Merge branch 'Marlin_v1' of https://github.com/ErikZalm/Marlin into Marlin_v1
This commit is contained in:
commit
12e8edcac3
5 changed files with 142 additions and 74 deletions
|
@ -170,6 +170,7 @@ const bool Y_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
|
||||||
const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
|
const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
|
||||||
// For optos H21LOB set to true, for Mendel-Parts newer optos TCST2103 set to false
|
// For optos H21LOB set to true, for Mendel-Parts newer optos TCST2103 set to false
|
||||||
|
|
||||||
|
//#define ENDSTOPS_ONLY_FOR_HOMING // If defined the endstops will only be used for homing
|
||||||
|
|
||||||
// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
|
// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
|
||||||
#define X_ENABLE_ON 0
|
#define X_ENABLE_ON 0
|
||||||
|
@ -279,8 +280,8 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
|
||||||
#ifdef ADVANCE
|
#ifdef ADVANCE
|
||||||
#define EXTRUDER_ADVANCE_K .3
|
#define EXTRUDER_ADVANCE_K .3
|
||||||
|
|
||||||
#define D_FILAMENT 1.7
|
#define D_FILAMENT 2.85
|
||||||
#define STEPS_MM_E 65
|
#define STEPS_MM_E 836
|
||||||
#define EXTRUTION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159)
|
#define EXTRUTION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159)
|
||||||
#define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS]/ EXTRUTION_AREA)
|
#define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS]/ EXTRUTION_AREA)
|
||||||
|
|
||||||
|
|
|
@ -529,6 +529,8 @@ FORCE_INLINE void process_commands()
|
||||||
saved_feedmultiply = feedmultiply;
|
saved_feedmultiply = feedmultiply;
|
||||||
feedmultiply = 100;
|
feedmultiply = 100;
|
||||||
|
|
||||||
|
enable_endstops(true);
|
||||||
|
|
||||||
for(int8_t i=0; i < NUM_AXIS; i++) {
|
for(int8_t i=0; i < NUM_AXIS; i++) {
|
||||||
destination[i] = current_position[i];
|
destination[i] = current_position[i];
|
||||||
}
|
}
|
||||||
|
@ -564,6 +566,9 @@ FORCE_INLINE void process_commands()
|
||||||
HOMEAXIS(Z);
|
HOMEAXIS(Z);
|
||||||
current_position[2]=code_value()+add_homeing[2];
|
current_position[2]=code_value()+add_homeing[2];
|
||||||
}
|
}
|
||||||
|
#ifdef ENDSTOPS_ONLY_FOR_HOMING
|
||||||
|
enable_endstops(false);
|
||||||
|
#endif
|
||||||
|
|
||||||
feedrate = saved_feedrate;
|
feedrate = saved_feedrate;
|
||||||
feedmultiply = saved_feedmultiply;
|
feedmultiply = saved_feedmultiply;
|
||||||
|
|
|
@ -200,7 +200,6 @@ void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exi
|
||||||
|
|
||||||
// block->accelerate_until = accelerate_steps;
|
// block->accelerate_until = accelerate_steps;
|
||||||
// block->decelerate_after = accelerate_steps+plateau_steps;
|
// block->decelerate_after = accelerate_steps+plateau_steps;
|
||||||
|
|
||||||
CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
|
CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
|
||||||
if(block->busy == false) { // Don't update variables if block is busy.
|
if(block->busy == false) { // Don't update variables if block is busy.
