Cleanup warnings

This commit is contained in:
Thomas Moore 2017-09-30 16:06:43 -05:00
parent 6904561fd5
commit 0cb00f52d9
22 changed files with 238 additions and 224 deletions

View file

@ -352,8 +352,8 @@ script:
- opt_enable FILAMENT_WIDTH_SENSOR FILAMENT_LCD_DISPLAY - opt_enable FILAMENT_WIDTH_SENSOR FILAMENT_LCD_DISPLAY
- opt_enable FIX_MOUNTED_PROBE Z_SAFE_HOMING AUTO_BED_LEVELING_BILINEAR Z_MIN_PROBE_REPEATABILITY_TEST DEBUG_LEVELING_FEATURE - opt_enable FIX_MOUNTED_PROBE Z_SAFE_HOMING AUTO_BED_LEVELING_BILINEAR Z_MIN_PROBE_REPEATABILITY_TEST DEBUG_LEVELING_FEATURE
- opt_enable BABYSTEPPING BABYSTEP_XY BABYSTEP_ZPROBE_OFFSET BABYSTEP_ZPROBE_GFX_OVERLAY - opt_enable BABYSTEPPING BABYSTEP_XY BABYSTEP_ZPROBE_OFFSET BABYSTEP_ZPROBE_GFX_OVERLAY
- opt_enable PRINTCOUNTER NOZZLE_PARK_FEATURE NOZZLE_CLEAN_FEATURE PIDTEMPBED EEPROM_SETTINGS INCH_MODE_SUPPORT TEMPERATURE_UNITS_SUPPORT M100_FREE_MEMORY_WATCHER - opt_enable PRINTCOUNTER NOZZLE_PARK_FEATURE NOZZLE_CLEAN_FEATURE SLOW_PWM_HEATERS PIDTEMPBED EEPROM_SETTINGS INCH_MODE_SUPPORT TEMPERATURE_UNITS_SUPPORT M100_FREE_MEMORY_WATCHER
- opt_enable_adv ADVANCED_PAUSE_FEATURE LCD_INFO_MENU ARC_SUPPORT BEZIER_CURVE_SUPPORT EXPERIMENTAL_I2CBUS EXTENDED_CAPABILITIES_REPORT AUTO_REPORT_TEMPERATURES SDCARD_SORT_ALPHA - opt_enable_adv ADVANCED_PAUSE_FEATURE LCD_INFO_MENU ARC_SUPPORT BEZIER_CURVE_SUPPORT EXPERIMENTAL_I2CBUS EXTENDED_CAPABILITIES_REPORT AUTO_REPORT_TEMPERATURES SDCARD_SORT_ALPHA PARK_HEAD_ON_PAUSE
- opt_set_adv I2C_SLAVE_ADDRESS 63 - opt_set_adv I2C_SLAVE_ADDRESS 63
- opt_set ABL_GRID_POINTS_X 16 - opt_set ABL_GRID_POINTS_X 16
- opt_set ABL_GRID_POINTS_Y 16 - opt_set ABL_GRID_POINTS_Y 16
@ -388,7 +388,7 @@ script:
# Mixing Extruder # Mixing Extruder
# #
- restore_configs - restore_configs
- opt_enable MIXING_EXTRUDER - opt_enable MIXING_EXTRUDER DIRECT_MIXING_IN_G1
- opt_set MIXING_STEPPERS 2 - opt_set MIXING_STEPPERS 2
- build_marlin_pio ${TRAVIS_BUILD_DIR} ${TEST_PLATFORM} - build_marlin_pio ${TRAVIS_BUILD_DIR} ${TEST_PLATFORM}
# #

View file

@ -171,7 +171,7 @@
UNUSED(response); UNUSED(response);
} }
static void spiSend(const uint8_t* buf, size_t n) { void spiSend(const uint8_t* buf, size_t n) {
uint8_t response; uint8_t response;
if (n == 0) return; if (n == 0) return;
for (uint16_t i = 0; i < n; i++) { for (uint16_t i = 0; i < n; i++) {

