AS_TOP)
|
|
WGM2_PWM_PC_OCR2A;
|
|
#else
|
|
WGM2_PWM_PC;
|
|
#endif
|
|
}
|
|
else wgm = WGM_PWM_PC_ICRn;
|
|
}
|
|
}
|
|
}
|
|
_SET_WGMnQ(timer.TCCRnQ, wgm);
|
|
_SET_CSn(timer.TCCRnQ, j);
|
|
|
|
if (timer.n == 2) {
|
|
#if ENABLED(USE_OCR2A_AS_TOP)
|
|
_SET_OCRnQ(timer.OCRnQ, 0, res); // Set OCR2A value (TOP) = res
|
|
#endif
|
|
}
|
|
else {
|
|
_SET_ICRn(timer.ICRn, res); // Set ICRn value (TOP) = res
|
|
}
|
|
#endif // ARDUINO && !ARDUINO_ARCH_SAM
|
|
}
|
|
|
|
void Temperature::set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t v_size/*=255*/, const bool invert/*=false*/) {
|
|
#if defined(ARDUINO) && !defined(ARDUINO_ARCH_SAM)
|
|
// If v is 0 or v_size (max), digitalWrite to LOW or HIGH.
|
|
// Note that digitalWrite also disables pwm output for us (sets COM bit to 0)
|
|
if (v == 0)
|
|
digitalWrite(pin, invert);
|
|
else if (v == v_size)
|
|
digitalWrite(pin, !invert);
|
|
else {
|
|
Temperature::Timer timer = get_pwm_timer(pin);
|
|
if (timer.n == 0) return; // Don't proceed if protected timer or not recognised
|
|
// Set compare output mode to CLEAR -> SET or SET -> CLEAR (if inverted)
|
|
_SET_COMnQ(timer.TCCRnQ, timer.q
|
|
#ifdef TCCR2
|
|
+ (timer.q == 2) // COM20 is on bit 4 of TCCR2, thus requires q + 1 in the macro
|
|
#endif
|
|
, COM_CLEAR_SET + invert
|
|
);
|
|
|
|
uint16_t top;
|
|
if (timer.n == 2) { // if TIMER2
|
|
top =
|
|
#if ENABLED(USE_OCR2A_AS_TOP)
|
|
*timer.OCRnQ[0] // top = OCR2A
|
|
#else
|
|
255 // top = 0xFF (max)
|
|
#endif
|
|
;
|
|
}
|
|
else
|
|
top = *timer.ICRn; // top = ICRn
|
|
|
|
_SET_OCRnQ(timer.OCRnQ, timer.q, v * float(top / v_size)); // Scale 8/16-bit v to top value
|
|
}
|
|
#endif // ARDUINO && !ARDUINO_ARCH_SAM
|
|
}
|
|
|
|
#endif // FAST_PWM_FAN
|
|
|
|
#if WATCH_HOTENDS
|
|
/**
|
|
* Start Heating Sanity Check for hotends that are below
|
|
* their target temperature by a configurable margin.
|
|
* This is called when the temperature is set. (M104, M109)
|
|
*/
|
|
void Temperature::start_watching_heater(const uint8_t e) {
|
|
E_UNUSED();
|
|
if (degTargetHotend(HOTEND_INDEX) && degHotend(HOTEND_INDEX) < degTargetHotend(HOTEND_INDEX) - (WATCH_TEMP_INCREASE + TEMP_HYSTERESIS + 1)) {
|
|
watch_hotend[HOTEND_INDEX].target = degHotend(HOTEND_INDEX) + WATCH_TEMP_INCREASE;
|
|
watch_hotend[HOTEND_INDEX].next_ms = millis() + (WATCH_TEMP_PERIOD) * 1000UL;
|
|
}
|
|
else
|
|
watch_hotend[HOTEND_INDEX].next_ms = 0;
|
|
}
|
|
#endif
|
|
|
|
#if WATCH_BED
|
|
/**
|
|
* Start Heating Sanity Check for hotends that are below
|
|
* their target temperature by a configurable margin.
|
|
* This is called when the temperature is set. (M140, M190)
|
|
*/
|
|
void Temperature::start_watching_bed() {
|
|
if (degTargetBed() && degBed() < degTargetBed() - (WATCH_BED_TEMP_INCREASE + TEMP_BED_HYSTERESIS + 1)) {
|
|
watch_bed.target = degBed() + WATCH_BED_TEMP_INCREASE;
|
|
watch_bed.next_ms = millis() + (WATCH_BED_TEMP_PERIOD) * 1000UL;
|
|
}
|
|
else
|
|
watch_bed.next_ms = 0;
|
|
}
|
|
#endif
|
|
|
|
#if WATCH_CHAMBER
|
|
/**
|
|
* Start Heating Sanity Check for hotends that are below
|
|
* their target temperature by a configurable margin.
|
|
* This is called when the temperature is set. (M141, M191)
|
|
*/
|
|
void Temperature::start_watching_chamber() {
|
|
if (degChamber() < degTargetChamber() - (WATCH_CHAMBER_TEMP_INCREASE + TEMP_CHAMBER_HYSTERESIS + 1)) {
|
|
watch_chamber.target = degChamber() + WATCH_CHAMBER_TEMP_INCREASE;
|
|
watch_chamber.next_ms = millis() + (WATCH_CHAMBER_TEMP_PERIOD) * 1000UL;
|
|
}
|
|
else
|
|
watch_chamber.next_ms = 0;
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED || ENABLED(THERMAL_PROTECTION_CHAMBER)
|
|
|
|
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
|
|
Temperature::tr_state_machine_t Temperature::tr_state_machine[HOTENDS]; // = { { TRInactive, 0 } };
|
|
#endif
|
|
#if HAS_THERMALLY_PROTECTED_BED
|
|
Temperature::tr_state_machine_t Temperature::tr_state_machine_bed; // = { TRInactive, 0 };
|
|
#endif
|
|
#if ENABLED(THERMAL_PROTECTION_CHAMBER)
|
|
Temperature::tr_state_machine_t Temperature::tr_state_machine_chamber; // = { TRInactive, 0 };
|
|
#endif
|
|
|
|
void Temperature::thermal_runaway_protection(Temperature::tr_state_machine_t &sm, const float ¤t, const float &target, const int8_t heater_id, const uint16_t period_seconds, const uint16_t hysteresis_degc) {
|
|
|
|
static float tr_target_temperature[HOTENDS + 1] = { 0.0 };
|
|
|
|
/**
|
|
SERIAL_ECHO_START();
|
|
SERIAL_ECHOPGM("Thermal Thermal Runaway Running. Heater ID: ");
|
|
if (heater_id == -2) SERIAL_ECHOPGM("chamber");
|
|
if (heater_id < 0) SERIAL_ECHOPGM("bed"); else SERIAL_ECHO(heater_id);
|
|
SERIAL_ECHOPAIR(" ; State:", sm.state, " ; Timer:", sm.timer, " ; Temperature:", current, " ; Target Temp:", target);
|
|
if (heater_id >= 0)
|
|
SERIAL_ECHOPAIR(" ; Idle Timeout:", hotend_idle[heater_id].timed_out);
|
|
else
|
|
SERIAL_ECHOPAIR(" ; Idle Timeout:", bed_idle.timed_out);
|
|
SERIAL_EOL();
|
|
*/
|
|
|
|
const int heater_index = heater_id >= 0 ? heater_id : HOTENDS;
|
|
|
|
#if HEATER_IDLE_HANDLER
|
|
// If the heater idle timeout expires, restart
|
|
if ((heater_id >= 0 && hotend_idle[heater_id].timed_out)
