McLighting/Arduino/McLighting/custom_ws2812fx_animations.h
Debashish Sahu 8ff869ce7f bug_fix
- fixed bugs
- Added file for custom WS2812FX animations in custom slots
- Rename varaibles to be char instead of String
- Added LED pixel count and PIN settings to WiFiManager
2019-03-05 00:38:40 -05:00

97 lines
No EOL
3.5 KiB
C

/*
Example of adding the example: https://github.com/kitesurfer1404/WS2812FX/blob/master/examples/ws2812fx_custom_FastLED/ws2812fx_custom_FastLED.ino
as a custom effect
More info on how to create custom aniamtions for WS2812FX: https://github.com/kitesurfer1404/WS2812FX/blob/master/extras/WS2812FX%20Users%20Guide.md#custom-effects
*/
#include <FastLED.h> //https://github.com/FastLED/FastLED
/*
* paste in the Fire2012 code with a small edit at the end which uses the
* setPixelColor() function to copy the color data to the ws2812fx instance.
*/
// Fire2012 by Mark Kriegsman, July 2012
// as part of "Five Elements" shown here: http://youtu.be/knWiGsmgycY
////
// This basic one-dimensional 'fire' simulation works roughly as follows:
// There's a underlying array of 'heat' cells, that model the temperature
// at each point along the line. Every cycle through the simulation,
// four steps are performed:
// 1) All cells cool down a little bit, losing heat to the air
// 2) The heat from each cell drifts 'up' and diffuses a little
// 3) Sometimes randomly new 'sparks' of heat are added at the bottom
// 4) The heat from each cell is rendered as a color into the leds array
// The heat-to-color mapping uses a black-body radiation approximation.
//
// Temperature is in arbitrary units from 0 (cold black) to 255 (white hot).
//
// This simulation scales it self a bit depending on NUM_LEDS; it should look
// "OK" on anywhere from 20 to 100 LEDs without too much tweaking.
//
// I recommend running this simulation at anywhere from 30-100 frames per second,
// meaning an interframe delay of about 10-35 milliseconds.
//
// Looks best on a high-density LED setup (60+ pixels/meter).
//
//
// There are two main parameters you can play with to control the look and
// feel of your fire: COOLING (used in step 1 above), and SPARKING (used
// in step 3 above).
//
// COOLING: How much does the air cool as it rises?
// Less cooling = taller flames. More cooling = shorter flames.
// Default 50, suggested range 20-100
#define COOLING 55
// SPARKING: What chance (out of 255) is there that a new spark will be lit?
// Higher chance = more roaring fire. Lower chance = more flickery fire.
// Default 120, suggested range 50-200.
#define SPARKING 120
bool gReverseDirection = false;
void Fire2012()
{
// Array of temperature readings at each simulation cell
byte heat[WS2812FXStripSettings.stripSize];
// Step 1. Cool down every cell a little
for( int i = 0; i < WS2812FXStripSettings.stripSize; i++) {
heat[i] = qsub8( heat[i], random8(0, ((COOLING * 10) / WS2812FXStripSettings.stripSize) + 2));
}
// Step 2. Heat from each cell drifts 'up' and diffuses a little
for( int k= WS2812FXStripSettings.stripSize- 1; k >= 2; k--) {
heat[k] = (heat[k - 1] + heat[k - 2] + heat[k - 2] ) / 3;
}
// Step 3. Randomly ignite new 'sparks' of heat near the bottom
if( random8() < SPARKING ) {
int y = random8(7);
heat[y] = qadd8( heat[y], random8(160,255) );
}
// Step 4. Map from heat cells to LED colors
for( int j = 0; j < WS2812FXStripSettings.stripSize; j++) {
CRGB color = HeatColor( heat[j]);
int pixelnumber;
if( gReverseDirection ) {
pixelnumber = (WS2812FXStripSettings.stripSize-1) - j;
} else {
pixelnumber = j;
}
strip->setPixelColor(pixelnumber, color.red, color.green, color.blue);
}
}
uint16_t myCustomEffect() {
Fire2012();
return (strip->getSpeed() / WS2812FXStripSettings.stripSize);
}