991 lines
26 KiB
C++
991 lines
26 KiB
C++
/*
|
|
temperature.c - temperature control
|
|
Part of Marlin
|
|
|
|
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
This firmware is a mashup between Sprinter and grbl.
|
|
(https://github.com/kliment/Sprinter)
|
|
(https://github.com/simen/grbl/tree)
|
|
|
|
It has preliminary support for Matthew Roberts advance algorithm
|
|
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
|
|
|
|
*/
|
|
|
|
|
|
#include "Marlin.h"
|
|
#include "ultralcd.h"
|
|
#include "temperature.h"
|
|
#include "watchdog.h"
|
|
|
|
//===========================================================================
|
|
//=============================public variables============================
|
|
//===========================================================================
|
|
int target_raw[EXTRUDERS] = { 0 };
|
|
int target_raw_bed = 0;
|
|
#ifdef BED_LIMIT_SWITCHING
|
|
int target_bed_low_temp =0;
|
|
int target_bed_high_temp =0;
|
|
#endif
|
|
int current_raw[EXTRUDERS] = { 0 };
|
|
int current_raw_bed = 0;
|
|
|
|
#ifdef PIDTEMP
|
|
// used external
|
|
float pid_setpoint[EXTRUDERS] = { 0.0 };
|
|
|
|
float Kp=DEFAULT_Kp;
|
|
float Ki=(DEFAULT_Ki*PID_dT);
|
|
float Kd=(DEFAULT_Kd/PID_dT);
|
|
#ifdef PID_ADD_EXTRUSION_RATE
|
|
float Kc=DEFAULT_Kc;
|
|
#endif
|
|
#endif //PIDTEMP
|
|
|
|
|
|
//===========================================================================
|
|
//=============================private variables============================
|
|
//===========================================================================
|
|
static volatile bool temp_meas_ready = false;
|
|
|
|
static unsigned long previous_millis_bed_heater;
|
|
//static unsigned long previous_millis_heater;
|
|
|
|
#ifdef PIDTEMP
|
|
//static cannot be external:
|
|
static float temp_iState[EXTRUDERS] = { 0 };
|
|
static float temp_dState[EXTRUDERS] = { 0 };
|
|
static float pTerm[EXTRUDERS];
|
|
static float iTerm[EXTRUDERS];
|
|
static float dTerm[EXTRUDERS];
|
|
//int output;
|
|
static float pid_error[EXTRUDERS];
|
|
static float temp_iState_min[EXTRUDERS];
|
|
static float temp_iState_max[EXTRUDERS];
|
|
// static float pid_input[EXTRUDERS];
|
|
// static float pid_output[EXTRUDERS];
|
|
static bool pid_reset[EXTRUDERS];
|
|
#endif //PIDTEMP
|
|
static unsigned char soft_pwm[EXTRUDERS];
|
|
|
|
#ifdef WATCHPERIOD
|
|
int watch_raw[EXTRUDERS] = { -1000 }; // the first value used for all
|
|
int watch_oldtemp[3] = {0,0,0};
|
|
unsigned long watchmillis = 0;
|
|
#endif //WATCHPERIOD
|
|
|
|
// Init min and max temp with extreme values to prevent false errors during startup
|
|
static int minttemp[EXTRUDERS] = { 0 };
|
|
static int maxttemp[EXTRUDERS] = { 16383 }; // the first value used for all
|
|
static int bed_minttemp = 0;
|
|
static int bed_maxttemp = 16383;
|
|
static int heater_pin_map[EXTRUDERS] = { HEATER_0_PIN
|
|
#if EXTRUDERS > 1
|
|
, HEATER_1_PIN
|
|
#endif
|
|
#if EXTRUDERS > 2
|
|
, HEATER_2_PIN
|
|
#endif
|
|
#if EXTRUDERS > 3
|
|
#error Unsupported number of extruders
|
|
#endif
|
|
};
|
|
static void *heater_ttbl_map[EXTRUDERS] = { (void *)heater_0_temptable
|
|
#if EXTRUDERS > 1
|
|
, (void *)heater_1_temptable
|
|
#endif
|
|
#if EXTRUDERS > 2
|
|
, (void *)heater_2_temptable
|
|
#endif
|
|
#if EXTRUDERS > 3
|
|
#error Unsupported number of extruders
|
|
#endif
|
|
};
|
|
static int heater_ttbllen_map[EXTRUDERS] = { heater_0_temptable_len
|
|
#if EXTRUDERS > 1
|
|
, heater_1_temptable_len
|
|
#endif
|
|
#if EXTRUDERS > 2
|
|
, heater_2_temptable_len
|
|
#endif
|
|
#if EXTRUDERS > 3
|
|
#error Unsupported number of extruders
|
|
#endif
|
|
};
|
|
|
|
//===========================================================================
|
|
//============================= functions ============================
|
|
//===========================================================================
|
|
|
|
void PID_autotune(float temp)
|
|
{
|
|
float input;
|
|
int cycles=0;
|
|
bool heating = true;
|
|
soft_pwm[0] = 255>>1;
|
|
|
|
unsigned long temp_millis = millis();
|
|
unsigned long t1=temp_millis;
|
|
unsigned long t2=temp_millis;
|
|
long t_high;
|
|
long t_low;
|
|
|
|
long bias=127;
|
|
long d = 127;
|
|
float Ku, Tu;
|
|
float Kp, Ki, Kd;
|
|
float max, min;
|
|
|
|
SERIAL_ECHOLN("PID Autotune start");
|
|
|
|
disable_heater(); // switch off all heaters.
