marlin2_i2/Marlin/src/module/configuration_store.cpp

2138 lines
66 KiB
C++
Raw Normal View History

/**
2016-03-24 19:01:20 +01:00
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
2015-04-26 06:04:54 +02:00
* configuration_store.cpp
*
2017-04-10 04:47:49 +02:00
* Settings and EEPROM storage
*
2015-04-04 01:38:05 +02:00
* IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
* in the functions below, also increment the version number. This makes sure that
* the default values are used whenever there is a change to the data, to prevent
* wrong data being written to the variables.
*
* ALSO: Variables in the Store and Retrieve sections must be in the same order.
* If a feature is disabled, some data must still be written that, when read,
* either sets a Sane Default, or results in No Change to the existing value.
*
*/
2017-12-15 22:03:14 +01:00
#define EEPROM_VERSION "V47"
2015-04-04 01:38:05 +02:00
// Change EEPROM version if these are changed:
#define EEPROM_OFFSET 100
2015-04-04 01:38:05 +02:00
/**
2017-12-15 22:03:14 +01:00
* V47 EEPROM Layout:
*
* 100 Version (char x4)
* 104 EEPROM CRC16 (uint16_t)
*
* 106 E_STEPPERS (uint8_t)
2017-12-01 05:45:17 +01:00
* 107 M92 XYZE planner.axis_steps_per_mm (float x4 ... x8) + 64
* 123 M203 XYZE planner.max_feedrate_mm_s (float x4 ... x8) + 64
* 139 M201 XYZE planner.max_acceleration_mm_per_s2 (uint32_t x4 ... x8) + 64
* 155 M204 P planner.acceleration (float)
* 159 M204 R planner.retract_acceleration (float)
* 163 M204 T planner.travel_acceleration (float)
* 167 M205 S planner.min_feedrate_mm_s (float)
* 171 M205 T planner.min_travel_feedrate_mm_s (float)
* 175 M205 B planner.min_segment_time_us (ulong)
* 179 M205 X planner.max_jerk[X_AXIS] (float)
* 183 M205 Y planner.max_jerk[Y_AXIS] (float)
* 187 M205 Z planner.max_jerk[Z_AXIS] (float)
* 191 M205 E planner.max_jerk[E_AXIS] (float)
* 195 M206 XYZ home_offset (float x3)
2017-12-01 05:45:17 +01:00
* 207 M218 XYZ hotend_offset (float x3 per additional hotend) +16
*
2017-11-07 05:57:05 +01:00
* Global Leveling: 4 bytes
* 219 z_fade_height (float)
*
2017-04-17 01:41:13 +02:00
* MESH_BED_LEVELING: 43 bytes
* 223 M420 S planner.leveling_active (bool)
* 224 mbl.z_offset (float)
* 228 GRID_MAX_POINTS_X (uint8_t)
* 229 GRID_MAX_POINTS_Y (uint8_t)
* 230 G29 S3 XYZ z_values[][] (float x9, up to float x81) +288
*
2017-04-17 01:41:13 +02:00
* HAS_BED_PROBE: 4 bytes
* 266 M851 zprobe_zoffset (float)
2015-03-15 23:18:11 +01:00
*
2017-04-17 01:41:13 +02:00
* ABL_PLANAR: 36 bytes
* 270 planner.bed_level_matrix (matrix_3x3 = float x9)
*
2017-11-07 05:57:05 +01:00
* AUTO_BED_LEVELING_BILINEAR: 46 bytes
* 306 GRID_MAX_POINTS_X (uint8_t)
* 307 GRID_MAX_POINTS_Y (uint8_t)
* 308 bilinear_grid_spacing (int x2)
* 312 G29 L F bilinear_start (int x2)
* 316 z_values[][] (float x9, up to float x256) +988
*
2017-10-13 05:20:02 +02:00
* AUTO_BED_LEVELING_UBL: 2 bytes
2017-12-01 05:45:17 +01:00
* 352 G29 A planner.leveling_active (bool)
* 353 G29 S ubl.storage_slot (int8_t)
*
* DELTA: 44 bytes
2017-12-01 05:45:17 +01:00
* 354 M666 H delta_height (float)
* 358 M666 XYZ delta_endstop_adj (float x3)
* 370 M665 R delta_radius (float)
* 374 M665 L delta_diagonal_rod (float)
* 378 M665 S delta_segments_per_second (float)
* 382 M665 B delta_calibration_radius (float)
* 386 M665 X delta_tower_angle_trim[A] (float)
* 390 M665 Y delta_tower_angle_trim[B] (float)
* 394 M665 Z delta_tower_angle_trim[C] (float)
*
* [XYZ]_DUAL_ENDSTOPS: 12 bytes
2017-12-01 05:45:17 +01:00
* 354 M666 X x_endstop_adj (float)
* 358 M666 Y y_endstop_adj (float)
* 362 M666 Z z_endstop_adj (float)
*
* ULTIPANEL: 6 bytes
2017-12-01 05:45:17 +01:00
* 398 M145 S0 H lcd_preheat_hotend_temp (int x2)
* 402 M145 S0 B lcd_preheat_bed_temp (int x2)
* 406 M145 S0 F lcd_preheat_fan_speed (int x2)
2016-12-10 07:17:49 +01:00
*
* PIDTEMP: 82 bytes
2017-12-01 05:45:17 +01:00
* 410 M301 E0 PIDC Kp[0], Ki[0], Kd[0], Kc[0] (float x4)
* 426 M301 E1 PIDC Kp[1], Ki[1], Kd[1], Kc[1] (float x4)
* 442 M301 E2 PIDC Kp[2], Ki[2], Kd[2], Kc[2] (float x4)
* 458 M301 E3 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
* 474 M301 E4 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
* 490 M301 L lpq_len (int)
*
* PIDTEMPBED: 12 bytes
2017-12-01 05:45:17 +01:00
* 492 M304 PID bedKp, .bedKi, .bedKd (float x3)
2015-04-04 01:38:05 +02:00
*
2016-12-10 07:17:49 +01:00
* DOGLCD: 2 bytes
2017-12-01 05:45:17 +01:00
* 504 M250 C lcd_contrast (uint16_t)
*
* FWRETRACT: 33 bytes
2017-12-01 05:45:17 +01:00
* 506 M209 S autoretract_enabled (bool)
* 507 M207 S retract_length (float)
* 511 M207 F retract_feedrate_mm_s (float)
* 515 M207 Z retract_zlift (float)
* 519 M208 S retract_recover_length (float)
* 523 M208 F retract_recover_feedrate_mm_s (float)
* 527 M207 W swap_retract_length (float)
* 531 M208 W swap_retract_recover_length (float)
* 535 M208 R swap_retract_recover_feedrate_mm_s (float)
*
* Volumetric Extrusion: 21 bytes
2017-12-01 05:45:17 +01:00
* 539 M200 D parser.volumetric_enabled (bool)
* 540 M200 T D planner.filament_size (float x5) (T0..3)
*
* HAS_TRINAMIC: 22 bytes
2017-12-01 05:45:17 +01:00
* 560 M906 X Stepper X current (uint16_t)
* 562 M906 Y Stepper Y current (uint16_t)
* 564 M906 Z Stepper Z current (uint16_t)
* 566 M906 X2 Stepper X2 current (uint16_t)
* 568 M906 Y2 Stepper Y2 current (uint16_t)
* 570 M906 Z2 Stepper Z2 current (uint16_t)
* 572 M906 E0 Stepper E0 current (uint16_t)
* 574 M906 E1 Stepper E1 current (uint16_t)
* 576 M906 E2 Stepper E2 current (uint16_t)
* 578 M906 E3 Stepper E3 current (uint16_t)
* 580 M906 E4 Stepper E4 current (uint16_t)
*
2017-12-15 22:03:14 +01:00
* SENSORLESS HOMING 4 bytes
* 582 M914 X Stepper X and X2 threshold (int16_t)
* 584 M914 Y Stepper Y and Y2 threshold (int16_t)
2017-12-15 22:03:14 +01:00
*
* LIN_ADVANCE: 8 bytes
* 586 M900 K extruder_advance_k (float)
* 590 M900 WHD advance_ed_ratio (float)
*
* HAS_MOTOR_CURRENT_PWM:
* 594 M907 X Stepper XY current (uint32_t)
* 598 M907 Z Stepper Z current (uint32_t)
* 602 M907 E Stepper E current (uint32_t)
*
2017-11-04 22:36:41 +01:00
* CNC_COORDINATE_SYSTEMS 108 bytes
* 606 G54-G59.3 coordinate_system (float x 27)
2017-11-04 22:36:41 +01:00
*
2017-12-01 23:42:23 +01:00
* SKEW_CORRECTION: 12 bytes
* 714 M852 I planner.xy_skew_factor (float)
* 718 M852 J planner.xz_skew_factor (float)
* 722 M852 K planner.yz_skew_factor (float)
2017-12-01 23:42:23 +01:00
*
* 726 Minimum end-point
* 2255 (726 + 208 + 36 + 9 + 288 + 988) Maximum end-point
*
* ========================================================================
* meshes_begin (between max and min end-point, directly above)
* -- MESHES --
* meshes_end
* -- MAT (Mesh Allocation Table) -- 128 bytes (placeholder size)
* mat_end = E2END (0xFFF)
*
*/
2017-04-10 04:47:49 +02:00
#include "configuration_store.h"
MarlinSettings settings;
#include "endstops.h"
#include "planner.h"
#include "stepper.h"
2017-09-06 13:28:32 +02:00
#include "temperature.h"
#include "../lcd/ultralcd.h"
#include "../core/language.h"
#include "../Marlin.h"
2017-09-16 18:41:12 +02:00
#include "../gcode/parser.h"
2017-05-20 10:03:08 +02:00
2017-09-08 22:35:25 +02:00
#if HAS_LEVELING
#include "../feature/bedlevel/bedlevel.h"
#endif
2017-09-06 13:28:32 +02:00
#if HAS_BED_PROBE
#include "../module/probe.h"
#endif
2015-03-15 23:18:11 +01:00
#if ENABLED(HAVE_TMC2130)
#include "stepper_indirection.h"
#endif
2017-09-06 13:28:32 +02:00
#if ENABLED(FWRETRACT)
#include "../feature/fwretract.h"
2017-03-18 16:15:54 +01:00
#endif
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
float new_z_fade_height;
#endif
/**
* Post-process after Retrieve or Reset
*/
2017-04-10 04:47:49 +02:00
void MarlinSettings::postprocess() {
2017-12-11 05:57:24 +01:00
const float oldpos[] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
// steps per s2 needs to be updated to agree with units per s2
planner.reset_acceleration_rates();
// Make sure delta kinematics are updated before refreshing the
// planner position so the stepper counts will be set correctly.