|
||||||
block->accelerate_until = accelerate_steps;
|
block->accelerate_until = accelerate_steps;
|
||||||
|
@ -484,7 +483,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
||||||
// Bail if this is a zero-length block
|
// Bail if this is a zero-length block
|
||||||
if (block->step_event_count <=dropsegments) { return; };
|
if (block->step_event_count <=dropsegments) { return; };
|
||||||
|
|
||||||
// Compute direction bits for this block
|
// Compute direction bits for this block
|
||||||
block->direction_bits = 0;
|
block->direction_bits = 0;
|
||||||
if (target[X_AXIS] < position[X_AXIS]) { block->direction_bits |= (1<<X_AXIS); }
|
if (target[X_AXIS] < position[X_AXIS]) { block->direction_bits |= (1<<X_AXIS); }
|
||||||
if (target[Y_AXIS] < position[Y_AXIS]) { block->direction_bits |= (1<<Y_AXIS); }
|
if (target[Y_AXIS] < position[Y_AXIS]) { block->direction_bits |= (1<<Y_AXIS); }
|
||||||
|
@ -725,7 +724,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
||||||
else {
|
else {
|
||||||
long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
|
long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
|
||||||
float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
|
float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
|
||||||
(current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUTION_AREA * EXTRUTION_AREA / 3600.0)*65536;
|
(current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUTION_AREA * EXTRUTION_AREA)*256;
|
||||||
block->advance = advance;
|
block->advance = advance;
|
||||||
if(acc_dist == 0) {
|
if(acc_dist == 0) {
|
||||||
block->advance_rate = 0;
|
block->advance_rate = 0;
|
||||||
|
@ -734,6 +733,13 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
||||||
block->advance_rate = advance / (float)acc_dist;
|
block->advance_rate = advance / (float)acc_dist;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
/*
|
||||||
|
SERIAL_ECHO_START;
|
||||||
|
SERIAL_ECHOPGM("advance :");
|
||||||
|
SERIAL_ECHO(block->advance/256.0);
|
||||||
|
SERIAL_ECHOPGM("advance rate :");
|
||||||
|
SERIAL_ECHOLN(block->advance_rate/256.0);
|
||||||
|
*/
|
||||||
#endif // ADVANCE
|
#endif // ADVANCE
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -56,9 +56,9 @@ static long counter_x, // Counter variables for the bresenham line tracer
|
||||||
volatile static unsigned long step_events_completed; // The number of step events executed in the current block
|
volatile static unsigned long step_events_completed; // The number of step events executed in the current block
|
||||||
#ifdef ADVANCE
|
#ifdef ADVANCE
|
||||||
static long advance_rate, advance, final_advance = 0;
|
static long advance_rate, advance, final_advance = 0;
|
||||||
static short old_advance = 0;
|
static long old_advance = 0;
|
||||||
#endif
|
#endif
|
||||||
static short e_steps;
|
static long e_steps;
|
||||||
static unsigned char busy = false; // TRUE when SIG_OUTPUT_COMPARE1A is being serviced. Used to avoid retriggering that handler.
|
static unsigned char busy = false; // TRUE when SIG_OUTPUT_COMPARE1A is being serviced. Used to avoid retriggering that handler.
|
||||||
static long acceleration_time, deceleration_time;
|
static long acceleration_time, deceleration_time;
|
||||||
//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
|
//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
|
||||||
|
@ -79,13 +79,20 @@ static bool old_y_max_endstop=false;
|
||||||
static bool old_z_min_endstop=false;
|
static bool old_z_min_endstop=false;
|
||||||
static bool old_z_max_endstop=false;