|
|
#if HAS_HEATED_BED
|
|
|| (heater_id < 0 && bed_idle.timed_out)
|
|
#endif
|
|
) {
|
|
sm.state = TRInactive;
|
|
tr_target_temperature[heater_index] = 0;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
// If the target temperature changes, restart
|
|
if (tr_target_temperature[heater_index] != target) {
|
|
tr_target_temperature[heater_index] = target;
|
|
sm.state = target > 0 ? TRFirstHeating : TRInactive;
|
|
}
|
|
}
|
|
|
|
switch (sm.state) {
|
|
// Inactive state waits for a target temperature to be set
|
|
case TRInactive: break;
|
|
|
|
// When first heating, wait for the temperature to be reached then go to Stable state
|
|
case TRFirstHeating:
|
|
if (current < tr_target_temperature[heater_index]) break;
|
|
sm.state = TRStable;
|
|
|
|
// While the temperature is stable watch for a bad temperature
|
|
case TRStable:
|
|
|
|
#if ENABLED(ADAPTIVE_FAN_SLOWING)
|
|
if (adaptive_fan_slowing && heater_id >= 0) {
|
|
const int fan_index = MIN(heater_id, FAN_COUNT - 1);
|
|
if (fan_speed[fan_index] == 0 || current >= tr_target_temperature[heater_id] - (hysteresis_degc * 0.25f))
|
|
fan_speed_scaler[fan_index] = 128;
|
|
else if (current >= tr_target_temperature[heater_id] - (hysteresis_degc * 0.3335f))
|
|
fan_speed_scaler[fan_index] = 96;
|
|
else if (current >= tr_target_temperature[heater_id] - (hysteresis_degc * 0.5f))
|
|
fan_speed_scaler[fan_index] = 64;
|
|
else if (current >= tr_target_temperature[heater_id] - (hysteresis_degc * 0.8f))
|
|
fan_speed_scaler[fan_index] = 32;
|
|
else
|
|
fan_speed_scaler[fan_index] = 0;
|
|
}
|
|
#endif
|
|
|
|
if (current >= tr_target_temperature[heater_index] - hysteresis_degc) {
|
|
sm.timer = millis() + period_seconds * 1000UL;
|
|
break;
|
|
}
|
|
else if (PENDING(millis(), sm.timer)) break;
|
|
sm.state = TRRunaway;
|
|
|
|
case TRRunaway:
|
|
_temp_error(heater_id, PSTR(MSG_T_THERMAL_RUNAWAY), TEMP_ERR_PSTR(MSG_THERMAL_RUNAWAY, heater_id));
|
|
}
|
|
}
|
|
|
|
#endif // THERMAL_PROTECTION_HOTENDS || THERMAL_PROTECTION_BED || ENABLED(THERMAL_PROTECTION_CHAMBER)
|
|
|
|
void Temperature::disable_all_heaters() {
|
|
|
|
#if ENABLED(AUTOTEMP)
|
|
planner.autotemp_enabled = false;
|
|
#endif
|
|
|
|
HOTEND_LOOP() setTargetHotend(0, e);
|
|
|
|
#if HAS_HEATED_BED
|
|
setTargetBed(0);
|
|
#endif
|
|
|
|
#if HAS_HEATED_CHAMBER
|
|
setTargetChamber(0);
|
|
#endif
|
|
|
|
// Unpause and reset everything
|
|
#if ENABLED(PROBING_HEATERS_OFF)
|
|
pause(false);
|
|
#endif
|
|
|
|
#define DISABLE_HEATER(NR) { \
|
|
setTargetHotend(0, NR); \
|
|
temp_hotend[NR].soft_pwm_amount = 0; \
|
|
WRITE_HEATER_ ##NR (LOW); \
|
|
}
|
|
|
|
#if HAS_TEMP_HOTEND
|
|
DISABLE_HEATER(0);
|
|
#if HOTENDS > 1
|
|
DISABLE_HEATER(1);
|
|
#if HOTENDS > 2
|
|
DISABLE_HEATER(2);
|
|
#if HOTENDS > 3
|
|
DISABLE_HEATER(3);
|
|
#if HOTENDS > 4
|
|
DISABLE_HEATER(4);
|
|
#if HOTENDS > 5
|
|
DISABLE_HEATER(5);
|
|
#endif // HOTENDS > 5
|
|
#endif // HOTENDS > 4
|
|
#endif // HOTENDS > 3
|
|
#endif // HOTENDS > 2
|
|
#endif // HOTENDS > 1
|
|
#endif
|
|
|
|
#if HAS_HEATED_BED
|
|
temp_bed.target = 0;
|
|
temp_bed.soft_pwm_amount = 0;
|
|
#if HAS_HEATED_BED
|
|
WRITE_HEATER_BED(LOW);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_HEATED_CHAMBER
|
|
temp_chamber.target = 0;
|
|
temp_chamber.soft_pwm_amount = 0;
|
|
#if HAS_HEATED_CHAMBER
|
|
WRITE_HEATER_CHAMBER(LOW);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
#if ENABLED(PROBING_HEATERS_OFF)
|
|
|
|
void Temperature::pause(const bool p) {
|
|
if (p != paused) {
|
|
paused = p;
|
|
if (p) {
|
|
HOTEND_LOOP() hotend_idle[e].expire(); // timeout immediately
|
|
#if HAS_HEATED_BED
|
|
bed_idle.expire(); // timeout immediately
|
|
#endif
|
|
}
|
|
else {
|
|
HOTEND_LOOP() reset_heater_idle_timer(e);
|
|
#if HAS_HEATED_BED
|
|
reset_bed_idle_timer();
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif // PROBING_HEATERS_OFF
|
|
|
|
#if HAS_MAX6675
|
|
|
|
int Temperature::read_max6675(
|
|
#if COUNT_6675 > 1
|
|
const uint8_t hindex
|
|
#endif
|
|
) {
|
|
#if COUNT_6675 == 1
|
|
constexpr uint8_t hindex = 0;
|
|
#else
|
|
// Needed to return the correct temp when this is called too soon
|
|
static uint16_t max6675_temp_previous[COUNT_6675] = { 0 };
|
|
#endif
|
|
|
|
#define MAX6675_HEAT_INTERVAL 250UL
|
|
|
|
#if ENABLED(MAX6675_IS_MAX31855)
|
|
static uint32_t max6675_temp = 2000;
|
|
#define MAX6675_ERROR_MASK 7
|
|
#define MAX6675_DISCARD_BITS 18
|
|
#define MAX6675_SPEED_BITS 3 // (_BV(SPR1)) // clock ÷ 64
|
|
#else
|
|
static uint16_t max6675_temp = 2000;
|
|
#define MAX6675_ERROR_MASK 4
|
|
#define MAX6675_DISCARD_BITS 3
|
|
#define MAX6675_SPEED_BITS 2 // (_BV(SPR0)) // clock ÷ 16
|
|
#endif
|
|
|
|
// Return last-read value between readings
|
|
static millis_t next_max6675_ms[COUNT_6675] = { 0 };
|
|
millis_t ms = millis();
|
|
if (PENDING(ms, next_max6675_ms[hindex]))
|
|
return int(
|
|
#if COUNT_6675 == 1
|
|
max6675_temp
|
|
#else
|
|
max6675_temp_previous[hindex] // Need to return the correct previous value
|
|
#endif
|
|
);
|
|
|
|
next_max6675_ms[hindex] = ms + MAX6675_HEAT_INTERVAL;
|
|
|
|
//
|
|
// TODO: spiBegin, spiRec and spiInit doesn't work when soft spi is used.