#if ENABLED(DELTA)
2017-11-08 10:07:17 +01:00
recalc_delta_settings();
#endif
#if ENABLED(PIDTEMP)
thermalManager.updatePID();
#endif
#if DISABLED(NO_VOLUMETRICS)
planner.calculate_volumetric_multipliers();
2017-12-27 03:04:39 +01:00
#else
for (uint8_t i = COUNT(planner.e_factor); i--;)
planner.refresh_e_factor(i);
#endif
#if HAS_HOME_OFFSET || ENABLED(DUAL_X_CARRIAGE)
2017-03-05 01:01:33 +01:00
// Software endstops depend on home_offset
LOOP_XYZ(i) update_software_endstops((AxisEnum)i);
#endif
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
set_z_fade_height(new_z_fade_height, false); // false = no report
#endif
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
refresh_bed_level();
//set_bed_leveling_enabled(leveling_is_on);
#endif
#if HAS_MOTOR_CURRENT_PWM
stepper.refresh_motor_power();
#endif
2017-09-29 15:03:28 +02:00
#if ENABLED(FWRETRACT)
fwretract.refresh_autoretract();
#endif
2017-12-20 02:11:07 +01:00
// Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
// and init stepper.count[], planner.position[] with current_position
planner.refresh_positioning();
2017-11-04 22:36:41 +01:00
// Various factors can change the current position
if (memcmp(oldpos, current_position, sizeof(oldpos)))
report_current_position();
}
#if ENABLED(EEPROM_SETTINGS)
2017-09-06 13:28:32 +02:00
#include "../HAL/persistent_store_api.h"
#define DUMMY_PID_VALUE 3000.0f
#define EEPROM_START() int eeprom_index = EEPROM_OFFSET; HAL::PersistentStore::access_start()
#define EEPROM_FINISH() HAL::PersistentStore::access_finish()
#define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
#define EEPROM_WRITE(VAR) HAL::PersistentStore::write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
#define EEPROM_READ(VAR) HAL::PersistentStore::read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
2017-06-09 17:51:23 +02:00
#define EEPROM_ASSERT(TST,ERR) if (!(TST)) do{ SERIAL_ERROR_START(); SERIAL_ERRORLNPGM(ERR); eeprom_read_error = true; }while(0)
2016-12-09 13:13:44 +01:00
const char version[4] = EEPROM_VERSION;
bool MarlinSettings::eeprom_error;
2017-04-10 04:47:49 +02:00
#if ENABLED(AUTO_BED_LEVELING_UBL)
int16_t MarlinSettings::meshes_begin;
#endif
2016-12-09 13:13:44 +01:00
2016-10-29 01:55:42 +02:00
/**
* M500 - Store Configuration
*/
2017-04-10 04:47:49 +02:00
bool MarlinSettings::save() {
2016-10-29 01:55:42 +02:00
float dummy = 0.0f;
char ver[4] = "000";
uint16_t working_crc = 0;
2016-10-29 01:55:42 +02:00
EEPROM_START();
eeprom_error = false;
[2.0.x] Multiple updates to STM32F1 HAL (#8733) * STM32F1 HAL Adding files for STM32F1 HAL based on libmaple/stm32duino core. Current persistent_store uses cardreader changes to be sent in separate commit, but could be changed to use i2c eeprom. There is another persistent_store implementation that uses the MCU flash memory to emulate eeprom Adding readme with some information about the stm32 HAL. * Switch to Timer4 to avoid a hard reset on STM32F103C6 boards On bluepill STM32F103C6 boards, using Timer5 results in a error() vector call. Switch to 4 since these are both general purpose, 16 bit timers. * Add support for EEPROM emulation using Flash Some low end machines doe not have EEPROM support. Simulate it using the last two pages of flash. Flash does not allow rewrite between erases, so skip writing the working version if that's enabled. * Basic Pins for a malyan M200 This is a work in progress to go hand in hand with the STM32 work. * Add support for ADC with DMA. This work has exposed a problem with the pin enumerations in STM boards vs what marlin expects (i.e, try defining PA0 as a temp pin). The hack can be removed with we go to fastio completely. To see this work, set something in adc_pins to a value like PA0 and connect your pullup resistor'd thermistor. * Missing file - change HAL_adc_init to actually do something We have an actual ADC init function now. * Remove pinmode hack Remove the pin mode hack that I was using to init PA0. Updated Readme.md * Several changes to timers and GPIO Faster GPIO, and faster timer functions by accesing registers and libmaple. Still more changes pending for the Timer's code to skip using the HardwareTimer class altogether. Switch all enums to be within #defines This change allows a user to have, for instance, TEMP_4 and TEMP_BED definied but nothing else. The enums which are not defined move "out", allowing the first ones to take the slots in the enum, and since the array is sized on ADC_PIN_COUNT, we always have the right size data and in order. * Update Malyan M200 pins Update Malyan M200 pins with correct fan values. * Test all pins on actual hardware, update definitions Some of the pin definitions were from knowlege base/pdfs. Now they've been tested against actual hardware. This should be very close to final. * Update HAL_timers_Stm32f1.cpp * Add sample configurations for Malyan M200 Add sample configuration for Malyan M200 without bed leveling, and move fan to auto cool E0 since this printer by default has only one fan. Choose the timer based on MCU defintion. Timer5 is not valid on C8/CB class boards, so use Timer4 for the step timer. readme.md update * Updates to timers, and some stm32 boards definitiions * Correct pin toggle macro. * Remove duplicated Malyan M200 entry from pins.h * Update configuration_store.cpp * Formatting, indentation * Formatting in HAL_Stm32f1.cpp
2017-12-11 06:12:45 +01:00
#if ENABLED(FLASH_EEPROM_EMULATION)
EEPROM_SKIP(ver); // Flash doesn't allow rewriting without erase
#else
EEPROM_WRITE(ver); // invalidate data first
#endif
EEPROM_SKIP(working_crc); // Skip the checksum slot
2016-06-30 03:12:23 +02:00
working_crc = 0; // clear before first "real data"
2016-07-24 19:19:49 +02:00
2016-12-16 06:15:12 +01:00
const uint8_t esteppers = COUNT(planner.axis_steps_per_mm) - XYZ;
EEPROM_WRITE(esteppers);
2016-10-29 01:55:42 +02:00
EEPROM_WRITE(planner.axis_steps_per_mm);
EEPROM_WRITE(planner.max_feedrate_mm_s);
EEPROM_WRITE(planner.max_acceleration_mm_per_s2);
2016-10-29 01:55:42 +02:00
EEPROM_WRITE(planner.acceleration);
EEPROM_WRITE(planner.retract_acceleration);
EEPROM_WRITE(planner.travel_acceleration);
EEPROM_WRITE(planner.min_feedrate_mm_s);
EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
EEPROM_WRITE(planner.min_segment_time_us);
2016-10-29 01:55:42 +02:00
EEPROM_WRITE(planner.max_jerk);
#if !HAS_HOME_OFFSET
const float home_offset[XYZ] = { 0 };
#endif
EEPROM_WRITE(home_offset);
#if HOTENDS > 1
// Skip hotend 0 which must be 0
for (uint8_t e = 1; e < HOTENDS; e++)
2016-10-29 01:55:42 +02:00
LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
#endif
//
// Global Leveling
//
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
const float zfh = planner.z_fade_height;
#else
const float zfh = 10.0;
#endif
EEPROM_WRITE(zfh);
2016-12-10 07:17:49 +01:00
//
// Mesh Bed Leveling
//
#if ENABLED(MESH_BED_LEVELING)
2016-10-29 01:55:42 +02:00
// Compile time test that sizeof(mbl.z_values) is as expected
static_assert(
2017-05-12 06:22:35 +02:00
sizeof(mbl.z_values) == GRID_MAX_POINTS * sizeof(mbl.z_values[0][0]),
"MBL Z array is the wrong size."
);
const uint8_t mesh_num_x = GRID_MAX_POINTS_X, mesh_num_y = GRID_MAX_POINTS_Y;
EEPROM_WRITE(mbl.has_mesh);
2016-10-29 01:55:42 +02:00
EEPROM_WRITE(mbl.z_offset);
EEPROM_WRITE(mesh_num_x);
EEPROM_WRITE(mesh_num_y);
EEPROM_WRITE(mbl.z_values);
#else // For disabled MBL write a default mesh
2016-12-14 08:44:39 +01:00
const bool leveling_is_on = false;
2016-10-29 01:55:42 +02:00
dummy = 0.0f;
2016-12-14 08:44:39 +01:00
const uint8_t mesh_num_x = 3, mesh_num_y = 3;
EEPROM_WRITE(leveling_is_on);
2016-12-10 07:17:49 +01:00
EEPROM_WRITE(dummy); // z_offset
2016-10-29 01:55:42 +02:00
EEPROM_WRITE(mesh_num_x);
EEPROM_WRITE(mesh_num_y);
2016-12-10 07:17:49 +01:00
for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy);
2015-04-27 06:06:04 +02:00
#endif // MESH_BED_LEVELING
2015-03-15 23:18:11 +01:00
2016-06-15 03:05:20 +02:00
#if !HAS_BED_PROBE
const float zprobe_zoffset = 0;
#endif
2016-10-29 01:55:42 +02:00
EEPROM_WRITE(zprobe_zoffset);
2016-12-14 08:50:06 +01:00
//
// Planar Bed Leveling matrix
//
#if ABL_PLANAR
EEPROM_WRITE(planner.bed_level_matrix);
#else
dummy = 0.0;
for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
#endif
2016-12-10 07:17:49 +01:00
//
// Bilinear Auto Bed Leveling
//
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Compile time test that sizeof(z_values) is as expected
static_assert(
2017-05-12 06:22:35 +02:00
sizeof(z_values) == GRID_MAX_POINTS * sizeof(z_values[0][0]),
"Bilinear Z array is the wrong size."