View file

@ -346,7 +346,6 @@ extern "C" {
void UART0_IRQHandler (void) void UART0_IRQHandler (void)
{ {
uint8_t IIRValue, LSRValue; uint8_t IIRValue, LSRValue;
uint8_t Dummy = Dummy;
IIRValue = LPC_UART0->IIR; IIRValue = LPC_UART0->IIR;
@ -354,59 +353,59 @@ void UART0_IRQHandler (void)
IIRValue &= 0x07; /* check bit 1~3, interrupt identification */ IIRValue &= 0x07; /* check bit 1~3, interrupt identification */
if ( IIRValue == IIR_RLS ) /* Receive Line Status */ if ( IIRValue == IIR_RLS ) /* Receive Line Status */
{ {
LSRValue = LPC_UART0->LSR; LSRValue = LPC_UART0->LSR;
/* Receive Line Status */ /* Receive Line Status */
if ( LSRValue & (LSR_OE|LSR_PE|LSR_FE|LSR_RXFE|LSR_BI) ) if ( LSRValue & (LSR_OE|LSR_PE|LSR_FE|LSR_RXFE|LSR_BI) )
{ {
/* There are errors or break interrupt */ /* There are errors or break interrupt */
/* Read LSR will clear the interrupt */ /* Read LSR will clear the interrupt */
UART0Status = LSRValue; UART0Status = LSRValue;
Dummy = LPC_UART0->RBR; /* Dummy read on RX to clear dummy = LPC_UART0->RBR; /* Dummy read on RX to clear
interrupt, then bail out */ interrupt, then bail out */
return; return;
} }
if ( LSRValue & LSR_RDR ) /* Receive Data Ready */ if ( LSRValue & LSR_RDR ) /* Receive Data Ready */
{ {
/* If no error on RLS, normal ready, save into the data buffer. */ /* If no error on RLS, normal ready, save into the data buffer. */
/* Note: read RBR will clear the interrupt */ /* Note: read RBR will clear the interrupt */
if ((UART0RxQueueWritePos+1) % UARTRXQUEUESIZE != UART0RxQueueReadPos) if ((UART0RxQueueWritePos+1) % UARTRXQUEUESIZE != UART0RxQueueReadPos)
{ {
UART0Buffer[UART0RxQueueWritePos] = LPC_UART0->RBR; UART0Buffer[UART0RxQueueWritePos] = LPC_UART0->RBR;
UART0RxQueueWritePos = (UART0RxQueueWritePos+1) % UARTRXQUEUESIZE; UART0RxQueueWritePos = (UART0RxQueueWritePos+1) % UARTRXQUEUESIZE;
} }
else else
dummy = LPC_UART0->RBR;; dummy = LPC_UART0->RBR;
} }
} }
else if ( IIRValue == IIR_RDA ) /* Receive Data Available */ else if ( IIRValue == IIR_RDA ) /* Receive Data Available */
{ {
/* Receive Data Available */ /* Receive Data Available */
if ((UART0RxQueueWritePos+1) % UARTRXQUEUESIZE != UART0RxQueueReadPos) if ((UART0RxQueueWritePos+1) % UARTRXQUEUESIZE != UART0RxQueueReadPos)
{ {
UART0Buffer[UART0RxQueueWritePos] = LPC_UART0->RBR; UART0Buffer[UART0RxQueueWritePos] = LPC_UART0->RBR;
UART0RxQueueWritePos = (UART0RxQueueWritePos+1) % UARTRXQUEUESIZE; UART0RxQueueWritePos = (UART0RxQueueWritePos+1) % UARTRXQUEUESIZE;
} }
else else
dummy = LPC_UART1->RBR;; dummy = LPC_UART1->RBR;
} }
else if ( IIRValue == IIR_CTI ) /* Character timeout indicator */ else if ( IIRValue == IIR_CTI ) /* Character timeout indicator */
{ {
/* Character Time-out indicator */ /* Character Time-out indicator */
UART0Status |= 0x100; /* Bit 9 as the CTI error */ UART0Status |= 0x100; /* Bit 9 as the CTI error */
} }
else if ( IIRValue == IIR_THRE ) /* THRE, transmit holding register empty */ else if ( IIRValue == IIR_THRE ) /* THRE, transmit holding register empty */
{ {
/* THRE interrupt */ /* THRE interrupt */
LSRValue = LPC_UART0->LSR; /* Check status in the LSR to see if LSRValue = LPC_UART0->LSR; /* Check status in the LSR to see if
valid data in U0THR or not */ valid data in U0THR or not */
if ( LSRValue & LSR_THRE ) if ( LSRValue & LSR_THRE )
{ {
UART0TxEmpty = 1; UART0TxEmpty = 1;
} }
else else
{ {
UART0TxEmpty = 0; UART0TxEmpty = 0;
} }
} }
} }
@ -422,7 +421,6 @@ void UART0_IRQHandler (void)
void UART1_IRQHandler (void) void UART1_IRQHandler (void)
{ {
uint8_t IIRValue, LSRValue; uint8_t IIRValue, LSRValue;
uint8_t Dummy = Dummy;
IIRValue = LPC_UART1->IIR; IIRValue = LPC_UART1->IIR;
@ -430,61 +428,60 @@ void UART1_IRQHandler (void)
IIRValue &= 0x07; /* check bit 1~3, interrupt identification */ IIRValue &= 0x07; /* check bit 1~3, interrupt identification */
if ( IIRValue == IIR_RLS ) /* Receive Line Status */ if ( IIRValue == IIR_RLS ) /* Receive Line Status */
{ {
LSRValue = LPC_UART1->LSR; LSRValue = LPC_UART1->LSR;
/* Receive Line Status */ /* Receive Line Status */
if ( LSRValue & (LSR_OE|LSR_PE|LSR_FE|LSR_RXFE|LSR_BI) ) if ( LSRValue & (LSR_OE|LSR_PE|LSR_FE|LSR_RXFE|LSR_BI) )
{ {
/* There are errors or break interrupt */ /* There are errors or break interrupt */
/* Read LSR will clear the interrupt */ /* Read LSR will clear the interrupt */
UART1Status = LSRValue; UART1Status = LSRValue;
Dummy = LPC_UART1->RBR; /* Dummy read on RX to clear dummy = LPC_UART1->RBR; /* Dummy read on RX to clear
interrupt, then bail out */ interrupt, then bail out */
return; return;
} }
if ( LSRValue & LSR_RDR ) /* Receive Data Ready */ if ( LSRValue & LSR_RDR ) /* Receive Data Ready */
