marlin2_a10m/Marlin/src/gcode/calibrate/G33.cpp
2017-09-27 10:55:36 -05:00

477 lines
17 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if ENABLED(DELTA_AUTO_CALIBRATION)
#include "../gcode.h"
#include "../../module/delta.h"
#include "../../module/probe.h"
#include "../../module/motion.h"
#include "../../module/stepper.h"
#include "../../module/endstops.h"
#include "../../module/tool_change.h"
#include "../../lcd/ultralcd.h"
#if HAS_LEVELING
#include "../../feature/bedlevel/bedlevel.h"
#endif
/**
* G33 - Delta '1-4-7-point' Auto-Calibration
* Calibrate height, endstops, delta radius, and tower angles.
*
* Parameters:
*
* Pn Number of probe points:
*
* P0 No probe. Normalize only.
* P1 Probe center and set height only.
* P2 Probe center and towers. Set height, endstops, and delta radius.
* P3 Probe all positions: center, towers and opposite towers. Set all.
* P4-P7 Probe all positions at different locations and average them.
*
* T0 Don't calibrate tower angle corrections
*
* Cn.nn Calibration precision; when omitted calibrates to maximum precision
*
* Fn Force to run at least n iterations and takes the best result
*
* Vn Verbose level:
*
* V0 Dry-run mode. Report settings and probe results. No calibration.
* V1 Report settings
* V2 Report settings and probe results
*
* E Engage the probe for each point
*/
static void print_signed_float(const char * const prefix, const float &f) {
SERIAL_PROTOCOLPGM(" ");
serialprintPGM(prefix);
SERIAL_PROTOCOLCHAR(':');
if (f >= 0) SERIAL_CHAR('+');
SERIAL_PROTOCOL_F(f, 2);
}
static void print_G33_settings(const bool end_stops, const bool tower_angles) {
SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
if (end_stops) {
print_signed_float(PSTR(" Ex"), delta_endstop_adj[A_AXIS]);
print_signed_float(PSTR("Ey"), delta_endstop_adj[B_AXIS]);
print_signed_float(PSTR("Ez"), delta_endstop_adj[C_AXIS]);
SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
}
SERIAL_EOL();
if (tower_angles) {
SERIAL_PROTOCOLPGM(".Tower angle : ");
print_signed_float(PSTR("Tx"), delta_tower_angle_trim[A_AXIS]);
print_signed_float(PSTR("Ty"), delta_tower_angle_trim[B_AXIS]);
print_signed_float(PSTR("Tz"), delta_tower_angle_trim[C_AXIS]);
SERIAL_EOL();
}
}
static void G33_cleanup(
#if HOTENDS > 1
const uint8_t old_tool_index
#endif
) {
#if ENABLED(DELTA_HOME_TO_SAFE_ZONE)
do_blocking_move_to_z(delta_clip_start_height);
#endif
STOW_PROBE();
clean_up_after_endstop_or_probe_move();
#if HOTENDS > 1
tool_change(old_tool_index, 0, true);
#endif
}
void GcodeSuite::G33() {
const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS);
if (!WITHIN(probe_points, 0, 7)) {
SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (0-7).");
return;
}
const int8_t verbose_level = parser.byteval('V', 1);
if (!WITHIN(verbose_level, 0, 2)) {
SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-2).");
return;
}
const float calibration_precision = parser.floatval('C');
if (calibration_precision < 0) {
SERIAL_PROTOCOLLNPGM("?(C)alibration precision is implausible (>=0).");
return;
}
const int8_t force_iterations = parser.intval('F', 0);
if (!WITHIN(force_iterations, 0, 30)) {
SERIAL_PROTOCOLLNPGM("?(F)orce iteration is implausible (0-30).");
return;
}
const bool towers_set = parser.boolval('T', true),
_0p_calibration = probe_points == 0,
_1p_calibration = probe_points == 1,
_4p_calibration = probe_points == 2,
_4p_towers_points = _4p_calibration && towers_set,
_4p_opposite_points = _4p_calibration && !towers_set,