|
|
//
|
|
#if MAX6675_SEPARATE_SPI
|
|
spiBegin();
|
|
spiInit(MAX6675_SPEED_BITS);
|
|
#endif
|
|
|
|
#if COUNT_6675 > 1
|
|
#define WRITE_MAX6675(V) do{ switch (hindex) { case 1: WRITE(MAX6675_SS2_PIN, V); break; default: WRITE(MAX6675_SS_PIN, V); } }while(0)
|
|
#elif ENABLED(HEATER_1_USES_MAX6675)
|
|
#define WRITE_MAX6675(V) WRITE(MAX6675_SS2_PIN, V)
|
|
#else
|
|
#define WRITE_MAX6675(V) WRITE(MAX6675_SS_PIN, V)
|
|
#endif
|
|
|
|
WRITE_MAX6675(LOW); // enable TT_MAX6675
|
|
|
|
DELAY_NS(100); // Ensure 100ns delay
|
|
|
|
// Read a big-endian temperature value
|
|
max6675_temp = 0;
|
|
for (uint8_t i = sizeof(max6675_temp); i--;) {
|
|
max6675_temp |= (
|
|
#if MAX6675_SEPARATE_SPI
|
|
max6675_spi.receive()
|
|
#else
|
|
spiRec()
|
|
#endif
|
|
);
|
|
if (i > 0) max6675_temp <<= 8; // shift left if not the last byte
|
|
}
|
|
|
|
WRITE_MAX6675(HIGH); // disable TT_MAX6675
|
|
|
|
if (max6675_temp & MAX6675_ERROR_MASK) {
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ECHOPGM("Temp measurement error! ");
|
|
#if MAX6675_ERROR_MASK == 7
|
|
SERIAL_ECHOPGM("MAX31855 ");
|
|
if (max6675_temp & 1)
|
|
SERIAL_ECHOLNPGM("Open Circuit");
|
|
else if (max6675_temp & 2)
|
|
SERIAL_ECHOLNPGM("Short to GND");
|
|
else if (max6675_temp & 4)
|
|
SERIAL_ECHOLNPGM("Short to VCC");
|
|
#else
|
|
SERIAL_ECHOLNPGM("MAX6675");
|
|
#endif
|
|
|
|
// Thermocouple open
|
|
max6675_temp = 4 * (
|
|
#if COUNT_6675 > 1
|
|
hindex ? HEATER_1_MAX6675_TMAX : HEATER_0_MAX6675_TMAX
|
|
#elif ENABLED(HEATER_1_USES_MAX6675)
|
|
HEATER_1_MAX6675_TMAX
|
|
#else
|
|
HEATER_0_MAX6675_TMAX
|
|
#endif
|
|
);
|
|
}
|
|
else
|
|
max6675_temp >>= MAX6675_DISCARD_BITS;
|
|
|
|
#if ENABLED(MAX6675_IS_MAX31855)
|
|
if (max6675_temp & 0x00002000) max6675_temp |= 0xFFFFC000; // Support negative temperature
|
|
#endif
|
|
|
|
#if COUNT_6675 > 1
|
|
max6675_temp_previous[hindex] = max6675_temp;
|
|
#endif
|
|
|
|
return int(max6675_temp);
|
|
}
|
|
|
|
#endif // HAS_MAX6675
|
|
|
|
/**
|
|
* Get raw temperatures
|
|
*/
|
|
void Temperature::set_current_temp_raw() {
|
|
|
|
#if HAS_TEMP_ADC_0 && DISABLED(HEATER_0_USES_MAX6675)
|
|
temp_hotend[0].raw = temp_hotend[0].acc;
|
|
#endif
|
|
|
|
#if HAS_TEMP_ADC_1
|
|
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
|
|
redundant_temperature_raw = temp_hotend[1].acc;
|
|
#elif DISABLED(HEATER_1_USES_MAX6675)
|
|
temp_hotend[1].raw = temp_hotend[1].acc;
|
|
#endif
|
|
#if HAS_TEMP_ADC_2
|
|
temp_hotend[2].raw = temp_hotend[2].acc;
|
|
#if HAS_TEMP_ADC_3
|
|
temp_hotend[3].raw = temp_hotend[3].acc;
|
|
#if HAS_TEMP_ADC_4
|
|
temp_hotend[4].raw = temp_hotend[4].acc;
|
|
#if HAS_TEMP_ADC_5
|
|
temp_hotend[5].raw = temp_hotend[5].acc;
|
|
#endif // HAS_TEMP_ADC_5
|
|
#endif // HAS_TEMP_ADC_4
|
|
#endif // HAS_TEMP_ADC_3
|
|
#endif // HAS_TEMP_ADC_2
|
|
#endif // HAS_TEMP_ADC_1
|
|
|
|
#if HAS_HEATED_BED
|
|
temp_bed.raw = temp_bed.acc;
|
|
#endif
|
|
|
|
#if HAS_TEMP_CHAMBER
|
|
temp_chamber.raw = temp_chamber.acc;
|
|
#endif
|
|
|
|
temp_meas_ready = true;
|
|
}
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
uint32_t raw_filwidth_value; // = 0
|
|
#endif
|
|
|
|
void Temperature::readings_ready() {
|
|
// Update the raw values if they've been read. Else we could be updating them during reading.
|
|
if (!temp_meas_ready) set_current_temp_raw();
|
|
|
|
// Filament Sensor - can be read any time since IIR filtering is used
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach
|
|
#endif
|
|
|
|
HOTEND_LOOP() temp_hotend[e].acc = 0;
|
|
|
|
#if HAS_HEATED_BED
|
|
temp_bed.acc = 0;
|
|
#endif
|
|
|
|
#if HAS_TEMP_CHAMBER
|
|
temp_chamber.acc = 0;
|
|
#endif
|
|
|
|
int constexpr temp_dir[] = {
|
|
#if ENABLED(HEATER_0_USES_MAX6675)
|
|
0
|
|
#else
|
|
TEMPDIR(0)
|
|
#endif
|
|
#if HOTENDS > 1
|
|
, TEMPDIR(1)
|
|
#if HOTENDS > 2
|
|
, TEMPDIR(2)
|
|
#if HOTENDS > 3
|
|
, TEMPDIR(3)
|
|
#if HOTENDS > 4
|
|
, TEMPDIR(4)
|
|
#if HOTENDS > 5
|
|
, TEMPDIR(5)
|
|
#endif // HOTENDS > 5
|
|
#endif // HOTENDS > 4
|
|
#endif // HOTENDS > 3
|
|
#endif // HOTENDS > 2
|
|
#endif // HOTENDS > 1
|
|
};
|
|
|
|
for (uint8_t e = 0; e < COUNT(temp_dir); e++) {
|
|
const int16_t tdir = temp_dir[e], rawtemp = temp_hotend[e].raw * tdir;
|
|
const bool heater_on = (temp_hotend[e].target > 0)
|
|
#if ENABLED(PIDTEMP)
|
|
|| (temp_hotend[e].soft_pwm_amount > 0)
|
|
#endif
|
|
;
|
|
if (rawtemp > temp_range[e].raw_max * tdir) max_temp_error(e);
|
|
if (heater_on && rawtemp < temp_range[e].raw_min * tdir && !is_preheating(e)) {
|
|
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
|
|
if (++consecutive_low_temperature_error[e] >= MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED)
|
|
#endif
|
|
min_temp_error(e);
|
|
}
|
|
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
|
|
else
|
|
consecutive_low_temperature_error[e] = 0;
|
|
#endif
|
|
}
|
|
|
|
#if HAS_HEATED_BED
|
|
#if TEMPDIR(BED) < 0
|
|
#define BEDCMP(A,B) ((A)<=(B))
|
|
#else
|
|
#define BEDCMP(A,B) ((A)>=(B))
|
|
#endif
|
|
const bool bed_on = (temp_bed.target > 0)
|
|
#if ENABLED(PIDTEMPBED)
|
|
|| (temp_bed.soft_pwm_amount > 0)
|
|
#endif
|
|
;
|
|
if (BEDCMP(temp_bed.raw, maxtemp_raw_BED)) max_temp_error(-1);
|
|
if (bed_on && BEDCMP(mintemp_raw_BED, temp_bed.raw)) min_temp_error(-1);
|
|
#endif
|
|
|
|
#if HAS_HEATED_CHAMBER
|
|
#if TEMPDIR(CHAMBER) < 0
|
|
#define CHAMBERCMP(A,B) ((A)<=(B))
|
|
#else
|
|
#define CHAMBERCMP(A,B) ((A)>=(B))
|
|
#endif
|
|
const bool chamber_on = (temp_chamber.target > 0)
|
|
#if ENABLED(PIDTEMPCHAMBER)
|
|
|| (temp_chamber.soft_pwm_amount > 0)
|
|
#endif
|
|
;
|
|
if (CHAMBERCMP(temp_chamber.raw, maxtemp_raw_CHAMBER)) max_temp_error(-2);
|
|
if (chamber_on && CHAMBERCMP(mintemp_raw_CHAMBER, temp_chamber.raw)) min_temp_error(-2);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Timer 0 is shared with millies so don't change the prescaler.