);
const uint8_t grid_max_x = GRID_MAX_POINTS_X, grid_max_y = GRID_MAX_POINTS_Y;
2016-12-10 07:17:49 +01:00
EEPROM_WRITE(grid_max_x); // 1 byte
EEPROM_WRITE(grid_max_y); // 1 byte
EEPROM_WRITE(bilinear_grid_spacing); // 2 ints
EEPROM_WRITE(bilinear_start); // 2 ints
EEPROM_WRITE(z_values); // 9-256 floats
2016-12-10 07:17:49 +01:00
#else
// For disabled Bilinear Grid write an empty 3x3 grid
const uint8_t grid_max_x = 3, grid_max_y = 3;
const int bilinear_start[2] = { 0 }, bilinear_grid_spacing[2] = { 0 };
dummy = 0.0f;
EEPROM_WRITE(grid_max_x);
EEPROM_WRITE(grid_max_y);
EEPROM_WRITE(bilinear_grid_spacing);
EEPROM_WRITE(bilinear_start);
for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy);
#endif // AUTO_BED_LEVELING_BILINEAR
#if ENABLED(AUTO_BED_LEVELING_UBL)
EEPROM_WRITE(planner.leveling_active);
2017-10-14 04:56:27 +02:00
EEPROM_WRITE(ubl.storage_slot);
#else
2017-05-16 09:34:36 +02:00
const bool ubl_active = false;
const int8_t storage_slot = -1;
EEPROM_WRITE(ubl_active);
EEPROM_WRITE(storage_slot);
2017-05-09 19:35:43 +02:00
#endif // AUTO_BED_LEVELING_UBL
2017-12-01 05:45:17 +01:00
// 11 floats for DELTA / [XYZ]_DUAL_ENDSTOPS
#if ENABLED(DELTA)
EEPROM_WRITE(delta_height); // 1 float
2017-09-24 09:18:15 +02:00
EEPROM_WRITE(delta_endstop_adj); // 3 floats
2016-10-29 01:55:42 +02:00
EEPROM_WRITE(delta_radius); // 1 float
EEPROM_WRITE(delta_diagonal_rod); // 1 float
EEPROM_WRITE(delta_segments_per_second); // 1 float
EEPROM_WRITE(delta_calibration_radius); // 1 float
2017-09-24 09:18:15 +02:00
EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
#elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
// Write dual endstops in X, Y, Z order. Unused = 0.0
dummy = 0.0f;
#if ENABLED(X_DUAL_ENDSTOPS)
EEPROM_WRITE(endstops.x_endstop_adj); // 1 float
#else
EEPROM_WRITE(dummy);
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
EEPROM_WRITE(endstops.y_endstop_adj); // 1 float
#else
EEPROM_WRITE(dummy);
#endif
#if ENABLED(Z_DUAL_ENDSTOPS)
EEPROM_WRITE(endstops.z_endstop_adj); // 1 float
#else
EEPROM_WRITE(dummy);
#endif
2017-12-01 05:45:17 +01:00
for (uint8_t q = 8; q--;) EEPROM_WRITE(dummy);
#else
dummy = 0.0f;
2017-12-01 05:45:17 +01:00
for (uint8_t q = 11; q--;) EEPROM_WRITE(dummy);
#endif
#if DISABLED(ULTIPANEL)
2017-06-06 00:41:38 +02:00
constexpr int lcd_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
lcd_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED },
lcd_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
#endif
2016-10-29 01:55:42 +02:00
EEPROM_WRITE(lcd_preheat_hotend_temp);
EEPROM_WRITE(lcd_preheat_bed_temp);
EEPROM_WRITE(lcd_preheat_fan_speed);
2016-10-29 01:55:42 +02:00
for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
#if ENABLED(PIDTEMP)
if (e < HOTENDS) {
EEPROM_WRITE(PID_PARAM(Kp, e));
EEPROM_WRITE(PID_PARAM(Ki, e));
EEPROM_WRITE(PID_PARAM(Kd, e));
#if ENABLED(PID_EXTRUSION_SCALING)
2016-10-29 01:55:42 +02:00
EEPROM_WRITE(PID_PARAM(Kc, e));
#else
2016-10-29 01:55:42 +02:00
dummy = 1.0f; // 1.0 = default kc
EEPROM_WRITE(dummy);
#endif
}
2016-10-29 01:55:42 +02:00
else
#endif // !PIDTEMP
{
dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
EEPROM_WRITE(dummy); // Kp
dummy = 0.0f;
for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc
}
2016-10-29 01:55:42 +02:00
} // Hotends Loop
#if DISABLED(PID_EXTRUSION_SCALING)
2016-10-29 01:55:42 +02:00
int lpq_len = 20;
2015-08-31 04:04:30 +02:00
#endif
2016-10-29 01:55:42 +02:00
EEPROM_WRITE(lpq_len);
#if DISABLED(PIDTEMPBED)
dummy = DUMMY_PID_VALUE;
for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
2016-04-29 03:18:13 +02:00
#else
2016-10-29 01:55:42 +02:00
EEPROM_WRITE(thermalManager.bedKp);
EEPROM_WRITE(thermalManager.bedKi);
EEPROM_WRITE(thermalManager.bedKd);
2015-04-04 01:38:05 +02:00
#endif
2016-05-31 20:47:02 +02:00
#if !HAS_LCD_CONTRAST
2017-05-21 02:54:23 +02:00
const uint16_t lcd_contrast = 32;
#endif
2016-10-29 01:55:42 +02:00
EEPROM_WRITE(lcd_contrast);
#if DISABLED(FWRETRACT)
const bool autoretract_enabled = false;
2017-09-08 05:40:32 +02:00
const float autoretract_defaults[] = { 3, 45, 0, 0, 0, 13, 0, 8 };
EEPROM_WRITE(autoretract_enabled);
EEPROM_WRITE(autoretract_defaults);
#else
EEPROM_WRITE(fwretract.autoretract_enabled);
EEPROM_WRITE(fwretract.retract_length);
EEPROM_WRITE(fwretract.retract_feedrate_mm_s);
EEPROM_WRITE(fwretract.retract_zlift);
EEPROM_WRITE(fwretract.retract_recover_length);
EEPROM_WRITE(fwretract.retract_recover_feedrate_mm_s);
EEPROM_WRITE(fwretract.swap_retract_length);
EEPROM_WRITE(fwretract.swap_retract_recover_length);
EEPROM_WRITE(fwretract.swap_retract_recover_feedrate_mm_s);
#endif
//
// Volumetric & Filament Size
//
#if DISABLED(NO_VOLUMETRICS)
EEPROM_WRITE(parser.volumetric_enabled);
// Save filament sizes
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
if (q < COUNT(planner.filament_size)) dummy = planner.filament_size[q];
EEPROM_WRITE(dummy);
}
#endif
2017-12-15 22:03:14 +01:00
// Save TMC2130 or TMC2208 Configuration, and placeholder values
uint16_t val;
2017-12-15 22:03:14 +01:00
#if HAS_TRINAMIC
#if X_IS_TRINAMIC
val = stepperX.getCurrent();
#else
val = 0;
#endif
EEPROM_WRITE(val);
2017-12-15 22:03:14 +01:00
#if Y_IS_TRINAMIC
val = stepperY.getCurrent();
#else
val = 0;
#endif
EEPROM_WRITE(val);
2017-12-15 22:03:14 +01:00
#if Z_IS_TRINAMIC
val = stepperZ.getCurrent();
#else
val = 0;
#endif
EEPROM_WRITE(val);
2017-12-15 22:03:14 +01:00
#if X2_IS_TRINAMIC
val = stepperX2.getCurrent();
#else
val = 0;
#endif
EEPROM_WRITE(val);
2017-12-15 22:03:14 +01:00
#if Y2_IS_TRINAMIC
val = stepperY2.getCurrent();
#else
val = 0;
#endif
EEPROM_WRITE(val);
2017-12-15 22:03:14 +01:00
#if Z2_IS_TRINAMIC
val = stepperZ2.getCurrent();
#else
val = 0;
#endif
EEPROM_WRITE(val);
2017-12-15 22:03:14 +01:00
#if E0_IS_TRINAMIC
val = stepperE0.getCurrent();
#else
val = 0;
#endif
EEPROM_WRITE(val);
2017-12-15 22:03:14 +01:00
#if E1_IS_TRINAMIC
val = stepperE1.getCurrent();
#else
val = 0;
#endif
EEPROM_WRITE(val);
2017-12-15 22:03:14 +01:00
#if E2_IS_TRINAMIC
val = stepperE2.getCurrent();
#else
val = 0;
#endif
EEPROM_WRITE(val);
2017-12-15 22:03:14 +01:00
#if E3_IS_TRINAMIC
val = stepperE3.getCurrent();
#else
val = 0;
#endif
EEPROM_WRITE(val);
2017-12-15 22:03:14 +01:00
#if E4_IS_TRINAMIC
val = stepperE4.getCurrent();
#else
val = 0;
#endif
EEPROM_WRITE(val);
#else
val = 0;
for (uint8_t q = 11; q--;) EEPROM_WRITE(val);
#endif
2017-12-15 22:03:14 +01:00
//
// TMC2130 Sensorless homing threshold
//
int16_t thrs;
#if ENABLED(SENSORLESS_HOMING)
#if ENABLED(X_IS_TMC2130)
thrs = stepperX.sgt();
#else
thrs = 0;
#endif
EEPROM_WRITE(thrs);
#if ENABLED(Y_IS_TMC2130)
thrs = stepperY.sgt();
#else
thrs = 0;
#endif
EEPROM_WRITE(thrs);
#else
thrs = 0;
for (uint8_t q = 2; q--;) EEPROM_WRITE(thrs);
#endif
//
// Linear Advance
//
#if ENABLED(LIN_ADVANCE)
EEPROM_WRITE(planner.extruder_advance_k);
EEPROM_WRITE(planner.advance_ed_ratio);
#else
dummy = 0.0f;
EEPROM_WRITE(dummy);
EEPROM_WRITE(dummy);
#endif
#if HAS_MOTOR_CURRENT_PWM
for (uint8_t q = 3; q--;) EEPROM_WRITE(stepper.motor_current_setting[q]);
#else
const uint32_t dummyui32 = 0;
for (uint8_t q = 3; q--;) EEPROM_WRITE(dummyui32);
#endif
2017-12-01 23:42:23 +01:00
//
// CNC Coordinate Systems
//
2017-11-04 22:36:41 +01:00
#if ENABLED(CNC_COORDINATE_SYSTEMS)
EEPROM_WRITE(coordinate_system); // 27 floats
#else
dummy = 0.0f;
for (uint8_t q = 27; q--;) EEPROM_WRITE(dummy);
#endif
2017-12-01 23:42:23 +01:00
//
// Skew correction factors
//
#if ENABLED(SKEW_CORRECTION)
EEPROM_WRITE(planner.xy_skew_factor);
EEPROM_WRITE(planner.xz_skew_factor);
EEPROM_WRITE(planner.yz_skew_factor);
#else
dummy = 0.0f;
for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
#endif
if (!eeprom_error) {
2017-09-23 15:31:51 +02:00
#if ENABLED(EEPROM_CHITCHAT)
const int eeprom_size = eeprom_index;
#endif
2016-10-29 01:55:42 +02:00
const uint16_t final_crc = working_crc;
2017-05-11 16:48:16 +02:00
// Write the EEPROM header
eeprom_index = EEPROM_OFFSET;
2017-05-11 16:48:16 +02:00
EEPROM_WRITE(version);
EEPROM_WRITE(final_crc);
2016-10-29 01:55:42 +02:00
// Report storage size
2017-07-02 04:48:18 +02:00
#if ENABLED(EEPROM_CHITCHAT)
SERIAL_ECHO_START();
SERIAL_ECHOPAIR("Settings Stored (", eeprom_size - (EEPROM_OFFSET));
SERIAL_ECHOPAIR(" bytes; crc ", (uint32_t)final_crc);
2017-07-02 04:48:18 +02:00
SERIAL_ECHOLNPGM(")");
#endif
}
EEPROM_FINISH();
#if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
2017-10-14 04:56:27 +02:00
if (ubl.storage_slot >= 0)
store_mesh(ubl.storage_slot);
2017-03-18 16:15:54 +01:00