|
static bool old_z_max_endstop=false;
|
||||||
|
|
||||||
|
static bool check_endstops = true;
|
||||||
|
|
||||||
volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
|
volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
|
||||||
volatile char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
|
volatile char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
|
||||||
|
|
||||||
//===========================================================================
|
//===========================================================================
|
||||||
//=============================functions ============================
|
//=============================functions ============================
|
||||||
//===========================================================================
|
//===========================================================================
|
||||||
|
|
||||||
|
#ifdef ENDSTOPS_ONLY_FOR_HOMING
|
||||||
|
#define CHECK_ENDSTOPS if(check_endstops)
|
||||||
|
#else
|
||||||
|
#define CHECK_ENDSTOPS
|
||||||
|
#endif
|
||||||
|
|
||||||
// intRes = intIn1 * intIn2 >> 16
|
// intRes = intIn1 * intIn2 >> 16
|
||||||
// uses:
|
// uses:
|
||||||
|
@ -191,6 +198,11 @@ void endstops_hit_on_purpose()
|
||||||
endstop_z_hit=false;
|
endstop_z_hit=false;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void enable_endstops(bool check)
|
||||||
|
{
|
||||||
|
check_endstops = check;
|
||||||
|
}
|
||||||
|
|
||||||
// __________________________
|
// __________________________
|
||||||
// /| |\ _________________ ^
|
// /| |\ _________________ ^
|
||||||
// / | | \ /| |\ |
|
// / | | \ /| |\ |
|
||||||
|
@ -254,6 +266,9 @@ FORCE_INLINE void trapezoid_generator_reset() {
|
||||||
#ifdef ADVANCE
|
#ifdef ADVANCE
|
||||||
advance = current_block->initial_advance;
|
advance = current_block->initial_advance;
|
||||||
final_advance = current_block->final_advance;
|
final_advance = current_block->final_advance;
|
||||||
|
// Do E steps + advance steps
|
||||||
|
e_steps += ((advance >>8) - old_advance);
|
||||||
|
old_advance = advance >>8;
|
||||||
#endif
|
#endif
|
||||||
deceleration_time = 0;
|
deceleration_time = 0;
|
||||||
// step_rate to timer interval
|
// step_rate to timer interval
|
||||||
|
@ -261,6 +276,17 @@ FORCE_INLINE void trapezoid_generator_reset() {
|
||||||
acceleration_time = calc_timer(acc_step_rate);
|
acceleration_time = calc_timer(acc_step_rate);
|
||||||
OCR1A = acceleration_time;
|
OCR1A = acceleration_time;
|
||||||
OCR1A_nominal = calc_timer(current_block->nominal_rate);
|
OCR1A_nominal = calc_timer(current_block->nominal_rate);
|
||||||
|
|
||||||
|
// SERIAL_ECHO_START;
|
||||||
|
// SERIAL_ECHOPGM("advance :");
|
||||||
|
// SERIAL_ECHO(current_block->advance/256.0);
|
||||||
|
// SERIAL_ECHOPGM("advance rate :");
|
||||||
|
// SERIAL_ECHO(current_block->advance_rate/256.0);
|
||||||
|
// SERIAL_ECHOPGM("initial advance :");
|
||||||
|
// SERIAL_ECHO(current_block->initial_advance/256.0);
|
||||||
|
// SERIAL_ECHOPGM("final advance :");
|
||||||
|
// SERIAL_ECHOLN(current_block->final_advance/256.0);
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
|
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
|
||||||
|
@ -295,82 +321,100 @@ ISR(TIMER1_COMPA_vect)
|
||||||
if ((out_bits & (1<<X_AXIS)) != 0) { // -direction
|
if ((out_bits & (1<<X_AXIS)) != 0) { // -direction
|
||||||
WRITE(X_DIR_PIN, INVERT_X_DIR);
|
WRITE(X_DIR_PIN, INVERT_X_DIR);
|
||||||
count_direction[X_AXIS]=-1;
|
count_direction[X_AXIS]=-1;
|
||||||
#if X_MIN_PIN > -1
