cfc6a3a87a
With this change a mechanical or optical switch may be used to check the availability of the filament and when the filament runs out an M600 (filament change) command is issued. This is only done while printing with an SD card. This feature was requested several times (issue #679), but the requests were not accepted since it was believed that this situation should be handled at host side. However during an SD print the control is totally on firmware and I think that during an SD print it should be handled by the firmware. The original code was posted at reprap forum (http://forums.reprap.org/read.php?1,297350) by Lazymonk. I have only corrected some bugs of the code and improved it by adding definitions to the configuration.h in order to make it more standardized.
5540 lines
173 KiB
C++
5540 lines
173 KiB
C++
/* -*- c++ -*- */
|
|
|
|
/*
|
|
Reprap firmware based on Sprinter and grbl.
|
|
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
This firmware is a mashup between Sprinter and grbl.
|
|
(https://github.com/kliment/Sprinter)
|
|
(https://github.com/simen/grbl/tree)
|
|
|
|
It has preliminary support for Matthew Roberts advance algorithm
|
|
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
|
|
*/
|
|
|
|
#include "Marlin.h"
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
#if Z_MIN_PIN == -1
|
|
#error "You must have a Z_MIN endstop to enable Auto Bed Leveling feature. Z_MIN_PIN must point to a valid hardware pin."
|
|
#endif
|
|
#include "vector_3.h"
|
|
#ifdef AUTO_BED_LEVELING_GRID
|
|
#include "qr_solve.h"
|
|
#endif
|
|
#endif // ENABLE_AUTO_BED_LEVELING
|
|
|
|
#define SERVO_LEVELING defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0
|
|
|
|
#include "ultralcd.h"
|
|
#include "planner.h"
|
|
#include "stepper.h"
|
|
#include "temperature.h"
|
|
#include "motion_control.h"
|
|
#include "cardreader.h"
|
|
#include "watchdog.h"
|
|
#include "ConfigurationStore.h"
|
|
#include "language.h"
|
|
#include "pins_arduino.h"
|
|
#include "math.h"
|
|
|
|
#ifdef BLINKM
|
|
#include "BlinkM.h"
|
|
#include "Wire.h"
|
|
#endif
|
|
|
|
#if NUM_SERVOS > 0
|
|
#include "Servo.h"
|
|
#endif
|
|
|
|
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
|
#include <SPI.h>
|
|
#endif
|
|
|
|
// look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
|
|
// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
|
|
|
|
//Implemented Codes
|
|
//-------------------
|
|
// G0 -> G1
|
|
// G1 - Coordinated Movement X Y Z E
|
|
// G2 - CW ARC
|
|
// G3 - CCW ARC
|
|
// G4 - Dwell S<seconds> or P<milliseconds>
|
|
// G10 - retract filament according to settings of M207
|
|
// G11 - retract recover filament according to settings of M208
|
|
// G28 - Home all Axis
|
|
// G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
|
|
// G30 - Single Z Probe, probes bed at current XY location.
|
|
// G31 - Dock sled (Z_PROBE_SLED only)
|
|
// G32 - Undock sled (Z_PROBE_SLED only)
|
|
// G90 - Use Absolute Coordinates
|
|
// G91 - Use Relative Coordinates
|
|
// G92 - Set current position to coordinates given
|
|
|
|
// M Codes
|
|
// M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
|
|
// M1 - Same as M0
|
|
// M17 - Enable/Power all stepper motors
|
|
// M18 - Disable all stepper motors; same as M84
|
|
// M20 - List SD card
|
|
// M21 - Init SD card
|
|
// M22 - Release SD card
|
|
// M23 - Select SD file (M23 filename.g)
|
|
// M24 - Start/resume SD print
|
|
// M25 - Pause SD print
|
|
// M26 - Set SD position in bytes (M26 S12345)
|
|
// M27 - Report SD print status
|
|
// M28 - Start SD write (M28 filename.g)
|
|
// M29 - Stop SD write
|
|
// M30 - Delete file from SD (M30 filename.g)
|
|
// M31 - Output time since last M109 or SD card start to serial
|
|
// M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
|
|
// syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
|
|
// Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
|
|
// The '#' is necessary when calling from within sd files, as it stops buffer prereading
|
|
// M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
|
|
// M80 - Turn on Power Supply
|
|
// M81 - Turn off Power Supply
|
|
// M82 - Set E codes absolute (default)
|
|
// M83 - Set E codes relative while in Absolute Coordinates (G90) mode
|
|
// M84 - Disable steppers until next move,
|
|
// or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
|
|
// M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
|
|
// M92 - Set axis_steps_per_unit - same syntax as G92
|
|
// M104 - Set extruder target temp
|
|
// M105 - Read current temp
|
|
// M106 - Fan on
|
|
// M107 - Fan off
|
|
// M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
|
|
// Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
|
|
// IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
|
|
// M112 - Emergency stop
|
|
// M114 - Output current position to serial port
|
|
// M115 - Capabilities string
|
|
// M117 - display message
|
|
// M119 - Output Endstop status to serial port
|
|
// M120 - Enable endstop detection
|
|
// M121 - Disable endstop detection
|
|
// M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
|
|
// M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
|
|
// M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
|
|
// M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
|
|
// M140 - Set bed target temp
|
|
// M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
|
|
// M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
|
|
// Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
|
|
// M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
|
|
// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
|
|
// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
|
|
// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
|
|
// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
|
|
// M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
|
|
// M206 - Set additional homing offset
|
|
// M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
|
|
// M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
|
|
// M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
|
|
// M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
|
|
// M220 S<factor in percent>- set speed factor override percentage
|
|
// M221 S<factor in percent>- set extrude factor override percentage
|
|
// M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
|
|
// M240 - Trigger a camera to take a photograph
|
|
// M250 - Set LCD contrast C<contrast value> (value 0..63)
|
|
// M280 - Set servo position absolute. P: servo index, S: angle or microseconds
|
|
// M300 - Play beep sound S<frequency Hz> P<duration ms>
|
|
// M301 - Set PID parameters P I and D
|
|
// M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
|
|
// M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
|
|
// M304 - Set bed PID parameters P I and D
|
|
// M380 - Activate solenoid on active extruder
|
|
// M381 - Disable all solenoids
|
|
// M400 - Finish all moves
|
|
// M401 - Lower z-probe if present
|
|
// M402 - Raise z-probe if present
|
|
// M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
|
|
// M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
|
|
// M406 - Turn off Filament Sensor extrusion control
|
|
// M407 - Displays measured filament diameter
|
|
// M500 - Store parameters in EEPROM
|
|
// M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
|
|
// M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
|
|
// M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
|
|
// M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
|
|
// M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
|
|
// M665 - Set delta configurations
|
|
// M666 - Set delta endstop adjustment
|
|
// M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
|
|
// M907 - Set digital trimpot motor current using axis codes.
|
|
// M908 - Control digital trimpot directly.
|
|
// M350 - Set microstepping mode.
|
|
// M351 - Toggle MS1 MS2 pins directly.
|
|
|
|
// ************ SCARA Specific - This can change to suit future G-code regulations
|
|
// M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
|
|
// M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
|
|
// M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
|
|
// M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
|
|
// M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
|
|
// M365 - SCARA calibration: Scaling factor, X, Y, Z axis
|
|
//************* SCARA End ***************
|
|
|
|
// M928 - Start SD logging (M928 filename.g) - ended by M29
|
|
// M999 - Restart after being stopped by error
|
|
|
|
#ifdef SDSUPPORT
|
|
CardReader card;
|
|
#endif
|
|
|
|
float homing_feedrate[] = HOMING_FEEDRATE;
|
|
bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
|
|
int feedmultiply = 100; //100->1 200->2
|
|
int saved_feedmultiply;
|
|
int extrudemultiply = 100; //100->1 200->2
|
|
int extruder_multiply[EXTRUDERS] = { 100
|
|
#if EXTRUDERS > 1
|
|
, 100
|
|
#if EXTRUDERS > 2
|
|
, 100
|
|
#if EXTRUDERS > 3
|
|
, 100
|
|
#endif
|
|
#endif
|
|
#endif
|
|
};
|
|
bool volumetric_enabled = false;
|
|
float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
|
|
#if EXTRUDERS > 1
|
|
, DEFAULT_NOMINAL_FILAMENT_DIA
|
|
#if EXTRUDERS > 2
|
|
, DEFAULT_NOMINAL_FILAMENT_DIA
|
|
#if EXTRUDERS > 3
|
|
, DEFAULT_NOMINAL_FILAMENT_DIA
|
|
#endif
|
|
#endif
|
|
#endif
|
|
};
|
|
float volumetric_multiplier[EXTRUDERS] = {1.0
|
|
#if EXTRUDERS > 1
|
|
, 1.0
|
|
#if EXTRUDERS > 2
|
|
, 1.0
|
|
#if EXTRUDERS > 3
|
|
, 1.0
|
|
#endif
|
|
#endif
|
|
#endif
|
|
};
|
|
float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
|
|
float add_homing[3] = { 0, 0, 0 };
|
|
#ifdef DELTA
|
|
float endstop_adj[3] = { 0, 0, 0 };
|
|
#endif
|
|
|
|
float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
|
|
float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
|
|
bool axis_known_position[3] = { false, false, false };
|
|
float zprobe_zoffset;
|
|
|
|
// Extruder offset
|
|
#if EXTRUDERS > 1
|
|
#ifndef DUAL_X_CARRIAGE
|
|
#define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
|
|
#else
|
|
#define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
|
|
#endif
|
|
float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
|
|
#if defined(EXTRUDER_OFFSET_X)
|
|
EXTRUDER_OFFSET_X
|
|
#else
|
|
0
|
|
#endif
|
|
,
|
|
#if defined(EXTRUDER_OFFSET_Y)
|
|
EXTRUDER_OFFSET_Y
|
|
#else
|
|
0
|
|
#endif
|
|
};
|
|
#endif
|
|
|
|
uint8_t active_extruder = 0;
|
|
int fanSpeed = 0;
|
|
|
|
#ifdef SERVO_ENDSTOPS
|
|
int servo_endstops[] = SERVO_ENDSTOPS;
|
|
int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
|
|
#endif
|
|
|
|
#ifdef BARICUDA
|
|
int ValvePressure = 0;
|
|
int EtoPPressure = 0;
|
|
#endif
|
|
|
|
#ifdef FWRETRACT
|
|
|
|
bool autoretract_enabled = false;
|
|
bool retracted[EXTRUDERS] = { false
|
|
#if EXTRUDERS > 1
|
|
, false
|
|
#if EXTRUDERS > 2
|
|
, false
|
|
#if EXTRUDERS > 3
|
|
, false
|
|
#endif
|
|
#endif
|
|
#endif
|
|
};
|
|
bool retracted_swap[EXTRUDERS] = { false
|
|
#if EXTRUDERS > 1
|
|
, false
|
|
#if EXTRUDERS > 2
|
|
, false
|
|
#if EXTRUDERS > 3
|
|
, false
|
|
#endif
|
|
#endif
|
|
#endif
|
|
};
|
|
|
|
float retract_length = RETRACT_LENGTH;
|
|
float retract_length_swap = RETRACT_LENGTH_SWAP;
|
|
float retract_feedrate = RETRACT_FEEDRATE;
|
|
float retract_zlift = RETRACT_ZLIFT;
|
|
float retract_recover_length = RETRACT_RECOVER_LENGTH;
|
|
float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
|
|
float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
|
|
|
|
#endif // FWRETRACT
|
|
|
|
#ifdef ULTIPANEL
|
|
bool powersupply =
|
|
#ifdef PS_DEFAULT_OFF
|
|
false
|
|
#else
|
|
true
|
|
#endif
|
|
;
|
|
#endif
|
|
|
|
#ifdef DELTA
|
|
float delta[3] = { 0, 0, 0 };
|
|
#define SIN_60 0.8660254037844386
|
|
#define COS_60 0.5
|
|
// these are the default values, can be overriden with M665
|
|
float delta_radius = DELTA_RADIUS;
|
|
float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
|
|
float delta_tower1_y = -COS_60 * delta_radius;
|
|
float delta_tower2_x = SIN_60 * delta_radius; // front right tower
|
|
float delta_tower2_y = -COS_60 * delta_radius;
|
|
float delta_tower3_x = 0; // back middle tower
|
|
float delta_tower3_y = delta_radius;
|
|
float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
|
|
float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
|
|
float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
|
|
#endif
|
|
|
|
#ifdef SCARA
|
|
float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
|
|
#endif
|
|
|
|
bool cancel_heatup = false;
|
|
|
|
#ifdef FILAMENT_SENSOR
|
|
//Variables for Filament Sensor input
|
|
float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
|
|
bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
|
|
float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
|
|
signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
|
|
int delay_index1=0; //index into ring buffer
|
|
int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
|
|
float delay_dist=0; //delay distance counter
|
|
int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
|
|
#endif
|
|
|
|
#ifdef FILAMENT_RUNOUT_SENSOR
|
|
static bool filrunoutEnqued = false;
|
|
#endif
|
|
|
|
const char errormagic[] PROGMEM = "Error:";
|
|
const char echomagic[] PROGMEM = "echo:";
|
|
|
|
const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
|
|
static float destination[NUM_AXIS] = { 0, 0, 0, 0 };
|
|
|
|
#ifndef DELTA
|
|
static float delta[3] = { 0, 0, 0 };
|
|
#endif
|
|
|
|
static float offset[3] = { 0, 0, 0 };
|
|
static bool home_all_axis = true;
|
|
static float feedrate = 1500.0, next_feedrate, saved_feedrate;
|
|
static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
|
|
|
|
static bool relative_mode = false; //Determines Absolute or Relative Coordinates
|
|
|
|
static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
|
|
static bool fromsd[BUFSIZE];
|
|
static int bufindr = 0;
|
|
static int bufindw = 0;
|
|
static int buflen = 0;
|
|
|
|
static char serial_char;
|
|
static int serial_count = 0;
|
|
static boolean comment_mode = false;
|
|
static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
|
|
|
|
const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
|
|
|
|
const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
|
|
|
|
// Inactivity shutdown
|
|
static unsigned long previous_millis_cmd = 0;
|
|
static unsigned long max_inactive_time = 0;
|
|
static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
|
|
|
|
unsigned long starttime = 0; ///< Print job start time
|
|
unsigned long stoptime = 0; ///< Print job stop time
|
|
|
|
static uint8_t tmp_extruder;
|
|
|
|
|
|
bool Stopped = false;
|
|
|
|
#if NUM_SERVOS > 0
|
|
Servo servos[NUM_SERVOS];
|
|
#endif
|
|
|
|
bool CooldownNoWait = true;
|
|
bool target_direction;
|
|
|
|
#ifdef CHDK
|
|
unsigned long chdkHigh = 0;
|
|
boolean chdkActive = false;
|
|
#endif
|
|
|
|
//===========================================================================
|
|
//=============================Routines======================================
|
|
//===========================================================================
|
|
|
|
void get_arc_coordinates();
|
|
bool setTargetedHotend(int code);
|
|
|
|
void serial_echopair_P(const char *s_P, float v)
|
|
{ serialprintPGM(s_P); SERIAL_ECHO(v); }
|
|
void serial_echopair_P(const char *s_P, double v)
|
|
{ serialprintPGM(s_P); SERIAL_ECHO(v); }
|
|
void serial_echopair_P(const char *s_P, unsigned long v)
|
|
{ serialprintPGM(s_P); SERIAL_ECHO(v); }
|
|
|
|
#ifdef SDSUPPORT
|
|
#include "SdFatUtil.h"
|
|
int freeMemory() { return SdFatUtil::FreeRam(); }
|
|
#else
|
|
extern "C" {
|
|
extern unsigned int __bss_end;
|
|
extern unsigned int __heap_start;
|
|
extern void *__brkval;
|
|
|
|
int freeMemory() {
|
|
int free_memory;
|
|
|
|
if ((int)__brkval == 0)
|
|
free_memory = ((int)&free_memory) - ((int)&__bss_end);
|
|
else
|
|
free_memory = ((int)&free_memory) - ((int)__brkval);
|
|
|
|
return free_memory;
|
|
}
|
|
}
|
|
#endif //!SDSUPPORT
|
|
|
|
//Injects the next command from the pending sequence of commands, when possible
|
|
//Return false if and only if no command was pending
|
|
static bool drain_queued_commands_P()
|
|
{
|
|
char cmd[30];
|
|
if(!queued_commands_P)
|
|
return false;
|
|
// Get the next 30 chars from the sequence of gcodes to run
|
|
strncpy_P(cmd, queued_commands_P, sizeof(cmd)-1);
|
|
cmd[sizeof(cmd)-1]= 0;
|
|
// Look for the end of line, or the end of sequence
|
|
size_t i= 0;
|
|
char c;
|
|
while( (c= cmd[i]) && c!='\n' )
|
|
++i; // look for the end of this gcode command
|
|
cmd[i]= 0;
|
|
if(enquecommand(cmd)) // buffer was not full (else we will retry later)
|
|
{
|
|
if(c)
|
|
queued_commands_P+= i+1; // move to next command
|
|
else
|
|
queued_commands_P= NULL; // will have no more commands in the sequence
|
|
}
|
|
return true;
|
|
}
|
|
|
|
//Record one or many commands to run from program memory.
|
|
//Aborts the current queue, if any.
|
|
//Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
|
|
void enquecommands_P(const char* pgcode)
|
|
{
|
|
queued_commands_P= pgcode;
|
|
drain_queued_commands_P(); // first command exectuted asap (when possible)
|
|
}
|
|
|
|
//adds a single command to the main command buffer, from RAM
|
|
//that is really done in a non-safe way.
|
|
//needs overworking someday
|
|
//Returns false if it failed to do so
|
|
bool enquecommand(const char *cmd)
|
|
{
|
|
if(*cmd==';')
|
|
return false;
|
|
if(buflen >= BUFSIZE)
|
|
return false;
|
|
//this is dangerous if a mixing of serial and this happens
|
|
strcpy(&(cmdbuffer[bufindw][0]),cmd);
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPGM(MSG_Enqueing);
|
|
SERIAL_ECHO(cmdbuffer[bufindw]);
|
|
SERIAL_ECHOLNPGM("\"");
|
|
bufindw= (bufindw + 1)%BUFSIZE;
|
|
buflen += 1;
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
void setup_killpin()
|
|
{
|
|
#if defined(KILL_PIN) && KILL_PIN > -1
|
|
SET_INPUT(KILL_PIN);
|
|
WRITE(KILL_PIN,HIGH);
|
|
#endif
|
|
}
|
|
|
|
void setup_filrunoutpin()
|
|
{
|
|
#if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
|
|
pinMode(FILRUNOUT_PIN,INPUT);
|
|
#if defined(ENDSTOPPULLUP_FIL_RUNOUT)
|
|
WRITE(FILLRUNOUT_PIN,HIGH);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
// Set home pin
|
|
void setup_homepin(void)
|
|
{
|
|
#if defined(HOME_PIN) && HOME_PIN > -1
|
|
SET_INPUT(HOME_PIN);
|
|
WRITE(HOME_PIN,HIGH);
|
|
#endif
|
|
}
|
|
|
|
|
|
void setup_photpin()
|
|
{
|
|
#if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
|
|
OUT_WRITE(PHOTOGRAPH_PIN, LOW);
|
|
#endif
|
|
}
|
|
|
|
void setup_powerhold()
|
|
{
|
|
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
|
|
OUT_WRITE(SUICIDE_PIN, HIGH);
|
|
#endif
|
|
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
|
|
#if defined(PS_DEFAULT_OFF)
|
|
OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
|
|
#else
|
|
OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
void suicide()
|
|
{
|
|
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
|
|
OUT_WRITE(SUICIDE_PIN, LOW);
|
|
#endif
|
|
}
|
|
|
|
void servo_init()
|
|
{
|
|
#if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
|
|
servos[0].attach(SERVO0_PIN);
|
|
#endif
|
|
#if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
|
|
servos[1].attach(SERVO1_PIN);
|
|
#endif
|
|
#if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
|
|
servos[2].attach(SERVO2_PIN);
|
|
#endif
|
|
#if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
|
|
servos[3].attach(SERVO3_PIN);
|
|
#endif
|
|
#if (NUM_SERVOS >= 5)
|
|
#error "TODO: enter initalisation code for more servos"
|
|
#endif
|
|
|
|
// Set position of Servo Endstops that are defined
|
|
#ifdef SERVO_ENDSTOPS
|
|
for(int8_t i = 0; i < 3; i++)
|
|
{
|
|
if(servo_endstops[i] > -1) {
|
|
servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if SERVO_LEVELING
|
|
delay(PROBE_SERVO_DEACTIVATION_DELAY);
|
|
servos[servo_endstops[Z_AXIS]].detach();
|
|
#endif
|
|
}
|
|
|
|
|
|
void setup()
|
|
{
|
|
setup_killpin();
|
|
setup_filrunoutpin();
|
|
setup_powerhold();
|
|
MYSERIAL.begin(BAUDRATE);
|
|
SERIAL_PROTOCOLLNPGM("start");
|
|
SERIAL_ECHO_START;
|
|
|
|
// Check startup - does nothing if bootloader sets MCUSR to 0
|
|
byte mcu = MCUSR;
|
|
if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
|
|
if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
|
|
if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
|
|
if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
|
|
if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
|
|
MCUSR=0;
|
|
|
|
SERIAL_ECHOPGM(MSG_MARLIN);
|
|
SERIAL_ECHOLNPGM(STRING_VERSION);
|
|
#ifdef STRING_VERSION_CONFIG_H
|
|
#ifdef STRING_CONFIG_H_AUTHOR
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
|
|
SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
|
|
SERIAL_ECHOPGM(MSG_AUTHOR);
|
|
SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
|
|
SERIAL_ECHOPGM("Compiled: ");
|
|
SERIAL_ECHOLNPGM(__DATE__);
|
|
#endif // STRING_CONFIG_H_AUTHOR
|
|
#endif // STRING_VERSION_CONFIG_H
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPGM(MSG_FREE_MEMORY);
|
|
SERIAL_ECHO(freeMemory());
|
|
SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
|
|
SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
|
|
for(int8_t i = 0; i < BUFSIZE; i++)
|
|
{
|
|
fromsd[i] = false;
|
|
}
|
|
|
|
// loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
|
|
Config_RetrieveSettings();
|
|
|
|
tp_init(); // Initialize temperature loop
|
|
plan_init(); // Initialize planner;
|
|
watchdog_init();
|
|
st_init(); // Initialize stepper, this enables interrupts!