|
|
*
|
|
* On AVR this ISR uses the compare method so it runs at the base
|
|
* frequency (16 MHz / 64 / 256 = 976.5625 Hz), but at the TCNT0 set
|
|
* in OCR0B above (128 or halfway between OVFs).
|
|
*
|
|
* - Manage PWM to all the heaters and fan
|
|
* - Prepare or Measure one of the raw ADC sensor values
|
|
* - Check new temperature values for MIN/MAX errors (kill on error)
|
|
* - Step the babysteps value for each axis towards 0
|
|
* - For PINS_DEBUGGING, monitor and report endstop pins
|
|
* - For ENDSTOP_INTERRUPTS_FEATURE check endstops if flagged
|
|
* - Call planner.tick to count down its "ignore" time
|
|
*/
|
|
HAL_TEMP_TIMER_ISR() {
|
|
HAL_timer_isr_prologue(TEMP_TIMER_NUM);
|
|
|
|
Temperature::isr();
|
|
|
|
HAL_timer_isr_epilogue(TEMP_TIMER_NUM);
|
|
}
|
|
|
|
#if ENABLED(SLOW_PWM_HEATERS) && !defined(MIN_STATE_TIME)
|
|
#define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
|
|
#endif
|
|
|
|
class SoftPWM {
|
|
public:
|
|
uint8_t count;
|
|
inline bool add(const uint8_t mask, const uint8_t amount) {
|
|
count = (count & mask) + amount; return (count > mask);
|
|
}
|
|
#if ENABLED(SLOW_PWM_HEATERS)
|
|
bool state_heater;
|
|
uint8_t state_timer_heater;
|
|
inline void dec() { if (state_timer_heater > 0) state_timer_heater--; }
|
|
inline bool ready(const bool v) {
|
|
const bool rdy = !state_timer_heater;
|
|
if (rdy && state_heater != v) {
|
|
state_heater = v;
|
|
state_timer_heater = MIN_STATE_TIME;
|
|
}
|
|
return rdy;
|
|
}
|
|
#endif
|
|
};
|
|
|
|
void Temperature::isr() {
|
|
|
|
static int8_t temp_count = -1;
|
|
static ADCSensorState adc_sensor_state = StartupDelay;
|
|
static uint8_t pwm_count = _BV(SOFT_PWM_SCALE);
|
|
// avoid multiple loads of pwm_count
|
|
uint8_t pwm_count_tmp = pwm_count;
|
|
|
|
#if HAS_ADC_BUTTONS
|
|
static unsigned int raw_ADCKey_value = 0;
|
|
#endif
|
|
|
|
#if ENABLED(SLOW_PWM_HEATERS)
|
|
static uint8_t slow_pwm_count = 0;
|
|
#endif
|
|
|
|
static SoftPWM soft_pwm_hotend[HOTENDS];
|
|
|
|
#if HAS_HEATED_BED
|
|
static SoftPWM soft_pwm_bed;
|
|
#endif
|
|
|
|
#if HAS_HEATED_CHAMBER
|
|
static SoftPWM soft_pwm_chamber;
|
|
#endif
|
|
|
|
#if DISABLED(SLOW_PWM_HEATERS)
|
|
constexpr uint8_t pwm_mask =
|
|
#if ENABLED(SOFT_PWM_DITHER)
|
|
_BV(SOFT_PWM_SCALE) - 1
|
|
#else
|
|
0
|
|
#endif
|
|
;
|
|
|
|
/**
|
|
* Standard heater PWM modulation
|
|
*/
|
|
if (pwm_count_tmp >= 127) {
|
|
pwm_count_tmp -= 127;
|
|
#define _PWM_MOD(N,S,T) do{ \
|
|
const bool on = S.add(pwm_mask, T.soft_pwm_amount); \
|
|
WRITE_HEATER_##N(on); \
|
|
}while(0)
|
|
#define _PWM_MOD_E(N) _PWM_MOD(N,soft_pwm_hotend[N],temp_hotend[N])
|
|
_PWM_MOD_E(0);
|
|
#if HOTENDS > 1
|
|
_PWM_MOD_E(1);
|
|
#if HOTENDS > 2
|
|
_PWM_MOD_E(2);
|
|
#if HOTENDS > 3
|
|
_PWM_MOD_E(3);
|
|
#if HOTENDS > 4
|
|
_PWM_MOD_E(4);
|
|
#if HOTENDS > 5
|
|
_PWM_MOD_E(5);
|
|
#endif // HOTENDS > 5
|
|
#endif // HOTENDS > 4
|
|
#endif // HOTENDS > 3
|
|
#endif // HOTENDS > 2
|
|
#endif // HOTENDS > 1
|
|
|
|
#if HAS_HEATED_BED
|
|
_PWM_MOD(BED,soft_pwm_bed,temp_bed);
|
|
#endif
|
|
|
|
#if HAS_HEATED_CHAMBER
|
|
_PWM_MOD(CHAMBER,soft_pwm_chamber,temp_chamber);
|
|
#endif
|
|
|
|
#if ENABLED(FAN_SOFT_PWM)
|
|
#define _FAN_PWM(N) do{ \
|
|
soft_pwm_count_fan[N] = (soft_pwm_count_fan[N] & pwm_mask) + (soft_pwm_amount_fan[N] >> 1); \
|
|
WRITE_FAN(soft_pwm_count_fan[N] > pwm_mask ? HIGH : LOW); \
|
|
}while(0)
|
|
#if HAS_FAN0
|
|
_FAN_PWM(0);
|
|
#endif
|
|
#if HAS_FAN1
|
|
_FAN_PWM(1);
|
|
#endif
|
|
#if HAS_FAN2
|
|
_FAN_PWM(2);
|
|
#endif
|
|
#endif
|
|
}
|
|
else {
|
|
#define _PWM_LOW(N,S) do{ if (S.count <= pwm_count_tmp) WRITE_HEATER_##N(LOW); }while(0)
|
|
#if HOTENDS
|
|
#define _PWM_LOW_E(N) _PWM_LOW(N, soft_pwm_hotend[N])
|
|
_PWM_LOW_E(0);
|
|
#if HOTENDS > 1
|
|
_PWM_LOW_E(1);
|
|
#if HOTENDS > 2
|
|
_PWM_LOW_E(2);
|
|
#if HOTENDS > 3
|
|
_PWM_LOW_E(3);
|
|
#if HOTENDS > 4
|
|
_PWM_LOW_E(4);
|
|
#if HOTENDS > 5
|
|
_PWM_LOW_E(5);
|
|
#endif // HOTENDS > 5
|
|
#endif // HOTENDS > 4
|
|
#endif // HOTENDS > 3
|
|
#endif // HOTENDS > 2
|
|
#endif // HOTENDS > 1
|
|
#endif // HOTENDS
|
|
|
|
#if HAS_HEATED_BED
|
|
_PWM_LOW(BED, soft_pwm_bed);
|
|
#endif
|
|
|
|
#if HAS_HEATED_CHAMBER
|
|
_PWM_LOW(CHAMBER, soft_pwm_chamber);
|
|
#endif
|
|
|
|
#if ENABLED(FAN_SOFT_PWM)
|
|
#if HAS_FAN0
|
|
if (soft_pwm_count_fan[0] <= pwm_count_tmp) WRITE_FAN(LOW);
|
|
#endif
|
|
#if HAS_FAN1
|
|
if (soft_pwm_count_fan[1] <= pwm_count_tmp) WRITE_FAN1(LOW);
|
|
#endif
|
|
#if HAS_FAN2
|
|
if (soft_pwm_count_fan[2] <= pwm_count_tmp) WRITE_FAN2(LOW);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
// SOFT_PWM_SCALE to frequency:
|
|
//
|
|
// 0: 16000000/64/256/128 = 7.6294 Hz
|
|
// 1: / 64 = 15.2588 Hz
|
|