|
|
|
|
for(;;) {
|
|
|
|
if(temp_meas_ready == true) { // temp sample ready
|
|
CRITICAL_SECTION_START;
|
|
temp_meas_ready = false;
|
|
CRITICAL_SECTION_END;
|
|
input = analog2temp(current_raw[0], 0);
|
|
|
|
max=max(max,input);
|
|
min=min(min,input);
|
|
if(heating == true && input > temp) {
|
|
if(millis() - t2 > 5000) {
|
|
heating=false;
|
|
soft_pwm[0] = (bias - d) >> 1;
|
|
t1=millis();
|
|
t_high=t1 - t2;
|
|
max=temp;
|
|
}
|
|
}
|
|
if(heating == false && input < temp) {
|
|
if(millis() - t1 > 5000) {
|
|
heating=true;
|
|
t2=millis();
|
|
t_low=t2 - t1;
|
|
if(cycles > 0) {
|
|
bias += (d*(t_high - t_low))/(t_low + t_high);
|
|
bias = constrain(bias, 20 ,235);
|
|
if(bias > 127) d = 254 - bias;
|
|
else d = bias;
|
|
|
|
SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
|
|
SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
|
|
SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
|
|
SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
|
|
if(cycles > 2) {
|
|
Ku = (4.0*d)/(3.14159*(max-min)/2.0);
|
|
Tu = ((float)(t_low + t_high)/1000.0);
|
|
SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
|
|
SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
|
|
Kp = 0.6*Ku;
|
|
Ki = 2*Kp/Tu;
|
|
Kd = Kp*Tu/8;
|
|
SERIAL_PROTOCOLLNPGM(" Clasic PID ")
|
|
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
|
|
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
|
|
SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
|
|
Kp = 0.33*Ku;
|
|
Ki = Kp/Tu;
|
|
Kd = Kp*Tu/3;
|
|
SERIAL_PROTOCOLLNPGM(" Some overshoot ")
|
|
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
|
|
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
|
|
SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
|
|
Kp = 0.2*Ku;
|
|
Ki = 2*Kp/Tu;
|
|
Kd = Kp*Tu/3;
|
|
SERIAL_PROTOCOLLNPGM(" No overshoot ")
|
|
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
|
|
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
|
|
SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
|
|
}
|
|
}
|
|
soft_pwm[0] = (bias + d) >> 1;
|
|
cycles++;
|
|
min=temp;
|
|
}
|
|
}
|
|
}
|
|
if(input > (temp + 20)) {
|
|
SERIAL_PROTOCOLLNPGM("PID Autotune failed !, Temperature to high");
|
|
return;
|
|
}
|
|
if(millis() - temp_millis > 2000) {
|
|
temp_millis = millis();
|
|
SERIAL_PROTOCOLPGM("ok T:");
|
|
SERIAL_PROTOCOL(degHotend(0));
|
|
SERIAL_PROTOCOLPGM(" @:");
|
|
SERIAL_PROTOCOLLN(getHeaterPower(0));
|
|
}
|
|
LCD_STATUS;
|
|
}
|
|
}
|
|
|
|
void updatePID()
|
|
{
|
|
#ifdef PIDTEMP
|
|
for(int e = 0; e < EXTRUDERS; e++) {
|
|
temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
int getHeaterPower(int heater) {
|
|
return soft_pwm[heater];
|
|
}
|
|
|
|
void manage_heater()
|
|
{
|
|
#ifdef USE_WATCHDOG
|
|
wd_reset();
|
|
#endif
|
|
|
|
float pid_input;
|
|
float pid_output;
|
|
|
|
if(temp_meas_ready != true) //better readability
|
|
return;
|
|
|
|
CRITICAL_SECTION_START;
|
|
temp_meas_ready = false;
|
|
CRITICAL_SECTION_END;
|
|
|
|