|
|
setup_photpin();
|
|
servo_init();
|
|
|
|
|
|
lcd_init();
|
|
_delay_ms(1000); // wait 1sec to display the splash screen
|
|
|
|
#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
|
|
SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
|
|
#endif
|
|
|
|
#ifdef DIGIPOT_I2C
|
|
digipot_i2c_init();
|
|
#endif
|
|
#ifdef Z_PROBE_SLED
|
|
pinMode(SERVO0_PIN, OUTPUT);
|
|
digitalWrite(SERVO0_PIN, LOW); // turn it off
|
|
#endif // Z_PROBE_SLED
|
|
setup_homepin();
|
|
|
|
#ifdef STAT_LED_RED
|
|
pinMode(STAT_LED_RED, OUTPUT);
|
|
digitalWrite(STAT_LED_RED, LOW); // turn it off
|
|
#endif
|
|
#ifdef STAT_LED_BLUE
|
|
pinMode(STAT_LED_BLUE, OUTPUT);
|
|
digitalWrite(STAT_LED_BLUE, LOW); // turn it off
|
|
#endif
|
|
}
|
|
|
|
|
|
void loop()
|
|
{
|
|
if(buflen < (BUFSIZE-1))
|
|
get_command();
|
|
#ifdef SDSUPPORT
|
|
card.checkautostart(false);
|
|
#endif
|
|
if(buflen)
|
|
{
|
|
#ifdef SDSUPPORT
|
|
if(card.saving)
|
|
{
|
|
if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
|
|
{
|
|
card.write_command(cmdbuffer[bufindr]);
|
|
if(card.logging)
|
|
{
|
|
process_commands();
|
|
}
|
|
else
|
|
{
|
|
SERIAL_PROTOCOLLNPGM(MSG_OK);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
card.closefile();
|
|
SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
process_commands();
|
|
}
|
|
#else
|
|
process_commands();
|
|
#endif //SDSUPPORT
|
|
buflen = (buflen-1);
|
|
bufindr = (bufindr + 1)%BUFSIZE;
|
|
}
|
|
//check heater every n milliseconds
|
|
manage_heater();
|
|
manage_inactivity();
|
|
checkHitEndstops();
|
|
lcd_update();
|
|
}
|
|
|
|
void get_command()
|
|
{
|
|
if(drain_queued_commands_P()) // priority is given to non-serial commands
|
|
return;
|
|
|
|
while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
|
|
serial_char = MYSERIAL.read();
|
|
if(serial_char == '\n' ||
|
|
serial_char == '\r' ||
|
|
serial_count >= (MAX_CMD_SIZE - 1) )
|
|
{
|
|
// end of line == end of comment
|
|
comment_mode = false;
|
|
|
|
if(!serial_count) {
|
|
// short cut for empty lines
|
|
return;
|
|
}
|
|
cmdbuffer[bufindw][serial_count] = 0; //terminate string
|
|
|
|
fromsd[bufindw] = false;
|
|
if(strchr(cmdbuffer[bufindw], 'N') != NULL)
|
|
{
|
|
strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
|
|
gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
|
|
if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
|
|
SERIAL_ERRORLN(gcode_LastN);
|
|
//Serial.println(gcode_N);
|
|
FlushSerialRequestResend();
|
|
serial_count = 0;
|
|
return;
|
|
}
|
|
|
|
if(strchr(cmdbuffer[bufindw], '*') != NULL)
|
|
{
|
|
byte checksum = 0;
|
|
byte count = 0;
|
|
while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
|
|
strchr_pointer = strchr(cmdbuffer[bufindw], '*');
|
|
|
|
if( (int)(strtod(strchr_pointer + 1, NULL)) != checksum) {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
|
|
SERIAL_ERRORLN(gcode_LastN);
|
|
FlushSerialRequestResend();
|
|
serial_count = 0;
|
|
return;
|
|
}
|
|
//if no errors, continue parsing
|
|
}
|
|
else
|
|
{
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
|
|
SERIAL_ERRORLN(gcode_LastN);
|
|
FlushSerialRequestResend();
|
|
serial_count = 0;
|
|
return;
|
|
}
|
|
|
|
gcode_LastN = gcode_N;
|
|
//if no errors, continue parsing
|
|
}
|
|
else // if we don't receive 'N' but still see '*'
|
|
{
|
|
if((strchr(cmdbuffer[bufindw], '*') != NULL))
|
|
{
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
|
|
SERIAL_ERRORLN(gcode_LastN);
|
|
serial_count = 0;
|
|
return;
|
|
}
|
|
}
|
|
if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
|
|
strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
|
|
switch((int)((strtod(strchr_pointer + 1, NULL)))){
|
|
case 0:
|
|
case 1:
|
|
case 2:
|
|
case 3:
|
|
if (Stopped == true) {
|
|
SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
|
|
LCD_MESSAGEPGM(MSG_STOPPED);
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
//If command was e-stop process now
|
|
if(strcmp(cmdbuffer[bufindw], "M112") == 0)
|
|
kill();
|
|
|
|
bufindw = (bufindw + 1)%BUFSIZE;
|
|
buflen += 1;
|
|
|
|
serial_count = 0; //clear buffer
|
|
}
|
|
else if(serial_char == '\\') { //Handle escapes
|
|
|
|
if(MYSERIAL.available() > 0 && buflen < BUFSIZE) {
|
|
// if we have one more character, copy it over
|
|
serial_char = MYSERIAL.read();
|
|
cmdbuffer[bufindw][serial_count++] = serial_char;
|
|
}
|
|
|
|
//otherwise do nothing
|
|
}
|
|
else { // its not a newline, carriage return or escape char
|
|
if(serial_char == ';') comment_mode = true;
|
|
if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
|
|
}
|
|
}
|
|
#ifdef SDSUPPORT
|
|
if(!card.sdprinting || serial_count!=0){
|
|
return;
|
|
}
|
|
|
|
//'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
|
|
// if it occurs, stop_buffering is triggered and the buffer is ran dry.
|
|
// this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
|
|
|
|
static bool stop_buffering=false;
|
|
if(buflen==0) stop_buffering=false;
|
|
|
|
while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
|
|
int16_t n=card.get();
|
|
serial_char = (char)n;
|
|
if(serial_char == '\n' ||
|
|
serial_char == '\r' ||
|
|
(serial_char == '#' && comment_mode == false) ||
|
|
(serial_char == ':' && comment_mode == false) ||
|
|
serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
|
|
{
|
|
if(card.eof()){
|
|
SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
|
|
stoptime=millis();
|
|
char time[30];
|
|
unsigned long t=(stoptime-starttime)/1000;
|
|
int hours, minutes;
|
|
minutes=(t/60)%60;
|
|
hours=t/60/60;
|
|
sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLN(time);
|
|
lcd_setstatus(time);
|
|
card.printingHasFinished();
|
|
card.checkautostart(true);
|
|
|
|
}
|
|
if(serial_char=='#')
|
|
stop_buffering=true;
|
|
|
|
if(!serial_count)
|
|
{
|
|
comment_mode = false; //for new command
|
|
return; //if empty line
|
|
}
|
|
cmdbuffer[bufindw][serial_count] = 0; //terminate string
|
|
// if(!comment_mode){
|
|
fromsd[bufindw] = true;
|
|
buflen += 1;
|
|
bufindw = (bufindw + 1)%BUFSIZE;
|
|
// }
|
|
comment_mode = false; //for new command
|
|
serial_count = 0; //clear buffer
|
|
}
|
|
else
|
|
{
|
|
if(serial_char == ';') comment_mode = true;
|
|
if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
|
|
}
|
|
}
|
|
|
|
#endif //SDSUPPORT
|
|
|
|
}
|
|
|
|
|
|
float code_value()
|
|
{
|
|
return (strtod(strchr_pointer + 1, NULL));
|
|
}
|
|
|
|
long code_value_long()
|
|
{
|
|
return (strtol(strchr_pointer + 1, NULL, 10));
|
|
}
|
|
|
|
bool code_seen(char code)
|
|
{
|
|
strchr_pointer = strchr(cmdbuffer[bufindr], code);
|
|
return (strchr_pointer != NULL); //Return True if a character was found
|
|
}
|
|
|
|
#define DEFINE_PGM_READ_ANY(type, reader) \
|
|
static inline type pgm_read_any(const type *p) \
|
|
{ return pgm_read_##reader##_near(p); }
|
|
|
|
DEFINE_PGM_READ_ANY(float, float);
|
|
DEFINE_PGM_READ_ANY(signed char, byte);
|
|
|
|
#define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
|
|
static const PROGMEM type array##_P[3] = \
|
|
{ X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
|
|
static inline type array(int axis) \
|
|
{ return pgm_read_any(&array##_P[axis]); }
|
|
|
|
XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
|
|
XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
|
|
XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
|
|
XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
|
|
XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
|
|
XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
|
|
|
|
#ifdef DUAL_X_CARRIAGE
|
|
#if EXTRUDERS == 1 || defined(COREXY) \
|
|
|| !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
|
|
|| !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
|
|
|| !defined(X_MAX_PIN) || X_MAX_PIN < 0
|
|
#error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
|
|
#endif
|
|
#if X_HOME_DIR != -1 || X2_HOME_DIR != 1
|
|
#error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
|
|
#endif
|
|
|
|
#define DXC_FULL_CONTROL_MODE 0
|
|
#define DXC_AUTO_PARK_MODE 1
|
|
#define DXC_DUPLICATION_MODE 2
|
|
static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
|
|
|
|
static float x_home_pos(int extruder) {
|
|
if (extruder == 0)
|
|
return base_home_pos(X_AXIS) + add_homing[X_AXIS];
|
|
else
|
|
// In dual carriage mode the extruder offset provides an override of the
|
|
// second X-carriage offset when homed - otherwise X2_HOME_POS is used.
|
|
// This allow soft recalibration of the second extruder offset position without firmware reflash
|
|
// (through the M218 command).
|
|
return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
|
|
}
|
|
|
|
static int x_home_dir(int extruder) {
|
|
return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
|
|
}
|
|
|
|
static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
|
|
static bool active_extruder_parked = false; // used in mode 1 & 2
|
|
static float raised_parked_position[NUM_AXIS]; // used in mode 1
|
|
static unsigned long delayed_move_time = 0; // used in mode 1
|
|
static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
|
|
static float duplicate_extruder_temp_offset = 0; // used in mode 2
|
|
bool extruder_duplication_enabled = false; // used in mode 2
|
|
#endif //DUAL_X_CARRIAGE
|
|
|
|
static void axis_is_at_home(int axis) {
|
|
#ifdef DUAL_X_CARRIAGE
|
|
if (axis == X_AXIS) {
|
|
if (active_extruder != 0) {
|
|
current_position[X_AXIS] = x_home_pos(active_extruder);
|
|
min_pos[X_AXIS] = X2_MIN_POS;
|
|
max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
|
|
return;
|
|
}
|
|
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
|
|
current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homing[X_AXIS];
|
|
min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homing[X_AXIS];
|
|
max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homing[X_AXIS],
|
|
max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
|
|
return;
|
|
}
|
|
}
|
|
#endif
|
|
#ifdef SCARA
|
|
float homeposition[3];
|
|
char i;
|
|
|
|
if (axis < 2)
|
|
{
|
|
|
|
for (i=0; i<3; i++)
|
|
{
|
|
homeposition[i] = base_home_pos(i);
|
|
}
|
|
// SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
|
|
// SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
|
|
// Works out real Homeposition angles using inverse kinematics,
|
|
// and calculates homing offset using forward kinematics
|
|
calculate_delta(homeposition);
|
|
|
|
// SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
|
|
// SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
|
|
|
for (i=0; i<2; i++)
|
|
{
|
|
delta[i] -= add_homing[i];
|
|
}
|
|
|
|
// SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homing[X_AXIS]);
|
|
// SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homing[Y_AXIS]);
|
|
// SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
|
|
// SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
|
|
|
calculate_SCARA_forward_Transform(delta);
|
|
|
|
// SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
|
|
// SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
|
|
|
current_position[axis] = delta[axis];
|
|
|
|
// SCARA home positions are based on configuration since the actual limits are determined by the
|
|
// inverse kinematic transform.
|
|
min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
|
|
max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
|
|
}
|
|
else
|
|
{
|
|
current_position[axis] = base_home_pos(axis) + add_homing[axis];
|
|
min_pos[axis] = base_min_pos(axis) + add_homing[axis];
|
|
max_pos[axis] = base_max_pos(axis) + add_homing[axis];
|
|
}
|
|
#else
|
|
current_position[axis] = base_home_pos(axis) + add_homing[axis];
|
|
min_pos[axis] = base_min_pos(axis) + add_homing[axis];
|
|
max_pos[axis] = base_max_pos(axis) + add_homing[axis];
|
|
#endif
|
|
}
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
#ifdef AUTO_BED_LEVELING_GRID
|
|
static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
|
|
{
|
|
vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
|
|
planeNormal.debug("planeNormal");
|
|
plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
|
|
//bedLevel.debug("bedLevel");
|
|
|
|
//plan_bed_level_matrix.debug("bed level before");
|
|
//vector_3 uncorrected_position = plan_get_position_mm();
|
|
//uncorrected_position.debug("position before");
|
|
|
|
vector_3 corrected_position = plan_get_position();
|
|
// corrected_position.debug("position after");
|
|
current_position[X_AXIS] = corrected_position.x;
|
|
current_position[Y_AXIS] = corrected_position.y;
|
|
current_position[Z_AXIS] = corrected_position.z;
|
|
|
|
// put the bed at 0 so we don't go below it.
|
|
current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
}
|
|
|
|
#else // not AUTO_BED_LEVELING_GRID
|
|
|
|
static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
|
|
|
|
plan_bed_level_matrix.set_to_identity();
|
|
|
|
vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
|
|
vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
|
|
vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
|
|
|
|
vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
|
|
vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
|
|
vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
|
|
planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
|
|
|
|
plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
|
|
|
|
vector_3 corrected_position = plan_get_position();
|
|
current_position[X_AXIS] = corrected_position.x;
|
|
current_position[Y_AXIS] = corrected_position.y;
|
|
current_position[Z_AXIS] = corrected_position.z;
|
|
|
|
// put the bed at 0 so we don't go below it.
|
|
current_position[Z_AXIS] = zprobe_zoffset;
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
}
|
|
|
|
#endif // AUTO_BED_LEVELING_GRID
|
|
|
|
static void run_z_probe() {
|
|
plan_bed_level_matrix.set_to_identity();
|
|
feedrate = homing_feedrate[Z_AXIS];
|
|
|
|
// move down until you find the bed
|
|
float zPosition = -10;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
|
|
st_synchronize();
|
|
|
|
// we have to let the planner know where we are right now as it is not where we said to go.
|
|
zPosition = st_get_position_mm(Z_AXIS);
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
|
|
|
|
// move up the retract distance
|
|
zPosition += home_retract_mm(Z_AXIS);
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
|
|
st_synchronize();
|
|
|
|
// move back down slowly to find bed
|
|
feedrate = homing_feedrate[Z_AXIS]/4;
|
|
zPosition -= home_retract_mm(Z_AXIS) * 2;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
|
|
st_synchronize();
|
|
|
|
current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
|
|
// make sure the planner knows where we are as it may be a bit different than we last said to move to
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
}
|
|
|
|
static void do_blocking_move_to(float x, float y, float z) {
|
|
float oldFeedRate = feedrate;
|
|
|
|
feedrate = homing_feedrate[Z_AXIS];
|
|
|
|
current_position[Z_AXIS] = z;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
|
|
st_synchronize();
|
|
|
|
feedrate = XY_TRAVEL_SPEED;
|
|
|
|
current_position[X_AXIS] = x;
|
|
current_position[Y_AXIS] = y;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
|
|
st_synchronize();
|
|
|
|
feedrate = oldFeedRate;
|
|
}
|
|
|
|
static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
|
|
do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
|
|
}
|
|
|
|
static void setup_for_endstop_move() {
|
|
saved_feedrate = feedrate;
|
|
saved_feedmultiply = feedmultiply;
|
|
feedmultiply = 100;
|
|
previous_millis_cmd = millis();
|
|
|
|
enable_endstops(true);
|
|
}
|
|
|
|
static void clean_up_after_endstop_move() {
|
|
#ifdef ENDSTOPS_ONLY_FOR_HOMING
|
|
enable_endstops(false);
|
|
#endif
|
|
|
|
feedrate = saved_feedrate;
|
|
feedmultiply = saved_feedmultiply;
|
|
previous_millis_cmd = millis();
|
|
}
|
|
|
|
static void engage_z_probe() {
|
|
// Engage Z Servo endstop if enabled
|
|
#ifdef SERVO_ENDSTOPS
|
|
if (servo_endstops[Z_AXIS] > -1) {
|
|
#if SERVO_LEVELING
|
|
servos[servo_endstops[Z_AXIS]].attach(0);
|
|
#endif
|
|
servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
|
|
#if SERVO_LEVELING
|
|
delay(PROBE_SERVO_DEACTIVATION_DELAY);
|
|
servos[servo_endstops[Z_AXIS]].detach();
|
|
#endif
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void retract_z_probe() {
|
|
// Retract Z Servo endstop if enabled
|
|
#ifdef SERVO_ENDSTOPS
|
|
if (servo_endstops[Z_AXIS] > -1) {
|
|
#if SERVO_LEVELING
|
|
servos[servo_endstops[Z_AXIS]].attach(0);
|
|
#endif
|
|
servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
|
|
#if SERVO_LEVELING
|
|
delay(PROBE_SERVO_DEACTIVATION_DELAY);
|
|
servos[servo_endstops[Z_AXIS]].detach();
|
|
#endif
|
|
}
|
|
#endif
|
|
}
|
|
|
|
enum ProbeAction { ProbeStay, ProbeEngage, ProbeRetract, ProbeEngageRetract };
|
|
|
|
/// Probe bed height at position (x,y), returns the measured z value
|
|
static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageRetract, int verbose_level=1) {
|
|
// move to right place
|
|
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
|
|
do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
|
|
|
|
#ifndef Z_PROBE_SLED
|
|
if (retract_action & ProbeEngage) engage_z_probe();
|
|
#endif
|
|
|
|
run_z_probe();
|
|
float measured_z = current_position[Z_AXIS];
|
|
|
|
#ifndef Z_PROBE_SLED
|
|
if (retract_action & ProbeRetract) retract_z_probe();
|
|
#endif
|
|
|
|
if (verbose_level > 2) {
|
|
SERIAL_PROTOCOLPGM(MSG_BED);
|
|
SERIAL_PROTOCOLPGM(" X: ");
|
|
SERIAL_PROTOCOL(x + 0.0001);
|
|
SERIAL_PROTOCOLPGM(" Y: ");
|
|
SERIAL_PROTOCOL(y + 0.0001);
|
|
SERIAL_PROTOCOLPGM(" Z: ");
|
|
SERIAL_PROTOCOL(measured_z + 0.0001);
|
|
SERIAL_EOL;
|
|
}
|
|
return measured_z;
|
|
}
|
|
|
|
#endif // ENABLE_AUTO_BED_LEVELING
|
|
|
|
static void homeaxis(int axis) {
|
|
#define HOMEAXIS_DO(LETTER) \
|
|
((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
|
|
|
|
if (axis==X_AXIS ? HOMEAXIS_DO(X) :
|
|
axis==Y_AXIS ? HOMEAXIS_DO(Y) :
|
|
axis==Z_AXIS ? HOMEAXIS_DO(Z) :
|
|
0) {
|
|
int axis_home_dir = home_dir(axis);
|
|
#ifdef DUAL_X_CARRIAGE
|
|
if (axis == X_AXIS)
|
|
axis_home_dir = x_home_dir(active_extruder);
|
|
#endif
|
|
|
|
current_position[axis] = 0;
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
|
#ifndef Z_PROBE_SLED
|
|
// Engage Servo endstop if enabled
|
|
#ifdef SERVO_ENDSTOPS
|
|
#if SERVO_LEVELING
|
|
if (axis==Z_AXIS) {
|
|
engage_z_probe();
|
|
}
|
|
else
|
|
#endif
|
|
if (servo_endstops[axis] > -1) {
|
|
servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
|
|
}
|
|
#endif
|
|
#endif // Z_PROBE_SLED
|
|
destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
|
|
feedrate = homing_feedrate[axis];
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
st_synchronize();
|
|
|
|
current_position[axis] = 0;
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
destination[axis] = -home_retract_mm(axis) * axis_home_dir;
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
st_synchronize();
|
|
|
|
destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
|
|
#ifdef DELTA
|
|
feedrate = homing_feedrate[axis]/10;
|
|
#else
|
|
feedrate = homing_feedrate[axis]/2 ;
|
|
#endif
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
st_synchronize();
|
|
#ifdef DELTA
|
|
// retrace by the amount specified in endstop_adj
|
|
if (endstop_adj[axis] * axis_home_dir < 0) {
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
destination[axis] = endstop_adj[axis];
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
st_synchronize();
|
|
}
|
|
#endif
|
|
axis_is_at_home(axis);
|
|
destination[axis] = current_position[axis];
|
|
feedrate = 0.0;
|
|
endstops_hit_on_purpose();
|
|
axis_known_position[axis] = true;
|
|
|
|
// Retract Servo endstop if enabled
|
|
#ifdef SERVO_ENDSTOPS
|
|
if (servo_endstops[axis] > -1) {
|
|
servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
|
|
}
|
|
#endif
|
|
#if SERVO_LEVELING
|
|
#ifndef Z_PROBE_SLED
|
|
if (axis==Z_AXIS) retract_z_probe();
|
|
#endif
|
|
#endif
|
|
|
|
}
|
|
}
|
|
#define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
|
|
|
|
void refresh_cmd_timeout(void)
|
|
{
|
|
previous_millis_cmd = millis();
|
|
}
|
|
|
|
#ifdef FWRETRACT
|
|
void retract(bool retracting, bool swapretract = false) {
|
|
if(retracting && !retracted[active_extruder]) {
|
|
destination[X_AXIS]=current_position[X_AXIS];
|
|
destination[Y_AXIS]=current_position[Y_AXIS];
|
|
destination[Z_AXIS]=current_position[Z_AXIS];
|
|
destination[E_AXIS]=current_position[E_AXIS];
|
|
if (swapretract) {
|
|
current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
|
|
} else {
|
|
current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
|
|
}
|
|
plan_set_e_position(current_position[E_AXIS]);
|
|
float oldFeedrate = feedrate;
|
|
feedrate=retract_feedrate*60;
|
|
retracted[active_extruder]=true;
|
|
prepare_move();
|
|
if(retract_zlift > 0.01) {
|
|
current_position[Z_AXIS]-=retract_zlift;
|
|
#ifdef DELTA
|
|
calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
|
|
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
|
|
#else
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
#endif
|
|
prepare_move();
|
|
}
|
|
feedrate = oldFeedrate;
|
|
} else if(!retracting && retracted[active_extruder]) {
|
|
destination[X_AXIS]=current_position[X_AXIS];
|
|
destination[Y_AXIS]=current_position[Y_AXIS];
|
|
destination[Z_AXIS]=current_position[Z_AXIS];
|
|
destination[E_AXIS]=current_position[E_AXIS];
|
|
if(retract_zlift > 0.01) {
|
|
current_position[Z_AXIS]+=retract_zlift;
|
|
#ifdef DELTA
|
|
calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
|
|
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
|
|
#else
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
#endif
|
|
//prepare_move();
|
|
}
|
|
if (swapretract) {
|
|
current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
|
|
} else {
|
|
current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
|
|
}
|
|
plan_set_e_position(current_position[E_AXIS]);
|
|
float oldFeedrate = feedrate;
|
|
feedrate=retract_recover_feedrate*60;
|
|
retracted[active_extruder]=false;
|
|
prepare_move();
|
|
feedrate = oldFeedrate;
|
|
}
|
|
} //retract
|
|
#endif //FWRETRACT
|
|
|
|
#ifdef Z_PROBE_SLED
|
|
|
|
#ifndef SLED_DOCKING_OFFSET
|
|
#define SLED_DOCKING_OFFSET 0
|
|
#endif
|
|
|
|
//
|
|
// Method to dock/undock a sled designed by Charles Bell.