// 2: / 32 = 30.5176 Hz
|
|
// 3: / 16 = 61.0352 Hz
|
|
// 4: / 8 = 122.0703 Hz
|
|
// 5: / 4 = 244.1406 Hz
|
|
pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE);
|
|
|
|
#else // SLOW_PWM_HEATERS
|
|
|
|
/**
|
|
* SLOW PWM HEATERS
|
|
*
|
|
* For relay-driven heaters
|
|
*/
|
|
#define _SLOW_SET(NR,PWM,V) do{ if (PWM.ready(V)) WRITE_HEATER_##NR(V); }while(0)
|
|
#define _SLOW_PWM(NR,PWM,SRC) do{ PWM.count = SRC.soft_pwm_amount; _SLOW_SET(NR,PWM,(PWM.count > 0)); }while(0)
|
|
#define _PWM_OFF(NR,PWM) do{ if (PWM.count < slow_pwm_count) _SLOW_SET(NR,PWM,0); }while(0)
|
|
|
|
if (slow_pwm_count == 0) {
|
|
|
|
#if HOTENDS
|
|
#define _SLOW_PWM_E(N) _SLOW_PWM(N, soft_pwm_hotend[N], temp_hotend[N])
|
|
_SLOW_PWM_E(0);
|
|
#if HOTENDS > 1
|
|
_SLOW_PWM_E(1);
|
|
#if HOTENDS > 2
|
|
_SLOW_PWM_E(2);
|
|
#if HOTENDS > 3
|
|
_SLOW_PWM_E(3);
|
|
#if HOTENDS > 4
|
|
_SLOW_PWM_E(4);
|
|
#if HOTENDS > 5
|
|
_SLOW_PWM_E(5);
|
|
#endif // HOTENDS > 5
|
|
#endif // HOTENDS > 4
|
|
#endif // HOTENDS > 3
|
|
#endif // HOTENDS > 2
|
|
#endif // HOTENDS > 1
|
|
#endif // HOTENDS
|
|
|
|
#if HAS_HEATED_BED
|
|
_SLOW_PWM(BED, soft_pwm_bed, temp_bed);
|
|
#endif
|
|
|
|
} // slow_pwm_count == 0
|
|
|
|
#if HOTENDS
|
|
#define _PWM_OFF_E(N) _PWM_OFF(N, soft_pwm_hotend[N]);
|
|
_PWM_OFF_E(0);
|
|
#if HOTENDS > 1
|
|
_PWM_OFF_E(1);
|
|
#if HOTENDS > 2
|
|
_PWM_OFF_E(2);
|
|
#if HOTENDS > 3
|
|
_PWM_OFF_E(3);
|
|
#if HOTENDS > 4
|
|
_PWM_OFF_E(4);
|
|
#if HOTENDS > 5
|
|
_PWM_OFF_E(5);
|
|
#endif // HOTENDS > 5
|
|
#endif // HOTENDS > 4
|
|
#endif // HOTENDS > 3
|
|
#endif // HOTENDS > 2
|
|
#endif // HOTENDS > 1
|
|
#endif // HOTENDS
|
|
|
|
#if HAS_HEATED_BED
|
|
_PWM_OFF(BED, soft_pwm_bed);
|
|
#endif
|
|
|
|
#if ENABLED(FAN_SOFT_PWM)
|
|
if (pwm_count_tmp >= 127) {
|
|
pwm_count_tmp = 0;
|
|
#define _PWM_FAN(N,I) do{ \
|
|
soft_pwm_count_fan[I] = soft_pwm_amount_fan[I] >> 1; \
|
|
WRITE_FAN##N(soft_pwm_count_fan[I] > 0 ? HIGH : LOW); \
|
|
}while(0)
|
|
#if HAS_FAN0
|
|
_PWM_FAN(,0);
|
|
#endif
|
|
#if HAS_FAN1
|
|
_PWM_FAN(1,1);
|
|
#endif
|
|
#if HAS_FAN2
|
|
_PWM_FAN(2,2);
|
|
#endif
|
|
}
|
|
#if HAS_FAN0
|
|
if (soft_pwm_count_fan[0] <= pwm_count_tmp) WRITE_FAN(LOW);
|
|
#endif
|
|
#if HAS_FAN1
|
|
if (soft_pwm_count_fan[1] <= pwm_count_tmp) WRITE_FAN1(LOW);
|
|
#endif
|
|
#if HAS_FAN2
|
|
if (soft_pwm_count_fan[2] <= pwm_count_tmp) WRITE_FAN2(LOW);
|
|
#endif
|
|
#endif // FAN_SOFT_PWM
|
|
|
|
// SOFT_PWM_SCALE to frequency:
|
|
//
|
|
// 0: 16000000/64/256/128 = 7.6294 Hz
|
|
// 1: / 64 = 15.2588 Hz
|
|
// 2: / 32 = 30.5176 Hz
|
|
// 3: / 16 = 61.0352 Hz
|
|
// 4: / 8 = 122.0703 Hz
|
|
// 5: / 4 = 244.1406 Hz
|
|
pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE);
|
|
|
|
// increment slow_pwm_count only every 64th pwm_count,
|
|
// i.e. yielding a PWM frequency of 16/128 Hz (8s).
|
|
if (((pwm_count >> SOFT_PWM_SCALE) & 0x3F) == 0) {
|
|
slow_pwm_count++;
|
|
slow_pwm_count &= 0x7F;
|
|
|
|
soft_pwm_hotend[0].dec();
|
|
#if HOTENDS > 1
|
|
soft_pwm_hotend[1].dec();
|
|
#if HOTENDS > 2
|
|
soft_pwm_hotend[2].dec();
|
|
#if HOTENDS > 3
|
|
soft_pwm_hotend[3].dec();
|
|
#if HOTENDS > 4
|
|
soft_pwm_hotend[4].dec();
|
|
#if HOTENDS > 5
|
|
soft_pwm_hotend[5].dec();
|
|
#endif // HOTENDS > 5
|
|
#endif // HOTENDS > 4
|
|
#endif // HOTENDS > 3
|
|
#endif // HOTENDS > 2
|
|
#endif // HOTENDS > 1
|
|
#if HAS_HEATED_BED
|
|
soft_pwm_bed.dec();
|
|
#endif
|
|
} // ((pwm_count >> SOFT_PWM_SCALE) & 0x3F) == 0
|
|
|
|
#endif // SLOW_PWM_HEATERS
|
|
|
|
//
|
|
// Update lcd buttons 488 times per second
|
|
//
|
|
static bool do_buttons;
|
|
if ((do_buttons ^= true)) ui.update_buttons();
|
|
|
|
/**
|
|
* One sensor is sampled on every other call of the ISR.
|
|
* Each sensor is read 16 (OVERSAMPLENR) times, taking the average.
|
|
*
|
|
* On each Prepare pass, ADC is started for a sensor pin.
|
|
* On the next pass, the ADC value is read and accumulated.
|
|
*
|
|
* This gives each ADC 0.9765ms to charge up.
|
|
*/
|
|
#define ACCUMULATE_ADC(obj) do{ \
|
|
if (!HAL_ADC_READY()) next_sensor_state = adc_sensor_state; \
|
|
else obj.acc += HAL_READ_ADC(); \
|
|
}while(0)
|
|
|
|
ADCSensorState next_sensor_state = adc_sensor_state < SensorsReady ? (ADCSensorState)(int(adc_sensor_state) + 1) : StartSampling;
|
|
|
|
switch (adc_sensor_state) {
|
|
|
|
case SensorsReady: {
|
|
// All sensors have been read. Stay in this state for a few
|
|
// ISRs to save on calls to temp update/checking code below.
|
|
constexpr int8_t extra_loops = MIN_ADC_ISR_LOOPS - (int8_t)SensorsReady;
|
|
static uint8_t delay_count = 0;
|
|
if (extra_loops > 0) {
|
|
if (delay_count == 0) delay_count = extra_loops; // Init this delay
|
|
if (--delay_count) // While delaying...