for(int e = 0; e < EXTRUDERS; e++)
|
|
{
|
|
|
|
#ifdef PIDTEMP
|
|
pid_input = analog2temp(current_raw[e], e);
|
|
|
|
#ifndef PID_OPENLOOP
|
|
pid_error[e] = pid_setpoint[e] - pid_input;
|
|
if(pid_error[e] > 10) {
|
|
pid_output = PID_MAX;
|
|
pid_reset[e] = true;
|
|
}
|
|
else if(pid_error[e] < -10) {
|
|
pid_output = 0;
|
|
pid_reset[e] = true;
|
|
}
|
|
else {
|
|
if(pid_reset[e] == true) {
|
|
temp_iState[e] = 0.0;
|
|
pid_reset[e] = false;
|
|
}
|
|
pTerm[e] = Kp * pid_error[e];
|
|
temp_iState[e] += pid_error[e];
|
|
temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
|
|
iTerm[e] = Ki * temp_iState[e];
|
|
//K1 defined in Configuration.h in the PID settings
|
|
#define K2 (1.0-K1)
|
|
dTerm[e] = (Kd * (pid_input - temp_dState[e]))*K2 + (K1 * dTerm[e]);
|
|
temp_dState[e] = pid_input;
|
|
pid_output = constrain(pTerm[e] + iTerm[e] - dTerm[e], 0, PID_MAX);
|
|
}
|
|
#endif //PID_OPENLOOP
|
|
#ifdef PID_DEBUG
|
|
SERIAL_ECHOLN(" PIDDEBUG "<<e<<": Input "<<pid_input<<" Output "<<pid_output" pTerm "<<pTerm[e]<<" iTerm "<<iTerm[e]<<" dTerm "<<dTerm[e]);
|
|
#endif //PID_DEBUG
|
|
#else /* PID off */
|
|
pid_output = 0;
|
|
if(current_raw[e] < target_raw[e]) {
|
|
pid_output = PID_MAX;
|
|
}
|
|
#endif
|
|
|
|
// Check if temperature is within the correct range
|
|
if((current_raw[e] > minttemp[e]) && (current_raw[e] < maxttemp[e]))
|
|
{
|
|
//analogWrite(heater_pin_map[e], pid_output);
|
|
soft_pwm[e] = (int)pid_output >> 1;
|
|
}
|
|
else {
|
|
//analogWrite(heater_pin_map[e], 0);
|
|
soft_pwm[e] = 0;
|
|
}
|
|
} // End extruder for loop
|
|
|
|
#ifdef WATCHPERIOD
|
|
if(watchmillis && millis() - watchmillis > WATCHPERIOD){
|
|
if(watch_oldtemp[0] >= degHotend(active_extruder)){
|
|
setTargetHotend(0,active_extruder);
|
|
LCD_MESSAGEPGM("Heating failed");
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLN("Heating failed");
|
|
}else{
|
|
watchmillis = 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
|
|
return;
|
|
previous_millis_bed_heater = millis();
|
|
|
|
#if TEMP_BED_PIN > -1
|
|
|
|
#ifndef BED_LIMIT_SWITCHING
|
|
// Check if temperature is within the correct range
|
|
if((current_raw_bed > bed_minttemp) && (current_raw_bed < bed_maxttemp)) {
|
|
if(current_raw_bed >= target_raw_bed)
|
|
{
|
|
WRITE(HEATER_BED_PIN,LOW);
|
|
}
|
|
else
|
|
{
|
|
WRITE(HEATER_BED_PIN,HIGH);
|
|
}
|
|
}
|
|
else {
|
|
WRITE(HEATER_BED_PIN,LOW);
|
|
}
|
|
#else //#ifdef BED_LIMIT_SWITCHING
|
|
// Check if temperature is within the correct band
|
|
if((current_raw_bed > bed_minttemp) && (current_raw_bed < bed_maxttemp)) {
|
|
if(current_raw_bed > target_bed_high_temp)
|
|
{
|
|
WRITE(HEATER_BED_PIN,LOW);
|
|
}
|
|
else
|
|
if(current_raw_bed <= target_bed_low_temp)
|
|
{
|
|
WRITE(HEATER_BED_PIN,HIGH);
|
|
}
|
|
}
|
|
else {
|
|
WRITE(HEATER_BED_PIN,LOW);
|
|
}
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
#define PGM_RD_W(x) (short)pgm_read_word(&x)
|
|
// Takes hot end temperature value as input and returns corresponding raw value.