{ {
/* If no error on RLS, normal ready, save into the data buffer. */ /* If no error on RLS, normal ready, save into the data buffer. */
/* Note: read RBR will clear the interrupt */ /* Note: read RBR will clear the interrupt */
if ((UART1RxQueueWritePos+1) % UARTRXQUEUESIZE != UART1RxQueueReadPos) if ((UART1RxQueueWritePos+1) % UARTRXQUEUESIZE != UART1RxQueueReadPos)
{ {
UART1Buffer[UART1RxQueueWritePos] = LPC_UART1->RBR; UART1Buffer[UART1RxQueueWritePos] = LPC_UART1->RBR;
UART1RxQueueWritePos =(UART1RxQueueWritePos+1) % UARTRXQUEUESIZE; UART1RxQueueWritePos =(UART1RxQueueWritePos+1) % UARTRXQUEUESIZE;
} }
else else
dummy = LPC_UART1->RBR;; dummy = LPC_UART1->RBR;
} }
} }
else if ( IIRValue == IIR_RDA ) /* Receive Data Available */ else if ( IIRValue == IIR_RDA ) /* Receive Data Available */
{ {
/* Receive Data Available */ /* Receive Data Available */
if ((UART1RxQueueWritePos+1) % UARTRXQUEUESIZE != UART1RxQueueReadPos) if ((UART1RxQueueWritePos+1) % UARTRXQUEUESIZE != UART1RxQueueReadPos)
{ {
UART1Buffer[UART1RxQueueWritePos] = LPC_UART1->RBR; UART1Buffer[UART1RxQueueWritePos] = LPC_UART1->RBR;
UART1RxQueueWritePos = (UART1RxQueueWritePos+1) % UARTRXQUEUESIZE; UART1RxQueueWritePos = (UART1RxQueueWritePos+1) % UARTRXQUEUESIZE;
} }
else else
dummy = LPC_UART1->RBR;; dummy = LPC_UART1->RBR;
} }
else if ( IIRValue == IIR_CTI ) /* Character timeout indicator */ else if ( IIRValue == IIR_CTI ) /* Character timeout indicator */
{ {
/* Character Time-out indicator */ /* Character Time-out indicator */
UART1Status |= 0x100; /* Bit 9 as the CTI error */ UART1Status |= 0x100; /* Bit 9 as the CTI error */
}
else if ( IIRValue == IIR_THRE ) /* THRE, transmit holding register empty */
{
/* THRE interrupt */
LSRValue = LPC_UART1->LSR; /* Check status in the LSR to see if
valid data in U0THR or not */
if ( LSRValue & LSR_THRE )
{
UART1TxEmpty = 1;
}
else
{
UART1TxEmpty = 0;
}
} }
else if ( IIRValue == IIR_THRE ) /* THRE, transmit holding register empty */
{
/* THRE interrupt */
LSRValue = LPC_UART1->LSR; /* Check status in the LSR to see if
valid data in U0THR or not */
if ( LSRValue & LSR_THRE )
{
UART1TxEmpty = 1;
}
else
{
UART1TxEmpty = 0;
}
}
} }
/***************************************************************************** /*****************************************************************************
** Function name: UART2_IRQHandler ** Function name: UART2_IRQHandler
@ -498,7 +495,6 @@ void UART1_IRQHandler (void)
void UART2_IRQHandler (void) void UART2_IRQHandler (void)
{ {
uint8_t IIRValue, LSRValue; uint8_t IIRValue, LSRValue;
uint8_t Dummy = Dummy;
IIRValue = LPC_UART2->IIR; IIRValue = LPC_UART2->IIR;
@ -506,57 +502,57 @@ void UART2_IRQHandler (void)
IIRValue &= 0x07; /* check bit 1~3, interrupt identification */ IIRValue &= 0x07; /* check bit 1~3, interrupt identification */
if ( IIRValue == IIR_RLS ) /* Receive Line Status */ if ( IIRValue == IIR_RLS ) /* Receive Line Status */
{ {
LSRValue = LPC_UART2->LSR; LSRValue = LPC_UART2->LSR;
/* Receive Line Status */ /* Receive Line Status */
if ( LSRValue & (LSR_OE|LSR_PE|LSR_FE|LSR_RXFE|LSR_BI) ) if ( LSRValue & (LSR_OE|LSR_PE|LSR_FE|LSR_RXFE|LSR_BI) )
{ {
/* There are errors or break interrupt */ /* There are errors or break interrupt */
/* Read LSR will clear the interrupt */ /* Read LSR will clear the interrupt */
UART2Status = LSRValue; UART2Status = LSRValue;
Dummy = LPC_UART2->RBR; /* Dummy read on RX to clear dummy = LPC_UART2->RBR; /* Dummy read on RX to clear
interrupt, then bail out */ interrupt, then bail out */
return; return;
} }
if ( LSRValue & LSR_RDR ) /* Receive Data Ready */ if ( LSRValue & LSR_RDR ) /* Receive Data Ready */
{ {
/* If no error on RLS, normal ready, save into the data buffer. */ /* If no error on RLS, normal ready, save into the data buffer. */
/* Note: read RBR will clear the interrupt */ /* Note: read RBR will clear the interrupt */
if ((UART2RxQueueWritePos+1) % UARTRXQUEUESIZE != UART2RxQueueReadPos) if ((UART2RxQueueWritePos+1) % UARTRXQUEUESIZE != UART2RxQueueReadPos)
{ {
UART2Buffer[UART2RxQueueWritePos] = LPC_UART2->RBR; UART2Buffer[UART2RxQueueWritePos] = LPC_UART2->RBR;
UART2RxQueueWritePos = (UART2RxQueueWritePos+1) % UARTRXQUEUESIZE; UART2RxQueueWritePos = (UART2RxQueueWritePos+1) % UARTRXQUEUESIZE;
} }
} }
} }
else if ( IIRValue == IIR_RDA ) /* Receive Data Available */ else if ( IIRValue == IIR_RDA ) /* Receive Data Available */
{ {
/* Receive Data Available */ /* Receive Data Available */
if ((UART2RxQueueWritePos+1) % UARTRXQUEUESIZE != UART2RxQueueReadPos) if ((UART2RxQueueWritePos+1) % UARTRXQUEUESIZE != UART2RxQueueReadPos)
{ {