|
|
//
|
|
// dock[in] If true, move to MAX_X and engage the electromagnet
|
|
// offset[in] The additional distance to move to adjust docking location
|
|
//
|
|
static void dock_sled(bool dock, int offset=0) {
|
|
int z_loc;
|
|
|
|
if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
|
|
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
|
|
return;
|
|
}
|
|
|
|
if (dock) {
|
|
do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
|
|
current_position[Y_AXIS],
|
|
current_position[Z_AXIS]);
|
|
// turn off magnet
|
|
digitalWrite(SERVO0_PIN, LOW);
|
|
} else {
|
|
if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
|
|
z_loc = Z_RAISE_BEFORE_PROBING;
|
|
else
|
|
z_loc = current_position[Z_AXIS];
|
|
do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
|
|
Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
|
|
// turn on magnet
|
|
digitalWrite(SERVO0_PIN, HIGH);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
*
|
|
* G-Code Handler functions
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* G0, G1: Coordinated movement of X Y Z E axes
|
|
*/
|
|
inline void gcode_G0_G1() {
|
|
if (!Stopped) {
|
|
get_coordinates(); // For X Y Z E F
|
|
#ifdef FWRETRACT
|
|
if (autoretract_enabled)
|
|
if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
|
|
float echange = destination[E_AXIS] - current_position[E_AXIS];
|
|
// Is this move an attempt to retract or recover?
|
|
if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
|
|
current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
|
|
plan_set_e_position(current_position[E_AXIS]); // AND from the planner
|
|
retract(!retracted[active_extruder]);
|
|
return;
|
|
}
|
|
}
|
|
#endif //FWRETRACT
|
|
prepare_move();
|
|
//ClearToSend();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* G2: Clockwise Arc
|
|
* G3: Counterclockwise Arc
|
|
*/
|
|
inline void gcode_G2_G3(bool clockwise) {
|
|
if (!Stopped) {
|
|
get_arc_coordinates();
|
|
prepare_arc_move(clockwise);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* G4: Dwell S<seconds> or P<milliseconds>
|
|
*/
|
|
inline void gcode_G4() {
|
|
unsigned long codenum;
|
|
|
|
LCD_MESSAGEPGM(MSG_DWELL);
|
|
|
|
if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
|
|
if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
|
|
|
|
st_synchronize();
|
|
previous_millis_cmd = millis();
|
|
codenum += previous_millis_cmd; // keep track of when we started waiting
|
|
while(millis() < codenum) {
|
|
manage_heater();
|
|
manage_inactivity();
|
|
lcd_update();
|
|
}
|
|
}
|
|
|
|
#ifdef FWRETRACT
|
|
|
|
/**
|
|
* G10 - Retract filament according to settings of M207
|
|
* G11 - Recover filament according to settings of M208
|
|
*/
|
|
inline void gcode_G10_G11(bool doRetract=false) {
|
|
#if EXTRUDERS > 1
|
|
if (doRetract) {
|
|
retracted_swap[active_extruder] = (code_seen('S') && code_value_long() == 1); // checks for swap retract argument
|
|
}
|
|
#endif
|
|
retract(doRetract
|
|
#if EXTRUDERS > 1
|
|
, retracted_swap[active_extruder]
|
|
#endif
|
|
);
|
|
}
|
|
|
|
#endif //FWRETRACT
|
|
|
|
/**
|
|
* G28: Home all axes, one at a time
|
|
*/
|
|
inline void gcode_G28() {
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
|
|
#endif
|
|
|
|
saved_feedrate = feedrate;
|
|
saved_feedmultiply = feedmultiply;
|
|
feedmultiply = 100;
|
|
previous_millis_cmd = millis();
|
|
|
|
enable_endstops(true);
|
|
|
|
for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = current_position[i];
|
|
|
|
feedrate = 0.0;
|
|
|
|
#ifdef DELTA
|
|
// A delta can only safely home all axis at the same time
|
|
// all axis have to home at the same time
|
|
|
|
// Move all carriages up together until the first endstop is hit.
|
|
for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
|
|
feedrate = 1.732 * homing_feedrate[X_AXIS];
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
st_synchronize();
|
|
endstops_hit_on_purpose();
|
|
|
|
// Destination reached
|
|
for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
|
|
|
|
// take care of back off and rehome now we are all at the top
|
|
HOMEAXIS(X);
|
|
HOMEAXIS(Y);
|
|
HOMEAXIS(Z);
|
|
|
|
calculate_delta(current_position);
|
|
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
#else // NOT DELTA
|
|
|
|
home_all_axis = !(code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen(axis_codes[Z_AXIS]));
|
|
|
|
#if Z_HOME_DIR > 0 // If homing away from BED do Z first
|
|
if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
|
|
HOMEAXIS(Z);
|
|
}
|
|
#endif
|
|
|
|
#ifdef QUICK_HOME
|
|
if (home_all_axis || code_seen(axis_codes[X_AXIS] && code_seen(axis_codes[Y_AXIS]))) { //first diagonal move
|
|
current_position[X_AXIS] = current_position[Y_AXIS] = 0;
|
|
|
|
#ifndef DUAL_X_CARRIAGE
|
|
int x_axis_home_dir = home_dir(X_AXIS);
|
|
#else
|
|
int x_axis_home_dir = x_home_dir(active_extruder);
|
|
extruder_duplication_enabled = false;
|
|
#endif
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;
|
|
destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
|
|
feedrate = homing_feedrate[X_AXIS];
|
|
if (homing_feedrate[Y_AXIS] < feedrate) feedrate = homing_feedrate[Y_AXIS];
|
|
if (max_length(X_AXIS) > max_length(Y_AXIS)) {
|
|
feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
|
|
} else {
|
|
feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
|
|
}
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
st_synchronize();
|
|
|
|
axis_is_at_home(X_AXIS);
|
|
axis_is_at_home(Y_AXIS);
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
destination[X_AXIS] = current_position[X_AXIS];
|
|
destination[Y_AXIS] = current_position[Y_AXIS];
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
feedrate = 0.0;
|
|
st_synchronize();
|
|
endstops_hit_on_purpose();
|
|
|
|
current_position[X_AXIS] = destination[X_AXIS];
|
|
current_position[Y_AXIS] = destination[Y_AXIS];
|
|
#ifndef SCARA
|
|
current_position[Z_AXIS] = destination[Z_AXIS];
|
|
#endif
|
|
}
|
|
#endif //QUICK_HOME
|
|
|
|
if ((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
|
|
#ifdef DUAL_X_CARRIAGE
|
|
int tmp_extruder = active_extruder;
|
|
extruder_duplication_enabled = false;
|
|
active_extruder = !active_extruder;
|
|
HOMEAXIS(X);
|
|
inactive_extruder_x_pos = current_position[X_AXIS];
|
|
active_extruder = tmp_extruder;
|
|
HOMEAXIS(X);
|
|
// reset state used by the different modes
|
|
memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
|
|
delayed_move_time = 0;
|
|
active_extruder_parked = true;
|
|
#else
|
|
HOMEAXIS(X);
|
|
#endif
|
|
}
|
|
|
|
if (home_all_axis || code_seen(axis_codes[Y_AXIS])) HOMEAXIS(Y);
|
|
|
|
if (code_seen(axis_codes[X_AXIS])) {
|
|
if (code_value_long() != 0) {
|
|
current_position[X_AXIS] = code_value()
|
|
#ifndef SCARA
|
|
+ add_homing[X_AXIS]
|
|
#endif
|
|
;
|
|
}
|
|
}
|
|
|
|
if (code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0) {
|
|
current_position[Y_AXIS] = code_value()
|
|
#ifndef SCARA
|
|
+ add_homing[Y_AXIS]
|
|
#endif
|
|
;
|
|
}
|
|
|
|
#if Z_HOME_DIR < 0 // If homing towards BED do Z last
|
|
|
|
#ifndef Z_SAFE_HOMING
|
|
|
|
if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
|
|
#if defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
|
|
destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
|
|
feedrate = max_feedrate[Z_AXIS];
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
|
st_synchronize();
|
|
#endif
|
|
HOMEAXIS(Z);
|
|
}
|
|
|
|
#else // Z_SAFE_HOMING
|
|
|
|
if (home_all_axis) {
|
|
destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
|
|
destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
|
|
destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
|
|
feedrate = XY_TRAVEL_SPEED / 60;
|
|
current_position[Z_AXIS] = 0;
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
|
st_synchronize();
|
|
current_position[X_AXIS] = destination[X_AXIS];
|
|
current_position[Y_AXIS] = destination[Y_AXIS];
|
|
|
|
HOMEAXIS(Z);
|
|
}
|
|
|
|
// Let's see if X and Y are homed and probe is inside bed area.
|
|
if (code_seen(axis_codes[Z_AXIS])) {
|
|
|
|
if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
|
|
|
|
float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
|
|
if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
|
|
&& cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
|
|
&& cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
|
|
&& cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
|
|
current_position[Z_AXIS] = 0;
|
|
plan_set_position(cpx, cpy, current_position[Z_AXIS], current_position[E_AXIS]);
|
|
destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
|
|
feedrate = max_feedrate[Z_AXIS];
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
|
st_synchronize();
|
|
HOMEAXIS(Z);
|
|
}
|
|
else {
|
|
LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
|
|
}
|
|
}
|
|
else {
|
|
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
|
|
}
|
|
}
|
|
|
|
#endif // Z_SAFE_HOMING
|
|
|
|
#endif // Z_HOME_DIR < 0
|
|
|
|
|
|
if (code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
|
|
current_position[Z_AXIS] = code_value() + add_homing[Z_AXIS];
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
if (home_all_axis || code_seen(axis_codes[Z_AXIS]))
|
|
current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
|
|
#endif
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
#endif // else DELTA
|
|
|
|
#ifdef SCARA
|
|
calculate_delta(current_position);
|
|
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
|
|
#endif
|
|
|
|
#ifdef ENDSTOPS_ONLY_FOR_HOMING
|
|
enable_endstops(false);
|
|
#endif
|
|
|
|
feedrate = saved_feedrate;
|
|
feedmultiply = saved_feedmultiply;
|
|
previous_millis_cmd = millis();
|
|
endstops_hit_on_purpose();
|
|
}
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
// Define the possible boundaries for probing based on set limits
|
|
#define MIN_PROBE_X (max(X_MIN_POS, X_MIN_POS + X_PROBE_OFFSET_FROM_EXTRUDER))
|
|
#define MAX_PROBE_X (min(X_MAX_POS, X_MAX_POS + X_PROBE_OFFSET_FROM_EXTRUDER))
|
|
#define MIN_PROBE_Y (max(Y_MIN_POS, Y_MIN_POS + Y_PROBE_OFFSET_FROM_EXTRUDER))
|
|
#define MAX_PROBE_Y (min(Y_MAX_POS, Y_MAX_POS + Y_PROBE_OFFSET_FROM_EXTRUDER))
|
|
|
|
#ifdef AUTO_BED_LEVELING_GRID
|
|
|
|
#define MIN_PROBE_EDGE 20 // The probe square sides can be no smaller than this
|
|
|
|
// Make sure probing points are reachable
|
|
|
|
#if LEFT_PROBE_BED_POSITION < MIN_PROBE_X
|
|
#error The given LEFT_PROBE_BED_POSITION can't be reached by the probe.
|
|
#elif RIGHT_PROBE_BED_POSITION > MAX_PROBE_X
|
|
#error The given RIGHT_PROBE_BED_POSITION can't be reached by the probe.
|
|
#elif FRONT_PROBE_BED_POSITION < MIN_PROBE_Y
|
|
#error The given FRONT_PROBE_BED_POSITION can't be reached by the probe.
|
|
#elif BACK_PROBE_BED_POSITION > MAX_PROBE_Y
|
|
#error The given BACK_PROBE_BED_POSITION can't be reached by the probe.
|
|
|
|
// Check if Probe_Offset * Grid Points is greater than Probing Range
|
|
|
|
#elif abs(X_PROBE_OFFSET_FROM_EXTRUDER) * (AUTO_BED_LEVELING_GRID_POINTS-1) >= RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION
|
|
#error "The X axis probing range is not enough to fit all the points defined in AUTO_BED_LEVELING_GRID_POINTS"
|
|
#elif abs(Y_PROBE_OFFSET_FROM_EXTRUDER) * (AUTO_BED_LEVELING_GRID_POINTS-1) >= BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION
|
|
#error "The Y axis probing range is not enough to fit all the points defined in AUTO_BED_LEVELING_GRID_POINTS"
|
|
#endif
|
|
|
|
#else // !AUTO_BED_LEVELING_GRID
|
|
|
|
#if ABL_PROBE_PT_1_X < MIN_PROBE_X || ABL_PROBE_PT_1_X > MAX_PROBE_X
|
|
#error The given ABL_PROBE_PT_1_X can't be reached by the probe.
|
|
#elif ABL_PROBE_PT_2_X < MIN_PROBE_X || ABL_PROBE_PT_2_X > MAX_PROBE_X
|
|
#error The given ABL_PROBE_PT_2_X can't be reached by the probe.
|
|
#elif ABL_PROBE_PT_3_X < MIN_PROBE_X || ABL_PROBE_PT_3_X > MAX_PROBE_X
|
|
#error The given ABL_PROBE_PT_3_X can't be reached by the probe.
|
|
#elif ABL_PROBE_PT_1_Y < MIN_PROBE_Y || ABL_PROBE_PT_1_Y > MAX_PROBE_Y
|
|
#error The given ABL_PROBE_PT_1_Y can't be reached by the probe.
|
|
#elif ABL_PROBE_PT_2_Y < MIN_PROBE_Y || ABL_PROBE_PT_2_Y > MAX_PROBE_Y
|
|
#error The given ABL_PROBE_PT_2_Y can't be reached by the probe.
|
|
#elif ABL_PROBE_PT_3_Y < MIN_PROBE_Y || ABL_PROBE_PT_3_Y > MAX_PROBE_Y
|
|
#error The given ABL_PROBE_PT_3_Y can't be reached by the probe.
|
|
#endif
|
|
|
|
#endif // !AUTO_BED_LEVELING_GRID
|
|
|
|
/**
|
|
* G29: Detailed Z-Probe, probes the bed at 3 or more points.
|
|
* Will fail if the printer has not been homed with G28.
|
|
*
|
|
* Enhanced G29 Auto Bed Leveling Probe Routine
|
|
*
|
|
* Parameters With AUTO_BED_LEVELING_GRID:
|
|
*
|
|
* P Set the size of the grid that will be probed (P x P points).
|
|
* Example: "G29 P4"
|
|
*
|
|
* V Set the verbose level (0-4). Example: "G29 V3"
|
|
*
|
|
* T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
|
|
* This is useful for manual bed leveling and finding flaws in the bed (to
|
|
* assist with part placement).
|
|
*
|
|
* F Set the Front limit of the probing grid
|
|
* B Set the Back limit of the probing grid
|
|
* L Set the Left limit of the probing grid
|
|
* R Set the Right limit of the probing grid
|
|
*
|
|
* Global Parameters:
|
|
*
|
|
* E/e By default G29 engages / disengages the probe for each point.
|
|
* Include "E" to engage and disengage the probe just once.
|
|
* There's no extra effect if you have a fixed probe.
|
|
* Usage: "G29 E" or "G29 e"
|
|
*
|
|
*/
|
|
|
|
// Use one of these defines to specify the origin
|
|
// for a topographical map to be printed for your bed.
|
|
enum { OriginBackLeft, OriginFrontLeft, OriginBackRight, OriginFrontRight };
|
|
#define TOPO_ORIGIN OriginFrontLeft
|
|
|
|
inline void gcode_G29() {
|
|
|
|
// Prevent user from running a G29 without first homing in X and Y
|
|
if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
|
|
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
|
|
return;
|
|
}
|
|
|
|
int verbose_level = 1;
|
|
float x_tmp, y_tmp, z_tmp, real_z;
|
|
|
|
if (code_seen('V') || code_seen('v')) {
|
|
verbose_level = code_value_long();
|
|
if (verbose_level < 0 || verbose_level > 4) {
|
|
SERIAL_PROTOCOLPGM("?(V)erbose Level is implausible (0-4).\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
bool enhanced_g29 = code_seen('E') || code_seen('e');
|
|
|
|
#ifdef AUTO_BED_LEVELING_GRID
|
|
|
|
bool topo_flag = verbose_level > 2 || code_seen('T') || code_seen('t');
|
|
|
|
if (verbose_level > 0)
|
|
SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
|
|
|
|
int auto_bed_leveling_grid_points = code_seen('P') ? code_value_long() : AUTO_BED_LEVELING_GRID_POINTS;
|
|
if (auto_bed_leveling_grid_points < 2 || auto_bed_leveling_grid_points > AUTO_BED_LEVELING_GRID_POINTS) {
|
|
SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
|
|
return;
|
|
}
|
|
|
|
int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION,
|
|
right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION,
|
|
front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION,
|
|
back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
|
|
|
|
bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
|
|
left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
|
|
right_out_r = right_probe_bed_position > MAX_PROBE_X,
|
|
right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
|
|
front_out_f = front_probe_bed_position < MIN_PROBE_Y,
|
|
front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
|
|
back_out_b = back_probe_bed_position > MAX_PROBE_Y,
|
|
back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
|
|
|
|
if (left_out || right_out || front_out || back_out) {
|
|
if (left_out) {
|
|
SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
|
|
left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
|
|
}
|
|
if (right_out) {
|
|
SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
|
|
right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
|
|
}
|
|
if (front_out) {
|
|
SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
|
|
front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
|
|
}
|
|
if (back_out) {
|
|
SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
|
|
back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
|
|
}
|
|
return;
|
|
}
|
|
|
|
#endif // AUTO_BED_LEVELING_GRID
|
|
|
|
#ifdef Z_PROBE_SLED
|
|
dock_sled(false); // engage (un-dock) the probe
|
|
#endif
|
|
|
|
st_synchronize();
|
|
|
|
// make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
|
|
//vector_3 corrected_position = plan_get_position_mm();
|
|
//corrected_position.debug("position before G29");
|
|
plan_bed_level_matrix.set_to_identity();
|
|
vector_3 uncorrected_position = plan_get_position();
|
|
//uncorrected_position.debug("position durring G29");
|
|
current_position[X_AXIS] = uncorrected_position.x;
|
|
current_position[Y_AXIS] = uncorrected_position.y;
|
|
current_position[Z_AXIS] = uncorrected_position.z;
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
setup_for_endstop_move();
|
|
|
|
feedrate = homing_feedrate[Z_AXIS];
|
|
|
|
#ifdef AUTO_BED_LEVELING_GRID
|
|
|
|
// probe at the points of a lattice grid
|
|
int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
|
|
int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
|
|
|
|
// solve the plane equation ax + by + d = z
|
|
// A is the matrix with rows [x y 1] for all the probed points
|
|
// B is the vector of the Z positions
|
|
// the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
|
|
// so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
|
|
|
|
int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
|
|
|
|
double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
|
|
eqnBVector[abl2], // "B" vector of Z points
|
|
mean = 0.0;
|
|
|
|
int probePointCounter = 0;
|
|
bool zig = true;
|
|
|
|
for (int yProbe = front_probe_bed_position; yProbe <= back_probe_bed_position; yProbe += yGridSpacing) {
|
|
int xProbe, xInc;
|
|
|
|
if (zig)
|
|
xProbe = left_probe_bed_position, xInc = xGridSpacing;
|
|
else
|
|
xProbe = right_probe_bed_position, xInc = -xGridSpacing;
|
|
|
|
// If topo_flag is set then don't zig-zag. Just scan in one direction.