|
|
// For a thermistor, it uses the RepRap thermistor temp table.
|
|
// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
|
|
// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
|
|
int temp2analog(int celsius, uint8_t e) {
|
|
if(e >= EXTRUDERS)
|
|
{
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERROR((int)e);
|
|
SERIAL_ERRORLNPGM(" - Invalid extruder number!");
|
|
kill();
|
|
}
|
|
#ifdef HEATER_0_USES_MAX6675
|
|
if (e == 0)
|
|
{
|
|
return celsius * 4;
|
|
}
|
|
#endif
|
|
if(heater_ttbl_map[e] != 0)
|
|
{
|
|
int raw = 0;
|
|
byte i;
|
|
short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
|
|
|
|
for (i=1; i<heater_ttbllen_map[e]; i++)
|
|
{
|
|
if (PGM_RD_W((*tt)[i][1]) < celsius)
|
|
{
|
|
raw = PGM_RD_W((*tt)[i-1][0]) +
|
|
(celsius - PGM_RD_W((*tt)[i-1][1])) *
|
|
(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0])) /
|
|
(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1]));
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Overflow: Set to last value in the table
|
|
if (i == heater_ttbllen_map[e]) raw = PGM_RD_W((*tt)[i-1][0]);
|
|
|
|
return (1023 * OVERSAMPLENR) - raw;
|
|
}
|
|
return ((celsius-TEMP_SENSOR_AD595_OFFSET)/TEMP_SENSOR_AD595_GAIN) * (1024.0 / (5.0 * 100.0) ) * OVERSAMPLENR;
|
|
}
|
|
|
|
// Takes bed temperature value as input and returns corresponding raw value.
|
|
// For a thermistor, it uses the RepRap thermistor temp table.
|
|
// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
|
|
// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
|
|
int temp2analogBed(int celsius) {
|
|
#ifdef BED_USES_THERMISTOR
|
|
int raw = 0;
|
|
byte i;
|
|
|
|
for (i=1; i<bedtemptable_len; i++)
|
|
{
|
|
if (PGM_RD_W(bedtemptable[i][1]) < celsius)
|
|
{
|
|
raw = PGM_RD_W(bedtemptable[i-1][0]) +
|
|
(celsius - PGM_RD_W(bedtemptable[i-1][1])) *
|
|
(PGM_RD_W(bedtemptable[i][0]) - PGM_RD_W(bedtemptable[i-1][0])) /
|
|
(PGM_RD_W(bedtemptable[i][1]) - PGM_RD_W(bedtemptable[i-1][1]));
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Overflow: Set to last value in the table
|
|
if (i == bedtemptable_len) raw = PGM_RD_W(bedtemptable[i-1][0]);
|
|
|
|
return (1023 * OVERSAMPLENR) - raw;
|
|
#elif defined BED_USES_AD595
|
|
return lround(((celsius-TEMP_SENSOR_AD595_OFFSET)/TEMP_SENSOR_AD595_GAIN) * (1024.0 * OVERSAMPLENR/ (5.0 * 100.0) ) );
|
|
#else
|
|
#warning No heater-type defined for the bed.
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
// Derived from RepRap FiveD extruder::getTemperature()
|
|
// For hot end temperature measurement.
|
|
float analog2temp(int raw, uint8_t e) {
|
|
if(e >= EXTRUDERS)
|
|
{
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERROR((int)e);
|
|
SERIAL_ERRORLNPGM(" - Invalid extruder number !");
|
|
kill();
|
|
}
|
|
#ifdef HEATER_0_USES_MAX6675
|
|
if (e == 0)
|
|
{
|
|
return 0.25 * raw;
|
|
}
|
|
#endif
|
|
|
|
if(heater_ttbl_map[e] != 0)
|
|
{
|
|
float celsius = 0;
|
|
byte i;
|
|
short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
|
|
|
|
raw = (1023 * OVERSAMPLENR) - raw;
|
|
for (i=1; i<heater_ttbllen_map[e]; i++)
|
|
{
|
|
if (PGM_RD_W((*tt)[i][0]) > raw)
|
|
{
|
|
celsius = PGM_RD_W((*tt)[i-1][1]) +
|
|
(raw - PGM_RD_W((*tt)[i-1][0])) *
|
|
(float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
|
|
(float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Overflow: Set to last value in the table
|
|
if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
|
|
|
|
return celsius;
|
|
}
|
|
return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
|
|
}
|
|
|
|
// Derived from RepRap FiveD extruder::getTemperature()
|
|
// For bed temperature measurement.