UART2Buffer[UART2RxQueueWritePos] = LPC_UART2->RBR; UART2Buffer[UART2RxQueueWritePos] = LPC_UART2->RBR;
UART2RxQueueWritePos = (UART2RxQueueWritePos+1) % UARTRXQUEUESIZE; UART2RxQueueWritePos = (UART2RxQueueWritePos+1) % UARTRXQUEUESIZE;
} }
else else
dummy = LPC_UART2->RBR;; dummy = LPC_UART2->RBR;
} }
else if ( IIRValue == IIR_CTI ) /* Character timeout indicator */ else if ( IIRValue == IIR_CTI ) /* Character timeout indicator */
{ {
/* Character Time-out indicator */ /* Character Time-out indicator */
UART2Status |= 0x100; /* Bit 9 as the CTI error */ UART2Status |= 0x100; /* Bit 9 as the CTI error */
} }
else if ( IIRValue == IIR_THRE ) /* THRE, transmit holding register empty */ else if ( IIRValue == IIR_THRE ) /* THRE, transmit holding register empty */
{ {
/* THRE interrupt */ /* THRE interrupt */
LSRValue = LPC_UART2->LSR; /* Check status in the LSR to see if LSRValue = LPC_UART2->LSR; /* Check status in the LSR to see if
valid data in U0THR or not */ valid data in U0THR or not */
if ( LSRValue & LSR_THRE ) if ( LSRValue & LSR_THRE )
{ {
UART2TxEmpty = 1; UART2TxEmpty = 1;
} }
else else
{ {
UART2TxEmpty = 0; UART2TxEmpty = 0;
} }
} }
} }
/***************************************************************************** /*****************************************************************************
@ -571,7 +567,6 @@ void UART2_IRQHandler (void)
void UART3_IRQHandler (void) void UART3_IRQHandler (void)
{ {
uint8_t IIRValue, LSRValue; uint8_t IIRValue, LSRValue;
uint8_t Dummy = Dummy;
IIRValue = LPC_UART3->IIR; IIRValue = LPC_UART3->IIR;
@ -579,57 +574,57 @@ void UART3_IRQHandler (void)
IIRValue &= 0x07; /* check bit 1~3, interrupt identification */ IIRValue &= 0x07; /* check bit 1~3, interrupt identification */
if ( IIRValue == IIR_RLS ) /* Receive Line Status */ if ( IIRValue == IIR_RLS ) /* Receive Line Status */
{ {
LSRValue = LPC_UART3->LSR; LSRValue = LPC_UART3->LSR;
/* Receive Line Status */ /* Receive Line Status */
if ( LSRValue & (LSR_OE|LSR_PE|LSR_FE|LSR_RXFE|LSR_BI) ) if ( LSRValue & (LSR_OE|LSR_PE|LSR_FE|LSR_RXFE|LSR_BI) )
{ {
/* There are errors or break interrupt */ /* There are errors or break interrupt */
/* Read LSR will clear the interrupt */ /* Read LSR will clear the interrupt */
UART3Status = LSRValue; UART3Status = LSRValue;
Dummy = LPC_UART3->RBR; /* Dummy read on RX to clear dummy = LPC_UART3->RBR; /* Dummy read on RX to clear
interrupt, then bail out */ interrupt, then bail out */
return; return;
} }
if ( LSRValue & LSR_RDR ) /* Receive Data Ready */ if ( LSRValue & LSR_RDR ) /* Receive Data Ready */
{ {
/* If no error on RLS, normal ready, save into the data buffer. */ /* If no error on RLS, normal ready, save into the data buffer. */
/* Note: read RBR will clear the interrupt */ /* Note: read RBR will clear the interrupt */
if ((UART3RxQueueWritePos+1) % UARTRXQUEUESIZE != UART3RxQueueReadPos) if ((UART3RxQueueWritePos+1) % UARTRXQUEUESIZE != UART3RxQueueReadPos)
{ {
UART3Buffer[UART3RxQueueWritePos] = LPC_UART3->RBR; UART3Buffer[UART3RxQueueWritePos] = LPC_UART3->RBR;
UART3RxQueueWritePos = (UART3RxQueueWritePos+1) % UARTRXQUEUESIZE; UART3RxQueueWritePos = (UART3RxQueueWritePos+1) % UARTRXQUEUESIZE;
} }
} }
} }
else if ( IIRValue == IIR_RDA ) /* Receive Data Available */ else if ( IIRValue == IIR_RDA ) /* Receive Data Available */
{ {
/* Receive Data Available */ /* Receive Data Available */
if ((UART3RxQueueWritePos+1) % UARTRXQUEUESIZE != UART3RxQueueReadPos) if ((UART3RxQueueWritePos+1) % UARTRXQUEUESIZE != UART3RxQueueReadPos)
{ {
UART3Buffer[UART3RxQueueWritePos] = LPC_UART3->RBR; UART3Buffer[UART3RxQueueWritePos] = LPC_UART3->RBR;
UART3RxQueueWritePos = (UART3RxQueueWritePos+1) % UARTRXQUEUESIZE; UART3RxQueueWritePos = (UART3RxQueueWritePos+1) % UARTRXQUEUESIZE;
} }
else else
dummy = LPC_UART3->RBR;; dummy = LPC_UART3->RBR;
} }
else if ( IIRValue == IIR_CTI ) /* Character timeout indicator */ else if ( IIRValue == IIR_CTI ) /* Character timeout indicator */
{ {
/* Character Time-out indicator */ /* Character Time-out indicator */
UART3Status |= 0x100; /* Bit 9 as the CTI error */ UART3Status |= 0x100; /* Bit 9 as the CTI error */
} }
else if ( IIRValue == IIR_THRE ) /* THRE, transmit holding register empty */ else if ( IIRValue == IIR_THRE ) /* THRE, transmit holding register empty */
{ {
/* THRE interrupt */ /* THRE interrupt */
LSRValue = LPC_UART3->LSR; /* Check status in the LSR to see if LSRValue = LPC_UART3->LSR; /* Check status in the LSR to see if
valid data in U0THR or not */ valid data in U0THR or not */
if ( LSRValue & LSR_THRE ) if ( LSRValue & LSR_THRE )
{ {
UART3TxEmpty = 1; UART3TxEmpty = 1;
} }
else else
{ {
UART3TxEmpty = 0; UART3TxEmpty = 0;
} }
} }
} }