|
|
// This gets the probe points in more readable order.
|
|
if (!topo_flag) zig = !zig;
|
|
|
|
for (int xCount = 0; xCount < auto_bed_leveling_grid_points; xCount++) {
|
|
// raise extruder
|
|
float measured_z,
|
|
z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
|
|
|
|
// Enhanced G29 - Do not retract servo between probes
|
|
ProbeAction act;
|
|
if (enhanced_g29) {
|
|
if (yProbe == front_probe_bed_position && xCount == 0)
|
|
act = ProbeEngage;
|
|
else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
|
|
act = ProbeRetract;
|
|
else
|
|
act = ProbeStay;
|
|
}
|
|
else
|
|
act = ProbeEngageRetract;
|
|
|
|
measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
|
|
|
|
mean += measured_z;
|
|
|
|
eqnBVector[probePointCounter] = measured_z;
|
|
eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
|
|
eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
|
|
eqnAMatrix[probePointCounter + 2 * abl2] = 1;
|
|
|
|
probePointCounter++;
|
|
xProbe += xInc;
|
|
|
|
} //xProbe
|
|
|
|
} //yProbe
|
|
|
|
clean_up_after_endstop_move();
|
|
|
|
// solve lsq problem
|
|
double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
|
|
|
|
mean /= abl2;
|
|
|
|
if (verbose_level) {
|
|
SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
|
|
SERIAL_PROTOCOL(plane_equation_coefficients[0] + 0.0001);
|
|
SERIAL_PROTOCOLPGM(" b: ");
|
|
SERIAL_PROTOCOL(plane_equation_coefficients[1] + 0.0001);
|
|
SERIAL_PROTOCOLPGM(" d: ");
|
|
SERIAL_PROTOCOLLN(plane_equation_coefficients[2] + 0.0001);
|
|
if (verbose_level > 2) {
|
|
SERIAL_PROTOCOLPGM("Mean of sampled points: ");
|
|
SERIAL_PROTOCOL_F(mean, 6);
|
|
SERIAL_EOL;
|
|
}
|
|
}
|
|
|
|
if (topo_flag) {
|
|
|
|
int xx, yy;
|
|
|
|
SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
|
|
#if TOPO_ORIGIN == OriginFrontLeft
|
|
for (yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--)
|
|
#else
|
|
for (yy = 0; yy < auto_bed_leveling_grid_points; yy++)
|
|
#endif
|
|
{
|
|
#if TOPO_ORIGIN == OriginBackRight
|
|
for (xx = auto_bed_leveling_grid_points - 1; xx >= 0; xx--)
|
|
#else
|
|
for (xx = 0; xx < auto_bed_leveling_grid_points; xx++)
|
|
#endif
|
|
{
|
|
int ind =
|
|
#if TOPO_ORIGIN == OriginBackRight || TOPO_ORIGIN == OriginFrontLeft
|
|
yy * auto_bed_leveling_grid_points + xx
|
|
#elif TOPO_ORIGIN == OriginBackLeft
|
|
xx * auto_bed_leveling_grid_points + yy
|
|
#elif TOPO_ORIGIN == OriginFrontRight
|
|
abl2 - xx * auto_bed_leveling_grid_points - yy - 1
|
|
#endif
|
|
;
|
|
float diff = eqnBVector[ind] - mean;
|
|
if (diff >= 0.0)
|
|
SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
|
|
else
|
|
SERIAL_PROTOCOLPGM(" ");
|
|
SERIAL_PROTOCOL_F(diff, 5);
|
|
} // xx
|
|
SERIAL_EOL;
|
|
} // yy
|
|
SERIAL_EOL;
|
|
|
|
} //topo_flag
|
|
|
|
|
|
set_bed_level_equation_lsq(plane_equation_coefficients);
|
|
free(plane_equation_coefficients);
|
|
|
|
#else // !AUTO_BED_LEVELING_GRID
|
|
|
|
// Probe at 3 arbitrary points
|
|
float z_at_pt_1, z_at_pt_2, z_at_pt_3;
|
|
|
|
if (enhanced_g29) {
|
|
// Basic Enhanced G29
|
|
z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, ProbeEngage, verbose_level);
|
|
z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeStay, verbose_level);
|
|
z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeRetract, verbose_level);
|
|
}
|
|
else {
|
|
z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, verbose_level);
|
|
z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, verbose_level);
|
|
z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, verbose_level);
|
|
}
|
|
clean_up_after_endstop_move();
|
|
set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
|
|
|
|
#endif // !AUTO_BED_LEVELING_GRID
|
|
|
|
st_synchronize();
|
|
|
|
if (verbose_level > 0)
|
|
plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
|
|
|
|
// Correct the Z height difference from z-probe position and hotend tip position.
|
|
// The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
|
|
// When the bed is uneven, this height must be corrected.
|
|
real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
|
|
x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
|
|
y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
|
|
z_tmp = current_position[Z_AXIS];
|
|
|
|
apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
|
|
current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
#ifdef Z_PROBE_SLED
|
|
dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
|
|
#endif
|
|
}
|
|
|
|
#ifndef Z_PROBE_SLED
|
|
|
|
inline void gcode_G30() {
|
|
engage_z_probe(); // Engage Z Servo endstop if available
|
|
st_synchronize();
|
|
// TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
|
|
setup_for_endstop_move();
|
|
|
|
feedrate = homing_feedrate[Z_AXIS];
|
|
|
|
run_z_probe();
|
|
SERIAL_PROTOCOLPGM(MSG_BED);
|
|
SERIAL_PROTOCOLPGM(" X: ");
|
|
SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
|
|
SERIAL_PROTOCOLPGM(" Y: ");
|
|
SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
|
|
SERIAL_PROTOCOLPGM(" Z: ");
|
|
SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
|
|
SERIAL_EOL;
|
|
|
|
clean_up_after_endstop_move();
|
|
retract_z_probe(); // Retract Z Servo endstop if available
|
|
}
|
|
|
|
#endif //!Z_PROBE_SLED
|
|
|
|
#endif //ENABLE_AUTO_BED_LEVELING
|
|
|
|
/**
|
|
* G92: Set current position to given X Y Z E
|
|
*/
|
|
inline void gcode_G92() {
|
|
if (!code_seen(axis_codes[E_AXIS]))
|
|
st_synchronize();
|
|
|
|
for (int i=0;i<NUM_AXIS;i++) {
|
|
if (code_seen(axis_codes[i])) {
|
|
if (i == E_AXIS) {
|
|
current_position[i] = code_value();
|
|
plan_set_e_position(current_position[E_AXIS]);
|
|
}
|
|
else {
|
|
current_position[i] = code_value() +
|
|
#ifdef SCARA
|
|
((i != X_AXIS && i != Y_AXIS) ? add_homing[i] : 0)
|
|
#else
|
|
add_homing[i]
|
|
#endif
|
|
;
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef ULTIPANEL
|
|
|
|
/**
|
|
* M0: // M0 - Unconditional stop - Wait for user button press on LCD
|
|
* M1: // M1 - Conditional stop - Wait for user button press on LCD
|
|
*/
|
|
inline void gcode_M0_M1() {
|
|
char *src = strchr_pointer + 2;
|
|
|
|
unsigned long codenum = 0;
|
|
bool hasP = false, hasS = false;
|
|
if (code_seen('P')) {
|
|
codenum = code_value(); // milliseconds to wait
|
|
hasP = codenum > 0;
|
|
}
|
|
if (code_seen('S')) {
|
|
codenum = code_value() * 1000; // seconds to wait
|
|
hasS = codenum > 0;
|
|
}
|
|
char* starpos = strchr(src, '*');
|
|
if (starpos != NULL) *(starpos) = '\0';
|
|
while (*src == ' ') ++src;
|
|
if (!hasP && !hasS && *src != '\0')
|
|
lcd_setstatus(src);
|
|
else
|
|
LCD_MESSAGEPGM(MSG_USERWAIT);
|
|
|
|
lcd_ignore_click();
|
|
st_synchronize();
|
|
previous_millis_cmd = millis();
|
|
if (codenum > 0) {
|
|
codenum += previous_millis_cmd; // keep track of when we started waiting
|
|
while(millis() < codenum && !lcd_clicked()) {
|
|
manage_heater();
|
|
manage_inactivity();
|
|
lcd_update();
|
|
}
|
|
lcd_ignore_click(false);
|
|
}
|
|
else {
|
|
if (!lcd_detected()) return;
|
|
while (!lcd_clicked()) {
|
|
manage_heater();
|
|
manage_inactivity();
|
|
lcd_update();
|
|
}
|
|
}
|
|
if (IS_SD_PRINTING)
|
|
LCD_MESSAGEPGM(MSG_RESUMING);
|
|
else
|
|
LCD_MESSAGEPGM(WELCOME_MSG);
|
|
}
|
|
|
|
#endif // ULTIPANEL
|
|
|
|
/**
|
|
* M17: Enable power on all stepper motors
|
|
*/
|
|
inline void gcode_M17() {
|
|
LCD_MESSAGEPGM(MSG_NO_MOVE);
|
|
enable_x();
|
|
enable_y();
|
|
enable_z();
|
|
enable_e0();
|
|
enable_e1();
|
|
enable_e2();
|
|
enable_e3();
|
|
}
|
|
|
|
#ifdef SDSUPPORT
|
|
|
|
/**
|
|
* M20: List SD card to serial output
|
|
*/
|
|
inline void gcode_M20() {
|
|
SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
|
|
card.ls();
|
|
SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
|
|
}
|
|
|
|
/**
|
|
* M21: Init SD Card
|
|
*/
|
|
inline void gcode_M21() {
|
|
card.initsd();
|
|
}
|
|
|
|
/**
|
|
* M22: Release SD Card
|
|
*/
|
|
inline void gcode_M22() {
|
|
card.release();
|
|
}
|
|
|
|
/**
|
|
* M23: Select a file
|
|
*/
|
|
inline void gcode_M23() {
|
|
char* codepos = strchr_pointer + 4;
|
|
char* starpos = strchr(codepos, '*');
|
|
if (starpos) *starpos = '\0';
|
|
card.openFile(codepos, true);
|
|
}
|
|
|
|
/**
|
|
* M24: Start SD Print
|
|
*/
|
|
inline void gcode_M24() {
|
|
card.startFileprint();
|
|
starttime = millis();
|
|
}
|
|
|
|
/**
|
|
* M25: Pause SD Print
|
|
*/
|
|
inline void gcode_M25() {
|
|
card.pauseSDPrint();
|
|
}
|
|
|
|
/**
|
|
* M26: Set SD Card file index
|
|
*/
|
|
inline void gcode_M26() {
|
|
if (card.cardOK && code_seen('S'))
|
|
card.setIndex(code_value_long());
|
|
}
|
|
|
|
/**
|
|
* M27: Get SD Card status
|
|
*/
|
|
inline void gcode_M27() {
|
|
card.getStatus();
|
|
}
|
|
|
|
/**
|
|
* M28: Start SD Write
|
|
*/
|
|
inline void gcode_M28() {
|
|
char* codepos = strchr_pointer + 4;
|
|
char* starpos = strchr(strchr_pointer + 4, '*');
|
|
if (starpos) {
|
|
char* npos = strchr(cmdbuffer[bufindr], 'N');
|
|
strchr_pointer = strchr(npos, ' ') + 1;
|
|
*(starpos) = '\0';
|
|
}
|
|
card.openFile(strchr_pointer + 4, false);
|
|
}
|
|
|
|
/**
|
|
* M29: Stop SD Write
|
|
* Processed in write to file routine above
|
|
*/
|
|
inline void gcode_M29() {
|
|
// card.saving = false;
|
|
}
|
|
|
|
/**
|
|
* M30 <filename>: Delete SD Card file
|
|
*/
|
|
inline void gcode_M30() {
|
|
if (card.cardOK) {
|
|
card.closefile();
|
|
char* starpos = strchr(strchr_pointer + 4, '*');
|
|
if (starpos) {
|
|
char* npos = strchr(cmdbuffer[bufindr], 'N');
|
|
strchr_pointer = strchr(npos, ' ') + 1;
|
|
*(starpos) = '\0';
|
|
}
|
|
card.removeFile(strchr_pointer + 4);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
/**
|
|
* M31: Get the time since the start of SD Print (or last M109)
|
|
*/
|
|
inline void gcode_M31() {
|
|
stoptime = millis();
|
|
unsigned long t = (stoptime - starttime) / 1000;
|
|
int min = t / 60, sec = t % 60;
|
|
char time[30];
|
|
sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLN(time);
|
|
lcd_setstatus(time);
|
|
autotempShutdown();
|
|
}
|
|
|
|
#ifdef SDSUPPORT
|
|
|
|
/**
|
|
* M32: Select file and start SD Print
|
|
*/
|
|
inline void gcode_M32() {
|
|
if (card.sdprinting)
|
|
st_synchronize();
|
|
|
|
char* codepos = strchr_pointer + 4;
|
|
|
|
char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
|
|
if (! namestartpos)
|
|
namestartpos = codepos; //default name position, 4 letters after the M
|
|
else
|
|
namestartpos++; //to skip the '!'
|
|
|
|
char* starpos = strchr(codepos, '*');
|
|
if (starpos) *(starpos) = '\0';
|
|
|
|
bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
|
|
|
|
if (card.cardOK) {
|
|
card.openFile(namestartpos, true, !call_procedure);
|
|
|
|
if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
|
|
card.setIndex(code_value_long());
|
|
|
|
card.startFileprint();
|
|
if (!call_procedure)
|
|
starttime = millis(); //procedure calls count as normal print time.
|
|
}
|
|
}
|
|
|
|
/**
|
|
* M928: Start SD Write
|
|
*/
|
|
inline void gcode_M928() {
|
|
char* starpos = strchr(strchr_pointer + 5, '*');
|
|
if (starpos) {
|
|
char* npos = strchr(cmdbuffer[bufindr], 'N');
|
|
strchr_pointer = strchr(npos, ' ') + 1;
|
|
*(starpos) = '\0';
|
|
}
|
|
card.openLogFile(strchr_pointer + 5);
|
|
}
|
|
|
|
#endif // SDSUPPORT
|
|
|
|
/**
|
|
* M42: Change pin status via GCode
|
|
*/
|
|
inline void gcode_M42() {
|
|
if (code_seen('S')) {
|
|
int pin_status = code_value(),
|
|
pin_number = LED_PIN;
|
|
|
|
if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
|
|
pin_number = code_value();
|
|
|
|
for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
|
|
if (sensitive_pins[i] == pin_number) {
|
|
pin_number = -1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
#if defined(FAN_PIN) && FAN_PIN > -1
|
|
if (pin_number == FAN_PIN) fanSpeed = pin_status;
|
|
#endif
|
|
|
|
if (pin_number > -1) {
|
|
pinMode(pin_number, OUTPUT);
|
|
digitalWrite(pin_number, pin_status);
|
|
analogWrite(pin_number, pin_status);
|
|
}
|
|
} // code_seen('S')
|
|
}
|
|
|
|
|
|
#if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
|
|
|
|
#if Z_MIN_PIN == -1
|
|
#error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
|
|
#endif
|
|
|
|
/**
|
|
* M48: Z-Probe repeatability measurement function.
|
|
*
|
|
* Usage:
|
|
* M48 <n#> <X#> <Y#> <V#> <E> <L#>
|
|
* n = Number of samples (4-50, default 10)
|
|
* X = Sample X position
|
|
* Y = Sample Y position
|
|
* V = Verbose level (0-4, default=1)
|
|
* E = Engage probe for each reading
|
|
* L = Number of legs of movement before probe
|
|
*
|
|
* This function assumes the bed has been homed. Specificaly, that a G28 command
|
|
* as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
|
|
* Any information generated by a prior G29 Bed leveling command will be lost and need to be
|
|
* regenerated.
|
|
*
|
|
* The number of samples will default to 10 if not specified. You can use upper or lower case
|
|
* letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
|
|
* N for its communication protocol and will get horribly confused if you send it a capital N.
|
|
*/
|
|
inline void gcode_M48() {
|
|
|
|
double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
|
|
int verbose_level = 1, n = 0, j, n_samples = 10, n_legs = 0, engage_probe_for_each_reading = 0;
|
|
double X_current, Y_current, Z_current;
|
|
double X_probe_location, Y_probe_location, Z_start_location, ext_position;
|
|
|
|
if (code_seen('V') || code_seen('v')) {
|
|
verbose_level = code_value();
|
|
if (verbose_level < 0 || verbose_level > 4 ) {
|
|
SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (verbose_level > 0)
|
|
SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
|
|
|
|
if (code_seen('n')) {
|
|
n_samples = code_value();
|
|
if (n_samples < 4 || n_samples > 50) {
|
|
SERIAL_PROTOCOLPGM("?Specified sample size not plausible (4-50).\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
X_current = X_probe_location = st_get_position_mm(X_AXIS);
|
|
Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
|
|
Z_current = st_get_position_mm(Z_AXIS);
|
|
Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
|
|
ext_position = st_get_position_mm(E_AXIS);
|
|
|
|
if (code_seen('E') || code_seen('e'))
|
|
engage_probe_for_each_reading++;
|
|
|
|
if (code_seen('X') || code_seen('x')) {
|
|
X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
|
|
if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
|
|
SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (code_seen('Y') || code_seen('y')) {
|
|
Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
|
|
if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
|
|
SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (code_seen('L') || code_seen('l')) {
|
|
n_legs = code_value();
|
|
if (n_legs == 1) n_legs = 2;
|
|
if (n_legs < 0 || n_legs > 15) {
|
|
SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausible (0-15).\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Do all the preliminary setup work. First raise the probe.
|
|
//
|
|
|
|
st_synchronize();
|
|
plan_bed_level_matrix.set_to_identity();
|
|
plan_buffer_line(X_current, Y_current, Z_start_location,
|
|
ext_position,
|
|
homing_feedrate[Z_AXIS] / 60,
|
|
active_extruder);
|
|
st_synchronize();
|
|
|
|
//
|
|
// Now get everything to the specified probe point So we can safely do a probe to
|
|
// get us close to the bed. If the Z-Axis is far from the bed, we don't want to
|
|
// use that as a starting point for each probe.
|
|
//
|
|
if (verbose_level > 2)
|
|
SERIAL_PROTOCOL("Positioning probe for the test.\n");
|
|
|
|
plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
|
|
ext_position,
|
|
homing_feedrate[X_AXIS]/60,
|
|
active_extruder);
|
|
st_synchronize();
|
|
|
|
current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
|
|
current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
|
|
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
|
|
current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
|
|
|
|
//
|
|
// OK, do the inital probe to get us close to the bed.