_7p_calibration = probe_points >= 3 || _0p_calibration,
_7p_half_circle = probe_points == 3,
_7p_double_circle = probe_points == 5,
_7p_triple_circle = probe_points == 6,
_7p_quadruple_circle = probe_points == 7,
_7p_multi_circle = _7p_double_circle || _7p_triple_circle || _7p_quadruple_circle,
_7p_intermed_points = _7p_calibration && !_7p_half_circle;
#if DISABLED(PROBE_MANUALLY)
const bool stow_after_each = parser.boolval('E');
const float dx = (X_PROBE_OFFSET_FROM_EXTRUDER),
dy = (Y_PROBE_OFFSET_FROM_EXTRUDER);
#endif
const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
int8_t iterations = 0;
float test_precision,
zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
zero_std_dev_old = zero_std_dev,
zero_std_dev_min = zero_std_dev,
e_old[ABC] = {
delta_endstop_adj[A_AXIS],
delta_endstop_adj[B_AXIS],
delta_endstop_adj[C_AXIS]
},
dr_old = delta_radius,
zh_old = home_offset[Z_AXIS],
ta_old[ABC] = {
delta_tower_angle_trim[A_AXIS],
delta_tower_angle_trim[B_AXIS],
delta_tower_angle_trim[C_AXIS]
};
if (!_1p_calibration && !_0p_calibration) { // test if the outer radius is reachable
const float circles = (_7p_quadruple_circle ? 1.5 :
_7p_triple_circle ? 1.0 :
_7p_double_circle ? 0.5 : 0),
r = (1 + circles * 0.1) * delta_calibration_radius;
for (uint8_t axis = 1; axis < 13; ++axis) {
const float a = RADIANS(180 + 30 * axis);
if (!position_is_reachable_xy(cos(a) * r, sin(a) * r)) {
SERIAL_PROTOCOLLNPGM("?(M665 B)ed radius is implausible.");
return;
}
}
}
SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
stepper.synchronize();
#if HAS_LEVELING
reset_bed_level(); // After calibration bed-level data is no longer valid
#endif
#if HOTENDS > 1
const uint8_t old_tool_index = active_extruder;
tool_change(0, 0, true);
#define G33_CLEANUP() G33_cleanup(old_tool_index)
#else
#define G33_CLEANUP() G33_cleanup()
#endif
setup_for_endstop_or_probe_move();
endstops.enable(true);
if (!_0p_calibration) {
if (!home_delta())
return;
endstops.not_homing();
}
// print settings
const char *checkingac = PSTR("Checking... AC"); // TODO: Make translatable string
serialprintPGM(checkingac);
if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)");
SERIAL_EOL();
lcd_setstatusPGM(checkingac);
print_G33_settings(!_1p_calibration, _7p_calibration && towers_set);
#if DISABLED(PROBE_MANUALLY)
if (!_0p_calibration) {
const float measured_z = probe_pt(dx, dy, stow_after_each, 1, false); // 1st probe to set height
if (isnan(measured_z)) return G33_CLEANUP();
home_offset[Z_AXIS] -= measured_z;
}
#endif
do {
float z_at_pt[13] = { 0.0 };
test_precision = _0p_calibration ? 0.00 : zero_std_dev_old != 999.0 ? (zero_std_dev + zero_std_dev_old) / 2 : zero_std_dev;
iterations++;
// Probe the points
if (!_0p_calibration){
if (!_7p_half_circle && !_7p_triple_circle) { // probe the center
#if ENABLED(PROBE_MANUALLY)
z_at_pt[0] += lcd_probe_pt(0, 0);
#else
z_at_pt[0] += probe_pt(dx, dy, stow_after_each, 1, false);
if (isnan(z_at_pt[0])) return G33_CLEANUP();
#endif
}
if (_7p_calibration) { // probe extra center points
for (int8_t axis = _7p_multi_circle ? 11 : 9; axis > 0; axis -= _7p_multi_circle ? 2 : 4) {
const float a = RADIANS(180 + 30 * axis), r = delta_calibration_radius * 0.1;
#if ENABLED(PROBE_MANUALLY)
z_at_pt[0] += lcd_probe_pt(cos(a) * r, sin(a) * r);
#else
z_at_pt[0] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
if (isnan(z_at_pt[0])) return G33_CLEANUP();
#endif
}