#endif
return !eeprom_error;
2016-10-29 01:55:42 +02:00
}
/**
* M501 - Retrieve Configuration
*/
2017-04-10 04:47:49 +02:00
bool MarlinSettings::load() {
uint16_t working_crc = 0;
2016-10-29 01:55:42 +02:00
EEPROM_START();
char stored_ver[4];
EEPROM_READ(stored_ver);
uint16_t stored_crc;
EEPROM_READ(stored_crc);
2016-10-29 01:55:42 +02:00
// Version has to match or defaults are used
2016-10-29 01:55:42 +02:00
if (strncmp(version, stored_ver, 3) != 0) {
if (stored_ver[0] != 'V') {
stored_ver[0] = '?';
stored_ver[1] = '\0';
}
2017-07-02 04:48:18 +02:00
#if ENABLED(EEPROM_CHITCHAT)
SERIAL_ECHO_START();
SERIAL_ECHOPGM("EEPROM version mismatch ");
SERIAL_ECHOPAIR("(EEPROM=", stored_ver);
SERIAL_ECHOLNPGM(" Marlin=" EEPROM_VERSION ")");
#endif
2017-04-10 04:47:49 +02:00
reset();
2016-06-30 03:12:23 +02:00
}
2016-10-29 01:55:42 +02:00
else {
float dummy = 0;
bool dummyb;
working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
2016-10-29 01:55:42 +02:00
// Number of esteppers may change
uint8_t esteppers;
EEPROM_READ(esteppers);
2017-11-04 21:34:24 +01:00
//
// Planner Motion
//
// Get only the number of E stepper parameters previously stored
// Any steppers added later are set to their defaults
const float def1[] = DEFAULT_AXIS_STEPS_PER_UNIT, def2[] = DEFAULT_MAX_FEEDRATE;
const uint32_t def3[] = DEFAULT_MAX_ACCELERATION;
float tmp1[XYZ + esteppers], tmp2[XYZ + esteppers];
uint32_t tmp3[XYZ + esteppers];
EEPROM_READ(tmp1);
EEPROM_READ(tmp2);
EEPROM_READ(tmp3);
LOOP_XYZE_N(i) {
planner.axis_steps_per_mm[i] = i < XYZ + esteppers ? tmp1[i] : def1[i < COUNT(def1) ? i : COUNT(def1) - 1];
planner.max_feedrate_mm_s[i] = i < XYZ + esteppers ? tmp2[i] : def2[i < COUNT(def2) ? i : COUNT(def2) - 1];
planner.max_acceleration_mm_per_s2[i] = i < XYZ + esteppers ? tmp3[i] : def3[i < COUNT(def3) ? i : COUNT(def3) - 1];
}
2016-10-29 01:55:42 +02:00
EEPROM_READ(planner.acceleration);
EEPROM_READ(planner.retract_acceleration);
EEPROM_READ(planner.travel_acceleration);
EEPROM_READ(planner.min_feedrate_mm_s);
EEPROM_READ(planner.min_travel_feedrate_mm_s);
EEPROM_READ(planner.min_segment_time_us);
2016-10-29 01:55:42 +02:00
EEPROM_READ(planner.max_jerk);
2017-03-05 01:01:33 +01:00
2017-11-04 21:34:24 +01:00
//
// Home Offset (M206)
//
#if !HAS_HOME_OFFSET
2017-03-05 01:01:33 +01:00
float home_offset[XYZ];
#endif
2016-10-29 01:55:42 +02:00
EEPROM_READ(home_offset);
2017-11-04 21:34:24 +01:00
//
// Hotend Offsets, if any
//
2016-10-29 01:55:42 +02:00
#if HOTENDS > 1
// Skip hotend 0 which must be 0
for (uint8_t e = 1; e < HOTENDS; e++)
LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
#endif
//
// Global Leveling
//
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
EEPROM_READ(new_z_fade_height);
#else
EEPROM_READ(dummy);
#endif
2016-12-10 07:17:49 +01:00
//
// Mesh (Manual) Bed Leveling
//
2016-12-14 08:44:39 +01:00
bool leveling_is_on;
uint8_t mesh_num_x, mesh_num_y;
EEPROM_READ(leveling_is_on);
2016-10-29 01:55:42 +02:00
EEPROM_READ(dummy);
EEPROM_READ(mesh_num_x);
EEPROM_READ(mesh_num_y);
2016-12-14 08:44:39 +01:00
2016-10-29 01:55:42 +02:00
#if ENABLED(MESH_BED_LEVELING)
mbl.has_mesh = leveling_is_on;
2016-10-29 01:55:42 +02:00
mbl.z_offset = dummy;
if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
2016-10-29 01:55:42 +02:00
// EEPROM data fits the current mesh
EEPROM_READ(mbl.z_values);
}
else {
// EEPROM data is stale
mbl.reset();
2016-12-10 07:17:49 +01:00
for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
2016-10-29 01:55:42 +02:00
}
#else
// MBL is disabled - skip the stored data
2016-12-10 07:17:49 +01:00
for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
2016-10-29 01:55:42 +02:00
#endif // MESH_BED_LEVELING
#if !HAS_BED_PROBE
float zprobe_zoffset;
2016-10-29 01:55:42 +02:00
#endif
EEPROM_READ(zprobe_zoffset);
2016-12-14 08:50:06 +01:00
//
// Planar Bed Leveling matrix
//
#if ABL_PLANAR
EEPROM_READ(planner.bed_level_matrix);
#else
for (uint8_t q = 9; q--;) EEPROM_READ(dummy);
#endif
2016-12-10 07:17:49 +01:00
//
// Bilinear Auto Bed Leveling
//
uint8_t grid_max_x, grid_max_y;
EEPROM_READ(grid_max_x); // 1 byte
EEPROM_READ(grid_max_y); // 1 byte
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
2016-12-10 07:17:49 +01:00
set_bed_leveling_enabled(false);
EEPROM_READ(bilinear_grid_spacing); // 2 ints
EEPROM_READ(bilinear_start); // 2 ints
EEPROM_READ(z_values); // 9 to 256 floats
2016-12-10 07:17:49 +01:00
}
else // EEPROM data is stale
#endif // AUTO_BED_LEVELING_BILINEAR
{
// Skip past disabled (or stale) Bilinear Grid data
int bgs[2], bs[2];
EEPROM_READ(bgs);
EEPROM_READ(bs);
for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy);
}
2017-11-04 21:34:24 +01:00
//
// Unified Bed Leveling active state
//
#if ENABLED(AUTO_BED_LEVELING_UBL)
EEPROM_READ(planner.leveling_active);
2017-10-14 04:56:27 +02:00
EEPROM_READ(ubl.storage_slot);
#else
uint8_t dummyui8;
EEPROM_READ(dummyb);
EEPROM_READ(dummyui8);
2017-05-09 19:35:43 +02:00
#endif // AUTO_BED_LEVELING_UBL
2017-11-04 21:34:24 +01:00
//
// DELTA Geometry or Dual Endstops offsets
//
2016-10-29 01:55:42 +02:00
#if ENABLED(DELTA)
EEPROM_READ(delta_height); // 1 float
2017-09-24 09:18:15 +02:00
EEPROM_READ(delta_endstop_adj); // 3 floats
2017-03-08 00:42:04 +01:00
EEPROM_READ(delta_radius); // 1 float
EEPROM_READ(delta_diagonal_rod); // 1 float
EEPROM_READ(delta_segments_per_second); // 1 float
EEPROM_READ(delta_calibration_radius); // 1 float
2017-09-24 09:18:15 +02:00
EEPROM_READ(delta_tower_angle_trim); // 3 floats
#elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
#if ENABLED(X_DUAL_ENDSTOPS)
EEPROM_READ(endstops.x_endstop_adj); // 1 float
#else
EEPROM_READ(dummy);
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
EEPROM_READ(endstops.y_endstop_adj); // 1 float
#else
EEPROM_READ(dummy);
#endif
#if ENABLED(Z_DUAL_ENDSTOPS)
EEPROM_READ(endstops.z_endstop_adj); // 1 float
#else
EEPROM_READ(dummy);
#endif
for (uint8_t q=8; q--;) EEPROM_READ(dummy);
2016-10-29 01:55:42 +02:00
#else
for (uint8_t q=11; q--;) EEPROM_READ(dummy);
2016-10-29 01:55:42 +02:00
#endif
2017-11-04 21:34:24 +01:00
//
// LCD Preheat settings
//
2016-10-29 01:55:42 +02:00
#if DISABLED(ULTIPANEL)
int lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
2016-10-29 01:55:42 +02:00
#endif
2017-11-04 21:34:24 +01:00
EEPROM_READ(lcd_preheat_hotend_temp); // 2 floats
EEPROM_READ(lcd_preheat_bed_temp); // 2 floats
EEPROM_READ(lcd_preheat_fan_speed); // 2 floats
2016-10-29 01:55:42 +02:00
2017-04-10 04:47:49 +02:00
//EEPROM_ASSERT(
// WITHIN(lcd_preheat_fan_speed, 0, 255),
// "lcd_preheat_fan_speed out of range"
//);
2017-11-04 21:34:24 +01:00
//
// Hotend PID
//
2016-10-29 01:55:42 +02:00
#if ENABLED(PIDTEMP)
for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
EEPROM_READ(dummy); // Kp
if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
// do not need to scale PID values as the values in EEPROM are already scaled
PID_PARAM(Kp, e) = dummy;
EEPROM_READ(PID_PARAM(Ki, e));
EEPROM_READ(PID_PARAM(Kd, e));
#if ENABLED(PID_EXTRUSION_SCALING)
EEPROM_READ(PID_PARAM(Kc, e));
#else
EEPROM_READ(dummy);
#endif
}
else {
for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc
}
}
#else // !PIDTEMP
// 4 x 4 = 16 slots for PID parameters
for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc
#endif // !PIDTEMP
2017-11-04 21:34:24 +01:00
//
// PID Extrusion Scaling
//
2016-10-29 01:55:42 +02:00
#if DISABLED(PID_EXTRUSION_SCALING)
int lpq_len;
#endif
EEPROM_READ(lpq_len);
2017-11-04 21:34:24 +01:00
//
// Heated Bed PID
//
2016-10-29 01:55:42 +02:00
#if ENABLED(PIDTEMPBED)
EEPROM_READ(dummy); // bedKp
if (dummy != DUMMY_PID_VALUE) {
thermalManager.bedKp = dummy;
EEPROM_READ(thermalManager.bedKi);
EEPROM_READ(thermalManager.bedKd);
}
#else
for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd
#endif
2017-11-04 21:34:24 +01:00
//
// LCD Contrast
//
2016-10-29 01:55:42 +02:00
#if !HAS_LCD_CONTRAST
2017-05-21 02:54:23 +02:00
uint16_t lcd_contrast;
2016-10-29 01:55:42 +02:00
#endif
EEPROM_READ(lcd_contrast);
2017-11-04 21:34:24 +01:00
//
// Firmware Retraction
//
2016-10-29 01:55:42 +02:00
#if ENABLED(FWRETRACT)
2017-09-08 05:40:32 +02:00
EEPROM_READ(fwretract.autoretract_enabled);
EEPROM_READ(fwretract.retract_length);
EEPROM_READ(fwretract.retract_feedrate_mm_s);
EEPROM_READ(fwretract.retract_zlift);
EEPROM_READ(fwretract.retract_recover_length);
EEPROM_READ(fwretract.retract_recover_feedrate_mm_s);
EEPROM_READ(fwretract.swap_retract_length);
EEPROM_READ(fwretract.swap_retract_recover_length);