|
|
next_sensor_state = SensorsReady; // retain this state (else, next state will be 0)
|
|
break;
|
|
}
|
|
else {
|
|
adc_sensor_state = StartSampling; // Fall-through to start sampling
|
|
next_sensor_state = (ADCSensorState)(int(StartSampling) + 1);
|
|
}
|
|
}
|
|
|
|
case StartSampling: // Start of sampling loops. Do updates/checks.
|
|
if (++temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
|
|
temp_count = 0;
|
|
readings_ready();
|
|
}
|
|
break;
|
|
|
|
#if HAS_TEMP_ADC_0
|
|
case PrepareTemp_0:
|
|
HAL_START_ADC(TEMP_0_PIN);
|
|
break;
|
|
case MeasureTemp_0:
|
|
ACCUMULATE_ADC(temp_hotend[0]);
|
|
break;
|
|
#endif
|
|
|
|
#if HAS_HEATED_BED
|
|
case PrepareTemp_BED:
|
|
HAL_START_ADC(TEMP_BED_PIN);
|
|
break;
|
|
case MeasureTemp_BED:
|
|
ACCUMULATE_ADC(temp_bed);
|
|
break;
|
|
#endif
|
|
|
|
#if HAS_TEMP_CHAMBER
|
|
case PrepareTemp_CHAMBER:
|
|
HAL_START_ADC(TEMP_CHAMBER_PIN);
|
|
break;
|
|
case MeasureTemp_CHAMBER:
|
|
ACCUMULATE_ADC(temp_chamber);
|
|
break;
|
|
#endif
|
|
|
|
#if HAS_TEMP_ADC_1
|
|
case PrepareTemp_1:
|
|
HAL_START_ADC(TEMP_1_PIN);
|
|
break;
|
|
case MeasureTemp_1:
|
|
ACCUMULATE_ADC(temp_hotend[1]);
|
|
break;
|
|
#endif
|
|
|
|
#if HAS_TEMP_ADC_2
|
|
case PrepareTemp_2:
|
|
HAL_START_ADC(TEMP_2_PIN);
|
|
break;
|
|
case MeasureTemp_2:
|
|
ACCUMULATE_ADC(temp_hotend[2]);
|
|
break;
|
|
#endif
|
|
|
|
#if HAS_TEMP_ADC_3
|
|
case PrepareTemp_3:
|
|
HAL_START_ADC(TEMP_3_PIN);
|
|
break;
|
|
case MeasureTemp_3:
|
|
ACCUMULATE_ADC(temp_hotend[3]);
|
|
break;
|
|
#endif
|
|
|
|
#if HAS_TEMP_ADC_4
|
|
case PrepareTemp_4:
|
|
HAL_START_ADC(TEMP_4_PIN);
|
|
break;
|
|
case MeasureTemp_4:
|
|
ACCUMULATE_ADC(temp_hotend[4]);
|
|
break;
|
|
#endif
|
|
|
|
#if HAS_TEMP_ADC_5
|
|
case PrepareTemp_5:
|
|
HAL_START_ADC(TEMP_5_PIN);
|
|
break;
|
|
case MeasureTemp_5:
|
|
ACCUMULATE_ADC(temp_hotend[5]);
|
|
break;
|
|
#endif
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
case Prepare_FILWIDTH:
|
|
HAL_START_ADC(FILWIDTH_PIN);
|
|
break;
|
|
case Measure_FILWIDTH:
|
|
if (!HAL_ADC_READY())
|
|
next_sensor_state = adc_sensor_state; // redo this state
|
|
else if (HAL_READ_ADC() > 102) { // Make sure ADC is reading > 0.5 volts, otherwise don't read.
|
|
raw_filwidth_value -= raw_filwidth_value >> 7; // Subtract 1/128th of the raw_filwidth_value
|
|
raw_filwidth_value += uint32_t(HAL_READ_ADC()) << 7; // Add new ADC reading, scaled by 128
|
|
}
|
|
break;
|
|
#endif
|
|
|
|
#if HAS_ADC_BUTTONS
|
|
case Prepare_ADC_KEY:
|
|
HAL_START_ADC(ADC_KEYPAD_PIN);
|
|
break;
|
|
case Measure_ADC_KEY:
|
|
if (!HAL_ADC_READY())
|
|
next_sensor_state = adc_sensor_state; // redo this state
|
|
else if (ADCKey_count < 16) {
|
|
raw_ADCKey_value = HAL_READ_ADC();
|
|
if (raw_ADCKey_value > 900) {
|
|
//ADC Key release
|
|
ADCKey_count = 0;
|
|
current_ADCKey_raw = 0;
|
|
}
|
|
else {
|
|
current_ADCKey_raw += raw_ADCKey_value;
|
|
ADCKey_count++;
|
|
}
|
|
}
|
|
break;
|
|
#endif // ADC_KEYPAD
|
|
|
|
case StartupDelay: break;
|
|
|
|
} // switch(adc_sensor_state)
|
|
|
|
// Go to the next state
|
|
adc_sensor_state = next_sensor_state;
|
|
|
|
//
|
|
// Additional ~1KHz Tasks
|
|
//
|
|
|
|
#if ENABLED(BABYSTEPPING)
|
|
#if ENABLED(BABYSTEP_XY) || ENABLED(I2C_POSITION_ENCODERS)
|
|
LOOP_XYZ(axis) {
|
|
const int16_t curTodo = babystepsTodo[axis]; // get rid of volatile for performance
|
|
if (curTodo) {
|
|
stepper.babystep((AxisEnum)axis, curTodo > 0);
|
|
if (curTodo > 0) babystepsTodo[axis]--; else babystepsTodo[axis]++;
|
|
}
|
|
}
|
|
#else
|
|
const int16_t curTodo = babystepsTodo[Z_AXIS];
|
|
if (curTodo) {
|
|
stepper.babystep(Z_AXIS, curTodo > 0);
|
|
if (curTodo > 0) babystepsTodo[Z_AXIS]--; else babystepsTodo[Z_AXIS]++;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
// Poll endstops state, if required
|
|
endstops.poll();
|
|
|
|
// Periodically call the planner timer
|
|
planner.tick();
|
|
}
|
|
|
|
#if ENABLED(BABYSTEPPING)
|
|
|
|
#if ENABLED(BABYSTEP_ALWAYS_AVAILABLE)
|
|
#define BSA_ENABLE(AXIS) do{ switch (AXIS) { case X_AXIS: enable_X(); break; case Y_AXIS: enable_Y(); break; case Z_AXIS: enable_Z(); } }while(0)
|
|
#else
|
|
#define BSA_ENABLE(AXIS) NOOP
|
|
#endif
|
|
|
|
#if ENABLED(BABYSTEP_WITHOUT_HOMING)
|
|
#define CAN_BABYSTEP(AXIS) true
|
|
#else
|
|
#define CAN_BABYSTEP(AXIS) TEST(axis_known_position, AXIS)
|
|
#endif
|
|
|
|
extern uint8_t axis_known_position;
|
|
|
|
void Temperature::babystep_axis(const AxisEnum axis, const int16_t distance) {
|
|
if (!CAN_BABYSTEP(axis)) return;
|
|
#if IS_CORE
|
|
#if ENABLED(BABYSTEP_XY)
|
|
switch (axis) {
|
|
case CORE_AXIS_1: // X on CoreXY and CoreXZ, Y on CoreYZ
|
|
BSA_ENABLE(CORE_AXIS_1);
|
|
BSA_ENABLE(CORE_AXIS_2);
|
|
babystepsTodo[CORE_AXIS_1] += distance * 2;
|
|
babystepsTodo[CORE_AXIS_2] += distance * 2;
|
|
break;
|
|
case CORE_AXIS_2: // Y on CoreXY, Z on CoreXZ and CoreYZ
|
|
BSA_ENABLE(CORE_AXIS_1);
|
|
BSA_ENABLE(CORE_AXIS_2);
|
|
babystepsTodo[CORE_AXIS_1] += CORESIGN(distance * 2);
|
|
babystepsTodo[CORE_AXIS_2] -= CORESIGN(distance * 2);
|
|
break;
|
|
case NORMAL_AXIS: // Z on CoreXY, Y on CoreXZ, X on CoreYZ
|
|
default:
|
|
BSA_ENABLE(NORMAL_AXIS);
|
|
babystepsTodo[NORMAL_AXIS] += distance;
|
|
break;
|
|
}
|
|
#elif CORE_IS_XZ || CORE_IS_YZ
|
|
// Only Z stepping needs to be handled here
|
|
BSA_ENABLE(CORE_AXIS_1);
|
|
BSA_ENABLE(CORE_AXIS_2);
|
|
babystepsTodo[CORE_AXIS_1] += CORESIGN(distance * 2);
|
|
babystepsTodo[CORE_AXIS_2] -= CORESIGN(distance * 2);
|
|
#else
|
|
BSA_ENABLE(Z_AXIS);
|
|
babystepsTodo[Z_AXIS] += distance;
|
|
#endif
|
|
#else
|
|
#if ENABLED(BABYSTEP_XY)
|
|
BSA_ENABLE(axis);
|
|
#else
|
|
BSA_ENABLE(Z_AXIS);
|
|
#endif
|
|
babystepsTodo[axis] += distance;
|
|
#endif
|
|
#if ENABLED(BABYSTEP_ALWAYS_AVAILABLE)
|
|
gcode.reset_stepper_timeout();
|
|
#endif
|
|
}
|
|
|
|
#endif // BABYSTEPPING
|
|
|
|
#if HAS_TEMP_SENSOR
|
|
|
|
#include "../gcode/gcode.h"
|
|
|
|
static void print_heater_state(const float &c, const float &t
|
|
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