|
CHECK_ENDSTOPS
|
||||||
bool x_min_endstop=(READ(X_MIN_PIN) != X_ENDSTOPS_INVERTING);
|
{
|
||||||
if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
|
#if X_MIN_PIN > -1
|
||||||
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
|
bool x_min_endstop=(READ(X_MIN_PIN) != X_ENDSTOPS_INVERTING);
|
||||||
endstop_x_hit=true;
|
if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
|
||||||
step_events_completed = current_block->step_event_count;
|
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
|
||||||
}
|
endstop_x_hit=true;
|
||||||
old_x_min_endstop = x_min_endstop;
|
step_events_completed = current_block->step_event_count;
|
||||||
#endif
|
}
|
||||||
|
old_x_min_endstop = x_min_endstop;
|
||||||
|
#endif
|
||||||
|
}
|
||||||
}
|
}
|
||||||
else { // +direction
|
else { // +direction
|
||||||
WRITE(X_DIR_PIN,!INVERT_X_DIR);
|
WRITE(X_DIR_PIN,!INVERT_X_DIR);
|
||||||
count_direction[X_AXIS]=1;
|
count_direction[X_AXIS]=1;
|
||||||
#if X_MAX_PIN > -1
|
CHECK_ENDSTOPS
|
||||||
bool x_max_endstop=(READ(X_MAX_PIN) != X_ENDSTOPS_INVERTING);
|
{
|
||||||
if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
|
#if X_MAX_PIN > -1
|
||||||
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
|
bool x_max_endstop=(READ(X_MAX_PIN) != X_ENDSTOPS_INVERTING);
|
||||||
endstop_x_hit=true;
|
if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
|
||||||
step_events_completed = current_block->step_event_count;
|
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
|
||||||
}
|
endstop_x_hit=true;
|
||||||
old_x_max_endstop = x_max_endstop;
|
step_events_completed = current_block->step_event_count;
|
||||||
#endif
|
}
|
||||||
|
old_x_max_endstop = x_max_endstop;
|
||||||
|
#endif
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
|
if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
|
||||||
WRITE(Y_DIR_PIN,INVERT_Y_DIR);
|
WRITE(Y_DIR_PIN,INVERT_Y_DIR);
|
||||||
count_direction[Y_AXIS]=-1;
|
count_direction[Y_AXIS]=-1;
|
||||||
#if Y_MIN_PIN > -1
|
CHECK_ENDSTOPS
|
||||||
bool y_min_endstop=(READ(Y_MIN_PIN) != Y_ENDSTOPS_INVERTING);
|
{
|
||||||
if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
|
#if Y_MIN_PIN > -1
|
||||||
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
|
bool y_min_endstop=(READ(Y_MIN_PIN) != Y_ENDSTOPS_INVERTING);
|
||||||
endstop_y_hit=true;
|
if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
|
||||||
step_events_completed = current_block->step_event_count;
|
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
|
||||||
}
|
endstop_y_hit=true;
|
||||||
old_y_min_endstop = y_min_endstop;
|
step_events_completed = current_block->step_event_count;
|
||||||
#endif
|
}
|
||||||
|
old_y_min_endstop = y_min_endstop;
|
||||||
|
#endif
|
||||||
|
}
|
||||||
}
|
}
|
||||||
else { // +direction
|
else { // +direction
|
||||||
WRITE(Y_DIR_PIN,!INVERT_Y_DIR);
|
WRITE(Y_DIR_PIN,!INVERT_Y_DIR);
|
||||||
count_direction[Y_AXIS]=1;
|
count_direction[Y_AXIS]=1;
|
||||||
#if Y_MAX_PIN > -1
|
CHECK_ENDSTOPS
|
||||||
bool y_max_endstop=(READ(Y_MAX_PIN) != Y_ENDSTOPS_INVERTING);
|
{
|
||||||
if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
|
#if Y_MAX_PIN > -1
|
||||||
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
|
bool y_max_endstop=(READ(Y_MAX_PIN) != Y_ENDSTOPS_INVERTING);
|
||||||
endstop_y_hit=true;
|
if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
|
||||||
step_events_completed = current_block->step_event_count;
|
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
|
||||||
}
|
endstop_y_hit=true;
|
||||||