EEPROM_READ(fwretract.swap_retract_recover_feedrate_mm_s);
#else
EEPROM_READ(dummyb);
for (uint8_t q=8; q--;) EEPROM_READ(dummy);
#endif
2016-10-29 01:55:42 +02:00
2017-11-04 21:34:24 +01:00
//
// Volumetric & Filament Size
//
#if DISABLED(NO_VOLUMETRICS)
2016-10-29 01:55:42 +02:00
EEPROM_READ(parser.volumetric_enabled);
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
EEPROM_READ(dummy);
if (q < COUNT(planner.filament_size)) planner.filament_size[q] = dummy;
}
#endif
2016-10-29 01:55:42 +02:00
2017-11-04 21:34:24 +01:00
//
// TMC2130 Stepper Current
//
uint16_t val;
2017-12-15 22:03:14 +01:00
#if HAS_TRINAMIC
EEPROM_READ(val);
2017-12-15 22:03:14 +01:00
#if X_IS_TRINAMIC
stepperX.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
#endif
EEPROM_READ(val);
2017-12-15 22:03:14 +01:00
#if Y_IS_TRINAMIC
stepperY.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
#endif
EEPROM_READ(val);
2017-12-15 22:03:14 +01:00
#if Z_IS_TRINAMIC
stepperZ.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
#endif
EEPROM_READ(val);
2017-12-15 22:03:14 +01:00
#if X2_IS_TRINAMIC
stepperX2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
#endif
EEPROM_READ(val);
2017-12-15 22:03:14 +01:00
#if Y2_IS_TRINAMIC
stepperY2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
#endif
EEPROM_READ(val);
2017-12-15 22:03:14 +01:00
#if Z2_IS_TRINAMIC
stepperZ2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
#endif
EEPROM_READ(val);
2017-12-15 22:03:14 +01:00
#if E0_IS_TRINAMIC
stepperE0.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
#endif
EEPROM_READ(val);
2017-12-15 22:03:14 +01:00
#if E1_IS_TRINAMIC
stepperE1.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
#endif
EEPROM_READ(val);
2017-12-15 22:03:14 +01:00
#if E2_IS_TRINAMIC
stepperE2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
#endif
EEPROM_READ(val);
2017-12-15 22:03:14 +01:00
#if E3_IS_TRINAMIC
stepperE3.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
#endif
2017-04-09 10:23:05 +02:00
EEPROM_READ(val);
2017-12-15 22:03:14 +01:00
#if E4_IS_TRINAMIC
2017-04-09 10:23:05 +02:00
stepperE4.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
#endif
#else
for (uint8_t q = 11; q--;) EEPROM_READ(val);
#endif
2017-12-15 22:03:14 +01:00
/*
* TMC2130 Sensorless homing threshold.
* X and X2 use the same value
* Y and Y2 use the same value
*/
int16_t thrs;
#if ENABLED(SENSORLESS_HOMING)
EEPROM_READ(thrs);
#if ENABLED(X_IS_TMC2130)
stepperX.sgt(thrs);
#endif
#if ENABLED(X2_IS_TMC2130)
stepperX2.sgt(thrs);
#endif
EEPROM_READ(thrs);
#if ENABLED(Y_IS_TMC2130)
stepperY.sgt(thrs);
#endif
#if ENABLED(Y2_IS_TMC2130)
stepperY2.sgt(thrs);
#endif
#else
for (uint8_t q = 0; q < 2; q++) EEPROM_READ(thrs);
#endif
//
// Linear Advance
//
#if ENABLED(LIN_ADVANCE)
EEPROM_READ(planner.extruder_advance_k);
EEPROM_READ(planner.advance_ed_ratio);
#else
EEPROM_READ(dummy);
EEPROM_READ(dummy);
#endif
2017-11-04 21:34:24 +01:00
//
// Motor Current PWM
//
#if HAS_MOTOR_CURRENT_PWM
for (uint8_t q = 3; q--;) EEPROM_READ(stepper.motor_current_setting[q]);
#else
uint32_t dummyui32;
for (uint8_t q = 3; q--;) EEPROM_READ(dummyui32);
#endif
2017-11-04 22:36:41 +01:00
//
// CNC Coordinate System
//
#if ENABLED(CNC_COORDINATE_SYSTEMS)
(void)gcode.select_coordinate_system(-1); // Go back to machine space
2017-11-04 22:36:41 +01:00
EEPROM_READ(gcode.coordinate_system); // 27 floats
#else
for (uint8_t q = 27; q--;) EEPROM_READ(dummy);
#endif
2017-12-01 23:42:23 +01:00
//
// Skew correction factors
//
#if ENABLED(SKEW_CORRECTION_GCODE)
EEPROM_READ(planner.xy_skew_factor);
#if ENABLED(SKEW_CORRECTION_FOR_Z)
EEPROM_READ(planner.xz_skew_factor);
EEPROM_READ(planner.yz_skew_factor);
#else
EEPROM_READ(dummy);
EEPROM_READ(dummy);
#endif
#else
for (uint8_t q = 3; q--;) EEPROM_READ(dummy);
#endif
if (working_crc == stored_crc) {
2017-07-02 04:48:18 +02:00
postprocess();
#if ENABLED(EEPROM_CHITCHAT)
2017-06-09 17:51:23 +02:00
SERIAL_ECHO_START();
SERIAL_ECHO(version);
SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET));
SERIAL_ECHOPAIR(" bytes; crc ", (uint32_t)working_crc);
SERIAL_ECHOLNPGM(")");
2017-07-02 04:48:18 +02:00
#endif
2016-10-29 01:55:42 +02:00
}
else {
2017-07-02 04:48:18 +02:00
#if ENABLED(EEPROM_CHITCHAT)
SERIAL_ERROR_START();
SERIAL_ERRORPGM("EEPROM CRC mismatch - (stored) ");
SERIAL_ERROR(stored_crc);
SERIAL_ERRORPGM(" != ");
SERIAL_ERROR(working_crc);
SERIAL_ERRORLNPGM(" (calculated)!");
#endif
2017-04-10 04:47:49 +02:00
reset();
2016-10-29 01:55:42 +02:00
}
2017-03-18 16:15:54 +01:00
#if ENABLED(AUTO_BED_LEVELING_UBL)
2017-05-16 09:34:36 +02:00
meshes_begin = (eeprom_index + 32) & 0xFFF8; // Pad the end of configuration data so it
// can float up or down a little bit without
// disrupting the mesh data
ubl.report_state();
2017-03-18 16:15:54 +01:00
2017-03-20 07:42:41 +01:00
if (!ubl.sanity_check()) {
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
2017-07-02 04:48:18 +02:00
#if ENABLED(EEPROM_CHITCHAT)
ubl.echo_name();
SERIAL_ECHOLNPGM(" initialized.\n");
#endif
2017-03-18 16:15:54 +01:00
}
else {
2017-07-02 04:48:18 +02:00
#if ENABLED(EEPROM_CHITCHAT)
SERIAL_PROTOCOLPGM("?Can't enable ");
ubl.echo_name();
SERIAL_PROTOCOLLNPGM(".");
#endif
2017-03-20 07:42:41 +01:00
ubl.reset();
2017-03-18 16:15:54 +01:00
}
2017-10-14 04:56:27 +02:00
if (ubl.storage_slot >= 0) {
load_mesh(ubl.storage_slot);
2017-07-02 04:48:18 +02:00
#if ENABLED(EEPROM_CHITCHAT)
2017-10-14 04:56:27 +02:00
SERIAL_ECHOPAIR("Mesh ", ubl.storage_slot);
2017-07-02 04:48:18 +02:00
SERIAL_ECHOLNPGM(" loaded from storage.");
#endif
2017-03-18 16:15:54 +01:00
}
else {
2017-03-20 07:42:41 +01:00
ubl.reset();
2017-07-02 04:48:18 +02:00
#if ENABLED(EEPROM_CHITCHAT)
SERIAL_ECHOLNPGM("UBL System reset()");
#endif
2017-03-18 16:15:54 +01:00
}
#endif
}
#if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
2017-04-10 04:47:49 +02:00
report();
2016-10-29 01:55:42 +02:00
#endif
EEPROM_FINISH();
return !eeprom_error;
2016-10-29 01:55:42 +02:00
}
#if ENABLED(AUTO_BED_LEVELING_UBL)
2017-07-02 04:48:18 +02:00
#if ENABLED(EEPROM_CHITCHAT)
void ubl_invalid_slot(const int s) {
SERIAL_PROTOCOLLNPGM("?Invalid slot.");
SERIAL_PROTOCOL(s);
SERIAL_PROTOCOLLNPGM(" mesh slots available.");
}
#endif
2017-05-16 09:34:36 +02:00
uint16_t MarlinSettings::calc_num_meshes() {
//obviously this will get more sophisticated once we've added an actual MAT
if (meshes_begin <= 0) return 0;
return (meshes_end - meshes_begin) / sizeof(ubl.z_values);
}
void MarlinSettings::store_mesh(const int8_t slot) {
#if ENABLED(AUTO_BED_LEVELING_UBL)
const int16_t a = calc_num_meshes();
if (!WITHIN(slot, 0, a - 1)) {
2017-07-02 04:48:18 +02:00
#if ENABLED(EEPROM_CHITCHAT)
ubl_invalid_slot(a);
SERIAL_PROTOCOLPAIR("E2END=", E2END);
SERIAL_PROTOCOLPAIR(" meshes_end=", meshes_end);
SERIAL_PROTOCOLLNPAIR(" slot=", slot);
SERIAL_EOL();
#endif
return;
}
uint16_t crc = 0;
int pos = meshes_end - (slot + 1) * sizeof(ubl.z_values);
HAL::PersistentStore::access_start();
const bool status = HAL::PersistentStore::write_data(pos, (uint8_t *)&ubl.z_values, sizeof(ubl.z_values), &crc);
HAL::PersistentStore::access_finish();
if (status)
SERIAL_PROTOCOL("?Unable to save mesh data.\n");
// Write crc to MAT along with other data, or just tack on to the beginning or end
2017-07-02 04:48:18 +02:00
#if ENABLED(EEPROM_CHITCHAT)
if (!status)
SERIAL_PROTOCOLLNPAIR("Mesh saved in slot ", slot);
2017-07-02 04:48:18 +02:00
#endif
#else
// Other mesh types
#endif
}
void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=NULL*/) {
#if ENABLED(AUTO_BED_LEVELING_UBL)
const int16_t a = settings.calc_num_meshes();
if (!WITHIN(slot, 0, a - 1)) {
2017-07-02 04:48:18 +02:00
#if ENABLED(EEPROM_CHITCHAT)
ubl_invalid_slot(a);
#endif
return;
}
uint16_t crc = 0;
int pos = meshes_end - (slot + 1) * sizeof(ubl.z_values);
uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
HAL::PersistentStore::access_start();
const uint16_t status = HAL::PersistentStore::read_data(pos, dest, sizeof(ubl.z_values), &crc);
HAL::PersistentStore::access_finish();
if (status)
SERIAL_PROTOCOL("?Unable to load mesh data.\n");
2017-07-02 04:48:18 +02:00
#if ENABLED(EEPROM_CHITCHAT)
else
SERIAL_PROTOCOLLNPAIR("Mesh loaded from slot ", slot);
2017-07-02 04:48:18 +02:00
#endif
EEPROM_FINISH();
#else
// Other mesh types
#endif
}
//void MarlinSettings::delete_mesh() { return; }
//void MarlinSettings::defrag_meshes() { return; }
#endif // AUTO_BED_LEVELING_UBL
#else // !EEPROM_SETTINGS
2017-04-10 04:47:49 +02:00
bool MarlinSettings::save() {
2017-06-09 17:51:23 +02:00