|
|
// Then retrace the right amount and use that in subsequent probes
|
|
//
|
|
|
|
engage_z_probe();
|
|
|
|
setup_for_endstop_move();
|
|
run_z_probe();
|
|
|
|
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
|
|
Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
|
|
|
|
plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
|
|
ext_position,
|
|
homing_feedrate[X_AXIS]/60,
|
|
active_extruder);
|
|
st_synchronize();
|
|
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
|
|
|
|
if (engage_probe_for_each_reading) retract_z_probe();
|
|
|
|
for (n=0; n < n_samples; n++) {
|
|
|
|
do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
|
|
|
|
if (n_legs) {
|
|
double radius=0.0, theta=0.0, x_sweep, y_sweep;
|
|
int l;
|
|
int rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
|
|
radius = (unsigned long)millis() % (long)(X_MAX_LENGTH / 4); // limit how far out to go
|
|
theta = (float)((unsigned long)millis() % 360L) / (360. / (2 * 3.1415926)); // turn into radians
|
|
|
|
//SERIAL_ECHOPAIR("starting radius: ",radius);
|
|
//SERIAL_ECHOPAIR(" theta: ",theta);
|
|
//SERIAL_ECHOPAIR(" direction: ",rotational_direction);
|
|
//SERIAL_PROTOCOLLNPGM("");
|
|
|
|
float dir = rotational_direction ? 1 : -1;
|
|
for (l = 0; l < n_legs - 1; l++) {
|
|
theta += dir * (float)((unsigned long)millis() % 20L) / (360.0/(2*3.1415926)); // turn into radians
|
|
|
|
radius += (float)(((long)((unsigned long) millis() % 10L)) - 5L);
|
|
if (radius < 0.0) radius = -radius;
|
|
|
|
X_current = X_probe_location + cos(theta) * radius;
|
|
Y_current = Y_probe_location + sin(theta) * radius;
|
|
|
|
// Make sure our X & Y are sane
|
|
X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
|
|
Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
|
|
|
|
if (verbose_level > 3) {
|
|
SERIAL_ECHOPAIR("x: ", X_current);
|
|
SERIAL_ECHOPAIR("y: ", Y_current);
|
|
SERIAL_PROTOCOLLNPGM("");
|
|
}
|
|
|
|
do_blocking_move_to( X_current, Y_current, Z_current );
|
|
}
|
|
do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
|
|
}
|
|
|
|
if (engage_probe_for_each_reading) {
|
|
engage_z_probe();
|
|
delay(1000);
|
|
}
|
|
|
|
setup_for_endstop_move();
|
|
run_z_probe();
|
|
|
|
sample_set[n] = current_position[Z_AXIS];
|
|
|
|
//
|
|
// Get the current mean for the data points we have so far
|
|
//
|
|
sum = 0.0;
|
|
for (j=0; j<=n; j++) sum += sample_set[j];
|
|
mean = sum / (double (n+1));
|
|
|
|
//
|
|
// Now, use that mean to calculate the standard deviation for the
|
|
// data points we have so far
|
|
//
|
|
sum = 0.0;
|
|
for (j=0; j<=n; j++) sum += (sample_set[j]-mean) * (sample_set[j]-mean);
|
|
sigma = sqrt( sum / (double (n+1)) );
|
|
|
|
if (verbose_level > 1) {
|
|
SERIAL_PROTOCOL(n+1);
|
|
SERIAL_PROTOCOL(" of ");
|
|
SERIAL_PROTOCOL(n_samples);
|
|
SERIAL_PROTOCOLPGM(" z: ");
|
|
SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
|
|
}
|
|
|
|
if (verbose_level > 2) {
|
|
SERIAL_PROTOCOL(" mean: ");
|
|
SERIAL_PROTOCOL_F(mean,6);
|
|
SERIAL_PROTOCOL(" sigma: ");
|
|
SERIAL_PROTOCOL_F(sigma,6);
|
|
}
|
|
|
|
if (verbose_level > 0) SERIAL_EOL;
|
|
|
|
plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location,
|
|
current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
|
|
st_synchronize();
|
|
|
|
if (engage_probe_for_each_reading) {
|
|
retract_z_probe();
|
|
delay(1000);
|
|
}
|
|
}
|
|
|
|
retract_z_probe();
|
|
delay(1000);
|
|
|
|
clean_up_after_endstop_move();
|
|
|
|
// enable_endstops(true);
|
|
|
|
if (verbose_level > 0) {
|
|
SERIAL_PROTOCOLPGM("Mean: ");
|
|
SERIAL_PROTOCOL_F(mean, 6);
|
|
SERIAL_EOL;
|
|
}
|
|
|
|
SERIAL_PROTOCOLPGM("Standard Deviation: ");
|
|
SERIAL_PROTOCOL_F(sigma, 6);
|
|
SERIAL_EOL; SERIAL_EOL;
|
|
}
|
|
|
|
#endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
|
|
|
|
/**
|
|
* M104: Set hot end temperature
|
|
*/
|
|
inline void gcode_M104() {
|
|
if (setTargetedHotend(104)) return;
|
|
|
|
if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
|
|
#ifdef DUAL_X_CARRIAGE
|
|
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
|
|
setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
|
|
#endif
|
|
setWatch();
|
|
}
|
|
|
|
/**
|
|
* M105: Read hot end and bed temperature
|
|
*/
|
|
inline void gcode_M105() {
|
|
if (setTargetedHotend(105)) return;
|
|
|
|
#if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
|
|
SERIAL_PROTOCOLPGM("ok T:");
|
|
SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
|
|
SERIAL_PROTOCOLPGM(" /");
|
|
SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
|
|
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
|
SERIAL_PROTOCOLPGM(" B:");
|
|
SERIAL_PROTOCOL_F(degBed(),1);
|
|
SERIAL_PROTOCOLPGM(" /");
|
|
SERIAL_PROTOCOL_F(degTargetBed(),1);
|
|
#endif //TEMP_BED_PIN
|
|
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
|
|
SERIAL_PROTOCOLPGM(" T");
|
|
SERIAL_PROTOCOL(cur_extruder);
|
|
SERIAL_PROTOCOLPGM(":");
|
|
SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
|
|
SERIAL_PROTOCOLPGM(" /");
|
|
SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
|
|
}
|
|
#else
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
|
|
#endif
|
|
|
|
SERIAL_PROTOCOLPGM(" @:");
|
|
#ifdef EXTRUDER_WATTS
|
|
SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
|
|
SERIAL_PROTOCOLPGM("W");
|
|
#else
|
|
SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
|
|
#endif
|
|
|
|
SERIAL_PROTOCOLPGM(" B@:");
|
|
#ifdef BED_WATTS
|
|
SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
|
|
SERIAL_PROTOCOLPGM("W");
|
|
#else
|
|
SERIAL_PROTOCOL(getHeaterPower(-1));
|
|
#endif
|
|
|
|
#ifdef SHOW_TEMP_ADC_VALUES
|
|
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
|
SERIAL_PROTOCOLPGM(" ADC B:");
|
|
SERIAL_PROTOCOL_F(degBed(),1);
|
|
SERIAL_PROTOCOLPGM("C->");
|
|
SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
|
|
#endif
|
|
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
|
|
SERIAL_PROTOCOLPGM(" T");
|
|
SERIAL_PROTOCOL(cur_extruder);
|
|
SERIAL_PROTOCOLPGM(":");
|
|
SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
|
|
SERIAL_PROTOCOLPGM("C->");
|
|
SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
|
|
}
|
|
#endif
|
|
|
|
SERIAL_PROTOCOLLN("");
|
|
}
|
|
|
|
#if defined(FAN_PIN) && FAN_PIN > -1
|
|
|
|
/**
|
|
* M106: Set Fan Speed
|
|
*/
|
|
inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
|
|
|
|
/**
|
|
* M107: Fan Off
|
|
*/
|
|
inline void gcode_M107() { fanSpeed = 0; }
|
|
|
|
#endif //FAN_PIN
|
|
|
|
/**
|
|
* M109: Wait for extruder(s) to reach temperature
|
|
*/
|
|
inline void gcode_M109() {
|
|
if (setTargetedHotend(109)) return;
|
|
|
|
LCD_MESSAGEPGM(MSG_HEATING);
|
|
|
|
CooldownNoWait = code_seen('S');
|
|
if (CooldownNoWait || code_seen('R')) {
|
|
setTargetHotend(code_value(), tmp_extruder);
|
|
#ifdef DUAL_X_CARRIAGE
|
|
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
|
|
setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
|
|
#endif
|
|
}
|
|
|
|
#ifdef AUTOTEMP
|
|
autotemp_enabled = code_seen('F');
|
|
if (autotemp_enabled) autotemp_factor = code_value();
|
|
if (code_seen('S')) autotemp_min = code_value();
|
|
if (code_seen('B')) autotemp_max = code_value();
|
|
#endif
|
|
|
|
setWatch();
|
|
|
|
unsigned long timetemp = millis();
|
|
|
|
/* See if we are heating up or cooling down */
|
|
target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
|
|
|
|
cancel_heatup = false;
|
|
|
|
#ifdef TEMP_RESIDENCY_TIME
|
|
long residencyStart = -1;
|
|
/* continue to loop until we have reached the target temp
|
|
_and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
|
|
while((!cancel_heatup)&&((residencyStart == -1) ||
|
|
(residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
|
|
#else
|
|
while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) )
|
|
#endif //TEMP_RESIDENCY_TIME
|
|
|
|
{ // while loop
|
|
if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
|
|
SERIAL_PROTOCOLPGM("T:");
|
|
SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
|
|
SERIAL_PROTOCOLPGM(" E:");
|
|
SERIAL_PROTOCOL((int)tmp_extruder);
|
|
#ifdef TEMP_RESIDENCY_TIME
|
|
SERIAL_PROTOCOLPGM(" W:");
|
|
if (residencyStart > -1) {
|
|
timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
|
|
SERIAL_PROTOCOLLN( timetemp );
|
|
}
|
|
else {
|
|
SERIAL_PROTOCOLLN( "?" );
|
|
}
|
|
#else
|
|
SERIAL_PROTOCOLLN("");
|
|
#endif
|
|
timetemp = millis();
|
|
}
|
|
manage_heater();
|
|
manage_inactivity();
|
|
lcd_update();
|
|
#ifdef TEMP_RESIDENCY_TIME
|
|
// start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
|
|
// or when current temp falls outside the hysteresis after target temp was reached
|
|
if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
|
|
(residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
|
|
(residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
|
|
{
|
|
residencyStart = millis();
|
|
}
|
|
#endif //TEMP_RESIDENCY_TIME
|
|
}
|
|
|
|
LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
|
|
starttime = previous_millis_cmd = millis();
|
|
}
|
|
|
|
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
|
|
|
/**
|
|
* M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
|
|
* Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
|
|
*/
|
|
inline void gcode_M190() {
|
|
LCD_MESSAGEPGM(MSG_BED_HEATING);
|
|
CooldownNoWait = code_seen('S');
|
|
if (CooldownNoWait || code_seen('R'))
|
|
setTargetBed(code_value());
|
|
|
|
unsigned long timetemp = millis();
|
|
|
|
cancel_heatup = false;
|
|
target_direction = isHeatingBed(); // true if heating, false if cooling
|
|
|
|
while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
|
|
unsigned long ms = millis();
|
|
if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up.
|
|
timetemp = ms;
|
|
float tt = degHotend(active_extruder);
|
|
SERIAL_PROTOCOLPGM("T:");
|
|
SERIAL_PROTOCOL(tt);
|
|
SERIAL_PROTOCOLPGM(" E:");
|
|
SERIAL_PROTOCOL((int)active_extruder);
|
|
SERIAL_PROTOCOLPGM(" B:");
|
|
SERIAL_PROTOCOL_F(degBed(), 1);
|
|
SERIAL_PROTOCOLLN("");
|
|
}
|
|
manage_heater();
|
|
manage_inactivity();
|
|
lcd_update();
|
|
}
|
|
LCD_MESSAGEPGM(MSG_BED_DONE);
|
|
previous_millis_cmd = millis();
|
|
}
|
|
|
|
#endif // TEMP_BED_PIN > -1
|
|
|
|
/**
|
|
* M112: Emergency Stop
|
|
*/
|
|
inline void gcode_M112() {
|
|
kill();
|
|
}
|
|
|
|
#ifdef BARICUDA
|
|
|
|
#if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
|
|
/**
|
|
* M126: Heater 1 valve open
|
|
*/
|
|
inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
|
|
/**
|
|
* M127: Heater 1 valve close
|
|
*/
|
|
inline void gcode_M127() { ValvePressure = 0; }
|
|
#endif
|
|
|
|
#if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
|
|
/**
|
|
* M128: Heater 2 valve open
|
|
*/
|
|
inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
|
|
/**
|
|
* M129: Heater 2 valve close
|
|
*/
|
|
inline void gcode_M129() { EtoPPressure = 0; }
|
|
#endif
|
|
|
|
#endif //BARICUDA
|
|
|
|
/**
|
|
* M140: Set bed temperature
|
|
*/
|
|
inline void gcode_M140() {
|
|
if (code_seen('S')) setTargetBed(code_value());
|
|
}
|
|
|
|
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
|
|
|
|
/**
|
|
* M80: Turn on Power Supply
|
|
*/
|
|
inline void gcode_M80() {
|
|
OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
|
|
|
|
// If you have a switch on suicide pin, this is useful
|
|
// if you want to start another print with suicide feature after
|
|
// a print without suicide...
|
|
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
|
|
OUT_WRITE(SUICIDE_PIN, HIGH);
|
|
#endif
|
|
|
|
#ifdef ULTIPANEL
|
|
powersupply = true;
|
|
LCD_MESSAGEPGM(WELCOME_MSG);
|
|
lcd_update();
|
|
#endif
|
|
}
|
|
|
|
#endif // PS_ON_PIN
|
|
|
|
/**
|
|
* M81: Turn off Power Supply
|
|
*/
|
|
inline void gcode_M81() {
|
|
disable_heater();
|
|
st_synchronize();
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
disable_e3();
|
|
finishAndDisableSteppers();
|
|
fanSpeed = 0;
|
|
delay(1000); // Wait 1 second before switching off
|
|
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
|
|
st_synchronize();
|
|
suicide();
|
|
#elif defined(PS_ON_PIN) && PS_ON_PIN > -1
|
|
OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
|
|
#endif
|
|
#ifdef ULTIPANEL
|
|
powersupply = false;
|
|
LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
|
|
lcd_update();
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* M82: Set E codes absolute (default)
|
|
*/
|
|
inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
|
|
|
|
/**
|
|
* M82: Set E codes relative while in Absolute Coordinates (G90) mode
|
|
*/
|
|
inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
|
|
|
|
/**
|
|
* M18, M84: Disable all stepper motors
|
|
*/
|
|
inline void gcode_M18_M84() {
|
|
if (code_seen('S')) {
|
|
stepper_inactive_time = code_value() * 1000;
|
|
}
|
|
else {
|
|
bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
|
|
if (all_axis) {
|
|
st_synchronize();
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
disable_e3();
|
|
finishAndDisableSteppers();
|
|
}
|
|
else {
|
|
st_synchronize();
|
|
if (code_seen('X')) disable_x();
|
|
if (code_seen('Y')) disable_y();
|
|
if (code_seen('Z')) disable_z();
|
|
#if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
|
|
if (code_seen('E')) {
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
disable_e3();
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
|
|
*/
|
|
inline void gcode_M85() {
|
|
if (code_seen('S')) max_inactive_time = code_value() * 1000;
|
|
}
|
|
|
|
/**
|
|
* M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
|
|
*/
|
|
inline void gcode_M92() {
|
|
for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
if (code_seen(axis_codes[i])) {
|
|
if (i == E_AXIS) {
|
|
float value = code_value();
|
|
if (value < 20.0) {
|
|
float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
|
|
max_e_jerk *= factor;
|
|
max_feedrate[i] *= factor;
|
|
axis_steps_per_sqr_second[i] *= factor;
|
|
}
|
|
axis_steps_per_unit[i] = value;
|
|
}
|
|
else {
|
|
axis_steps_per_unit[i] = code_value();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* M114: Output current position to serial port
|
|
*/
|
|
inline void gcode_M114() {
|
|
SERIAL_PROTOCOLPGM("X:");
|
|
SERIAL_PROTOCOL(current_position[X_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" Y:");
|
|
SERIAL_PROTOCOL(current_position[Y_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" Z:");
|
|
SERIAL_PROTOCOL(current_position[Z_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" E:");
|
|
SERIAL_PROTOCOL(current_position[E_AXIS]);
|
|
|
|
SERIAL_PROTOCOLPGM(MSG_COUNT_X);
|
|
SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" Y:");
|
|
SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" Z:");
|
|
SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
|
|
|
|
SERIAL_PROTOCOLLN("");
|
|
|
|
#ifdef SCARA
|
|
SERIAL_PROTOCOLPGM("SCARA Theta:");
|
|
SERIAL_PROTOCOL(delta[X_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" Psi+Theta:");
|
|
SERIAL_PROTOCOL(delta[Y_AXIS]);
|
|
SERIAL_PROTOCOLLN("");
|
|
|
|
SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
|
|
SERIAL_PROTOCOL(delta[X_AXIS]+add_homing[X_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
|
|
SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homing[Y_AXIS]);
|
|
SERIAL_PROTOCOLLN("");
|
|
|
|
SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
|
|
SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" Psi+Theta:");
|
|
SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
|
|
SERIAL_PROTOCOLLN("");
|
|
SERIAL_PROTOCOLLN("");
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* M115: Capabilities string
|
|
*/
|
|
inline void gcode_M115() {
|
|
SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
|
|
}
|
|
|
|
/**
|
|
* M117: Set LCD Status Message
|
|
*/
|
|
inline void gcode_M117() {
|
|
char* codepos = strchr_pointer + 5;
|
|
char* starpos = strchr(codepos, '*');
|
|
if (starpos) *starpos = '\0';
|
|
lcd_setstatus(codepos);
|
|
}
|
|
|
|
/**
|
|
* M119: Output endstop states to serial output
|
|
*/
|
|
inline void gcode_M119() {
|
|
SERIAL_PROTOCOLLN(MSG_M119_REPORT);
|
|
#if defined(X_MIN_PIN) && X_MIN_PIN > -1
|
|
SERIAL_PROTOCOLPGM(MSG_X_MIN);
|
|
SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
|
#endif
|
|
#if defined(X_MAX_PIN) && X_MAX_PIN > -1
|
|
SERIAL_PROTOCOLPGM(MSG_X_MAX);
|
|
SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
|
#endif
|
|
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
|
|
SERIAL_PROTOCOLPGM(MSG_Y_MIN);
|
|
SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
|
#endif
|
|
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
|
|
SERIAL_PROTOCOLPGM(MSG_Y_MAX);
|
|
SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
|
#endif
|
|
#if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
|
|
SERIAL_PROTOCOLPGM(MSG_Z_MIN);
|
|
SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
|
#endif
|
|
#if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
|
|
SERIAL_PROTOCOLPGM(MSG_Z_MAX);
|
|
SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* M120: Enable endstops
|
|
*/
|
|
inline void gcode_M120() { enable_endstops(false); }
|
|
|
|
/**
|
|
* M121: Disable endstops
|
|
*/
|
|
inline void gcode_M121() { enable_endstops(true); }
|
|
|
|
#ifdef BLINKM
|
|
|
|
/**
|
|
* M150: Set Status LED Color - Use R-U-B for R-G-B
|
|
*/
|
|
inline void gcode_M150() {
|
|
SendColors(
|
|
code_seen('R') ? (byte)code_value() : 0,
|
|
code_seen('U') ? (byte)code_value() : 0,
|
|
code_seen('B') ? (byte)code_value() : 0
|
|
);
|
|
}
|
|
|
|
#endif // BLINKM
|
|
|
|
/**
|
|
* M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
|
|
* T<extruder>
|
|
* D<millimeters>
|
|
*/
|
|
inline void gcode_M200() {
|
|
tmp_extruder = active_extruder;
|
|
if (code_seen('T')) {
|
|
tmp_extruder = code_value();
|
|
if (tmp_extruder >= EXTRUDERS) {
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
|
|
return;
|
|
}
|
|
}
|
|
|
|
float area = .0;
|
|
if (code_seen('D')) {
|
|
float diameter = code_value();
|
|
// setting any extruder filament size disables volumetric on the assumption that
|
|
// slicers either generate in extruder values as cubic mm or as as filament feeds
|
|
// for all extruders
|
|
volumetric_enabled = (diameter != 0.0);
|
|
if (volumetric_enabled) {
|
|
filament_size[tmp_extruder] = diameter;
|
|
// make sure all extruders have some sane value for the filament size
|
|
for (int i=0; i<EXTRUDERS; i++)
|
|
if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
|
|
}
|
|
}
|
|
else {
|
|
//reserved for setting filament diameter via UFID or filament measuring device
|
|
return;
|
|
}
|
|
calculate_volumetric_multipliers();
|
|
}
|
|
|
|
/**
|
|
* M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
|
|
*/
|
|
inline void gcode_M201() {
|
|
for (int8_t i=0; i < NUM_AXIS; i++) {
|
|
if (code_seen(axis_codes[i])) {
|
|
max_acceleration_units_per_sq_second[i] = code_value();
|
|
}
|
|
}
|
|
// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
|
|
reset_acceleration_rates();
|
|
}
|
|
|
|
#if 0 // Not used for Sprinter/grbl gen6
|
|
inline void gcode_M202() {
|
|
for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
/**
|
|
* M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
|
|
*/
|
|
inline void gcode_M203() {
|
|
for (int8_t i=0; i < NUM_AXIS; i++) {
|
|
if (code_seen(axis_codes[i])) {
|
|
max_feedrate[i] = code_value();
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* M204: Set Default Acceleration and/or Default Filament Acceleration in mm/sec^2 (M204 S3000 T7000)
|
|
*
|
|
* S = normal moves
|
|
* T = filament only moves
|
|
*
|
|
* Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
|
|
*/
|
|
inline void gcode_M204() {
|
|
if (code_seen('S')) acceleration = code_value();
|
|
if (code_seen('T')) retract_acceleration = code_value();
|
|
}
|
|
|
|
/**
|
|
* M205: Set Advanced Settings
|
|
*
|
|
* S = Min Feed Rate (mm/s)
|
|
* T = Min Travel Feed Rate (mm/s)
|
|
* B = Min Segment Time (µs)
|
|
* X = Max XY Jerk (mm/s/s)
|
|
* Z = Max Z Jerk (mm/s/s)
|
|
* E = Max E Jerk (mm/s/s)
|
|
*/
|
|
inline void gcode_M205() {
|
|
if (code_seen('S')) minimumfeedrate = code_value();
|
|
if (code_seen('T')) mintravelfeedrate = code_value();
|
|
if (code_seen('B')) minsegmenttime = code_value();
|
|
if (code_seen('X')) max_xy_jerk = code_value();
|
|
if (code_seen('Z')) max_z_jerk = code_value();
|
|
if (code_seen('E')) max_e_jerk = code_value();
|
|
}
|
|
|
|
/**
|
|
* M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
|
|
*/
|
|
inline void gcode_M206() {
|
|
for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
|
|
if (code_seen(axis_codes[i])) {
|
|
add_homing[i] = code_value();
|
|
}
|
|
}
|
|
#ifdef SCARA
|
|
if (code_seen('T')) add_homing[X_AXIS] = code_value(); // Theta
|
|
if (code_seen('P')) add_homing[Y_AXIS] = code_value(); // Psi
|
|
#endif
|
|
}
|
|
|
|
#ifdef DELTA
|
|
/**
|
|
* M665: Set delta configurations
|
|
*
|
|
* L = diagonal rod
|
|
* R = delta radius
|
|
* S = segments per second
|
|
*/
|
|