|
|
float analog2tempBed(int raw) {
|
|
#ifdef BED_USES_THERMISTOR
|
|
float celsius = 0;
|
|
byte i;
|
|
|
|
raw = (1023 * OVERSAMPLENR) - raw;
|
|
|
|
for (i=1; i<bedtemptable_len; i++)
|
|
{
|
|
if (PGM_RD_W(bedtemptable[i][0]) > raw)
|
|
{
|
|
celsius = PGM_RD_W(bedtemptable[i-1][1]) +
|
|
(raw - PGM_RD_W(bedtemptable[i-1][0])) *
|
|
(float)(PGM_RD_W(bedtemptable[i][1]) - PGM_RD_W(bedtemptable[i-1][1])) /
|
|
(float)(PGM_RD_W(bedtemptable[i][0]) - PGM_RD_W(bedtemptable[i-1][0]));
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Overflow: Set to last value in the table
|
|
if (i == bedtemptable_len) celsius = PGM_RD_W(bedtemptable[i-1][1]);
|
|
|
|
return celsius;
|
|
#elif defined BED_USES_AD595
|
|
return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
|
|
#else
|
|
#warning No heater-type defined for the bed.
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
void tp_init()
|
|
{
|
|
// Finish init of mult extruder arrays
|
|
for(int e = 0; e < EXTRUDERS; e++) {
|
|
// populate with the first value
|
|
#ifdef WATCHPERIOD
|
|
watch_raw[e] = watch_raw[0];
|
|
#endif
|
|
maxttemp[e] = maxttemp[0];
|
|
#ifdef PIDTEMP
|
|
temp_iState_min[e] = 0.0;
|
|
temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki;
|
|
#endif //PIDTEMP
|
|
}
|
|
|
|
#if (HEATER_0_PIN > -1)
|
|
SET_OUTPUT(HEATER_0_PIN);
|
|
#endif
|
|
#if (HEATER_1_PIN > -1)
|
|
SET_OUTPUT(HEATER_1_PIN);
|
|
#endif
|
|
#if (HEATER_2_PIN > -1)
|
|
SET_OUTPUT(HEATER_2_PIN);
|
|
#endif
|
|
#if (HEATER_BED_PIN > -1)
|
|
SET_OUTPUT(HEATER_BED_PIN);
|
|
#endif
|
|
#if (FAN_PIN > -1)
|
|
SET_OUTPUT(FAN_PIN);
|
|
#endif
|
|
|
|
#ifdef HEATER_0_USES_MAX6675
|
|
#ifndef SDSUPPORT
|
|
SET_OUTPUT(MAX_SCK_PIN);
|
|
WRITE(MAX_SCK_PIN,0);
|
|
|
|
SET_OUTPUT(MAX_MOSI_PIN);
|
|
WRITE(MAX_MOSI_PIN,1);
|
|
|
|
SET_INPUT(MAX_MISO_PIN);
|
|
WRITE(MAX_MISO_PIN,1);
|
|
#endif
|
|
|
|
SET_OUTPUT(MAX6675_SS);
|
|
WRITE(MAX6675_SS,1);
|
|
#endif
|
|
|
|
// Set analog inputs
|
|
ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07;
|
|
DIDR0 = 0;
|
|
#ifdef DIDR2
|
|
DIDR2 = 0;
|
|
#endif
|
|
#if (TEMP_0_PIN > -1)
|
|
#if TEMP_0_PIN < 8
|
|
DIDR0 |= 1 << TEMP_0_PIN;
|
|
#else
|
|
DIDR2 |= 1<<(TEMP_0_PIN - 8);
|
|
#endif
|
|
#endif
|
|
#if (TEMP_1_PIN > -1)
|
|
#if TEMP_1_PIN < 8
|
|
DIDR0 |= 1<<TEMP_1_PIN;
|
|
#else
|
|
DIDR2 |= 1<<(TEMP_1_PIN - 8);
|
|
#endif
|
|
#endif
|
|
#if (TEMP_2_PIN > -1)
|
|
#if TEMP_2_PIN < 8
|
|
DIDR0 |= 1 << TEMP_2_PIN;
|
|
#else
|
|
DIDR2 = 1<<(TEMP_2_PIN - 8);
|
|
#endif
|
|
#endif
|
|
#if (TEMP_BED_PIN > -1)
|
|
#if TEMP_BED_PIN < 8
|
|
DIDR0 |= 1<<TEMP_BED_PIN;
|
|
#else
|
|
DIDR2 |= 1<<(TEMP_BED_PIN - 8);
|
|
#endif
|
|
#endif
|
|
|
|
// Use timer0 for temperature measurement
|
|
// Interleave temperature interrupt with millies interrupt
|
|
OCR0B = 128;
|
|
TIMSK0 |= (1<<OCIE0B);
|
|
|
|
// Wait for temperature measurement to settle
|
|