, const float r
|
|
#endif
|
|
, const int8_t e=-3
|
|
) {
|
|
#if !(HAS_HEATED_BED && HAS_TEMP_HOTEND && HAS_TEMP_CHAMBER) && HOTENDS <= 1
|
|
UNUSED(e);
|
|
#endif
|
|
|
|
SERIAL_CHAR(' ');
|
|
SERIAL_CHAR(
|
|
#if HAS_TEMP_CHAMBER && HAS_HEATED_BED && HAS_TEMP_HOTEND
|
|
e == -2 ? 'C' : e == -1 ? 'B' : 'T'
|
|
#elif HAS_HEATED_BED && HAS_TEMP_HOTEND
|
|
e == -1 ? 'B' : 'T'
|
|
#elif HAS_TEMP_HOTEND
|
|
'T'
|
|
#else
|
|
'B'
|
|
#endif
|
|
);
|
|
#if HOTENDS > 1
|
|
if (e >= 0) SERIAL_CHAR('0' + e);
|
|
#endif
|
|
SERIAL_CHAR(':');
|
|
SERIAL_ECHO(c);
|
|
SERIAL_ECHOPAIR(" /" , t);
|
|
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
SERIAL_ECHOPAIR(" (", r / OVERSAMPLENR);
|
|
SERIAL_CHAR(')');
|
|
#endif
|
|
delay(2);
|
|
}
|
|
|
|
void Temperature::print_heater_states(const uint8_t target_extruder) {
|
|
#if HAS_TEMP_HOTEND
|
|
print_heater_state(degHotend(target_extruder), degTargetHotend(target_extruder)
|
|
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
, rawHotendTemp(target_extruder)
|
|
#endif
|
|
);
|
|
#endif
|
|
#if HAS_HEATED_BED
|
|
print_heater_state(degBed(), degTargetBed()
|
|
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
, rawBedTemp()
|
|
#endif
|
|
, -1 // BED
|
|
);
|
|
#endif
|
|
#if HAS_TEMP_CHAMBER
|
|
#if HAS_HEATED_CHAMBER
|
|
print_heater_state(degChamber(), degTargetChamber()
|
|
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
, rawChamberTemp()
|
|
#endif
|
|
, -2 // CHAMBER
|
|
);
|
|
#else
|
|
print_heater_state(degChamber(), 0
|
|
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
, rawChamberTemp()
|
|
#endif
|
|
, -2 // CHAMBER
|
|
);
|
|
#endif // HAS_HEATED_CHAMBER
|
|
#endif
|
|
#if HOTENDS > 1
|
|
HOTEND_LOOP() print_heater_state(degHotend(e), degTargetHotend(e)
|
|
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
, rawHotendTemp(e)
|
|
#endif
|
|
, e
|
|
);
|
|
#endif
|
|
SERIAL_ECHOPGM(" @:");
|
|
SERIAL_ECHO(getHeaterPower(target_extruder));
|
|
#if HAS_HEATED_BED
|
|
SERIAL_ECHOPGM(" B@:");
|
|
SERIAL_ECHO(getHeaterPower(-1));
|
|
#endif
|
|
#if HOTENDS > 1
|
|
HOTEND_LOOP() {
|
|
SERIAL_ECHOPAIR(" @", e);
|
|
SERIAL_CHAR(':');
|
|
SERIAL_ECHO(getHeaterPower(e));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if ENABLED(AUTO_REPORT_TEMPERATURES)
|
|
|
|
uint8_t Temperature::auto_report_temp_interval;
|
|
millis_t Temperature::next_temp_report_ms;
|
|
|
|
void Temperature::auto_report_temperatures() {
|
|
if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
|
|
next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
|
|
PORT_REDIRECT(SERIAL_BOTH);
|
|
print_heater_states(active_extruder);
|
|
SERIAL_EOL();
|
|
}
|
|
}
|
|
|
|
#endif // AUTO_REPORT_TEMPERATURES
|
|
|
|
#if ENABLED(ULTRA_LCD) || ENABLED(EXTENSIBLE_UI)
|
|
void Temperature::set_heating_message(const uint8_t e) {
|
|
const bool heating = isHeatingHotend(e);
|
|
#if HOTENDS > 1
|
|
ui.status_printf_P(0, heating ? PSTR("E%i " MSG_HEATING) : PSTR("E%i " MSG_COOLING), int(e + 1));
|
|
#else
|
|
ui.set_status_P(heating ? PSTR("E " MSG_HEATING) : PSTR("E " MSG_COOLING));
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#if HAS_TEMP_HOTEND
|
|
|
|
#ifndef MIN_COOLING_SLOPE_DEG
|
|
#define MIN_COOLING_SLOPE_DEG 1.50
|
|
#endif
|
|
#ifndef MIN_COOLING_SLOPE_TIME
|
|
#define MIN_COOLING_SLOPE_TIME 60
|
|
#endif
|
|
|
|
bool Temperature::wait_for_hotend(const uint8_t target_extruder, const bool no_wait_for_cooling/*=true*/
|
|
#if G26_CLICK_CAN_CANCEL
|
|
, const bool click_to_cancel/*=false*/
|
|
#endif
|
|
) {
|
|
#if TEMP_RESIDENCY_TIME > 0
|
|
millis_t residency_start_ms = 0;
|
|
// Loop until the temperature has stabilized
|
|
#define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
|
|
#else
|
|
// Loop until the temperature is very close target
|
|
#define TEMP_CONDITIONS (wants_to_cool ? isCoolingHotend(target_extruder) : isHeatingHotend(target_extruder))
|
|
#endif
|
|
|
|
#if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE)
|
|
const GcodeSuite::MarlinBusyState old_busy_state = gcode.busy_state;
|
|
KEEPALIVE_STATE(NOT_BUSY);
|
|
#endif
|
|
|
|
#if ENABLED(PRINTER_EVENT_LEDS)
|
|
const float start_temp = degHotend(target_extruder);
|
|
printerEventLEDs.onHotendHeatingStart();
|
|
#endif
|
|
|
|
float target_temp = -1.0, old_temp = 9999.0;
|
|
bool wants_to_cool = false, first_loop = true;
|
|
wait_for_heatup = true;
|
|
millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
|
|
do {
|
|
// Target temperature might be changed during the loop
|
|
if (target_temp != degTargetHotend(target_extruder)) {
|
|
wants_to_cool = isCoolingHotend(target_extruder);
|
|
target_temp = degTargetHotend(target_extruder);
|
|
|
|
// Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
|
|
if (no_wait_for_cooling && wants_to_cool) break;
|
|
}
|
|
|
|
now = millis();
|
|
if (ELAPSED(now, next_temp_ms)) { // Print temp & remaining time every 1s while waiting
|
|
next_temp_ms = now + 1000UL;
|
|
print_heater_states(target_extruder);
|
|
#if TEMP_RESIDENCY_TIME > 0
|
|
SERIAL_ECHOPGM(" W:");
|
|
if (residency_start_ms)
|
|
SERIAL_ECHO(long((((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
|
|
else
|
|
SERIAL_CHAR('?');
|
|
#endif
|
|
SERIAL_EOL();
|
|
}
|
|
|
|
idle();
|
|
gcode.reset_stepper_timeout(); // Keep steppers powered
|
|
|
|
const float temp = degHotend(target_extruder);
|
|
|
|
#if ENABLED(PRINTER_EVENT_LEDS)
|
|
// Gradually change LED strip from violet to red as nozzle heats up
|
|
if (!wants_to_cool) printerEventLEDs.onHotendHeating(start_temp, temp, target_temp);
|
|
#endif
|
|
|
|
#if TEMP_RESIDENCY_TIME > 0
|
|
|
|
const float temp_diff = ABS(target_temp - temp);
|
|
|
|
if (!residency_start_ms) {
|
|
// Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
|
|
if (temp_diff < TEMP_WINDOW) {
|
|
residency_start_ms = now;
|
|
if (first_loop) residency_start_ms += (TEMP_RESIDENCY_TIME) * 1000UL;
|
|
}
|
|
}
|
|
else if (temp_diff > TEMP_HYSTERESIS) {
|
|
// Restart the timer whenever the temperature falls outside the hysteresis.