SERIAL_ERROR_START();
SERIAL_ERRORLNPGM("EEPROM disabled");
return false;
}
#endif // !EEPROM_SETTINGS
/**
* M502 - Reset Configuration
*/
2017-04-10 04:47:49 +02:00
void MarlinSettings::reset() {
static const float tmp1[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] PROGMEM = DEFAULT_MAX_FEEDRATE;
static const uint32_t tmp3[] PROGMEM = DEFAULT_MAX_ACCELERATION;
2016-12-04 05:02:27 +01:00
LOOP_XYZE_N(i) {
planner.axis_steps_per_mm[i] = pgm_read_float(&tmp1[i < COUNT(tmp1) ? i : COUNT(tmp1) - 1]);
planner.max_feedrate_mm_s[i] = pgm_read_float(&tmp2[i < COUNT(tmp2) ? i : COUNT(tmp2) - 1]);
2017-06-08 23:15:02 +02:00
planner.max_acceleration_mm_per_s2[i] = pgm_read_dword_near(&tmp3[i < COUNT(tmp3) ? i : COUNT(tmp3) - 1]);
}
2016-04-28 03:06:32 +02:00
planner.acceleration = DEFAULT_ACCELERATION;
planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
2016-07-16 03:49:34 +02:00
planner.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
planner.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
planner.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
#if HAS_HOME_OFFSET
2017-03-05 01:01:33 +01:00
ZERO(home_offset);
#endif
#if HOTENDS > 1
constexpr float tmp4[XYZ][HOTENDS] = {
HOTEND_OFFSET_X,
HOTEND_OFFSET_Y
#ifdef HOTEND_OFFSET_Z
, HOTEND_OFFSET_Z
#else
, { 0 }
#endif
};
static_assert(
tmp4[X_AXIS][0] == 0 && tmp4[Y_AXIS][0] == 0 && tmp4[Z_AXIS][0] == 0,
"Offsets for the first hotend must be 0.0."
);
LOOP_XYZ(i) HOTEND_LOOP() hotend_offset[i][e] = tmp4[i][e];
#endif
//
// Global Leveling
//
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
new_z_fade_height = 0.0;
#endif
2017-05-01 23:13:09 +02:00
#if HAS_LEVELING
2016-12-10 07:17:49 +01:00
reset_bed_level();
2015-03-26 07:06:33 +01:00
#endif
2016-06-15 03:05:20 +02:00
#if HAS_BED_PROBE
zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
2015-03-26 07:06:33 +01:00
#endif
2015-03-15 23:18:11 +01:00
#if ENABLED(DELTA)
2017-03-08 00:42:04 +01:00
const float adj[ABC] = DELTA_ENDSTOP_ADJ,
dta[ABC] = DELTA_TOWER_ANGLE_TRIM;
delta_height = DELTA_HEIGHT;
2017-09-08 22:35:25 +02:00
COPY(delta_endstop_adj, adj);
2016-12-10 07:17:49 +01:00
delta_radius = DELTA_RADIUS;
delta_diagonal_rod = DELTA_DIAGONAL_ROD;
delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
delta_calibration_radius = DELTA_CALIBRATION_RADIUS;
2017-09-24 09:18:15 +02:00
COPY(delta_tower_angle_trim, dta);
#elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
#if ENABLED(X_DUAL_ENDSTOPS)
endstops.x_endstop_adj = (
#ifdef X_DUAL_ENDSTOPS_ADJUSTMENT
X_DUAL_ENDSTOPS_ADJUSTMENT
#else
0
#endif
);
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
endstops.y_endstop_adj = (
#ifdef Y_DUAL_ENDSTOPS_ADJUSTMENT
Y_DUAL_ENDSTOPS_ADJUSTMENT
#else
0
#endif
);
#endif
#if ENABLED(Z_DUAL_ENDSTOPS)
endstops.z_endstop_adj = (
#ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
Z_DUAL_ENDSTOPS_ADJUSTMENT
#else
0
#endif
);
#endif
#endif
#if ENABLED(ULTIPANEL)
lcd_preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
lcd_preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
lcd_preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
lcd_preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
lcd_preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
lcd_preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
#endif
#if ENABLED(PIDTEMP)
#if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
HOTEND_LOOP()
#endif
{
PID_PARAM(Kp, e) = DEFAULT_Kp;
PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
#if ENABLED(PID_EXTRUSION_SCALING)
PID_PARAM(Kc, e) = DEFAULT_Kc;
#endif
}
#if ENABLED(PID_EXTRUSION_SCALING)
2015-08-31 04:04:30 +02:00
lpq_len = 20; // default last-position-queue size
#endif
#endif // PIDTEMP
#if ENABLED(PIDTEMPBED)
2016-04-29 03:18:13 +02:00
thermalManager.bedKp = DEFAULT_bedKp;
thermalManager.bedKi = scalePID_i(DEFAULT_bedKi);
thermalManager.bedKd = scalePID_d(DEFAULT_bedKd);
2015-04-04 01:38:05 +02:00
#endif
#if HAS_LCD_CONTRAST
lcd_contrast = DEFAULT_LCD_CONTRAST;
#endif
#if ENABLED(FWRETRACT)
2017-09-08 05:40:32 +02:00
fwretract.reset();
#endif
#if DISABLED(NO_VOLUMETRICS)
parser.volumetric_enabled =
#if ENABLED(VOLUMETRIC_DEFAULT_ON)
true
#else
false
#endif
;
for (uint8_t q = 0; q < COUNT(planner.filament_size); q++)
planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
#endif
endstops.enable_globally(
#if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
true
#else
false
#endif
);
2017-12-15 22:03:14 +01:00
#if X_IS_TRINAMIC
stepperX.setCurrent(X_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#if Y_IS_TRINAMIC
stepperY.setCurrent(Y_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#if Z_IS_TRINAMIC
stepperZ.setCurrent(Z_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#if X2_IS_TRINAMIC
stepperX2.setCurrent(X2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#if Y2_IS_TRINAMIC
stepperY2.setCurrent(Y2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#if Z2_IS_TRINAMIC
stepperZ2.setCurrent(Z2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#if E0_IS_TRINAMIC
stepperE0.setCurrent(E0_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#if E1_IS_TRINAMIC
stepperE1.setCurrent(E1_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#if E2_IS_TRINAMIC
stepperE2.setCurrent(E2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#if E3_IS_TRINAMIC
stepperE3.setCurrent(E3_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#if E4_IS_TRINAMIC
stepperE4.setCurrent(E4_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#if ENABLED(SENSORLESS_HOMING)
#if ENABLED(X_IS_TMC2130)
2017-12-15 22:03:14 +01:00
stepperX.sgt(X_HOMING_SENSITIVITY);
#endif
#if ENABLED(X2_IS_TMC2130)
2017-12-15 22:03:14 +01:00
stepperX2.sgt(X_HOMING_SENSITIVITY);
#endif
2017-12-15 22:03:14 +01:00
#if ENABLED(Y_IS_TMC2130)
stepperY.sgt(Y_HOMING_SENSITIVITY);
#endif
2017-12-15 22:03:14 +01:00
#if ENABLED(Y2_IS_TMC2130)
stepperY2.sgt(Y_HOMING_SENSITIVITY);
#endif
#endif
#if ENABLED(LIN_ADVANCE)
planner.extruder_advance_k = LIN_ADVANCE_K;
planner.advance_ed_ratio = LIN_ADVANCE_E_D_RATIO;
#endif
#if HAS_MOTOR_CURRENT_PWM
uint32_t tmp_motor_current_setting[3] = PWM_MOTOR_CURRENT;
for (uint8_t q = 3; q--;)
stepper.digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
#endif
2017-12-01 23:42:23 +01:00
#if ENABLED(SKEW_CORRECTION_GCODE)
planner.xy_skew_factor = XY_SKEW_FACTOR;
#if ENABLED(SKEW_CORRECTION_FOR_Z)
planner.xz_skew_factor = XZ_SKEW_FACTOR;
planner.yz_skew_factor = YZ_SKEW_FACTOR;
#endif
#endif
2017-04-10 04:47:49 +02:00
postprocess();
2017-07-02 04:48:18 +02:00
#if ENABLED(EEPROM_CHITCHAT)
SERIAL_ECHO_START();
SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
#endif
}
#if DISABLED(DISABLE_M503)
2017-06-09 17:51:23 +02:00
#define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START(); }while(0)
2016-10-29 01:55:42 +02:00
/**
2017-04-10 04:47:49 +02:00
* M503 - Report current settings in RAM
*
2017-04-10 04:47:49 +02:00
* Unless specifically disabled, M503 is available even without EEPROM
2016-10-29 01:55:42 +02:00
*/
2017-12-07 04:16:00 +01:00
void MarlinSettings::report(const bool forReplay) {
/**
* Announce current units, in case inches are being displayed
*/
CONFIG_ECHO_START;
#if ENABLED(INCH_MODE_SUPPORT)
#define LINEAR_UNIT(N) (float(N) / parser.linear_unit_factor)
#define VOLUMETRIC_UNIT(N) (float(N) / (parser.volumetric_enabled ? parser.volumetric_unit_factor : parser.linear_unit_factor))
2017-05-07 02:41:50 +02:00
SERIAL_ECHOPGM(" G2");
2017-05-20 10:03:08 +02:00
SERIAL_CHAR(parser.linear_unit_factor == 1.0 ? '1' : '0');
2017-05-07 02:41:50 +02:00
SERIAL_ECHOPGM(" ; Units in ");
2017-05-20 10:03:08 +02:00
serialprintPGM(parser.linear_unit_factor == 1.0 ? PSTR("mm\n") : PSTR("inches\n"));
#else
#define LINEAR_UNIT(N) (N)
#define VOLUMETRIC_UNIT(N) (N)
2017-05-26 01:02:29 +02:00
SERIAL_ECHOLNPGM(" G21 ; Units in mm");
#endif
2017-05-07 02:41:50 +02:00
#if ENABLED(ULTIPANEL)
// Temperature units - for Ultipanel temperature options
CONFIG_ECHO_START;
#if ENABLED(TEMPERATURE_UNITS_SUPPORT)
2017-05-20 10:03:08 +02:00
#define TEMP_UNIT(N) parser.to_temp_units(N)
2017-05-07 02:41:50 +02:00
SERIAL_ECHOPGM(" M149 ");
2017-05-20 10:03:08 +02:00
SERIAL_CHAR(parser.temp_units_code());
2017-05-07 02:41:50 +02:00
SERIAL_ECHOPGM(" ; Units in ");
2017-05-20 10:03:08 +02:00
serialprintPGM(parser.temp_units_name());
2017-05-07 02:41:50 +02:00
#else
#define TEMP_UNIT(N) (N)
2017-05-26 01:02:29 +02:00
SERIAL_ECHOLNPGM(" M149 C ; Units in Celsius");
2017-05-07 02:41:50 +02:00
#endif
#endif