delay(250);
|
|
|
|
#ifdef HEATER_0_MINTEMP
|
|
minttemp[0] = temp2analog(HEATER_0_MINTEMP, 0);
|
|
#endif //MINTEMP
|
|
#ifdef HEATER_0_MAXTEMP
|
|
maxttemp[0] = temp2analog(HEATER_0_MAXTEMP, 0);
|
|
#endif //MAXTEMP
|
|
|
|
#if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
|
|
minttemp[1] = temp2analog(HEATER_1_MINTEMP, 1);
|
|
#endif // MINTEMP 1
|
|
#if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
|
|
maxttemp[1] = temp2analog(HEATER_1_MAXTEMP, 1);
|
|
#endif //MAXTEMP 1
|
|
|
|
#if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
|
|
minttemp[2] = temp2analog(HEATER_2_MINTEMP, 2);
|
|
#endif //MINTEMP 2
|
|
#if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
|
|
maxttemp[2] = temp2analog(HEATER_2_MAXTEMP, 2);
|
|
#endif //MAXTEMP 2
|
|
|
|
#ifdef BED_MINTEMP
|
|
bed_minttemp = temp2analogBed(BED_MINTEMP);
|
|
#endif //BED_MINTEMP
|
|
#ifdef BED_MAXTEMP
|
|
bed_maxttemp = temp2analogBed(BED_MAXTEMP);
|
|
#endif //BED_MAXTEMP
|
|
}
|
|
|
|
|
|
|
|
void setWatch()
|
|
{
|
|
#ifdef WATCHPERIOD
|
|
int t = 0;
|
|
for (int e = 0; e < EXTRUDERS; e++)
|
|
{
|
|
if(isHeatingHotend(e))
|
|
watch_oldtemp[0] = degHotend(0);
|
|
{
|
|
t = max(t,millis());
|
|
watch_raw[e] = current_raw[e];
|
|
}
|
|
}
|
|
watchmillis = t;
|
|
#endif
|
|
}
|
|
|
|
|
|
void disable_heater()
|
|
{
|
|
for(int i=0;i<EXTRUDERS;i++)
|
|
setTargetHotend(0,i);
|
|
setTargetBed(0);
|
|
#if TEMP_0_PIN > -1
|
|
target_raw[0]=0;
|
|
soft_pwm[0]=0;
|
|
#if HEATER_0_PIN > -1
|
|
digitalWrite(HEATER_0_PIN,LOW);
|
|
#endif
|
|
#endif
|
|
|
|
#if TEMP_1_PIN > -1
|
|
target_raw[1]=0;
|
|
soft_pwm[1]=0;
|
|
#if HEATER_1_PIN > -1
|
|
digitalWrite(HEATER_1_PIN,LOW);
|
|
#endif
|
|
#endif
|
|
|
|
#if TEMP_2_PIN > -1
|
|
target_raw[2]=0;
|
|
soft_pwm[2]=0;
|
|
#if HEATER_2_PIN > -1
|
|
digitalWrite(HEATER_2_PIN,LOW);
|
|
#endif
|
|
#endif
|
|
|
|
#if TEMP_BED_PIN > -1
|
|
target_raw_bed=0;
|
|
#if HEATER_BED_PIN > -1
|
|
digitalWrite(HEATER_BED_PIN,LOW);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
void max_temp_error(uint8_t e) {
|
|
digitalWrite(heater_pin_map[e], 0);
|
|
if(IsStopped() == false) {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLN(e);
|
|
SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
|
|
}
|
|
}
|
|
|
|
void min_temp_error(uint8_t e) {
|
|
digitalWrite(heater_pin_map[e], 0);
|
|
if(IsStopped() == false) {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLN(e);
|
|
SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
|
|
}
|
|
}
|
|
|
|
void bed_max_temp_error(void) {
|
|
digitalWrite(HEATER_BED_PIN, 0);
|
|
if(IsStopped() == false) {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !!");
|
|
}
|
|
}
|
|
|
|
#define HEAT_INTERVAL 250
|
|
#ifdef HEATER_0_USES_MAX6675
|
|
long max6675_previous_millis = -HEAT_INTERVAL;
|
|
int max6675_temp = 2000;
|
|
|
|
int read_max6675()
|
|
{
|
|