|
|
residency_start_ms = now;
|
|
}
|
|
|
|
#endif
|
|
|
|
// Prevent a wait-forever situation if R is misused i.e. M109 R0
|
|
if (wants_to_cool) {
|
|
// break after MIN_COOLING_SLOPE_TIME seconds
|
|
// if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
|
|
if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
|
|
if (old_temp - temp < float(MIN_COOLING_SLOPE_DEG)) break;
|
|
next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
|
|
old_temp = temp;
|
|
}
|
|
}
|
|
|
|
#if G26_CLICK_CAN_CANCEL
|
|
if (click_to_cancel && ui.use_click()) {
|
|
wait_for_heatup = false;
|
|
ui.quick_feedback();
|
|
}
|
|
#endif
|
|
|
|
first_loop = false;
|
|
|
|
} while (wait_for_heatup && TEMP_CONDITIONS);
|
|
|
|
if (wait_for_heatup) {
|
|
ui.reset_status();
|
|
#if ENABLED(PRINTER_EVENT_LEDS)
|
|
printerEventLEDs.onHeatingDone();
|
|
#endif
|
|
}
|
|
|
|
#if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE)
|
|
gcode.busy_state = old_busy_state;
|
|
#endif
|
|
|
|
return wait_for_heatup;
|
|
}
|
|
|
|
#endif // HAS_TEMP_HOTEND
|
|
|
|
#if HAS_HEATED_BED
|
|
|
|
#ifndef MIN_COOLING_SLOPE_DEG_BED
|
|
#define MIN_COOLING_SLOPE_DEG_BED 1.50
|
|
#endif
|
|
#ifndef MIN_COOLING_SLOPE_TIME_BED
|
|
#define MIN_COOLING_SLOPE_TIME_BED 60
|
|
#endif
|
|
|
|
bool Temperature::wait_for_bed(const bool no_wait_for_cooling/*=true*/
|
|
#if G26_CLICK_CAN_CANCEL
|
|
, const bool click_to_cancel/*=false*/
|
|
#endif
|
|
) {
|
|
#if TEMP_BED_RESIDENCY_TIME > 0
|
|
millis_t residency_start_ms = 0;
|
|
// Loop until the temperature has stabilized
|
|
#define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
|
|
#else
|
|
// Loop until the temperature is very close target
|
|
#define TEMP_BED_CONDITIONS (wants_to_cool ? isCoolingBed() : isHeatingBed())
|
|
#endif
|
|
|
|
float target_temp = -1, old_temp = 9999;
|
|
bool wants_to_cool = false, first_loop = true;
|
|
wait_for_heatup = true;
|
|
millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
|
|
|
|
#if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE)
|
|
const GcodeSuite::MarlinBusyState old_busy_state = gcode.busy_state;
|
|
KEEPALIVE_STATE(NOT_BUSY);
|
|
#endif
|
|
|
|
#if ENABLED(PRINTER_EVENT_LEDS)
|
|
const float start_temp = degBed();
|
|
printerEventLEDs.onBedHeatingStart();
|
|
#endif
|
|
|
|
do {
|
|
// Target temperature might be changed during the loop
|
|
if (target_temp != degTargetBed()) {
|
|
wants_to_cool = isCoolingBed();
|
|
target_temp = degTargetBed();
|
|
|
|
// Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
|
|
if (no_wait_for_cooling && wants_to_cool) break;
|
|
}
|
|
|
|
now = millis();
|
|
if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
|
|
next_temp_ms = now + 1000UL;
|
|
print_heater_states(active_extruder);
|
|
#if TEMP_BED_RESIDENCY_TIME > 0
|
|
SERIAL_ECHOPGM(" W:");
|
|
if (residency_start_ms)
|
|
SERIAL_ECHO(long((((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
|
|
else
|
|
SERIAL_CHAR('?');
|
|
#endif
|
|
SERIAL_EOL();
|
|
}
|
|
|
|
idle();
|
|
gcode.reset_stepper_timeout(); // Keep steppers powered
|
|
|
|
const float temp = degBed();
|
|
|
|
#if ENABLED(PRINTER_EVENT_LEDS)
|
|
// Gradually change LED strip from blue to violet as bed heats up
|
|
if (!wants_to_cool) printerEventLEDs.onBedHeating(start_temp, temp, target_temp);
|
|
#endif
|
|
|
|
#if TEMP_BED_RESIDENCY_TIME > 0
|
|
|
|
const float temp_diff = ABS(target_temp - temp);
|
|
|
|
if (!residency_start_ms) {
|
|
// Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
|
|
if (temp_diff < TEMP_BED_WINDOW) {
|
|
residency_start_ms = now;
|
|
if (first_loop) residency_start_ms += (TEMP_BED_RESIDENCY_TIME) * 1000UL;
|
|
}
|
|
}
|
|
else if (temp_diff > TEMP_BED_HYSTERESIS) {
|
|
// Restart the timer whenever the temperature falls outside the hysteresis.
|
|
residency_start_ms = now;
|
|
}
|
|
|
|
#endif // TEMP_BED_RESIDENCY_TIME > 0
|
|
|
|
// Prevent a wait-forever situation if R is misused i.e. M190 R0
|
|
if (wants_to_cool) {
|
|
// Break after MIN_COOLING_SLOPE_TIME_BED seconds
|
|
// if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
|
|
if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
|
|
if (old_temp - temp < float(MIN_COOLING_SLOPE_DEG_BED)) break;
|
|
next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
|
|
old_temp = temp;
|
|
}
|
|
}
|
|
|
|
#if G26_CLICK_CAN_CANCEL
|
|
if (click_to_cancel && ui.use_click()) {
|
|
wait_for_heatup = false;
|
|
ui.quick_feedback();
|
|
}
|
|
#endif
|
|
|
|
first_loop = false;
|
|
|
|
} while (wait_for_heatup && TEMP_BED_CONDITIONS);
|
|
|
|
if (wait_for_heatup) ui.reset_status();
|
|
|
|
#if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE)
|
|
gcode.busy_state = old_busy_state;
|
|
#endif
|
|
|
|
return wait_for_heatup;
|
|
}
|
|
|
|
#endif // HAS_HEATED_BED
|
|
|
|
#endif // HAS_TEMP_SENSOR
|