inline void gcode_M665() {
|
|
if (code_seen('L')) delta_diagonal_rod = code_value();
|
|
if (code_seen('R')) delta_radius = code_value();
|
|
if (code_seen('S')) delta_segments_per_second = code_value();
|
|
recalc_delta_settings(delta_radius, delta_diagonal_rod);
|
|
}
|
|
/**
|
|
* M666: Set delta endstop adjustment
|
|
*/
|
|
inline void gcode_M666() {
|
|
for (int8_t i = 0; i < 3; i++) {
|
|
if (code_seen(axis_codes[i])) {
|
|
endstop_adj[i] = code_value();
|
|
}
|
|
}
|
|
}
|
|
#endif // DELTA
|
|
|
|
#ifdef FWRETRACT
|
|
|
|
/**
|
|
* M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
|
|
*/
|
|
inline void gcode_M207() {
|
|
if (code_seen('S')) retract_length = code_value();
|
|
if (code_seen('F')) retract_feedrate = code_value() / 60;
|
|
if (code_seen('Z')) retract_zlift = code_value();
|
|
}
|
|
|
|
/**
|
|
* M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
|
|
*/
|
|
inline void gcode_M208() {
|
|
if (code_seen('S')) retract_recover_length = code_value();
|
|
if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
|
|
}
|
|
|
|
/**
|
|
* M209: Enable automatic retract (M209 S1)
|
|
* detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
|
|
*/
|
|
inline void gcode_M209() {
|
|
if (code_seen('S')) {
|
|
int t = code_value();
|
|
switch(t) {
|
|
case 0:
|
|
autoretract_enabled = false;
|
|
break;
|
|
case 1:
|
|
autoretract_enabled = true;
|
|
break;
|
|
default:
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
|
|
SERIAL_ECHO(cmdbuffer[bufindr]);
|
|
SERIAL_ECHOLNPGM("\"");
|
|
return;
|
|
}
|
|
for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
|
|
}
|
|
}
|
|
|
|
#endif // FWRETRACT
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
/**
|
|
* M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
|
|
*/
|
|
inline void gcode_M218() {
|
|
if (setTargetedHotend(218)) return;
|
|
|
|
if (code_seen('X')) extruder_offset[X_AXIS][tmp_extruder] = code_value();
|
|
if (code_seen('Y')) extruder_offset[Y_AXIS][tmp_extruder] = code_value();
|
|
|
|
#ifdef DUAL_X_CARRIAGE
|
|
if (code_seen('Z')) extruder_offset[Z_AXIS][tmp_extruder] = code_value();
|
|
#endif
|
|
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
|
|
for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) {
|
|
SERIAL_ECHO(" ");
|
|
SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
|
|
SERIAL_ECHO(",");
|
|
SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
|
|
#ifdef DUAL_X_CARRIAGE
|
|
SERIAL_ECHO(",");
|
|
SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
|
|
#endif
|
|
}
|
|
SERIAL_EOL;
|
|
}
|
|
|
|
#endif // EXTRUDERS > 1
|
|
|
|
/**
|
|
* M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
|
|
*/
|
|
inline void gcode_M220() {
|
|
if (code_seen('S')) feedmultiply = code_value();
|
|
}
|
|
|
|
/**
|
|
* M221: Set extrusion percentage (M221 T0 S95)
|
|
*/
|
|
inline void gcode_M221() {
|
|
if (code_seen('S')) {
|
|
int sval = code_value();
|
|
if (code_seen('T')) {
|
|
if (setTargetedHotend(221)) return;
|
|
extruder_multiply[tmp_extruder] = sval;
|
|
}
|
|
else {
|
|
extrudemultiply = sval;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
|
|
*/
|
|
inline void gcode_M226() {
|
|
if (code_seen('P')) {
|
|
int pin_number = code_value();
|
|
|
|
int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
|
|
|
|
if (pin_state >= -1 && pin_state <= 1) {
|
|
|
|
for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
|
|
if (sensitive_pins[i] == pin_number) {
|
|
pin_number = -1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (pin_number > -1) {
|
|
int target = LOW;
|
|
|
|
st_synchronize();
|
|
|
|
pinMode(pin_number, INPUT);
|
|
|
|
switch(pin_state){
|
|
case 1:
|
|
target = HIGH;
|
|
break;
|
|
|
|
case 0:
|
|
target = LOW;
|
|
break;
|
|
|
|
case -1:
|
|
target = !digitalRead(pin_number);
|
|
break;
|
|
}
|
|
|
|
while(digitalRead(pin_number) != target) {
|
|
manage_heater();
|
|
manage_inactivity();
|
|
lcd_update();
|
|
}
|
|
|
|
} // pin_number > -1
|
|
} // pin_state -1 0 1
|
|
} // code_seen('P')
|
|
}
|
|
|
|
#if NUM_SERVOS > 0
|
|
|
|
/**
|
|
* M280: Set servo position absolute. P: servo index, S: angle or microseconds
|
|
*/
|
|
inline void gcode_M280() {
|
|
int servo_index = code_seen('P') ? code_value() : -1;
|
|
int servo_position = 0;
|
|
if (code_seen('S')) {
|
|
servo_position = code_value();
|
|
if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
|
|
#if SERVO_LEVELING
|
|
servos[servo_index].attach(0);
|
|
#endif
|
|
servos[servo_index].write(servo_position);
|
|
#if SERVO_LEVELING
|
|
delay(PROBE_SERVO_DEACTIVATION_DELAY);
|
|
servos[servo_index].detach();
|
|
#endif
|
|
}
|
|
else {
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHO("Servo ");
|
|
SERIAL_ECHO(servo_index);
|
|
SERIAL_ECHOLN(" out of range");
|
|
}
|
|
}
|
|
else if (servo_index >= 0) {
|
|
SERIAL_PROTOCOL(MSG_OK);
|
|
SERIAL_PROTOCOL(" Servo ");
|
|
SERIAL_PROTOCOL(servo_index);
|
|
SERIAL_PROTOCOL(": ");
|
|
SERIAL_PROTOCOL(servos[servo_index].read());
|
|
SERIAL_PROTOCOLLN("");
|
|
}
|
|
}
|
|
|
|
#endif // NUM_SERVOS > 0
|
|
|
|
#if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
|
|
|
|
/**
|
|
* M300: Play beep sound S<frequency Hz> P<duration ms>
|
|
*/
|
|
inline void gcode_M300() {
|
|
int beepS = code_seen('S') ? code_value() : 110;
|
|
int beepP = code_seen('P') ? code_value() : 1000;
|
|
if (beepS > 0) {
|
|
#if BEEPER > 0
|
|
tone(BEEPER, beepS);
|
|
delay(beepP);
|
|
noTone(BEEPER);
|
|
#elif defined(ULTRALCD)
|
|
lcd_buzz(beepS, beepP);
|
|
#elif defined(LCD_USE_I2C_BUZZER)
|
|
lcd_buzz(beepP, beepS);
|
|
#endif
|
|
}
|
|
else {
|
|
delay(beepP);
|
|
}
|
|
}
|
|
|
|
#endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
|
|
|
|
#ifdef PIDTEMP
|
|
|
|
/**
|
|
* M301: Set PID parameters P I D (and optionally C)
|
|
*/
|
|
inline void gcode_M301() {
|
|
|
|
// multi-extruder PID patch: M301 updates or prints a single extruder's PID values
|
|
// default behaviour (omitting E parameter) is to update for extruder 0 only
|
|
int e = code_seen('E') ? code_value() : 0; // extruder being updated
|
|
|
|
if (e < EXTRUDERS) { // catch bad input value
|
|
if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
|
|
if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
|
|
if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
|
|
#ifdef PID_ADD_EXTRUSION_RATE
|
|
if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
|
|
#endif
|
|
|
|
updatePID();
|
|
SERIAL_PROTOCOL(MSG_OK);
|
|
#ifdef PID_PARAMS_PER_EXTRUDER
|
|
SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
|
|
SERIAL_PROTOCOL(e);
|
|
#endif // PID_PARAMS_PER_EXTRUDER
|
|
SERIAL_PROTOCOL(" p:");
|
|
SERIAL_PROTOCOL(PID_PARAM(Kp, e));
|
|
SERIAL_PROTOCOL(" i:");
|
|
SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
|
|
SERIAL_PROTOCOL(" d:");
|
|
SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
|
|
#ifdef PID_ADD_EXTRUSION_RATE
|
|
SERIAL_PROTOCOL(" c:");
|
|
//Kc does not have scaling applied above, or in resetting defaults
|
|
SERIAL_PROTOCOL(PID_PARAM(Kc, e));
|
|
#endif
|
|
SERIAL_PROTOCOLLN("");
|
|
}
|
|
else {
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
|
|
}
|
|
}
|
|
|
|
#endif // PIDTEMP
|
|
|
|
#ifdef PIDTEMPBED
|
|
|
|
inline void gcode_M304() {
|
|
if (code_seen('P')) bedKp = code_value();
|
|
if (code_seen('I')) bedKi = scalePID_i(code_value());
|
|
if (code_seen('D')) bedKd = scalePID_d(code_value());
|
|
|
|
updatePID();
|
|
SERIAL_PROTOCOL(MSG_OK);
|
|
SERIAL_PROTOCOL(" p:");
|
|
SERIAL_PROTOCOL(bedKp);
|
|
SERIAL_PROTOCOL(" i:");
|
|
SERIAL_PROTOCOL(unscalePID_i(bedKi));
|
|
SERIAL_PROTOCOL(" d:");
|
|
SERIAL_PROTOCOL(unscalePID_d(bedKd));
|
|
SERIAL_PROTOCOLLN("");
|
|
}
|
|
|
|
#endif // PIDTEMPBED
|
|
|
|
#if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
|
|
|
|
/**
|
|
* M240: Trigger a camera by emulating a Canon RC-1
|
|
* See http://www.doc-diy.net/photo/rc-1_hacked/
|
|
*/
|
|
inline void gcode_M240() {
|
|
#ifdef CHDK
|
|
|
|
OUT_WRITE(CHDK, HIGH);
|
|
chdkHigh = millis();
|
|
chdkActive = true;
|
|
|
|
#elif defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
|
|
|
|
const uint8_t NUM_PULSES = 16;
|
|
const float PULSE_LENGTH = 0.01524;
|
|
for (int i = 0; i < NUM_PULSES; i++) {
|
|
WRITE(PHOTOGRAPH_PIN, HIGH);
|
|
_delay_ms(PULSE_LENGTH);
|
|
WRITE(PHOTOGRAPH_PIN, LOW);
|
|
_delay_ms(PULSE_LENGTH);
|
|
}
|
|
delay(7.33);
|
|
for (int i = 0; i < NUM_PULSES; i++) {
|
|
WRITE(PHOTOGRAPH_PIN, HIGH);
|
|
_delay_ms(PULSE_LENGTH);
|
|
WRITE(PHOTOGRAPH_PIN, LOW);
|
|
_delay_ms(PULSE_LENGTH);
|
|
}
|
|
|
|
#endif // !CHDK && PHOTOGRAPH_PIN > -1
|
|
}
|
|
|
|
#endif // CHDK || PHOTOGRAPH_PIN
|
|
|
|
#ifdef DOGLCD
|
|
|
|
/**
|
|
* M250: Read and optionally set the LCD contrast
|
|
*/
|
|
inline void gcode_M250() {
|
|
if (code_seen('C')) lcd_setcontrast(code_value_long() & 0x3F);
|
|
SERIAL_PROTOCOLPGM("lcd contrast value: ");
|
|
SERIAL_PROTOCOL(lcd_contrast);
|
|
SERIAL_PROTOCOLLN("");
|
|
}
|
|
|
|
#endif // DOGLCD
|
|
|
|
#ifdef PREVENT_DANGEROUS_EXTRUDE
|
|
|
|
/**
|
|
* M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
|
|
*/
|
|
inline void gcode_M302() {
|
|
set_extrude_min_temp(code_seen('S') ? code_value() : 0);
|
|
}
|
|
|
|
#endif // PREVENT_DANGEROUS_EXTRUDE
|
|
|
|
/**
|
|
* M303: PID relay autotune
|
|
* S<temperature> sets the target temperature. (default target temperature = 150C)
|
|
* E<extruder> (-1 for the bed)
|
|
* C<cycles>
|
|
*/
|
|
inline void gcode_M303() {
|
|
int e = code_seen('E') ? code_value_long() : 0;
|
|
int c = code_seen('C') ? code_value_long() : 5;
|
|
float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
|
|
PID_autotune(temp, e, c);
|
|
}
|
|
|
|
#ifdef SCARA
|
|
|
|
/**
|
|
* M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
|
|
*/
|
|
inline bool gcode_M360() {
|
|
SERIAL_ECHOLN(" Cal: Theta 0 ");
|
|
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
|
|
//SERIAL_ECHOLN(" Soft endstops disabled ");
|
|
if (! Stopped) {
|
|
//get_coordinates(); // For X Y Z E F
|
|
delta[X_AXIS] = 0;
|
|
delta[Y_AXIS] = 120;
|
|
calculate_SCARA_forward_Transform(delta);
|
|
destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
|
|
destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
|
|
prepare_move();
|
|
//ClearToSend();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
|
|
*/
|
|
inline bool gcode_M361() {
|
|
SERIAL_ECHOLN(" Cal: Theta 90 ");
|
|
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
|
|
//SERIAL_ECHOLN(" Soft endstops disabled ");
|
|
if (! Stopped) {
|
|
//get_coordinates(); // For X Y Z E F
|
|
delta[X_AXIS] = 90;
|
|
delta[Y_AXIS] = 130;
|
|
calculate_SCARA_forward_Transform(delta);
|
|
destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
|
|
destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
|
|
prepare_move();
|
|
//ClearToSend();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
|
|
*/
|
|
inline bool gcode_M362() {
|
|
SERIAL_ECHOLN(" Cal: Psi 0 ");
|
|
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
|
|
//SERIAL_ECHOLN(" Soft endstops disabled ");
|
|
if (! Stopped) {
|
|
//get_coordinates(); // For X Y Z E F
|
|
delta[X_AXIS] = 60;
|
|
delta[Y_AXIS] = 180;
|
|
calculate_SCARA_forward_Transform(delta);
|
|
destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
|
|
destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
|
|
prepare_move();
|
|
//ClearToSend();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
|
|
*/
|
|
inline bool gcode_M363() {
|
|
SERIAL_ECHOLN(" Cal: Psi 90 ");
|
|
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
|
|
//SERIAL_ECHOLN(" Soft endstops disabled ");
|
|
if (! Stopped) {
|
|
//get_coordinates(); // For X Y Z E F
|
|
delta[X_AXIS] = 50;
|
|
delta[Y_AXIS] = 90;
|
|
calculate_SCARA_forward_Transform(delta);
|
|
destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
|
|
destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
|
|
prepare_move();
|
|
//ClearToSend();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
|
|
*/
|
|
inline bool gcode_M364() {
|
|
SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
|
|
// SoftEndsEnabled = false; // Ignore soft endstops during calibration
|
|
//SERIAL_ECHOLN(" Soft endstops disabled ");
|
|
if (! Stopped) {
|
|
//get_coordinates(); // For X Y Z E F
|
|
delta[X_AXIS] = 45;
|
|
delta[Y_AXIS] = 135;
|
|
calculate_SCARA_forward_Transform(delta);
|
|
destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
|
|
destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
|
|
prepare_move();
|
|
//ClearToSend();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* M365: SCARA calibration: Scaling factor, X, Y, Z axis
|
|
*/
|
|
inline void gcode_M365() {
|
|
for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
|
|
if (code_seen(axis_codes[i])) {
|
|
axis_scaling[i] = code_value();
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif // SCARA
|
|
|
|
#ifdef EXT_SOLENOID
|
|
|
|
void enable_solenoid(uint8_t num) {
|
|
switch(num) {
|
|
case 0:
|
|
OUT_WRITE(SOL0_PIN, HIGH);
|
|
break;
|
|
#if defined(SOL1_PIN) && SOL1_PIN > -1
|
|
case 1:
|
|
OUT_WRITE(SOL1_PIN, HIGH);
|
|
break;
|
|
#endif
|
|
#if defined(SOL2_PIN) && SOL2_PIN > -1
|
|
case 2:
|
|
OUT_WRITE(SOL2_PIN, HIGH);
|
|
break;
|
|
#endif
|
|
#if defined(SOL3_PIN) && SOL3_PIN > -1
|
|
case 3:
|
|
OUT_WRITE(SOL3_PIN, HIGH);
|
|
break;
|
|
#endif
|
|
default:
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
|
|
|
|
void disable_all_solenoids() {
|
|
OUT_WRITE(SOL0_PIN, LOW);
|
|
OUT_WRITE(SOL1_PIN, LOW);
|
|
OUT_WRITE(SOL2_PIN, LOW);
|
|
OUT_WRITE(SOL3_PIN, LOW);
|
|
}
|
|
|
|
/**
|
|
* M380: Enable solenoid on the active extruder
|
|
*/
|
|
inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
|
|
|
|
/**
|
|
* M381: Disable all solenoids
|
|
*/
|
|
inline void gcode_M381() { disable_all_solenoids(); }
|
|
|
|
#endif // EXT_SOLENOID
|
|
|
|
/**
|
|
* M400: Finish all moves
|
|
*/
|
|
inline void gcode_M400() { st_synchronize(); }
|
|
|
|
#if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
|
|
|
|
/**
|
|
* M401: Engage Z Servo endstop if available
|
|
*/
|
|
inline void gcode_M401() { engage_z_probe(); }
|
|
/**
|
|
* M402: Retract Z Servo endstop if enabled
|
|
*/
|
|
inline void gcode_M402() { retract_z_probe(); }
|
|
|
|
#endif
|
|
|
|
#ifdef FILAMENT_SENSOR
|
|
|
|
/**
|
|
* M404: Display or set the nominal filament width (3mm, 1.75mm ) N<3.0>
|
|
*/
|
|
inline void gcode_M404() {
|
|
#if FILWIDTH_PIN > -1
|
|
if (code_seen('N')) {
|
|
filament_width_nominal = code_value();
|
|
}
|
|
else {
|
|
SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
|
|
SERIAL_PROTOCOLLN(filament_width_nominal);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* M405: Turn on filament sensor for control
|
|
*/
|
|
inline void gcode_M405() {
|
|
if (code_seen('D')) meas_delay_cm = code_value();
|
|
if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
|
|
|
|
if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
|
|
int temp_ratio = widthFil_to_size_ratio();
|
|
|
|
for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
|
|
measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
|
|
|
|
delay_index1 = delay_index2 = 0;
|
|
}
|
|
|
|
filament_sensor = true;
|
|
|
|
//SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
|
|
//SERIAL_PROTOCOL(filament_width_meas);
|
|
//SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
|
|
//SERIAL_PROTOCOL(extrudemultiply);
|
|
}
|
|
|
|
/**
|
|
* M406: Turn off filament sensor for control
|
|
*/
|
|
inline void gcode_M406() { filament_sensor = false; }
|
|
|
|
/**
|
|
* M407: Get measured filament diameter on serial output
|
|
*/
|
|
inline void gcode_M407() {
|
|
SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
|
|
SERIAL_PROTOCOLLN(filament_width_meas);
|
|
}
|
|
|
|
#endif // FILAMENT_SENSOR
|
|
|
|
/**
|
|
* M500: Store settings in EEPROM
|
|
*/
|
|
inline void gcode_M500() {
|
|
Config_StoreSettings();
|
|
}
|
|
|
|
/**
|
|
* M501: Read settings from EEPROM
|
|
*/
|
|
inline void gcode_M501() {
|
|
Config_RetrieveSettings();
|
|
}
|
|
|
|
/**
|
|
* M502: Revert to default settings
|
|
*/
|
|
inline void gcode_M502() {
|
|
Config_ResetDefault();
|
|
}
|
|
|
|
/**
|
|
* M503: print settings currently in memory
|
|
*/
|
|
inline void gcode_M503() {
|
|
Config_PrintSettings(code_seen('S') && code_value == 0);
|
|
}
|
|
|
|
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
|
|
|
|
/**
|
|
* M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
|
|
*/
|
|
inline void gcode_M540() {
|
|
if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
|
|
}
|
|
|
|
#endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
|
|
|
|
#ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
|
|
|
|
inline void gcode_SET_Z_PROBE_OFFSET() {
|
|
float value;
|
|
if (code_seen('Z')) {
|
|
value = code_value();
|
|
if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
|
|
zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
|
|
SERIAL_PROTOCOLLN("");
|
|
}
|
|
else {
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
|
|
SERIAL_ECHOPGM(MSG_Z_MIN);
|
|
SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
|
|
SERIAL_ECHOPGM(MSG_Z_MAX);
|
|
SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
|
|
SERIAL_PROTOCOLLN("");
|
|
}
|
|
}
|
|
else {
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
|
|
SERIAL_ECHO(-zprobe_zoffset);
|
|
SERIAL_PROTOCOLLN("");
|
|
}
|
|
}
|
|
|
|
#endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
|
|
|
|
#ifdef FILAMENTCHANGEENABLE
|
|
|
|
/**
|
|
* M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
|
|
*/
|
|
inline void gcode_M600() {
|
|
float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
|
|
for (int i=0; i<NUM_AXIS; i++)
|
|
target[i] = lastpos[i] = current_position[i];
|
|
|
|
#define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
|
|
#ifdef DELTA
|
|
#define RUNPLAN calculate_delta(target); BASICPLAN
|
|
#else
|
|
#define RUNPLAN BASICPLAN
|
|
#endif
|
|
|
|
//retract by E
|
|
if (code_seen('E')) target[E_AXIS] += code_value();
|
|
#ifdef FILAMENTCHANGE_FIRSTRETRACT
|
|
else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
|
|
#endif
|
|
|
|
RUNPLAN;
|
|
|
|
//lift Z
|
|
if (code_seen('Z')) target[Z_AXIS] += code_value();
|
|
#ifdef FILAMENTCHANGE_ZADD
|
|
else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
|
|
#endif
|
|
|
|
RUNPLAN;
|
|
|
|
//move xy
|
|
if (code_seen('X')) target[X_AXIS] = code_value();
|
|
#ifdef FILAMENTCHANGE_XPOS
|
|
else target[X_AXIS] = FILAMENTCHANGE_XPOS;
|
|
#endif
|
|
|
|
if (code_seen('Y')) target[Y_AXIS] = code_value();
|
|
#ifdef FILAMENTCHANGE_YPOS
|
|
else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
|
|
#endif
|
|
|
|
RUNPLAN;
|
|
|
|
if (code_seen('L')) target[E_AXIS] += code_value();
|
|
#ifdef FILAMENTCHANGE_FINALRETRACT
|
|
else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
|
|
#endif
|
|
|
|
RUNPLAN;
|
|
|
|
//finish moves
|
|
st_synchronize();
|
|
//disable extruder steppers so filament can be removed
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
disable_e3();
|
|
delay(100);
|
|
LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
|
|
uint8_t cnt = 0;
|
|
while (!lcd_clicked()) {
|
|
cnt++;
|
|
manage_heater();
|
|
manage_inactivity(true);
|
|
lcd_update();
|
|
if (cnt == 0) {
|
|
#if BEEPER > 0
|
|
OUT_WRITE(BEEPER,HIGH);
|
|
delay(3);
|
|
WRITE(BEEPER,LOW);
|
|
delay(3);
|
|
#else
|
|
#if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
|
|
lcd_buzz(1000/6, 100);
|
|
#else
|
|
lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
|
|
#endif
|
|
#endif
|
|
}
|
|
} // while(!lcd_clicked)
|
|
|
|
//return to normal
|
|
if (code_seen('L')) target[E_AXIS] -= code_value();
|
|
#ifdef FILAMENTCHANGE_FINALRETRACT
|
|
else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
|
|
#endif
|
|
|
|
current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
|
|
plan_set_e_position(current_position[E_AXIS]);
|
|
|
|
RUNPLAN; //should do nothing
|
|
|
|
lcd_reset_alert_level();
|
|
|
|
#ifdef DELTA
|
|
calculate_delta(lastpos);
|
|
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
|
|
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
|
|
#else
|
|
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
|
|
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
|
|
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
|
|
#endif
|
|
|
|
#ifdef FILAMENT_RUNOUT_SENSOR
|
|
filrunoutEnqued = false;
|
|
#endif
|
|
|
|
}
|
|
|
|
#endif // FILAMENTCHANGEENABLE
|
|
|
|
#ifdef DUAL_X_CARRIAGE
|
|
|
|
/**
|
|
* M605: Set dual x-carriage movement mode
|
|
*
|
|
* M605 S0: Full control mode. The slicer has full control over x-carriage movement
|
|
* M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
|
|
* M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
|
|
* millimeters x-offset and an optional differential hotend temperature of
|
|
* mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
|
|
* the first with a spacing of 100mm in the x direction and 2 degrees hotter.