z_at_pt[0] /= float(_7p_double_circle ? 7 : probe_points);
}
if (!_1p_calibration) { // probe the radius
bool zig_zag = true;
const uint8_t start = _4p_opposite_points ? 3 : 1,
step = _4p_calibration ? 4 : _7p_half_circle ? 2 : 1;
for (uint8_t axis = start; axis < 13; axis += step) {
const float zigadd = (zig_zag ? 0.5 : 0.0),
offset_circles = _7p_quadruple_circle ? zigadd + 1.0 :
_7p_triple_circle ? zigadd + 0.5 :
_7p_double_circle ? zigadd : 0;
for (float circles = -offset_circles ; circles <= offset_circles; circles++) {
const float a = RADIANS(180 + 30 * axis),
r = delta_calibration_radius * (1 + circles * (zig_zag ? 0.1 : -0.1));
#if ENABLED(PROBE_MANUALLY)
z_at_pt[axis] += lcd_probe_pt(cos(a) * r, sin(a) * r);
#else
z_at_pt[axis] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
if (isnan(z_at_pt[axis])) return G33_CLEANUP();
#endif
}
zig_zag = !zig_zag;
z_at_pt[axis] /= (2 * offset_circles + 1);
}
}
if (_7p_intermed_points) // average intermediates to tower and opposites
for (uint8_t axis = 1; axis < 13; axis += 2)
z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
}
float S1 = z_at_pt[0],
S2 = sq(z_at_pt[0]);
int16_t N = 1;
if (!_1p_calibration) // std dev from zero plane
for (uint8_t axis = (_4p_opposite_points ? 3 : 1); axis < 13; axis += (_4p_calibration ? 4 : 2)) {
S1 += z_at_pt[axis];
S2 += sq(z_at_pt[axis]);
N++;
}
zero_std_dev_old = zero_std_dev;
zero_std_dev = round(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001;
// Solve matrices
if ((zero_std_dev < test_precision && zero_std_dev > calibration_precision) || iterations <= force_iterations) {
if (zero_std_dev < zero_std_dev_min) {
COPY(e_old, delta_endstop_adj);
dr_old = delta_radius;
zh_old = home_offset[Z_AXIS];
COPY(ta_old, delta_tower_angle_trim);
}
float e_delta[ABC] = { 0.0 }, r_delta = 0.0, t_delta[ABC] = { 0.0 };
const float r_diff = delta_radius - delta_calibration_radius,
h_factor = (1.00 + r_diff * 0.001) / 6.0, //1.02 / 6 for r_diff = 20mm
r_factor = -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)) / 6.0, //2.25 / 6 for r_diff = 20mm
a_factor = 66.66 / delta_calibration_radius; //1.25 for cal_rd = 80mm
#define ZP(N,I) ((N) * z_at_pt[I])
#define Z6(I) ZP(6, I)
#define Z4(I) ZP(4, I)
#define Z2(I) ZP(2, I)
#define Z1(I) ZP(1, I)
#if ENABLED(PROBE_MANUALLY)
test_precision = 0.00; // forced end
#endif
switch (probe_points) {
case 1:
test_precision = 0.00; // forced end
LOOP_XYZ(axis) e_delta[axis] = Z1(0);
break;
case 2:
if (towers_set) {
e_delta[A_AXIS] = (Z6(0) + Z4(1) - Z2(5) - Z2(9)) * h_factor;
e_delta[B_AXIS] = (Z6(0) - Z2(1) + Z4(5) - Z2(9)) * h_factor;
e_delta[C_AXIS] = (Z6(0) - Z2(1) - Z2(5) + Z4(9)) * h_factor;
r_delta = (Z6(0) - Z2(1) - Z2(5) - Z2(9)) * r_factor;
}
else {
e_delta[A_AXIS] = (Z6(0) - Z4(7) + Z2(11) + Z2(3)) * h_factor;
e_delta[B_AXIS] = (Z6(0) + Z2(7) - Z4(11) + Z2(3)) * h_factor;
e_delta[C_AXIS] = (Z6(0) + Z2(7) + Z2(11) - Z4(3)) * h_factor;
r_delta = (Z6(0) - Z2(7) - Z2(11) - Z2(3)) * r_factor;
}
break;
default:
e_delta[A_AXIS] = (Z6(0) + Z2(1) - Z1(5) - Z1(9) - Z2(7) + Z1(11) + Z1(3)) * h_factor;
e_delta[B_AXIS] = (Z6(0) - Z1(1) + Z2(5) - Z1(9) + Z1(7) - Z2(11) + Z1(3)) * h_factor;
e_delta[C_AXIS] = (Z6(0) - Z1(1) - Z1(5) + Z2(9) + Z1(7) + Z1(11) - Z2(3)) * h_factor;
r_delta = (Z6(0) - Z1(1) - Z1(5) - Z1(9) - Z1(7) - Z1(11) - Z1(3)) * r_factor;
if (towers_set) {
t_delta[A_AXIS] = ( - Z2(5) + Z1(9) - Z2(11) + Z1(3)) * a_factor;
t_delta[B_AXIS] = ( Z2(1) - Z1(9) + Z2(7) - Z1(3)) * a_factor;