old_y_max_endstop = y_max_endstop;
|
step_events_completed = current_block->step_event_count;
|
||||||
#endif
|
}
|
||||||
|
old_y_max_endstop = y_max_endstop;
|
||||||
|
#endif
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
|
if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
|
||||||
WRITE(Z_DIR_PIN,INVERT_Z_DIR);
|
WRITE(Z_DIR_PIN,INVERT_Z_DIR);
|
||||||
count_direction[Z_AXIS]=-1;
|
count_direction[Z_AXIS]=-1;
|
||||||
#if Z_MIN_PIN > -1
|
CHECK_ENDSTOPS
|
||||||
bool z_min_endstop=(READ(Z_MIN_PIN) != Z_ENDSTOPS_INVERTING);
|
{
|
||||||
if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
|
#if Z_MIN_PIN > -1
|
||||||
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
bool z_min_endstop=(READ(Z_MIN_PIN) != Z_ENDSTOPS_INVERTING);
|
||||||
endstop_z_hit=true;
|
if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
|
||||||
step_events_completed = current_block->step_event_count;
|
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
||||||
}
|
endstop_z_hit=true;
|
||||||
old_z_min_endstop = z_min_endstop;
|
step_events_completed = current_block->step_event_count;
|
||||||
#endif
|
}
|
||||||
|
old_z_min_endstop = z_min_endstop;
|
||||||
|
#endif
|
||||||
|
}
|
||||||
}
|
}
|
||||||
else { // +direction
|
else { // +direction
|
||||||
WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
|
WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
|
||||||
count_direction[Z_AXIS]=1;
|
count_direction[Z_AXIS]=1;
|
||||||
#if Z_MAX_PIN > -1
|
CHECK_ENDSTOPS
|
||||||
bool z_max_endstop=(READ(Z_MAX_PIN) != Z_ENDSTOPS_INVERTING);
|
{
|
||||||
if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
|
#if Z_MAX_PIN > -1
|
||||||
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
bool z_max_endstop=(READ(Z_MAX_PIN) != Z_ENDSTOPS_INVERTING);
|
||||||
endstop_z_hit=true;
|
if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
|
||||||
step_events_completed = current_block->step_event_count;
|
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
||||||
}
|
endstop_z_hit=true;
|
||||||
old_z_max_endstop = z_max_endstop;
|
step_events_completed = current_block->step_event_count;
|
||||||
#endif
|
}
|
||||||
|
old_z_max_endstop = z_max_endstop;
|
||||||
|
#endif
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#ifndef ADVANCE
|
#ifndef ADVANCE
|
||||||
|
@ -383,6 +427,9 @@ ISR(TIMER1_COMPA_vect)
|
||||||
count_direction[E_AXIS]=-1;
|
count_direction[E_AXIS]=-1;
|
||||||
}
|
}
|
||||||
#endif //!ADVANCE
|
#endif //!ADVANCE
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
|
for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
|
||||||
MSerial.checkRx(); // Check for serial chars.
|
MSerial.checkRx(); // Check for serial chars.
|
||||||
|
|
||||||
|
@ -391,19 +438,12 @@ ISR(TIMER1_COMPA_vect)
|
||||||
if (counter_e > 0) {
|
if (counter_e > 0) {
|
||||||
counter_e -= current_block->step_event_count;
|
counter_e -= current_block->step_event_count;
|
||||||
if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
|
if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
|
||||||
CRITICAL_SECTION_START;
|
|
||||||
e_steps--;
|
e_steps--;
|
||||||
CRITICAL_SECTION_END;
|
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
CRITICAL_SECTION_START;
|
|
||||||
e_steps++;
|
e_steps++;
|
||||||
CRITICAL_SECTION_END;
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
// Do E steps + advance steps
|
|
||||||
e_steps += ((advance >> 16) - old_advance);
|
|
||||||
old_advance = advance >> 16;
|
|
||||||
#endif //ADVANCE
|
#endif //ADVANCE
|
||||||
|
|
||||||