View file

@ -147,9 +147,11 @@
bool Servo::attached() { return servo_info[this->servoIndex].Pin.isActive; } bool Servo::attached() { return servo_info[this->servoIndex].Pin.isActive; }
void Servo::move(const int value) { void Servo::move(const int value) {
constexpr uint16_t servo_delay[] = SERVO_DELAY;
static_assert(COUNT(servo_delay) == NUM_SERVOS, "SERVO_DELAY must be an array NUM_SERVOS long.");
if (this->attach(0) >= 0) { // notice the pin number is zero here if (this->attach(0) >= 0) { // notice the pin number is zero here
this->write(value); this->write(value);
delay(SERVO_DELAY); delay(servo_delay[this->servoIndex]);
#if ENABLED(DEACTIVATE_SERVOS_AFTER_MOVE) #if ENABLED(DEACTIVATE_SERVOS_AFTER_MOVE)
this->detach(); this->detach();
LPC1768_PWM_detach_pin(servo_info[this->servoIndex].Pin.nbr); // shut down the PWM signal LPC1768_PWM_detach_pin(servo_info[this->servoIndex].Pin.nbr); // shut down the PWM signal

View file

@ -292,10 +292,10 @@ void SoftwareSerial::begin(long speed)
void SoftwareSerial::setRxIntMsk(bool enable) void SoftwareSerial::setRxIntMsk(bool enable)
{ {
if (enable) if (enable)
GpioEnableInt(_receivePort,_receivePin,CHANGE); GpioEnableInt(_receivePort,_receivePin,CHANGE);
else else
GpioDisableInt(_receivePort,_receivePin); GpioDisableInt(_receivePort,_receivePin);
} }
void SoftwareSerial::end() void SoftwareSerial::end()

View file

@ -71,12 +71,12 @@ private:
static SoftwareSerial *active_object; static SoftwareSerial *active_object;
// private methods // private methods
void recv() __attribute__((__always_inline__)); void recv();
uint32_t rx_pin_read(); uint32_t rx_pin_read();
void tx_pin_write(uint8_t pin_state) __attribute__((__always_inline__)); void tx_pin_write(uint8_t pin_state);
void setTX(uint8_t transmitPin); void setTX(uint8_t transmitPin);
void setRX(uint8_t receivePin); void setRX(uint8_t receivePin);
void setRxIntMsk(bool enable) __attribute__((__always_inline__)); void setRxIntMsk(bool enable);
// private static method for timing // private static method for timing
static inline void tunedDelay(uint32_t delay); static inline void tunedDelay(uint32_t delay);

View file

@ -62,9 +62,9 @@ void delayMicroseconds(uint32_t us) {
while (loops > 0) --loops; while (loops > 0) --loops;
} }
else { // poll systick, more accurate through interrupts else { // poll systick, more accurate through interrupts
int32_t start = SysTick->VAL; uint32_t start = SysTick->VAL;
int32_t load = SysTick->LOAD; uint32_t load = SysTick->LOAD;
int32_t end = start - (load / 1000) * us; uint32_t end = start - (load / 1000) * us;
if (end >> 31) if (end >> 31)
while (!(SysTick->VAL > start && SysTick->VAL < (load + end))) __NOP(); while (!(SysTick->VAL > start && SysTick->VAL < (load + end))) __NOP();

View file

@ -24,6 +24,10 @@
#if ENABLED(MIXING_EXTRUDER) #if ENABLED(MIXING_EXTRUDER)
#if ENABLED(DIRECT_MIXING_IN_G1)
#include "../gcode/parser.h"
#endif
float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
#if MIXING_VIRTUAL_TOOLS > 1 #if MIXING_VIRTUAL_TOOLS > 1

View file

@ -52,21 +52,23 @@ static float resume_position[XYZE];
static bool sd_print_paused = false; static bool sd_print_paused = false;
#endif #endif
static void filament_change_beep(const int8_t max_beep_count, const bool init=false) { #if HAS_BUZZER
static millis_t next_buzz = 0; static void filament_change_beep(const int8_t max_beep_count, const bool init=false) {
static int8_t runout_beep = 0; static millis_t next_buzz = 0;
static int8_t runout_beep = 0;
if (init) next_buzz = runout_beep = 0; if (init) next_buzz = runout_beep = 0;
const millis_t ms = millis(); const millis_t ms = millis();
if (ELAPSED(ms, next_buzz)) { if (ELAPSED(ms, next_buzz)) {
if (max_beep_count < 0 || runout_beep < max_beep_count + 5) { // Only beep as long as we're supposed to if (max_beep_count < 0 || runout_beep < max_beep_count + 5) { // Only beep as long as we're supposed to
next_buzz = ms + ((max_beep_count < 0 || runout_beep < max_beep_count) ? 2500 : 400); next_buzz = ms + ((max_beep_count < 0 || runout_beep < max_beep_count) ? 2500 : 400);
BUZZ(300, 2000); BUZZ(300, 2000);
runout_beep++; runout_beep++;
}
} }
} }
} #endif
static void ensure_safe_temperature() { static void ensure_safe_temperature() {
bool heaters_heating = true; bool heaters_heating = true;