t_delta[C_AXIS] = ( -Z2(1) + Z1(5) - Z2(7) + Z1(11) ) * a_factor;
}
break;
}
LOOP_XYZ(axis) delta_endstop_adj[axis] += e_delta[axis];
delta_radius += r_delta;
LOOP_XYZ(axis) delta_tower_angle_trim[axis] += t_delta[axis];
}
else if (zero_std_dev >= test_precision) { // step one back
COPY(delta_endstop_adj, e_old);
delta_radius = dr_old;
home_offset[Z_AXIS] = zh_old;
COPY(delta_tower_angle_trim, ta_old);
}
if (verbose_level != 0) { // !dry run
// normalise angles to least squares
float a_sum = 0.0;
LOOP_XYZ(axis) a_sum += delta_tower_angle_trim[axis];
LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0;
// adjust delta_height and endstops by the max amount
const float z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
home_offset[Z_AXIS] -= z_temp;
LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
}
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
NOMORE(zero_std_dev_min, zero_std_dev);
// print report
if (verbose_level != 1) {
SERIAL_PROTOCOLPGM(". ");
print_signed_float(PSTR("c"), z_at_pt[0]);
if (_4p_towers_points || _7p_calibration) {
print_signed_float(PSTR(" x"), z_at_pt[1]);
print_signed_float(PSTR(" y"), z_at_pt[5]);
print_signed_float(PSTR(" z"), z_at_pt[9]);
}
if (!_4p_opposite_points) SERIAL_EOL();
if ((_4p_opposite_points) || _7p_calibration) {
if (_7p_calibration) {
SERIAL_CHAR('.');
SERIAL_PROTOCOL_SP(13);
}
print_signed_float(PSTR(" yz"), z_at_pt[7]);
print_signed_float(PSTR("zx"), z_at_pt[11]);
print_signed_float(PSTR("xy"), z_at_pt[3]);
SERIAL_EOL();
}
}
if (verbose_level != 0) { // !dry run
if ((zero_std_dev >= test_precision || zero_std_dev <= calibration_precision) && iterations > force_iterations) { // end iterations
SERIAL_PROTOCOLPGM("Calibration OK");
SERIAL_PROTOCOL_SP(36);
#if DISABLED(PROBE_MANUALLY)
if (zero_std_dev >= test_precision && !_1p_calibration)
SERIAL_PROTOCOLPGM("rolling back.");
else
#endif
{
SERIAL_PROTOCOLPGM("std dev:");
SERIAL_PROTOCOL_F(zero_std_dev_min, 3);
}
SERIAL_EOL();
char mess[21];
sprintf_P(mess, PSTR("Calibration sd:"));
if (zero_std_dev_min < 1)
sprintf_P(&mess[15], PSTR("0.%03i"), (int)round(zero_std_dev_min * 1000.0));
else
sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev_min));
lcd_setstatus(mess);
print_G33_settings(!_1p_calibration, _7p_calibration && towers_set);
serialprintPGM(save_message);
SERIAL_EOL();
}
else { // !end iterations
char mess[15];
if (iterations < 31)
sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations);
else
sprintf_P(mess, PSTR("No convergence"));
SERIAL_PROTOCOL(mess);
SERIAL_PROTOCOL_SP(36);
SERIAL_PROTOCOLPGM("std dev:");
SERIAL_PROTOCOL_F(zero_std_dev, 3);
SERIAL_EOL();
lcd_setstatus(mess);
print_G33_settings(!_1p_calibration, _7p_calibration && towers_set);
}
}
else { // dry run
const char *enddryrun = PSTR("End DRY-RUN");
serialprintPGM(enddryrun);
SERIAL_PROTOCOL_SP(39);
SERIAL_PROTOCOLPGM("std dev:");
SERIAL_PROTOCOL_F(zero_std_dev, 3);
SERIAL_EOL();
char mess[21];
sprintf_P(mess, enddryrun);
sprintf_P(&mess[11], PSTR(" sd:"));
if (zero_std_dev < 1)
sprintf_P(&mess[15], PSTR("0.%03i"), (int)round(zero_std_dev * 1000.0));
else
sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev));
lcd_setstatus(mess);
}
endstops.enable(true);
home_delta();
endstops.not_homing();
}
while ((zero_std_dev < test_precision && zero_std_dev > calibration_precision && iterations < 31) || iterations <= force_iterations);
G33_CLEANUP();
}
#endif // DELTA_AUTO_CALIBRATION