if (millis() - max6675_previous_millis < HEAT_INTERVAL)
|
|
return max6675_temp;
|
|
|
|
max6675_previous_millis = millis();
|
|
max6675_temp = 0;
|
|
|
|
#ifdef PRR
|
|
PRR &= ~(1<<PRSPI);
|
|
#elif defined PRR0
|
|
PRR0 &= ~(1<<PRSPI);
|
|
#endif
|
|
|
|
SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
|
|
|
|
// enable TT_MAX6675
|
|
WRITE(MAX6675_SS, 0);
|
|
|
|
// ensure 100ns delay - a bit extra is fine
|
|
delay(1);
|
|
|
|
// read MSB
|
|
SPDR = 0;
|
|
for (;(SPSR & (1<<SPIF)) == 0;);
|
|
max6675_temp = SPDR;
|
|
max6675_temp <<= 8;
|
|
|
|
// read LSB
|
|
SPDR = 0;
|
|
for (;(SPSR & (1<<SPIF)) == 0;);
|
|
max6675_temp |= SPDR;
|
|
|
|
// disable TT_MAX6675
|
|
WRITE(MAX6675_SS, 1);
|
|
|
|
if (max6675_temp & 4)
|
|
{
|
|
// thermocouple open
|
|
max6675_temp = 2000;
|
|
}
|
|
else
|
|
{
|
|
max6675_temp = max6675_temp >> 3;
|
|
}
|
|
|
|
return max6675_temp;
|
|
}
|
|
#endif
|
|
|
|
|
|
// Timer 0 is shared with millies
|
|
ISR(TIMER0_COMPB_vect)
|
|
{
|
|
//these variables are only accesible from the ISR, but static, so they don't loose their value
|
|
static unsigned char temp_count = 0;
|
|
static unsigned long raw_temp_0_value = 0;
|
|
static unsigned long raw_temp_1_value = 0;
|
|
static unsigned long raw_temp_2_value = 0;
|
|
static unsigned long raw_temp_bed_value = 0;
|
|
static unsigned char temp_state = 0;
|
|
static unsigned char pwm_count = 1;
|
|
static unsigned char soft_pwm_0;
|
|
static unsigned char soft_pwm_1;
|
|
static unsigned char soft_pwm_2;
|
|
|
|
if(pwm_count == 0){
|
|
soft_pwm_0 = soft_pwm[0];
|
|
if(soft_pwm_0 > 0) WRITE(HEATER_0_PIN,1);
|
|
#if EXTRUDERS > 1
|
|
soft_pwm_1 = soft_pwm[1];
|
|
if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1);
|
|
#endif
|
|
#if EXTRUDERS > 2
|
|
soft_pwm_2 = soft_pwm[2];
|
|
if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1);
|
|
#endif
|
|
}
|
|
if(soft_pwm_0 <= pwm_count) WRITE(HEATER_0_PIN,0);
|
|
#if EXTRUDERS > 1
|
|
if(soft_pwm_1 <= pwm_count) WRITE(HEATER_1_PIN,0);
|
|
#endif
|
|
#if EXTRUDERS > 2
|
|
if(soft_pwm_2 <= pwm_count) WRITE(HEATER_2_PIN,0);
|
|
#endif
|
|
|
|
pwm_count++;
|
|
pwm_count &= 0x7f;
|
|
|
|
switch(temp_state) {
|
|
case 0: // Prepare TEMP_0
|
|
#if (TEMP_0_PIN > -1)
|
|
#if TEMP_0_PIN > 7
|
|
ADCSRB = 1<<MUX5;
|
|
#else
|
|
ADCSRB = 0;
|
|
#endif
|
|
ADMUX = ((1 << REFS0) | (TEMP_0_PIN & 0x07));
|
|
ADCSRA |= 1<<ADSC; // Start conversion
|
|
#endif
|
|
#ifdef ULTIPANEL
|
|
buttons_check();
|
|
#endif
|
|
temp_state = 1;
|
|
break;
|
|
case 1: // Measure TEMP_0
|
|
#if (TEMP_0_PIN > -1)
|
|
raw_temp_0_value += ADC;
|
|
#endif
|
|
#ifdef HEATER_0_USES_MAX6675 // TODO remove the blocking
|
|
raw_temp_0_value = read_max6675();
|
|
#endif
|
|
temp_state = 2;
|
|
break;
|
|
case 2: // Prepare TEMP_BED
|
|
#if (TEMP_BED_PIN > -1)
|
|
#if TEMP_BED_PIN > 7
|
|
ADCSRB = 1<<MUX5;
|
|
#endif
|
|
ADMUX = ((1 << REFS0) | (TEMP_BED_PIN & 0x07));