View file

@ -79,8 +79,8 @@ char* top_of_stack() {
} }
// Count the number of test bytes at the specified location. // Count the number of test bytes at the specified location.
inline int16_t count_test_bytes(const char * const ptr) { inline int32_t count_test_bytes(const char * const ptr) {
for (uint16_t i = 0; i < 32000; i++) for (uint32_t i = 0; i < 32000; i++)
if (((char) ptr[i]) != TEST_BYTE) if (((char) ptr[i]) != TEST_BYTE)
return i - 1; return i - 1;
@ -180,7 +180,7 @@ inline int check_for_free_memory_corruption(const char * const title) {
int block_cnt = 0; int block_cnt = 0;
for (int i = 0; i < n; i++) { for (int i = 0; i < n; i++) {
if (ptr[i] == TEST_BYTE) { if (ptr[i] == TEST_BYTE) {
int16_t j = count_test_bytes(ptr + i); int32_t j = count_test_bytes(ptr + i);
if (j > 8) { if (j > 8) {
// SERIAL_ECHOPAIR("Found ", j); // SERIAL_ECHOPAIR("Found ", j);
// SERIAL_ECHOLNPAIR(" bytes free at ", hex_address(ptr + i)); // SERIAL_ECHOLNPAIR(" bytes free at ", hex_address(ptr + i));
@ -215,14 +215,14 @@ inline int check_for_free_memory_corruption(const char * const title) {
* Return the number of free bytes in the memory pool, * Return the number of free bytes in the memory pool,
* with other vital statistics defining the pool. * with other vital statistics defining the pool.
*/ */
inline void free_memory_pool_report(char * const ptr, const int16_t size) { inline void free_memory_pool_report(char * const ptr, const int32_t size) {
int16_t max_cnt = -1, block_cnt = 0; int32_t max_cnt = -1, block_cnt = 0;
char *max_addr = NULL; char *max_addr = NULL;
// Find the longest block of test bytes in the buffer // Find the longest block of test bytes in the buffer
for (int16_t i = 0; i < size; i++) { for (int32_t i = 0; i < size; i++) {
char *addr = ptr + i; char *addr = ptr + i;
if (*addr == TEST_BYTE) { if (*addr == TEST_BYTE) {
const int16_t j = count_test_bytes(addr); const int32_t j = count_test_bytes(addr);
if (j > 8) { if (j > 8) {
SERIAL_ECHOPAIR("Found ", j); SERIAL_ECHOPAIR("Found ", j);
SERIAL_ECHOLNPAIR(" bytes free at ", hex_address(addr)); SERIAL_ECHOLNPAIR(" bytes free at ", hex_address(addr));
@ -249,13 +249,13 @@ inline void free_memory_pool_report(char * const ptr, const int16_t size) {
* Corrupt <num> locations in the free memory pool and report the corrupt addresses. * Corrupt <num> locations in the free memory pool and report the corrupt addresses.
* This is useful to check the correctness of the M100 D and the M100 F commands. * This is useful to check the correctness of the M100 D and the M100 F commands.
*/ */
inline void corrupt_free_memory(char *ptr, const uint16_t size) { inline void corrupt_free_memory(char *ptr, const uint32_t size) {
ptr += 8; ptr += 8;
const uint16_t near_top = top_of_stack() - ptr - 250, // -250 to avoid interrupt activity that's altered the stack. const uint32_t near_top = top_of_stack() - ptr - 250, // -250 to avoid interrupt activity that's altered the stack.
j = near_top / (size + 1); j = near_top / (size + 1);
SERIAL_ECHOLNPGM("Corrupting free memory block.\n"); SERIAL_ECHOLNPGM("Corrupting free memory block.\n");
for (uint16_t i = 1; i <= size; i++) { for (uint32_t i = 1; i <= size; i++) {
char * const addr = ptr + i * j; char * const addr = ptr + i * j;
*addr = i; *addr = i;
SERIAL_ECHOPAIR("\nCorrupting address: ", hex_address(addr)); SERIAL_ECHOPAIR("\nCorrupting address: ", hex_address(addr));
@ -268,7 +268,7 @@ inline void free_memory_pool_report(char * const ptr, const int16_t size) {
* M100 I * M100 I
* Init memory for the M100 tests. (Automatically applied on the first M100.) * Init memory for the M100 tests. (Automatically applied on the first M100.)
*/ */
inline void init_free_memory(char *ptr, int16_t size) { inline void init_free_memory(char *ptr, int32_t size) {
SERIAL_ECHOLNPGM("Initializing free memory block.\n\n"); SERIAL_ECHOLNPGM("Initializing free memory block.\n\n");
size -= 250; // -250 to avoid interrupt activity that's altered the stack. size -= 250; // -250 to avoid interrupt activity that's altered the stack.
@ -284,7 +284,7 @@ inline void init_free_memory(char *ptr, int16_t size) {
SERIAL_ECHO(size); SERIAL_ECHO(size);
SERIAL_ECHOLNPGM(" bytes of memory initialized.\n"); SERIAL_ECHOLNPGM(" bytes of memory initialized.\n");
for (int16_t i = 0; i < size; i++) { for (int32_t i = 0; i < size; i++) {
if (ptr[i] != TEST_BYTE) { if (ptr[i] != TEST_BYTE) {
SERIAL_ECHOPAIR("? address : ", hex_address(ptr + i)); SERIAL_ECHOPAIR("? address : ", hex_address(ptr + i));
SERIAL_ECHOLNPAIR("=", hex_byte(ptr[i])); SERIAL_ECHOLNPAIR("=", hex_byte(ptr[i]));

View file

@ -141,15 +141,16 @@ inline void servo_probe_test() {
SERIAL_PROTOCOLLNPGM(". deploy & stow 4 times"); SERIAL_PROTOCOLLNPGM(". deploy & stow 4 times");
SET_INPUT_PULLUP(PROBE_TEST_PIN); SET_INPUT_PULLUP(PROBE_TEST_PIN);
uint8_t i = 0;
bool deploy_state, stow_state; bool deploy_state, stow_state;
for (uint8_t i = 0; i < 4; i++) { do {
MOVE_SERVO(probe_index, z_servo_angle[0]); //deploy MOVE_SERVO(probe_index, z_servo_angle[0]); //deploy
safe_delay(500); safe_delay(500);
deploy_state = READ(PROBE_TEST_PIN); deploy_state = READ(PROBE_TEST_PIN);
MOVE_SERVO(probe_index, z_servo_angle[1]); //stow MOVE_SERVO(probe_index, z_servo_angle[1]); //stow
safe_delay(500); safe_delay(500);
stow_state = READ(PROBE_TEST_PIN); stow_state = READ(PROBE_TEST_PIN);
} } while (++i < 4);
if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards"); if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards");
gcode.refresh_cmd_timeout(); gcode.refresh_cmd_timeout();
@ -167,7 +168,6 @@ inline void servo_probe_test() {
#if ENABLED(BLTOUCH) #if ENABLED(BLTOUCH)
SERIAL_PROTOCOLLNPGM("ERROR: BLTOUCH enabled - set this device up as a Z Servo Probe with inverting as true."); SERIAL_PROTOCOLLNPGM("ERROR: BLTOUCH enabled - set this device up as a Z Servo Probe with inverting as true.");
#endif #endif
} }
else { // measure active signal length else { // measure active signal length
MOVE_SERVO(probe_index, z_servo_angle[0]); // deploy MOVE_SERVO(probe_index, z_servo_angle[0]); // deploy

View file

@ -27,6 +27,7 @@
#include "../../gcode.h" #include "../../gcode.h"
#include "../../parser.h" #include "../../parser.h"
#include "../../../feature/pause.h" #include "../../../feature/pause.h"
#include "../../../module/motion.h"
/** /**
* M125: Store current position and move to filament change position. * M125: Store current position and move to filament change position.