|
|
*
|
|
* Note: the X axis should be homed after changing dual x-carriage mode.
|
|
*/
|
|
inline void gcode_M605() {
|
|
st_synchronize();
|
|
if (code_seen('S')) dual_x_carriage_mode = code_value();
|
|
switch(dual_x_carriage_mode) {
|
|
case DXC_DUPLICATION_MODE:
|
|
if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
|
|
if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
|
|
SERIAL_ECHO(" ");
|
|
SERIAL_ECHO(extruder_offset[X_AXIS][0]);
|
|
SERIAL_ECHO(",");
|
|
SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
|
|
SERIAL_ECHO(" ");
|
|
SERIAL_ECHO(duplicate_extruder_x_offset);
|
|
SERIAL_ECHO(",");
|
|
SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
|
|
break;
|
|
case DXC_FULL_CONTROL_MODE:
|
|
case DXC_AUTO_PARK_MODE:
|
|
break;
|
|
default:
|
|
dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
|
|
break;
|
|
}
|
|
active_extruder_parked = false;
|
|
extruder_duplication_enabled = false;
|
|
delayed_move_time = 0;
|
|
}
|
|
|
|
#endif // DUAL_X_CARRIAGE
|
|
|
|
/**
|
|
* M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
|
|
*/
|
|
inline void gcode_M907() {
|
|
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
|
for (int i=0;i<NUM_AXIS;i++)
|
|
if (code_seen(axis_codes[i])) digipot_current(i, code_value());
|
|
if (code_seen('B')) digipot_current(4, code_value());
|
|
if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
|
|
#endif
|
|
#ifdef MOTOR_CURRENT_PWM_XY_PIN
|
|
if (code_seen('X')) digipot_current(0, code_value());
|
|
#endif
|
|
#ifdef MOTOR_CURRENT_PWM_Z_PIN
|
|
if (code_seen('Z')) digipot_current(1, code_value());
|
|
#endif
|
|
#ifdef MOTOR_CURRENT_PWM_E_PIN
|
|
if (code_seen('E')) digipot_current(2, code_value());
|
|
#endif
|
|
#ifdef DIGIPOT_I2C
|
|
// this one uses actual amps in floating point
|
|
for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
|
|
// for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
|
|
for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
|
|
#endif
|
|
}
|
|
|
|
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
|
|
|
/**
|
|
* M908: Control digital trimpot directly (M908 P<pin> S<current>)
|
|
*/
|
|
inline void gcode_M908() {
|
|
digitalPotWrite(
|
|
code_seen('P') ? code_value() : 0,
|
|
code_seen('S') ? code_value() : 0
|
|
);
|
|
}
|
|
|
|
#endif // DIGIPOTSS_PIN
|
|
|
|
// M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
|
|
inline void gcode_M350() {
|
|
#if defined(X_MS1_PIN) && X_MS1_PIN > -1
|
|
if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
|
|
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
|
|
if(code_seen('B')) microstep_mode(4,code_value());
|
|
microstep_readings();
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
|
|
* S# determines MS1 or MS2, X# sets the pin high/low.
|
|
*/
|
|
inline void gcode_M351() {
|
|
#if defined(X_MS1_PIN) && X_MS1_PIN > -1
|
|
if (code_seen('S')) switch((int)code_value()) {
|
|
case 1:
|
|
for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
|
|
if (code_seen('B')) microstep_ms(4, code_value(), -1);
|
|
break;
|
|
case 2:
|
|
for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
|
|
if (code_seen('B')) microstep_ms(4, -1, code_value());
|
|
break;
|
|
}
|
|
microstep_readings();
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* M999: Restart after being stopped
|
|
*/
|
|
inline void gcode_M999() {
|
|
Stopped = false;
|
|
lcd_reset_alert_level();
|
|
gcode_LastN = Stopped_gcode_LastN;
|
|
FlushSerialRequestResend();
|
|
}
|
|
|
|
inline void gcode_T() {
|
|
tmp_extruder = code_value();
|
|
if (tmp_extruder >= EXTRUDERS) {
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHO("T");
|
|
SERIAL_ECHO(tmp_extruder);
|
|
SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
|
|
}
|
|
else {
|
|
boolean make_move = false;
|
|
if (code_seen('F')) {
|
|
make_move = true;
|
|
next_feedrate = code_value();
|
|
if (next_feedrate > 0.0) feedrate = next_feedrate;
|
|
}
|
|
#if EXTRUDERS > 1
|
|
if (tmp_extruder != active_extruder) {
|
|
// Save current position to return to after applying extruder offset
|
|
memcpy(destination, current_position, sizeof(destination));
|
|
#ifdef DUAL_X_CARRIAGE
|
|
if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
|
|
(delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
|
|
// Park old head: 1) raise 2) move to park position 3) lower
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
|
|
current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
|
|
plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
|
|
current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
|
|
plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
|
|
current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
|
|
st_synchronize();
|
|
}
|
|
|
|
// apply Y & Z extruder offset (x offset is already used in determining home pos)
|
|
current_position[Y_AXIS] = current_position[Y_AXIS] -
|
|
extruder_offset[Y_AXIS][active_extruder] +
|
|
extruder_offset[Y_AXIS][tmp_extruder];
|
|
current_position[Z_AXIS] = current_position[Z_AXIS] -
|
|
extruder_offset[Z_AXIS][active_extruder] +
|
|
extruder_offset[Z_AXIS][tmp_extruder];
|
|
|
|
active_extruder = tmp_extruder;
|
|
|
|
// This function resets the max/min values - the current position may be overwritten below.
|
|
axis_is_at_home(X_AXIS);
|
|
|
|
if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
|
|
current_position[X_AXIS] = inactive_extruder_x_pos;
|
|
inactive_extruder_x_pos = destination[X_AXIS];
|
|
}
|
|
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
|
|
active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
|
|
if (active_extruder == 0 || active_extruder_parked)
|
|
current_position[X_AXIS] = inactive_extruder_x_pos;
|
|
else
|
|
current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
|
|
inactive_extruder_x_pos = destination[X_AXIS];
|
|
extruder_duplication_enabled = false;
|
|
}
|
|
else {
|
|
// record raised toolhead position for use by unpark
|
|
memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
|
|
raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
|
|
active_extruder_parked = true;
|
|
delayed_move_time = 0;
|
|
}
|
|
#else // !DUAL_X_CARRIAGE
|
|
// Offset extruder (only by XY)
|
|
for (int i=X_AXIS; i<=Y_AXIS; i++)
|
|
current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
|
|
// Set the new active extruder and position
|
|
active_extruder = tmp_extruder;
|
|
#endif // !DUAL_X_CARRIAGE
|
|
#ifdef DELTA
|
|
calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
|
|
//sent position to plan_set_position();
|
|
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
|
|
#else
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
#endif
|
|
// Move to the old position if 'F' was in the parameters
|
|
if (make_move && !Stopped) prepare_move();
|
|
}
|
|
|
|
#ifdef EXT_SOLENOID
|
|
st_synchronize();
|
|
disable_all_solenoids();
|
|
enable_solenoid_on_active_extruder();
|
|
#endif // EXT_SOLENOID
|
|
|
|
#endif // EXTRUDERS > 1
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
|
|
SERIAL_PROTOCOLLN((int)active_extruder);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Process Commands and dispatch them to handlers
|
|
*/
|
|
void process_commands() {
|
|
if (code_seen('G')) {
|
|
|
|
int gCode = code_value_long();
|
|
|
|
switch(gCode) {
|
|
|
|
// G0, G1
|
|
case 0:
|
|
case 1:
|
|
gcode_G0_G1();
|
|
break;
|
|
|
|
// G2, G3
|
|
#ifndef SCARA
|
|
case 2: // G2 - CW ARC
|
|
case 3: // G3 - CCW ARC
|
|
gcode_G2_G3(gCode == 2);
|
|
break;
|
|
#endif
|
|
|
|
// G4 Dwell
|
|
case 4:
|
|
gcode_G4();
|
|
break;
|
|
|
|
#ifdef FWRETRACT
|
|
|
|
case 10: // G10: retract
|
|
case 11: // G11: retract_recover
|
|
gcode_G10_G11(gCode == 10);
|
|
break;
|
|
|
|
#endif //FWRETRACT
|
|
|
|
case 28: // G28: Home all axes, one at a time
|
|
gcode_G28();
|
|
break;
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
|
|
gcode_G29();
|
|
break;
|
|
|
|
#ifndef Z_PROBE_SLED
|
|
|
|
case 30: // G30 Single Z Probe
|
|
gcode_G30();
|
|
break;
|
|
|
|
#else // Z_PROBE_SLED
|
|
|
|
case 31: // G31: dock the sled
|
|
case 32: // G32: undock the sled
|
|
dock_sled(gCode == 31);
|
|
break;
|
|
|
|
#endif // Z_PROBE_SLED
|
|
|
|
#endif // ENABLE_AUTO_BED_LEVELING
|
|
|
|
case 90: // G90
|
|
relative_mode = false;
|
|
break;
|
|
case 91: // G91
|
|
relative_mode = true;
|
|
break;
|
|
|
|
case 92: // G92
|
|
gcode_G92();
|
|
break;
|
|
}
|
|
}
|
|
|
|
else if (code_seen('M')) {
|
|
switch( (int)code_value() ) {
|
|
#ifdef ULTIPANEL
|
|
case 0: // M0 - Unconditional stop - Wait for user button press on LCD
|
|
case 1: // M1 - Conditional stop - Wait for user button press on LCD
|
|
gcode_M0_M1();
|
|
break;
|
|
#endif // ULTIPANEL
|
|
|
|
case 17:
|
|
gcode_M17();
|
|
break;
|
|
|
|
#ifdef SDSUPPORT
|
|
|
|
case 20: // M20 - list SD card
|
|
gcode_M20(); break;
|
|
case 21: // M21 - init SD card
|
|
gcode_M21(); break;
|
|
case 22: //M22 - release SD card
|
|
gcode_M22(); break;
|
|
case 23: //M23 - Select file
|
|
gcode_M23(); break;
|
|
case 24: //M24 - Start SD print
|
|
gcode_M24(); break;
|
|
case 25: //M25 - Pause SD print
|
|
gcode_M25(); break;
|
|
case 26: //M26 - Set SD index
|
|
gcode_M26(); break;
|
|
case 27: //M27 - Get SD status
|
|
gcode_M27(); break;
|
|
case 28: //M28 - Start SD write
|
|
gcode_M28(); break;
|
|
case 29: //M29 - Stop SD write
|
|
gcode_M29(); break;
|
|
case 30: //M30 <filename> Delete File
|
|
gcode_M30(); break;
|
|
case 32: //M32 - Select file and start SD print
|
|
gcode_M32(); break;
|
|
case 928: //M928 - Start SD write
|
|
gcode_M928(); break;
|
|
|
|
#endif //SDSUPPORT
|
|
|
|
case 31: //M31 take time since the start of the SD print or an M109 command
|
|
gcode_M31();
|
|
break;
|
|
|
|
case 42: //M42 -Change pin status via gcode
|
|
gcode_M42();
|
|
break;
|
|
|
|
#if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
|
|
case 48: // M48 Z-Probe repeatability
|
|
gcode_M48();
|
|
break;
|
|
#endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
|
|
|
|
case 104: // M104
|
|
gcode_M104();
|
|
break;
|
|
|
|
case 112: // M112 Emergency Stop
|
|
gcode_M112();
|
|
break;
|
|
|
|
case 140: // M140 Set bed temp
|
|
gcode_M140();
|
|
break;
|
|
|
|
case 105: // M105 Read current temperature
|
|
gcode_M105();
|
|
return;
|
|
break;
|
|
|
|
case 109: // M109 Wait for temperature
|
|
gcode_M109();
|
|
break;
|
|
|
|
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
|
case 190: // M190 - Wait for bed heater to reach target.
|
|
gcode_M190();
|
|
break;
|
|
#endif //TEMP_BED_PIN
|
|
|
|
#if defined(FAN_PIN) && FAN_PIN > -1
|
|
case 106: //M106 Fan On
|
|
gcode_M106();
|
|
break;
|
|
case 107: //M107 Fan Off
|
|
gcode_M107();
|
|
break;
|
|
#endif //FAN_PIN
|
|
|
|
#ifdef BARICUDA
|
|
// PWM for HEATER_1_PIN
|
|
#if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
|
|
case 126: // M126 valve open
|
|
gcode_M126();
|
|
break;
|
|
case 127: // M127 valve closed
|
|
gcode_M127();
|
|
break;
|
|
#endif //HEATER_1_PIN
|
|
|
|
// PWM for HEATER_2_PIN
|
|
#if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
|
|
case 128: // M128 valve open
|
|
gcode_M128();
|
|
break;
|
|
case 129: // M129 valve closed
|
|
gcode_M129();
|
|
break;
|
|
#endif //HEATER_2_PIN
|
|
#endif //BARICUDA
|
|
|
|
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
|
|
|
|
case 80: // M80 - Turn on Power Supply
|
|
gcode_M80();
|
|
break;
|
|
|
|
#endif // PS_ON_PIN
|
|
|
|
case 81: // M81 - Turn off Power Supply
|
|
gcode_M81();
|
|
break;
|
|
|
|
case 82:
|
|
gcode_M82();
|
|
break;
|
|
case 83:
|
|
gcode_M83();
|
|
break;
|
|
case 18: //compatibility
|
|
case 84: // M84
|
|
gcode_M18_M84();
|
|
break;
|
|
case 85: // M85
|
|
gcode_M85();
|
|
break;
|
|
case 92: // M92
|
|
gcode_M92();
|
|
break;
|
|
case 115: // M115
|
|
gcode_M115();
|
|
break;
|
|
case 117: // M117 display message
|
|
gcode_M117();
|
|
break;
|
|
case 114: // M114
|
|
gcode_M114();
|
|
break;
|
|
case 120: // M120
|
|
gcode_M120();
|
|
break;
|
|
case 121: // M121
|
|
gcode_M121();
|
|
break;
|
|
case 119: // M119
|
|
gcode_M119();
|
|
break;
|
|
//TODO: update for all axis, use for loop
|
|
|
|
#ifdef BLINKM
|
|
|
|
case 150: // M150
|
|
gcode_M150();
|
|
break;
|
|
|
|
#endif //BLINKM
|
|
|
|
case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
|
|
gcode_M200();
|
|
break;
|
|
case 201: // M201
|
|
gcode_M201();
|
|
break;
|
|
#if 0 // Not used for Sprinter/grbl gen6
|
|
case 202: // M202
|
|
gcode_M202();
|
|
break;
|
|
#endif
|
|
case 203: // M203 max feedrate mm/sec
|
|
gcode_M203();
|
|
break;
|
|
case 204: // M204 acclereration S normal moves T filmanent only moves
|
|
gcode_M204();
|
|
break;
|
|
case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
|
|
gcode_M205();
|
|
break;
|
|
case 206: // M206 additional homing offset
|
|
gcode_M206();
|
|
break;
|
|
|
|
#ifdef DELTA
|
|
case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
|
|
gcode_M665();
|
|
break;
|
|
case 666: // M666 set delta endstop adjustment
|
|
gcode_M666();
|
|
break;
|
|
#endif // DELTA
|
|
|
|
#ifdef FWRETRACT
|
|
case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
|
|
gcode_M207();
|
|
break;
|
|
case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
|
|
gcode_M208();
|
|
break;
|
|
case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
|
|
gcode_M209();
|
|
break;
|
|
#endif // FWRETRACT
|
|
|
|
#if EXTRUDERS > 1
|
|
case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
|
|
gcode_M218();
|
|
break;
|
|
#endif
|
|
|
|
case 220: // M220 S<factor in percent>- set speed factor override percentage
|
|
gcode_M220();
|
|
break;
|
|
|
|
case 221: // M221 S<factor in percent>- set extrude factor override percentage
|
|
gcode_M221();
|
|
break;
|
|
|
|
case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
|
|
gcode_M226();
|
|
break;
|
|
|
|
#if NUM_SERVOS > 0
|
|
case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
|
|
gcode_M280();
|
|
break;
|
|
#endif // NUM_SERVOS > 0
|
|
|
|
#if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
|
|
case 300: // M300 - Play beep tone
|
|
gcode_M300();
|
|
break;
|
|
#endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
|
|
|
|
#ifdef PIDTEMP
|
|
case 301: // M301
|
|
gcode_M301();
|
|
break;
|
|
#endif // PIDTEMP
|
|
|
|
#ifdef PIDTEMPBED
|
|
case 304: // M304
|
|
gcode_M304();
|
|
break;
|
|
#endif // PIDTEMPBED
|
|
|
|
#if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
|
|
case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
|
|
gcode_M240();
|
|
break;
|
|
#endif // CHDK || PHOTOGRAPH_PIN
|
|
|
|
#ifdef DOGLCD
|
|
case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
|
|
gcode_M250();
|
|
break;
|
|
#endif // DOGLCD
|
|
|
|
#ifdef PREVENT_DANGEROUS_EXTRUDE
|
|
case 302: // allow cold extrudes, or set the minimum extrude temperature
|
|
gcode_M302();
|
|
break;
|
|
#endif // PREVENT_DANGEROUS_EXTRUDE
|
|
|
|
case 303: // M303 PID autotune
|
|
gcode_M303();
|
|
break;
|
|
|
|
#ifdef SCARA
|
|
case 360: // M360 SCARA Theta pos1
|
|
if (gcode_M360()) return;
|
|
break;
|
|
case 361: // M361 SCARA Theta pos2
|
|
if (gcode_M361()) return;
|
|
break;
|
|
case 362: // M362 SCARA Psi pos1
|
|
if (gcode_M362()) return;
|
|
break;
|
|
case 363: // M363 SCARA Psi pos2
|
|
if (gcode_M363()) return;
|
|
break;
|
|
case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
|
|
if (gcode_M364()) return;
|
|
break;
|
|
case 365: // M365 Set SCARA scaling for X Y Z
|
|
gcode_M365();
|
|
break;
|
|
#endif // SCARA
|
|
|
|
case 400: // M400 finish all moves
|
|
gcode_M400();
|
|
break;
|
|
|
|
#if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
|
|
case 401:
|
|
gcode_M401();
|
|
break;
|
|
case 402:
|
|
gcode_M402();
|
|
break;
|
|
#endif
|
|
|
|
#ifdef FILAMENT_SENSOR
|
|
case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
|
|
gcode_M404();
|
|
break;
|
|
case 405: //M405 Turn on filament sensor for control
|
|
gcode_M405();
|
|
break;
|
|
case 406: //M406 Turn off filament sensor for control
|
|
gcode_M406();
|
|
break;
|
|
case 407: //M407 Display measured filament diameter
|
|
gcode_M407();
|
|
break;
|
|
#endif // FILAMENT_SENSOR
|
|
|
|
case 500: // M500 Store settings in EEPROM
|
|
gcode_M500();
|
|
break;
|
|
case 501: // M501 Read settings from EEPROM
|
|
gcode_M501();
|
|
break;
|
|
case 502: // M502 Revert to default settings
|
|
gcode_M502();
|
|
break;
|
|
case 503: // M503 print settings currently in memory
|
|
gcode_M503();
|
|
break;
|
|
|
|
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
|
|
case 540:
|
|
gcode_M540();
|
|
break;
|
|
#endif
|
|
|
|
#ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
|
|
case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
|
|
gcode_SET_Z_PROBE_OFFSET();
|
|
break;
|
|
#endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
|
|
|
|
#ifdef FILAMENTCHANGEENABLE
|
|
case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
|
|
gcode_M600();
|
|
break;
|
|
#endif // FILAMENTCHANGEENABLE
|
|
|
|
#ifdef DUAL_X_CARRIAGE
|
|
case 605:
|
|
gcode_M605();
|
|
break;
|
|
#endif // DUAL_X_CARRIAGE
|
|
|
|
case 907: // M907 Set digital trimpot motor current using axis codes.