|
|
ADCSRA |= 1<<ADSC; // Start conversion
|
|
#endif
|
|
#ifdef ULTIPANEL
|
|
buttons_check();
|
|
#endif
|
|
temp_state = 3;
|
|
break;
|
|
case 3: // Measure TEMP_BED
|
|
#if (TEMP_BED_PIN > -1)
|
|
raw_temp_bed_value += ADC;
|
|
#endif
|
|
temp_state = 4;
|
|
break;
|
|
case 4: // Prepare TEMP_1
|
|
#if (TEMP_1_PIN > -1)
|
|
#if TEMP_1_PIN > 7
|
|
ADCSRB = 1<<MUX5;
|
|
#else
|
|
ADCSRB = 0;
|
|
#endif
|
|
ADMUX = ((1 << REFS0) | (TEMP_1_PIN & 0x07));
|
|
ADCSRA |= 1<<ADSC; // Start conversion
|
|
#endif
|
|
#ifdef ULTIPANEL
|
|
buttons_check();
|
|
#endif
|
|
temp_state = 5;
|
|
break;
|
|
case 5: // Measure TEMP_1
|
|
#if (TEMP_1_PIN > -1)
|
|
raw_temp_1_value += ADC;
|
|
#endif
|
|
temp_state = 6;
|
|
break;
|
|
case 6: // Prepare TEMP_2
|
|
#if (TEMP_2_PIN > -1)
|
|
#if TEMP_2_PIN > 7
|
|
ADCSRB = 1<<MUX5;
|
|
#else
|
|
ADCSRB = 0;
|
|
#endif
|
|
ADMUX = ((1 << REFS0) | (TEMP_2_PIN & 0x07));
|
|
ADCSRA |= 1<<ADSC; // Start conversion
|
|
#endif
|
|
#ifdef ULTIPANEL
|
|
buttons_check();
|
|
#endif
|
|
temp_state = 7;
|
|
break;
|
|
case 7: // Measure TEMP_2
|
|
#if (TEMP_2_PIN > -1)
|
|
raw_temp_2_value += ADC;
|
|
#endif
|
|
temp_state = 0;
|
|
temp_count++;
|
|
break;
|
|
// default:
|
|
// SERIAL_ERROR_START;
|
|
// SERIAL_ERRORLNPGM("Temp measurement error!");
|
|
// break;
|
|
}
|
|
|
|
if(temp_count >= 16) // 8 ms * 16 = 128ms.
|
|
{
|
|
#ifdef HEATER_0_USES_AD595 || defined HEATER_0_USES_MAX6675
|
|
current_raw[0] = raw_temp_0_value;
|
|
#else
|
|
current_raw[0] = 16383 - raw_temp_0_value;
|
|
#endif
|
|
|
|
#if EXTRUDERS > 1
|
|
#ifdef HEATER_1_USES_AD595
|
|
current_raw[1] = raw_temp_1_value;
|
|
#else
|
|
current_raw[1] = 16383 - raw_temp_1_value;
|
|
#endif
|
|
#endif
|
|
|
|
#if EXTRUDERS > 2
|
|
#ifdef HEATER_2_USES_AD595
|
|
current_raw[2] = raw_temp_2_value;
|
|
#else
|
|
current_raw[2] = 16383 - raw_temp_2_value;
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef BED_USES_AD595
|
|
current_raw_bed = raw_temp_bed_value;
|
|
#else
|
|
current_raw_bed = 16383 - raw_temp_bed_value;
|
|
#endif
|
|
|
|
temp_meas_ready = true;
|
|
temp_count = 0;
|
|
raw_temp_0_value = 0;
|
|
raw_temp_1_value = 0;
|
|
raw_temp_2_value = 0;
|
|
raw_temp_bed_value = 0;
|
|
|
|
for(unsigned char e = 0; e < EXTRUDERS; e++) {
|
|
if(current_raw[e] >= maxttemp[e]) {
|
|
target_raw[e] = 0;
|
|
max_temp_error(e);
|
|
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
|
|
{
|
|
Stop();;
|
|
}
|
|
#endif
|
|
}
|
|
if(current_raw[e] <= minttemp[e]) {
|
|
target_raw[e] = 0;
|
|
min_temp_error(e);
|
|
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
|
|
{
|
|
Stop();
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#if defined(BED_MAXTEMP) && (HEATER_BED_PIN > -1)
|
|
if(current_raw_bed >= bed_maxttemp) {
|
|
target_raw_bed = 0;
|
|
bed_max_temp_error();
|
|
Stop();
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|