View file

@ -36,6 +36,10 @@ GcodeSuite gcode;
#include "../module/printcounter.h" #include "../module/printcounter.h"
#endif #endif
#if ENABLED(DIRECT_MIXING_IN_G1)
#include "../feature/mixing.h"
#endif
#include "../Marlin.h" // for idle() #include "../Marlin.h" // for idle()
uint8_t GcodeSuite::target_extruder; uint8_t GcodeSuite::target_extruder;

View file

@ -29,7 +29,7 @@
#include "../Marlin.h" #include "../Marlin.h"
#if ENABLED(DEBUG_GCODE_PARSER) #if ENABLED(DEBUG_GCODE_PARSER)
#include "../../libs/hex_print_routines.h" #include "../libs/hex_print_routines.h"
#endif #endif
// Must be declared for allocation and to satisfy the linker // Must be declared for allocation and to satisfy the linker

View file

@ -2693,7 +2693,6 @@ void kill_screen(const char* lcd_msg) {
void lcd_delta_settings() { void lcd_delta_settings() {
START_MENU(); START_MENU();
MENU_BACK(MSG_DELTA_CALIBRATE); MENU_BACK(MSG_DELTA_CALIBRATE);
float Tz = 0.00;
MENU_ITEM_EDIT(float52, MSG_DELTA_DIAG_ROG, &delta_diagonal_rod, DELTA_DIAGONAL_ROD - 5.0, DELTA_DIAGONAL_ROD + 5.0); MENU_ITEM_EDIT(float52, MSG_DELTA_DIAG_ROG, &delta_diagonal_rod, DELTA_DIAGONAL_ROD - 5.0, DELTA_DIAGONAL_ROD + 5.0);
_delta_height = DELTA_HEIGHT + home_offset[Z_AXIS]; _delta_height = DELTA_HEIGHT + home_offset[Z_AXIS];
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float52, MSG_DELTA_HEIGHT, &_delta_height, _delta_height - 10.0, _delta_height + 10.0, _lcd_set_delta_height); MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float52, MSG_DELTA_HEIGHT, &_delta_height, _delta_height - 10.0, _delta_height + 10.0, _lcd_set_delta_height);

View file

@ -21,41 +21,46 @@
*/ */
#include "../inc/MarlinConfig.h" #include "../inc/MarlinConfig.h"
#include "../gcode/parser.h"
#if ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(M100_FREE_MEMORY_WATCHER) || ENABLED(DEBUG_GCODE_PARSER) #if ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(M100_FREE_MEMORY_WATCHER) || ENABLED(DEBUG_GCODE_PARSER)
#include "hex_print_routines.h" #include "hex_print_routines.h"
#ifdef CPU_32_BIT #ifdef CPU_32_BIT
constexpr int byte_start = 0;
static char _hex[] = "0x0000";
#else
constexpr int byte_start = 4; constexpr int byte_start = 4;
static char _hex[] = "0x00000000"; static char _hex[] = "0x00000000";
#else
constexpr int byte_start = 0;
static char _hex[] = "0x0000";
#endif #endif
char* hex_byte(const uint8_t b) { char* hex_byte(const uint8_t b) {
_hex[byte_start + 4] = hex_nybble(b >> 4); _hex[byte_start + 4] = hex_nybble(b >> 4);
_hex[byte_start + 5] = hex_nybble(b); _hex[byte_start + 5] = hex_nybble(b);
return &_hex[byte_start]; return &_hex[byte_start + 4];
} }
char* hex_word(const uint16_t w) { inline void _hex_word(const uint16_t w) {
_hex[byte_start + 2] = hex_nybble(w >> 12); _hex[byte_start + 2] = hex_nybble(w >> 12);
_hex[byte_start + 3] = hex_nybble(w >> 8); _hex[byte_start + 3] = hex_nybble(w >> 8);
_hex[byte_start + 4] = hex_nybble(w >> 4); _hex[byte_start + 4] = hex_nybble(w >> 4);
_hex[byte_start + 5] = hex_nybble(w); _hex[byte_start + 5] = hex_nybble(w);
return &_hex[byte_start - 2]; }
char* hex_word(const uint16_t w) {
_hex_word(w);
return &_hex[byte_start + 2];
} }
#ifdef CPU_32_BIT #ifdef CPU_32_BIT
char* hex_long(const uint32_t w) { char* hex_long(const uint32_t l) {
_hex[byte_start - 2] = hex_nybble(w >> 28); _hex[2] = hex_nybble(l >> 28);
_hex[byte_start - 1] = hex_nybble(w >> 24); _hex[3] = hex_nybble(l >> 24);
_hex[byte_start + 0] = hex_nybble(w >> 20); _hex[4] = hex_nybble(l >> 20);
_hex[byte_start + 1] = hex_nybble(w >> 16); _hex[5] = hex_nybble(l >> 16);
(void)hex_word((uint16_t)(w & 0xFFFF)); _hex_word((uint16_t)(l & 0xFFFF));
return &_hex[byte_start - 6]; return &_hex[2];
} }
#endif #endif

View file

@ -26,6 +26,10 @@
#include "../module/motion.h" #include "../module/motion.h"
#include "point_t.h" #include "point_t.h"
#if ENABLED(DELTA)
#include "../module/delta.h"
#endif
/** /**
* @brief Stroke clean pattern * @brief Stroke clean pattern
* @details Wipes the nozzle back and forth in a linear movement * @details Wipes the nozzle back and forth in a linear movement