counter_x += current_block->steps_x;
|
counter_x += current_block->steps_x;
|
||||||
|
@ -462,6 +502,11 @@ ISR(TIMER1_COMPA_vect)
|
||||||
for(int8_t i=0; i < step_loops; i++) {
|
for(int8_t i=0; i < step_loops; i++) {
|
||||||
advance += advance_rate;
|
advance += advance_rate;
|
||||||
}
|
}
|
||||||
|
//if(advance > current_block->advance) advance = current_block->advance;
|
||||||
|
// Do E steps + advance steps
|
||||||
|
e_steps += ((advance >>8) - old_advance);
|
||||||
|
old_advance = advance >>8;
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
|
else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
|
||||||
|
@ -486,8 +531,10 @@ ISR(TIMER1_COMPA_vect)
|
||||||
for(int8_t i=0; i < step_loops; i++) {
|
for(int8_t i=0; i < step_loops; i++) {
|
||||||
advance -= advance_rate;
|
advance -= advance_rate;
|
||||||
}
|
}
|
||||||
if(advance < final_advance)
|
if(advance < final_advance) advance = final_advance;
|
||||||
advance = final_advance;
|
// Do E steps + advance steps
|
||||||
|
e_steps += ((advance >>8) - old_advance);
|
||||||
|
old_advance = advance >>8;
|
||||||
#endif //ADVANCE
|
#endif //ADVANCE
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
|
@ -508,7 +555,7 @@ ISR(TIMER1_COMPA_vect)
|
||||||
// Timer 0 is shared with millies
|
// Timer 0 is shared with millies
|
||||||
ISR(TIMER0_COMPA_vect)
|
ISR(TIMER0_COMPA_vect)
|
||||||
{
|
{
|
||||||
old_OCR0A += 25; // ~10kHz interrupt
|
old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
|
||||||
OCR0A = old_OCR0A;
|
OCR0A = old_OCR0A;
|
||||||
// Set E direction (Depends on E direction + advance)
|
// Set E direction (Depends on E direction + advance)
|
||||||
for(unsigned char i=0; i<4;) {
|
for(unsigned char i=0; i<4;) {
|
||||||
|
@ -520,7 +567,7 @@ ISR(TIMER1_COMPA_vect)
|
||||||
e_steps++;
|
e_steps++;
|
||||||
WRITE(E_STEP_PIN, HIGH);
|
WRITE(E_STEP_PIN, HIGH);
|
||||||
}
|
}
|
||||||
if (e_steps > 0) {
|
else if (e_steps > 0) {
|
||||||
WRITE(E_DIR_PIN,!INVERT_E_DIR);
|
WRITE(E_DIR_PIN,!INVERT_E_DIR);
|
||||||
e_steps--;
|
e_steps--;
|
||||||
WRITE(E_STEP_PIN, HIGH);
|
WRITE(E_STEP_PIN, HIGH);
|
||||||
|
@ -649,6 +696,13 @@ void st_init()
|
||||||
e_steps = 0;
|
e_steps = 0;
|
||||||
TIMSK0 |= (1<<OCIE0A);
|
TIMSK0 |= (1<<OCIE0A);
|
||||||
#endif //ADVANCE
|
#endif //ADVANCE
|
||||||
|
|
||||||
|
#ifdef ENDSTOPS_ONLY_FOR_HOMING
|
||||||
|
enable_endstops(false);
|
||||||
|
#else
|
||||||
|
enable_endstops(true);
|
||||||
|
#endif
|
||||||
|
|
||||||
sei();
|
sei();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -44,6 +44,8 @@ void st_wake_up();
|
||||||
void checkHitEndstops(); //call from somwhere to create an serial error message with the locations the endstops where hit, in case they were triggered
|
void checkHitEndstops(); //call from somwhere to create an serial error message with the locations the endstops where hit, in case they were triggered
|
||||||
void endstops_hit_on_purpose(); //avoid creation of the message, i.e. after homeing and before a routine call of checkHitEndstops();
|
void endstops_hit_on_purpose(); //avoid creation of the message, i.e. after homeing and before a routine call of checkHitEndstops();
|
||||||
|
|
||||||
|
void enable_endstops(bool check); // Enable/disable endstop checking
|
||||||
|
|
||||||
void checkStepperErrors(); //Print errors detected by the stepper
|
void checkStepperErrors(); //Print errors detected by the stepper
|
||||||
|
|
||||||
void finishAndDisableSteppers();
|
void finishAndDisableSteppers();
|
||||||
|
|
Loading…
Reference in a new issue