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
2017-05-26 01:02:29 +02:00
#if DISABLED(NO_VOLUMETRICS)
/**
* Volumetric extrusion M200
*/
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOPGM("Filament settings:");
if (parser.volumetric_enabled)
SERIAL_EOL();
else
SERIAL_ECHOLNPGM(" Disabled");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M200 D", LINEAR_UNIT(planner.filament_size[0]));
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
#if EXTRUDERS > 1
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M200 T1 D", LINEAR_UNIT(planner.filament_size[1]));
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
#if EXTRUDERS > 2
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M200 T2 D", LINEAR_UNIT(planner.filament_size[2]));
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
#if EXTRUDERS > 3
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M200 T3 D", LINEAR_UNIT(planner.filament_size[3]));
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
#if EXTRUDERS > 4
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M200 T4 D", LINEAR_UNIT(planner.filament_size[4]));
SERIAL_EOL();
#endif // EXTRUDERS > 4
#endif // EXTRUDERS > 3
#endif // EXTRUDERS > 2
#endif // EXTRUDERS > 1
if (!parser.volumetric_enabled) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM(" M200 D0");
}
#endif // !NO_VOLUMETRICS
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Steps per unit:");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M92 X", LINEAR_UNIT(planner.axis_steps_per_mm[X_AXIS]));
SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.axis_steps_per_mm[Y_AXIS]));
SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.axis_steps_per_mm[Z_AXIS]));
2016-12-12 02:37:29 +01:00
#if DISABLED(DISTINCT_E_FACTORS)
SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.axis_steps_per_mm[E_AXIS]));
2016-12-04 05:02:27 +01:00
#endif
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
2016-12-04 05:02:27 +01:00
#if ENABLED(DISTINCT_E_FACTORS)
CONFIG_ECHO_START;
2016-12-04 05:02:27 +01:00
for (uint8_t i = 0; i < E_STEPPERS; i++) {
SERIAL_ECHOPAIR(" M92 T", (int)i);
SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.axis_steps_per_mm[E_AXIS + i]));
2016-12-04 05:02:27 +01:00
}
#endif
2016-10-29 01:55:42 +02:00
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Maximum feedrates (units/s):");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M203 X", LINEAR_UNIT(planner.max_feedrate_mm_s[X_AXIS]));
SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_feedrate_mm_s[Y_AXIS]));
SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_feedrate_mm_s[Z_AXIS]));
2016-12-12 02:37:29 +01:00
#if DISABLED(DISTINCT_E_FACTORS)
SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.max_feedrate_mm_s[E_AXIS]));
2016-12-04 05:02:27 +01:00
#endif
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
2016-12-04 05:02:27 +01:00
#if ENABLED(DISTINCT_E_FACTORS)
CONFIG_ECHO_START;
2016-12-04 05:02:27 +01:00
for (uint8_t i = 0; i < E_STEPPERS; i++) {
SERIAL_ECHOPAIR(" M203 T", (int)i);
SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.max_feedrate_mm_s[E_AXIS + i]));
2016-12-04 05:02:27 +01:00
}
#endif
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Maximum Acceleration (units/s2):");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M201 X", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[X_AXIS]));
SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[Y_AXIS]));
SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[Z_AXIS]));
2016-12-12 02:37:29 +01:00
#if DISABLED(DISTINCT_E_FACTORS)
SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.max_acceleration_mm_per_s2[E_AXIS]));
2016-12-04 05:02:27 +01:00
#endif
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
2016-12-04 05:02:27 +01:00
#if ENABLED(DISTINCT_E_FACTORS)
2017-05-24 23:56:36 +02:00
CONFIG_ECHO_START;
2016-12-04 05:02:27 +01:00
for (uint8_t i = 0; i < E_STEPPERS; i++) {
SERIAL_ECHOPAIR(" M201 T", (int)i);
SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.max_acceleration_mm_per_s2[E_AXIS + i]));
2016-12-04 05:02:27 +01:00
}
#endif
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M204 P", LINEAR_UNIT(planner.acceleration));
SERIAL_ECHOPAIR(" R", LINEAR_UNIT(planner.retract_acceleration));
SERIAL_ECHOLNPAIR(" T", LINEAR_UNIT(planner.travel_acceleration));
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Advanced: S<min_feedrate> T<min_travel_feedrate> B<min_segment_time_us> X<max_xy_jerk> Z<max_z_jerk> E<max_e_jerk>");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M205 S", LINEAR_UNIT(planner.min_feedrate_mm_s));
SERIAL_ECHOPAIR(" T", LINEAR_UNIT(planner.min_travel_feedrate_mm_s));
SERIAL_ECHOPAIR(" B", planner.min_segment_time_us);
SERIAL_ECHOPAIR(" X", LINEAR_UNIT(planner.max_jerk[X_AXIS]));
SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_jerk[Y_AXIS]));
SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_jerk[Z_AXIS]));
SERIAL_ECHOLNPAIR(" E", LINEAR_UNIT(planner.max_jerk[E_AXIS]));
#if HAS_M206_COMMAND
2017-03-05 01:01:33 +01:00
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Home offset:");
2017-03-05 01:01:33 +01:00
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M206 X", LINEAR_UNIT(home_offset[X_AXIS]));
SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(home_offset[Y_AXIS]));
SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(home_offset[Z_AXIS]));
2017-03-05 01:01:33 +01:00
#endif
2016-10-29 01:55:42 +02:00
#if HOTENDS > 1
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Hotend offsets:");
2016-10-29 01:55:42 +02:00
}
CONFIG_ECHO_START;
2016-10-29 01:55:42 +02:00
for (uint8_t e = 1; e < HOTENDS; e++) {
SERIAL_ECHOPAIR(" M218 T", (int)e);
SERIAL_ECHOPAIR(" X", LINEAR_UNIT(hotend_offset[X_AXIS][e]));
SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(hotend_offset[Y_AXIS][e]));
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE) ||ENABLED(PARKING_EXTRUDER)
SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(hotend_offset[Z_AXIS][e]));
2015-08-31 04:04:30 +02:00
#endif
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
}
2016-10-29 01:55:42 +02:00
#endif
2016-10-29 01:55:42 +02:00
#if ENABLED(MESH_BED_LEVELING)
2016-10-29 01:55:42 +02:00
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Mesh Bed Leveling:");
2016-10-29 01:55:42 +02:00
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M420 S", leveling_is_valid() ? 1 : 0);
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.z_fade_height));
#endif
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
2017-04-13 00:24:05 +02:00
for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
2016-10-29 01:55:42 +02:00
CONFIG_ECHO_START;
2017-04-13 00:24:05 +02:00
SERIAL_ECHOPAIR(" G29 S3 X", (int)px + 1);
SERIAL_ECHOPAIR(" Y", (int)py + 1);
2016-10-29 01:55:42 +02:00
SERIAL_ECHOPGM(" Z");
SERIAL_PROTOCOL_F(LINEAR_UNIT(mbl.z_values[px][py]), 5);
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
2016-10-29 01:55:42 +02:00
}
}
#elif ENABLED(AUTO_BED_LEVELING_UBL)
if (!forReplay) {
CONFIG_ECHO_START;
2017-05-16 09:34:36 +02:00
ubl.echo_name();
SERIAL_ECHOLNPGM(":");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M420 S", planner.leveling_active ? 1 : 0);
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.z_fade_height));
#endif
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
if (!forReplay) {
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
2017-05-16 09:34:36 +02:00
ubl.report_state();
2017-10-14 04:56:27 +02:00
SERIAL_ECHOLNPAIR("\nActive Mesh Slot: ", ubl.storage_slot);
SERIAL_ECHOPAIR("EEPROM can hold ", calc_num_meshes());
SERIAL_ECHOLNPGM(" meshes.\n");
}
2016-12-10 07:17:49 +01:00
#elif HAS_ABL
2016-12-10 07:17:49 +01:00
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Auto Bed Leveling:");
2016-12-10 07:17:49 +01:00
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M420 S", planner.leveling_active ? 1 : 0);
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.z_fade_height));
#endif
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
2015-04-04 01:38:05 +02:00
#endif
2016-10-29 01:55:42 +02:00
#if ENABLED(DELTA)
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Endstop adjustment:");
2016-10-29 01:55:42 +02:00
}
CONFIG_ECHO_START;
2017-09-08 22:35:25 +02:00
SERIAL_ECHOPAIR(" M666 X", LINEAR_UNIT(delta_endstop_adj[X_AXIS]));
SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(delta_endstop_adj[Y_AXIS]));
SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(delta_endstop_adj[Z_AXIS]));
2016-10-29 01:55:42 +02:00