View file

@ -135,9 +135,9 @@ volatile uint32_t Stepper::step_events_completed = 0; // The number of step even
* This fix isn't perfect and may lose steps - but better than locking up completely * This fix isn't perfect and may lose steps - but better than locking up completely
* in future the planner should slow down if advance stepping rate would be too high * in future the planner should slow down if advance stepping rate would be too high
*/ */
FORCE_INLINE uint16_t adv_rate(const int steps, const uint16_t timer, const uint8_t loops) { FORCE_INLINE HAL_TIMER_TYPE adv_rate(const int steps, const HAL_TIMER_TYPE timer, const uint8_t loops) {
if (steps) { if (steps) {
const uint16_t rate = (timer * loops) / abs(steps); const HAL_TIMER_TYPE rate = (timer * loops) / abs(steps);
//return constrain(rate, 1, ADV_NEVER - 1) //return constrain(rate, 1, ADV_NEVER - 1)
return rate ? rate : 1; return rate ? rate : 1;
} }
@ -806,8 +806,8 @@ void Stepper::isr() {
#if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE) #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
#ifdef CPU_32_BIT #ifdef CPU_32_BIT
// Make sure stepper interrupt does not monopolise CPU by adjusting count to give about 8 us room // Make sure stepper interrupt does not monopolise CPU by adjusting count to give about 8 us room
uint32_t stepper_timer_count = HAL_timer_get_count(STEP_TIMER_NUM), HAL_TIMER_TYPE stepper_timer_count = HAL_timer_get_count(STEP_TIMER_NUM),
stepper_timer_current_count = HAL_timer_get_current_count(STEP_TIMER_NUM) + 8 * HAL_TICKS_PER_US; stepper_timer_current_count = HAL_timer_get_current_count(STEP_TIMER_NUM) + 8 * HAL_TICKS_PER_US;
HAL_timer_set_count(STEP_TIMER_NUM, max(stepper_timer_count, stepper_timer_current_count)); HAL_timer_set_count(STEP_TIMER_NUM, max(stepper_timer_count, stepper_timer_current_count));
#else #else
NOLESS(OCR1A, TCNT1 + 16); NOLESS(OCR1A, TCNT1 + 16);

View file

@ -1744,8 +1744,8 @@ void Temperature::isr() {
// Macros for Slow PWM timer logic // Macros for Slow PWM timer logic
#define _SLOW_PWM_ROUTINE(NR, src) \ #define _SLOW_PWM_ROUTINE(NR, src) \
soft_pwm_ ##NR = src; \ soft_pwm_count_ ##NR = src; \
if (soft_pwm_ ##NR > 0) { \ if (soft_pwm_count_ ##NR > 0) { \
if (state_timer_heater_ ##NR == 0) { \ if (state_timer_heater_ ##NR == 0) { \
if (state_heater_ ##NR == 0) state_timer_heater_ ##NR = MIN_STATE_TIME; \ if (state_heater_ ##NR == 0) state_timer_heater_ ##NR = MIN_STATE_TIME; \
state_heater_ ##NR = 1; \ state_heater_ ##NR = 1; \
@ -1762,7 +1762,7 @@ void Temperature::isr() {
#define SLOW_PWM_ROUTINE(n) _SLOW_PWM_ROUTINE(n, soft_pwm_amount[n]) #define SLOW_PWM_ROUTINE(n) _SLOW_PWM_ROUTINE(n, soft_pwm_amount[n])
#define PWM_OFF_ROUTINE(NR) \ #define PWM_OFF_ROUTINE(NR) \
if (soft_pwm_ ##NR < slow_pwm_count) { \ if (soft_pwm_count_ ##NR < slow_pwm_count) { \
if (state_timer_heater_ ##NR == 0) { \ if (state_timer_heater_ ##NR == 0) { \
if (state_heater_ ##NR == 1) state_timer_heater_ ##NR = MIN_STATE_TIME; \ if (state_heater_ ##NR == 1) state_timer_heater_ ##NR = MIN_STATE_TIME; \
state_heater_ ##NR = 0; \ state_heater_ ##NR = 0; \

View file

@ -286,8 +286,7 @@ void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool n
#else // !DUAL_X_CARRIAGE #else // !DUAL_X_CARRIAGE
#if ENABLED(PARKING_EXTRUDER) // Dual Parking extruder #if ENABLED(PARKING_EXTRUDER) // Dual Parking extruder
const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder]; float z_raise = PARKING_EXTRUDER_SECURITY_RAISE;
float z_raise = 0;
if (!no_move) { if (!no_move) {
const float parkingposx[] = PARKING_EXTRUDER_PARKING_X, const float parkingposx[] = PARKING_EXTRUDER_PARKING_X,
@ -310,7 +309,6 @@ void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool n
SERIAL_ECHOLNPGM("Starting Autopark"); SERIAL_ECHOLNPGM("Starting Autopark");
if (DEBUGGING(LEVELING)) DEBUG_POS("current position:", current_position); if (DEBUGGING(LEVELING)) DEBUG_POS("current position:", current_position);
#endif #endif
z_raise = PARKING_EXTRUDER_SECURITY_RAISE;
current_position[Z_AXIS] += z_raise; current_position[Z_AXIS] += z_raise;
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
SERIAL_ECHOLNPGM("(1) Raise Z-Axis "); SERIAL_ECHOLNPGM("(1) Raise Z-Axis ");

View file

@ -1388,7 +1388,7 @@ bool SdBaseFile::rmdir() {
* the value zero, false, is returned for failure. * the value zero, false, is returned for failure.
*/ */
bool SdBaseFile::rmRfStar() { bool SdBaseFile::rmRfStar() {
uint16_t index; uint32_t index;
SdBaseFile f; SdBaseFile f;
rewind(); rewind();
while (curPosition_ < fileSize_) { while (curPosition_ < fileSize_) {

View file

@ -115,7 +115,7 @@ void NVIC_SCBDeInit(void)
SCB->SCR = 0x00000000; SCB->SCR = 0x00000000;
SCB->CCR = 0x00000000; SCB->CCR = 0x00000000;
for (tmp = 0; tmp < 32; tmp++) { for (tmp = 0; tmp < (sizeof(SCB->SHP) / sizeof(SCB->SHP[0])); tmp++) {
SCB->SHP[tmp] = 0x00; SCB->SHP[tmp] = 0x00;
} }