|
|
gcode_M907();
|
|
break;
|
|
|
|
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
|
case 908: // M908 Control digital trimpot directly.
|
|
gcode_M908();
|
|
break;
|
|
#endif // DIGIPOTSS_PIN
|
|
|
|
case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
|
|
gcode_M350();
|
|
break;
|
|
|
|
case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
|
|
gcode_M351();
|
|
break;
|
|
|
|
case 999: // M999: Restart after being Stopped
|
|
gcode_M999();
|
|
break;
|
|
}
|
|
}
|
|
|
|
else if (code_seen('T')) {
|
|
gcode_T();
|
|
}
|
|
|
|
else {
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
|
|
SERIAL_ECHO(cmdbuffer[bufindr]);
|
|
SERIAL_ECHOLNPGM("\"");
|
|
}
|
|
|
|
ClearToSend();
|
|
}
|
|
|
|
void FlushSerialRequestResend()
|
|
{
|
|
//char cmdbuffer[bufindr][100]="Resend:";
|
|
MYSERIAL.flush();
|
|
SERIAL_PROTOCOLPGM(MSG_RESEND);
|
|
SERIAL_PROTOCOLLN(gcode_LastN + 1);
|
|
ClearToSend();
|
|
}
|
|
|
|
void ClearToSend()
|
|
{
|
|
previous_millis_cmd = millis();
|
|
#ifdef SDSUPPORT
|
|
if(fromsd[bufindr])
|
|
return;
|
|
#endif //SDSUPPORT
|
|
SERIAL_PROTOCOLLNPGM(MSG_OK);
|
|
}
|
|
|
|
void get_coordinates()
|
|
{
|
|
bool seen[4]={false,false,false,false};
|
|
for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
if(code_seen(axis_codes[i]))
|
|
{
|
|
destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
|
|
seen[i]=true;
|
|
}
|
|
else destination[i] = current_position[i]; //Are these else lines really needed?
|
|
}
|
|
if(code_seen('F')) {
|
|
next_feedrate = code_value();
|
|
if(next_feedrate > 0.0) feedrate = next_feedrate;
|
|
}
|
|
}
|
|
|
|
void get_arc_coordinates()
|
|
{
|
|
#ifdef SF_ARC_FIX
|
|
bool relative_mode_backup = relative_mode;
|
|
relative_mode = true;
|
|
#endif
|
|
get_coordinates();
|
|
#ifdef SF_ARC_FIX
|
|
relative_mode=relative_mode_backup;
|
|
#endif
|
|
|
|
if(code_seen('I')) {
|
|
offset[0] = code_value();
|
|
}
|
|
else {
|
|
offset[0] = 0.0;
|
|
}
|
|
if(code_seen('J')) {
|
|
offset[1] = code_value();
|
|
}
|
|
else {
|
|
offset[1] = 0.0;
|
|
}
|
|
}
|
|
|
|
void clamp_to_software_endstops(float target[3])
|
|
{
|
|
if (min_software_endstops) {
|
|
if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
|
|
if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
|
|
|
|
float negative_z_offset = 0;
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
|
|
if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
|
|
#endif
|
|
|
|
if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
|
|
}
|
|
|
|
if (max_software_endstops) {
|
|
if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
|
|
if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
|
|
if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
|
|
}
|
|
}
|
|
|
|
#ifdef DELTA
|
|
void recalc_delta_settings(float radius, float diagonal_rod)
|
|
{
|
|
delta_tower1_x= -SIN_60*radius; // front left tower
|
|
delta_tower1_y= -COS_60*radius;
|
|
delta_tower2_x= SIN_60*radius; // front right tower
|
|
delta_tower2_y= -COS_60*radius;
|
|
delta_tower3_x= 0.0; // back middle tower
|
|
delta_tower3_y= radius;
|
|
delta_diagonal_rod_2= sq(diagonal_rod);
|
|
}
|
|
|
|
void calculate_delta(float cartesian[3])
|
|
{
|
|
delta[X_AXIS] = sqrt(delta_diagonal_rod_2
|
|
- sq(delta_tower1_x-cartesian[X_AXIS])
|
|
- sq(delta_tower1_y-cartesian[Y_AXIS])
|
|
) + cartesian[Z_AXIS];
|
|
delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
|
|
- sq(delta_tower2_x-cartesian[X_AXIS])
|
|
- sq(delta_tower2_y-cartesian[Y_AXIS])
|
|
) + cartesian[Z_AXIS];
|
|
delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
|
|
- sq(delta_tower3_x-cartesian[X_AXIS])
|
|
- sq(delta_tower3_y-cartesian[Y_AXIS])
|
|
) + cartesian[Z_AXIS];
|
|
/*
|
|
SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
|
|
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
|
|
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
|
|
|
|
SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
|
|
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
|
|
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
|
|
*/
|
|
}
|
|
#endif
|
|
|
|
void prepare_move()
|
|
{
|
|
clamp_to_software_endstops(destination);
|
|
previous_millis_cmd = millis();
|
|
|
|
#ifdef SCARA //for now same as delta-code
|
|
|
|
float difference[NUM_AXIS];
|
|
for (int8_t i=0; i < NUM_AXIS; i++) {
|
|
difference[i] = destination[i] - current_position[i];
|
|
}
|
|
|
|
float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
|
|
sq(difference[Y_AXIS]) +
|
|
sq(difference[Z_AXIS]));
|
|
if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
|
|
if (cartesian_mm < 0.000001) { return; }
|
|
float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
|
|
int steps = max(1, int(scara_segments_per_second * seconds));
|
|
//SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
|
|
//SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
|
|
//SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
|
|
for (int s = 1; s <= steps; s++) {
|
|
float fraction = float(s) / float(steps);
|
|
for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
destination[i] = current_position[i] + difference[i] * fraction;
|
|
}
|
|
|
|
|
|
calculate_delta(destination);
|
|
//SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
|
|
//SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
|
|
//SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
|
|
//SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
|
|
//SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
|
//SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
|
|
|
|
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
|
|
destination[E_AXIS], feedrate*feedmultiply/60/100.0,
|
|
active_extruder);
|
|
}
|
|
#endif // SCARA
|
|
|
|
#ifdef DELTA
|
|
float difference[NUM_AXIS];
|
|
for (int8_t i=0; i < NUM_AXIS; i++) {
|
|
difference[i] = destination[i] - current_position[i];
|
|
}
|
|
float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
|
|
sq(difference[Y_AXIS]) +
|
|
sq(difference[Z_AXIS]));
|
|
if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
|
|
if (cartesian_mm < 0.000001) { return; }
|
|
float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
|
|
int steps = max(1, int(delta_segments_per_second * seconds));
|
|
// SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
|
|
// SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
|
|
// SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
|
|
for (int s = 1; s <= steps; s++) {
|
|
float fraction = float(s) / float(steps);
|
|
for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
destination[i] = current_position[i] + difference[i] * fraction;
|
|
}
|
|
calculate_delta(destination);
|
|
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
|
|
destination[E_AXIS], feedrate*feedmultiply/60/100.0,
|
|
active_extruder);
|
|
}
|
|
|
|
#endif // DELTA
|
|
|
|
#ifdef DUAL_X_CARRIAGE
|
|
if (active_extruder_parked)
|
|
{
|
|
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
|
|
{
|
|
// move duplicate extruder into correct duplication position.
|
|
plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
|
|
current_position[E_AXIS], max_feedrate[X_AXIS], 1);
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
st_synchronize();
|
|
extruder_duplication_enabled = true;
|
|
active_extruder_parked = false;
|
|
}
|
|
else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
|
|
{
|
|
if (current_position[E_AXIS] == destination[E_AXIS])
|
|
{
|
|
// this is a travel move - skit it but keep track of current position (so that it can later
|
|
// be used as start of first non-travel move)
|
|
if (delayed_move_time != 0xFFFFFFFFUL)
|
|
{
|
|
memcpy(current_position, destination, sizeof(current_position));
|
|
if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
|
|
raised_parked_position[Z_AXIS] = destination[Z_AXIS];
|
|
delayed_move_time = millis();
|
|
return;
|
|
}
|
|
}
|
|
delayed_move_time = 0;
|
|
// unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
|
|
plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
|
|
current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
|
|
current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
|
|
active_extruder_parked = false;
|
|
}
|
|
}
|
|
#endif //DUAL_X_CARRIAGE
|
|
|
|
#if ! (defined DELTA || defined SCARA)
|
|
// Do not use feedmultiply for E or Z only moves
|
|
if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
}
|
|
else {
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
|
|
}
|
|
#endif // !(DELTA || SCARA)
|
|
|
|
for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
current_position[i] = destination[i];
|
|
}
|
|
}
|
|
|
|
void prepare_arc_move(char isclockwise) {
|
|
float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
|
|
|
|
// Trace the arc
|
|
mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
|
|
|
|
// As far as the parser is concerned, the position is now == target. In reality the
|
|
// motion control system might still be processing the action and the real tool position
|
|
// in any intermediate location.
|
|
for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
current_position[i] = destination[i];
|
|
}
|
|
previous_millis_cmd = millis();
|
|
}
|
|
|
|
#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
|
|
|
|
#if defined(FAN_PIN)
|
|
#if CONTROLLERFAN_PIN == FAN_PIN
|
|
#error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
|
|
#endif
|
|
#endif
|
|
|
|
unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
|
|
unsigned long lastMotorCheck = 0;
|
|
|
|
void controllerFan()
|
|
{
|
|
if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
|
|
{
|
|
lastMotorCheck = millis();
|
|
|
|
if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
|
|
#if EXTRUDERS > 2
|
|
|| !READ(E2_ENABLE_PIN)
|
|
#endif
|
|
#if EXTRUDER > 1
|
|
#if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
|
|
|| !READ(X2_ENABLE_PIN)
|
|
#endif
|
|
|| !READ(E1_ENABLE_PIN)
|
|
#endif
|
|
|| !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
|
|
{
|
|
lastMotor = millis(); //... set time to NOW so the fan will turn on
|
|
}
|
|
|
|
if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
|
|
{
|
|
digitalWrite(CONTROLLERFAN_PIN, 0);
|
|
analogWrite(CONTROLLERFAN_PIN, 0);
|
|
}
|
|
else
|
|
{
|
|
// allows digital or PWM fan output to be used (see M42 handling)
|
|
digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
|
|
analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef SCARA
|
|
void calculate_SCARA_forward_Transform(float f_scara[3])
|
|
{
|
|
// Perform forward kinematics, and place results in delta[3]
|
|
// The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
|
|
|
|
float x_sin, x_cos, y_sin, y_cos;
|
|
|
|
//SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
|
|
//SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
|
|
|
|
x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
|
|
x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
|
|
y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
|
|
y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
|
|
|
|
// SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
|
|
// SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
|
|
// SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
|
|
// SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
|
|
|
|
delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
|
|
delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
|
|
|
|
//SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
|
|
//SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
|
}
|
|
|
|
void calculate_delta(float cartesian[3]){
|
|
//reverse kinematics.
|
|
// Perform reversed kinematics, and place results in delta[3]
|
|
// The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
|
|
|
|
float SCARA_pos[2];
|
|
static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
|
|
|
|
SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
|
|
SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
|
|
|
|
#if (Linkage_1 == Linkage_2)
|
|
SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
|
|
#else
|
|
SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
|
|
#endif
|
|
|
|
SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
|
|
|
|
SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
|
|
SCARA_K2 = Linkage_2 * SCARA_S2;
|
|
|
|
SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
|
|
SCARA_psi = atan2(SCARA_S2,SCARA_C2);
|
|
|
|
delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
|
|
delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
|
|
delta[Z_AXIS] = cartesian[Z_AXIS];
|
|
|
|
/*
|
|
SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
|
|
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
|
|
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
|
|
|
|
SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
|
|
SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
|
|
|
|
SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
|
|
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
|
|
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
|
|
|
|
SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
|
|
SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
|
|
SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
|
|
SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
|
|
SERIAL_ECHOLN(" ");*/
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef TEMP_STAT_LEDS
|
|
static bool blue_led = false;
|
|
static bool red_led = false;
|
|
static uint32_t stat_update = 0;
|
|
|
|
void handle_status_leds(void) {
|
|
float max_temp = 0.0;
|
|
if(millis() > stat_update) {
|
|
stat_update += 500; // Update every 0.5s
|
|
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
|
|
max_temp = max(max_temp, degHotend(cur_extruder));
|
|
max_temp = max(max_temp, degTargetHotend(cur_extruder));
|
|
}
|
|
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
|
max_temp = max(max_temp, degTargetBed());
|
|
max_temp = max(max_temp, degBed());
|
|
#endif
|
|
if((max_temp > 55.0) && (red_led == false)) {
|
|
digitalWrite(STAT_LED_RED, 1);
|
|
digitalWrite(STAT_LED_BLUE, 0);
|
|
red_led = true;
|
|
blue_led = false;
|
|
}
|
|
if((max_temp < 54.0) && (blue_led == false)) {
|
|
digitalWrite(STAT_LED_RED, 0);
|
|
digitalWrite(STAT_LED_BLUE, 1);
|
|
red_led = false;
|
|
blue_led = true;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
|
|
{
|
|
|
|
#if defined(KILL_PIN) && KILL_PIN > -1
|
|
static int killCount = 0; // make the inactivity button a bit less responsive
|
|
const int KILL_DELAY = 10000;
|
|
#endif
|
|
|
|
#if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
|
|
if(card.sdprinting) {
|
|
if(!(READ(FILRUNOUT_PIN))^FIL_RUNOUT_INVERTING)
|
|
filrunout(); }
|
|
#endif
|
|
|
|
#if defined(HOME_PIN) && HOME_PIN > -1
|
|
static int homeDebounceCount = 0; // poor man's debouncing count
|
|
const int HOME_DEBOUNCE_DELAY = 10000;
|
|
#endif
|
|
|
|
|
|
if(buflen < (BUFSIZE-1))
|
|
get_command();
|
|
|
|
if( (millis() - previous_millis_cmd) > max_inactive_time )
|
|
if(max_inactive_time)
|
|
kill();
|
|
if(stepper_inactive_time) {
|
|
if( (millis() - previous_millis_cmd) > stepper_inactive_time )
|
|
{
|
|
if(blocks_queued() == false && ignore_stepper_queue == false) {
|
|
disable_x();
|
|
disable_y();
|
|
disable_z();
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
disable_e3();
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
|
|
if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
|
|
{
|
|
chdkActive = false;
|
|
WRITE(CHDK, LOW);
|
|
}
|
|
#endif
|
|
|
|
#if defined(KILL_PIN) && KILL_PIN > -1
|
|
|
|
// Check if the kill button was pressed and wait just in case it was an accidental
|
|
// key kill key press
|
|
// -------------------------------------------------------------------------------
|
|
if( 0 == READ(KILL_PIN) )
|
|
{
|
|
killCount++;
|
|
}
|
|
else if (killCount > 0)
|
|
{
|
|
killCount--;
|
|
}
|
|
// Exceeded threshold and we can confirm that it was not accidental
|
|
// KILL the machine
|
|
// ----------------------------------------------------------------
|
|
if ( killCount >= KILL_DELAY)
|
|
{
|
|
kill();
|
|
}
|
|
#endif
|
|
|
|
#if defined(HOME_PIN) && HOME_PIN > -1
|
|
// Check to see if we have to home, use poor man's debouncer
|
|
// ---------------------------------------------------------
|
|
if ( 0 == READ(HOME_PIN) )
|
|
{
|
|
if (homeDebounceCount == 0)
|
|
{
|
|
enquecommands_P((PSTR("G28")));
|
|
homeDebounceCount++;
|
|
LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
|
|
}
|
|
else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
|
|
{
|
|
homeDebounceCount++;
|
|
}
|
|
else
|
|
{
|
|
homeDebounceCount = 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
|
|
controllerFan(); //Check if fan should be turned on to cool stepper drivers down
|
|
#endif
|
|
#ifdef EXTRUDER_RUNOUT_PREVENT
|
|
if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
|
|
if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
|
|
{
|
|
bool oldstatus=READ(E0_ENABLE_PIN);
|
|
enable_e0();
|
|
float oldepos=current_position[E_AXIS];
|
|
float oldedes=destination[E_AXIS];
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
|
|
destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
|
|
EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
|
|
current_position[E_AXIS]=oldepos;
|
|
destination[E_AXIS]=oldedes;
|
|
plan_set_e_position(oldepos);
|
|
previous_millis_cmd=millis();
|
|
st_synchronize();
|
|
WRITE(E0_ENABLE_PIN,oldstatus);
|
|
}
|
|
#endif
|
|
#if defined(DUAL_X_CARRIAGE)
|
|
// handle delayed move timeout
|
|
if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
|
|
{
|
|
// travel moves have been received so enact them
|
|
delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
|
|
memcpy(destination,current_position,sizeof(destination));
|
|
prepare_move();
|
|
}
|
|
#endif
|
|
#ifdef TEMP_STAT_LEDS
|
|
handle_status_leds();
|
|
#endif
|
|
check_axes_activity();
|
|
}
|
|
|
|
void kill()
|
|
{
|
|
cli(); // Stop interrupts
|
|
disable_heater();
|
|
|
|
disable_x();
|
|
disable_y();
|
|
disable_z();
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
disable_e3();
|
|
|
|
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
|
|
pinMode(PS_ON_PIN,INPUT);
|
|
#endif
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
|
|
LCD_ALERTMESSAGEPGM(MSG_KILLED);
|
|
|
|
// FMC small patch to update the LCD before ending
|
|
sei(); // enable interrupts
|
|
for ( int i=5; i--; lcd_update())
|
|
{
|
|
delay(200);
|
|
}
|
|
cli(); // disable interrupts
|
|
suicide();
|
|
while(1) { /* Intentionally left empty */ } // Wait for reset
|
|
}
|
|
|
|
#ifdef FILAMENT_RUNOUT_SENSOR
|
|
void filrunout()
|
|
{
|
|
if filrunoutEnqued == false {
|
|
filrunoutEnqued = true;
|
|
enquecommand("M600");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void Stop()
|
|
{
|
|
disable_heater();
|
|
if(Stopped == false) {
|
|
Stopped = true;
|
|
Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
|
|
LCD_MESSAGEPGM(MSG_STOPPED);
|
|
}
|
|
}
|
|
|
|
bool IsStopped() { return Stopped; };
|
|
|
|
#ifdef FAST_PWM_FAN
|
|
void setPwmFrequency(uint8_t pin, int val)
|
|
{
|
|
val &= 0x07;
|
|
switch(digitalPinToTimer(pin))
|
|
{
|
|
|
|
#if defined(TCCR0A)
|
|
case TIMER0A:
|
|
case TIMER0B:
|
|
// TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
|
|
// TCCR0B |= val;
|
|
break;
|
|
#endif
|
|
|
|
#if defined(TCCR1A)
|
|
case TIMER1A:
|
|
case TIMER1B:
|
|
// TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
|
|
// TCCR1B |= val;
|
|
break;
|
|
#endif
|
|
|
|
#if defined(TCCR2)
|
|
case TIMER2:
|
|
case TIMER2:
|
|
TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
|
|
TCCR2 |= val;
|
|
break;
|
|
#endif
|
|
|
|
#if defined(TCCR2A)
|
|
case TIMER2A:
|
|
case TIMER2B:
|
|
TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
|
|
TCCR2B |= val;
|
|
break;
|
|
#endif
|
|
|
|
#if defined(TCCR3A)
|
|
case TIMER3A:
|
|
case TIMER3B:
|
|
case TIMER3C:
|
|
TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
|
|
TCCR3B |= val;
|
|
break;
|
|
#endif
|
|
|
|
#if defined(TCCR4A)
|
|
case TIMER4A:
|
|
case TIMER4B:
|
|
case TIMER4C:
|
|
TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
|
|
TCCR4B |= val;
|
|
break;
|
|
#endif
|
|
|
|
#if defined(TCCR5A)
|
|
case TIMER5A:
|
|
case TIMER5B:
|
|
case TIMER5C:
|
|
TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
|
|
TCCR5B |= val;
|
|
break;
|
|
#endif
|
|
|
|
}
|
|
}
|
|
#endif //FAST_PWM_FAN
|
|
|
|
bool setTargetedHotend(int code){
|
|
tmp_extruder = active_extruder;
|
|
if(code_seen('T')) {
|
|
tmp_extruder = code_value();
|
|
if(tmp_extruder >= EXTRUDERS) {
|
|
SERIAL_ECHO_START;
|
|
switch(code){
|
|
case 104:
|
|
SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
|
|
break;
|
|
case 105:
|
|
SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
|
|
break;
|
|
case 109:
|
|
SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
|
|
break;
|
|
case 218:
|
|
SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
|
|
break;
|
|
case 221:
|
|
SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
|
|
break;
|
|
}
|
|
SERIAL_ECHOLN(tmp_extruder);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
float calculate_volumetric_multiplier(float diameter) {
|
|
if (!volumetric_enabled || diameter == 0) return 1.0;
|
|
float d2 = diameter * 0.5;
|
|
return 1.0 / (M_PI * d2 * d2);
|
|
}
|
|
|
|
void calculate_volumetric_multipliers() {
|
|
for (int i=0; i<EXTRUDERS; i++)
|
|
volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
|
|
}
|