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Delta settings: L<diagonal_rod> R<radius> H<height> S<segments_per_s> B<calibration radius> XYZ<tower angle corrections>");
2016-10-29 01:55:42 +02:00
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M665 L", LINEAR_UNIT(delta_diagonal_rod));
SERIAL_ECHOPAIR(" R", LINEAR_UNIT(delta_radius));
SERIAL_ECHOPAIR(" H", LINEAR_UNIT(delta_height));
2016-10-29 01:55:42 +02:00
SERIAL_ECHOPAIR(" S", delta_segments_per_second);
SERIAL_ECHOPAIR(" B", LINEAR_UNIT(delta_calibration_radius));
SERIAL_ECHOPAIR(" X", LINEAR_UNIT(delta_tower_angle_trim[A_AXIS]));
SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(delta_tower_angle_trim[B_AXIS]));
2017-09-24 09:18:15 +02:00
SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(delta_tower_angle_trim[C_AXIS]));
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
#elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
2016-10-29 01:55:42 +02:00
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Endstop adjustment:");
2016-10-29 01:55:42 +02:00
}
CONFIG_ECHO_START;
SERIAL_ECHOPGM(" M666");
#if ENABLED(X_DUAL_ENDSTOPS)
SERIAL_ECHOPAIR(" X", LINEAR_UNIT(endstops.x_endstop_adj));
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(endstops.y_endstop_adj));
#endif
#if ENABLED(Z_DUAL_ENDSTOPS)
SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(endstops.z_endstop_adj));
#endif
SERIAL_EOL();
2016-10-29 01:55:42 +02:00
#endif // DELTA
2016-10-29 01:55:42 +02:00
#if ENABLED(ULTIPANEL)
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Material heatup parameters:");
2016-10-29 01:55:42 +02:00
}
for (uint8_t i = 0; i < COUNT(lcd_preheat_hotend_temp); i++) {
2017-11-15 10:58:43 +01:00
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M145 S", (int)i);
2017-05-07 02:41:50 +02:00
SERIAL_ECHOPAIR(" H", TEMP_UNIT(lcd_preheat_hotend_temp[i]));
SERIAL_ECHOPAIR(" B", TEMP_UNIT(lcd_preheat_bed_temp[i]));
SERIAL_ECHOLNPAIR(" F", lcd_preheat_fan_speed[i]);
}
2016-10-29 01:55:42 +02:00
#endif // ULTIPANEL
2016-10-29 01:55:42 +02:00
#if HAS_PID_HEATING
2016-10-29 01:55:42 +02:00
if (!forReplay) {
CONFIG_ECHO_START;
2016-10-29 01:55:42 +02:00
SERIAL_ECHOLNPGM("PID settings:");
}
#if ENABLED(PIDTEMP)
#if HOTENDS > 1
if (forReplay) {
HOTEND_LOOP() {
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M301 E", e);
SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, e));
SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, e)));
SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, e)));
#if ENABLED(PID_EXTRUSION_SCALING)
SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
if (e == 0) SERIAL_ECHOPAIR(" L", lpq_len);
#endif
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
2016-10-29 01:55:42 +02:00
}
}
else
#endif // HOTENDS > 1
// !forReplay || HOTENDS == 1
{
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
#if ENABLED(PID_EXTRUSION_SCALING)
SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
SERIAL_ECHOPAIR(" L", lpq_len);
#endif
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
2016-10-29 01:55:42 +02:00
}
#endif // PIDTEMP
#if ENABLED(PIDTEMPBED)
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp);
SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi));
SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd));
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
2016-10-29 01:55:42 +02:00
#endif
#endif // PIDTEMP || PIDTEMPBED
#if HAS_LCD_CONTRAST
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("LCD Contrast:");
2016-10-29 01:55:42 +02:00
}
CONFIG_ECHO_START;
SERIAL_ECHOLNPAIR(" M250 C", lcd_contrast);
#endif
2016-10-29 01:55:42 +02:00
#if ENABLED(FWRETRACT)
2016-10-29 01:55:42 +02:00
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Retract: S<length> F<units/m> Z<lift>");
2016-10-29 01:55:42 +02:00
}
CONFIG_ECHO_START;
2017-09-08 05:40:32 +02:00
SERIAL_ECHOPAIR(" M207 S", LINEAR_UNIT(fwretract.retract_length));
SERIAL_ECHOPAIR(" W", LINEAR_UNIT(fwretract.swap_retract_length));
SERIAL_ECHOPAIR(" F", MMS_TO_MMM(LINEAR_UNIT(fwretract.retract_feedrate_mm_s)));
SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(fwretract.retract_zlift));
2016-10-29 01:55:42 +02:00
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Recover: S<length> F<units/m>");
2016-10-29 01:55:42 +02:00
}
CONFIG_ECHO_START;
2017-09-08 05:40:32 +02:00
SERIAL_ECHOPAIR(" M208 S", LINEAR_UNIT(fwretract.retract_recover_length));
SERIAL_ECHOPAIR(" W", LINEAR_UNIT(fwretract.swap_retract_recover_length));
SERIAL_ECHOLNPAIR(" F", MMS_TO_MMM(LINEAR_UNIT(fwretract.retract_recover_feedrate_mm_s)));
2016-10-29 01:55:42 +02:00
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover");
2016-10-29 01:55:42 +02:00
}
CONFIG_ECHO_START;
2017-09-08 05:40:32 +02:00
SERIAL_ECHOLNPAIR(" M209 S", fwretract.autoretract_enabled ? 1 : 0);
#endif // FWRETRACT
2016-10-29 01:55:42 +02:00
/**
* Probe Offset
2016-10-29 01:55:42 +02:00
*/
#if HAS_BED_PROBE
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
2016-10-29 01:55:42 +02:00
}
CONFIG_ECHO_START;
SERIAL_ECHOLNPAIR(" M851 Z", LINEAR_UNIT(zprobe_zoffset));
2016-10-29 01:55:42 +02:00
#endif
2017-12-01 23:42:23 +01:00
/**
* Bed Skew Correction
*/
#if ENABLED(SKEW_CORRECTION_GCODE)
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Skew Factor: ");
}
CONFIG_ECHO_START;
#if ENABLED(SKEW_CORRECTION_FOR_Z)
SERIAL_ECHOPAIR(" M852 I", LINEAR_UNIT(planner.xy_skew_factor));
SERIAL_ECHOPAIR(" J", LINEAR_UNIT(planner.xz_skew_factor));
SERIAL_ECHOLNPAIR(" K", LINEAR_UNIT(planner.yz_skew_factor));
#else
SERIAL_ECHOLNPAIR(" M852 S", LINEAR_UNIT(planner.xy_skew_factor));
#endif
#endif
/**
* TMC2130 stepper driver current
*/
#if ENABLED(HAVE_TMC2130)
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Stepper driver current:");
}
CONFIG_ECHO_START;
SERIAL_ECHO(" M906");
2017-12-15 22:03:14 +01:00
#if ENABLED(X_IS_TMC2130) || ENABLED(X_IS_TMC2208)
SERIAL_ECHOPAIR(" X ", stepperX.getCurrent());
#endif
2017-12-15 22:03:14 +01:00
#if ENABLED(Y_IS_TMC2130) || ENABLED(Y_IS_TMC2208)
SERIAL_ECHOPAIR(" Y ", stepperY.getCurrent());
#endif
2017-12-15 22:03:14 +01:00
#if ENABLED(Z_IS_TMC2130) || ENABLED(Z_IS_TMC2208)
SERIAL_ECHOPAIR(" Z ", stepperZ.getCurrent());
#endif
2017-12-15 22:03:14 +01:00
#if ENABLED(X2_IS_TMC2130) || ENABLED(X2_IS_TMC2208)
SERIAL_ECHOPAIR(" X2 ", stepperX2.getCurrent());
#endif
2017-12-15 22:03:14 +01:00
#if ENABLED(Y2_IS_TMC2130) || ENABLED(Y2_IS_TMC2208)
SERIAL_ECHOPAIR(" Y2 ", stepperY2.getCurrent());
#endif
2017-12-15 22:03:14 +01:00
#if ENABLED(Z2_IS_TMC2130) || ENABLED(Z2_IS_TMC2208)
SERIAL_ECHOPAIR(" Z2 ", stepperZ2.getCurrent());
#endif
2017-12-15 22:03:14 +01:00
#if ENABLED(E0_IS_TMC2130) || ENABLED(E0_IS_TMC2208)
SERIAL_ECHOPAIR(" E0 ", stepperE0.getCurrent());
#endif
2017-12-15 22:03:14 +01:00
#if ENABLED(E1_IS_TMC2130) || ENABLED(E1_IS_TMC2208)
SERIAL_ECHOPAIR(" E1 ", stepperE1.getCurrent());
#endif
2017-12-15 22:03:14 +01:00
#if ENABLED(E2_IS_TMC2130) || ENABLED(E2_IS_TMC2208)
SERIAL_ECHOPAIR(" E2 ", stepperE2.getCurrent());
#endif
2017-12-15 22:03:14 +01:00
#if ENABLED(E3_IS_TMC2130) || ENABLED(E3_IS_TMC2208)
SERIAL_ECHOPAIR(" E3 ", stepperE3.getCurrent());
#endif
#if ENABLED(E4_IS_TMC2130) || ENABLED(E4_IS_TMC2208)
SERIAL_ECHOPAIR(" E4 ", stepperE4.getCurrent());
#endif
SERIAL_EOL();
#endif
/**
* TMC2130 Sensorless homing thresholds
*/
#if ENABLED(HAVE_TMC2130) && ENABLED(SENSORLESS_HOMING)
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Sensorless homing threshold:");
}
CONFIG_ECHO_START;
SERIAL_ECHO(" M914");
#if ENABLED(X_IS_TMC2130)
SERIAL_ECHOPAIR(" X", stepperX.sgt());
#endif
#if ENABLED(X2_IS_TMC2130)
SERIAL_ECHOPAIR(" X2 ", stepperX2.sgt());
#endif
#if ENABLED(Y_IS_TMC2130)
SERIAL_ECHOPAIR(" Y", stepperY.sgt());
#endif
#if ENABLED(X2_IS_TMC2130)
SERIAL_ECHOPAIR(" Y2 ", stepperY2.sgt());
#endif
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
#endif
/**
* Linear Advance
*/
#if ENABLED(LIN_ADVANCE)
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Linear Advance:");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M900 K", planner.extruder_advance_k);
SERIAL_ECHOLNPAIR(" R", planner.advance_ed_ratio);
#endif
#if HAS_MOTOR_CURRENT_PWM
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Stepper motor currents:");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M907 X", stepper.motor_current_setting[0]);
SERIAL_ECHOPAIR(" Z", stepper.motor_current_setting[1]);
SERIAL_ECHOPAIR(" E", stepper.motor_current_setting[2]);
SERIAL_EOL();
#endif
2016-10-29 01:55:42 +02:00
}
#endif // !DISABLE_M503