Cleanup of planner code
- Use named axis indexes, `X_AXIS` etc. - Replace `block.steps_A` with block.steps[A]` - Replace `A_segment_time` with `segment_time[A]` - Add `A_AXIS`, `B_AXIS` for `COREXY` axes - Conditional compile based on `EXTRUDERS` - Add BLOCK_MOD macro for planner block indexes - Apply coding standards to `planner.h` and `planner.cpp` - Small optimizations of planner code - Update `stepper.cpp` for new `block` struct - Replace `memcpy` with loops, let the compiler unroll them - Make `movesplanned` into an inline function
This commit is contained in:
parent
0d869703ca
commit
13fbf42d95
4 changed files with 616 additions and 754 deletions
|
@ -183,7 +183,7 @@ void manage_inactivity(bool ignore_stepper_queue=false);
|
|||
#define disable_e3() /* nothing */
|
||||
#endif
|
||||
|
||||
enum AxisEnum {X_AXIS=0, Y_AXIS=1, Z_AXIS=2, E_AXIS=3, X_HEAD=4, Y_HEAD=5};
|
||||
enum AxisEnum {X_AXIS=0, Y_AXIS=1, A_AXIS=0, B_AXIS=1, Z_AXIS=2, E_AXIS=3, X_HEAD=4, Y_HEAD=5};
|
||||
//X_HEAD and Y_HEAD is used for systems that don't have a 1:1 relationship between X_AXIS and X Head movement, like CoreXY bots.
|
||||
|
||||
void FlushSerialRequestResend();
|
||||
|
@ -270,7 +270,7 @@ extern unsigned char fanSpeedSoftPwm;
|
|||
extern bool filament_sensor; //indicates that filament sensor readings should control extrusion
|
||||
extern float filament_width_meas; //holds the filament diameter as accurately measured
|
||||
extern signed char measurement_delay[]; //ring buffer to delay measurement
|
||||
extern int delay_index1, delay_index2; //index into ring buffer
|
||||
extern int delay_index1, delay_index2; //ring buffer index. used by planner, temperature, and main code
|
||||
extern float delay_dist; //delay distance counter
|
||||
extern int meas_delay_cm; //delay distance
|
||||
#endif
|
||||
|
|
1142
Marlin/planner.cpp
1142
Marlin/planner.cpp
File diff suppressed because it is too large
Load diff
117
Marlin/planner.h
117
Marlin/planner.h
|
@ -21,20 +21,16 @@
|
|||
// This module is to be considered a sub-module of stepper.c. Please don't include
|
||||
// this file from any other module.
|
||||
|
||||
#ifndef planner_h
|
||||
#define planner_h
|
||||
#ifndef PLANNER_H
|
||||
#define PLANNER_H
|
||||
|
||||
#include "Marlin.h"
|
||||
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
#include "vector_3.h"
|
||||
#endif // ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
// This struct is used when buffering the setup for each linear movement "nominal" values are as specified in
|
||||
// the source g-code and may never actually be reached if acceleration management is active.
|
||||
typedef struct {
|
||||
// Fields used by the bresenham algorithm for tracing the line
|
||||
long steps_x, steps_y, steps_z, steps_e; // Step count along each axis
|
||||
long steps[NUM_AXIS]; // Step count along each axis
|
||||
unsigned long step_event_count; // The number of step events required to complete this block
|
||||
long accelerate_until; // The index of the step event on which to stop acceleration
|
||||
long decelerate_after; // The index of the step event on which to start decelerating
|
||||
|
@ -49,7 +45,7 @@ typedef struct {
|
|||
#endif
|
||||
|
||||
// Fields used by the motion planner to manage acceleration
|
||||
// float speed_x, speed_y, speed_z, speed_e; // Nominal mm/sec for each axis
|
||||
// float speed_x, speed_y, speed_z, speed_e; // Nominal mm/sec for each axis
|
||||
float nominal_speed; // The nominal speed for this block in mm/sec
|
||||
float entry_speed; // Entry speed at previous-current junction in mm/sec
|
||||
float max_entry_speed; // Maximum allowable junction entry speed in mm/sec
|
||||
|
@ -65,48 +61,44 @@ typedef struct {
|
|||
unsigned long acceleration_st; // acceleration steps/sec^2
|
||||
unsigned long fan_speed;
|
||||
#ifdef BARICUDA
|
||||
unsigned long valve_pressure;
|
||||
unsigned long e_to_p_pressure;
|
||||
unsigned long valve_pressure;
|
||||
unsigned long e_to_p_pressure;
|
||||
#endif
|
||||
volatile char busy;
|
||||
} block_t;
|
||||
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
// this holds the required transform to compensate for bed level
|
||||
extern matrix_3x3 plan_bed_level_matrix;
|
||||
#endif // #ifdef ENABLE_AUTO_BED_LEVELING
|
||||
#define BLOCK_MOD(n) ((n)&(BLOCK_BUFFER_SIZE-1))
|
||||
|
||||
// Initialize the motion plan subsystem
|
||||
void plan_init();
|
||||
|
||||
// Add a new linear movement to the buffer. x, y and z is the signed, absolute target position in
|
||||
// millimaters. Feed rate specifies the speed of the motion.
|
||||
void check_axes_activity();
|
||||
|
||||
// Get the number of buffered moves
|
||||
extern volatile unsigned char block_buffer_head;
|
||||
extern volatile unsigned char block_buffer_tail;
|
||||
FORCE_INLINE uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail + BLOCK_BUFFER_SIZE); }
|
||||
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder);
|
||||
|
||||
#include "vector_3.h"
|
||||
// this holds the required transform to compensate for bed level
|
||||
extern matrix_3x3 plan_bed_level_matrix;
|
||||
// Add a new linear movement to the buffer. x, y and z is the signed, absolute target position in
|
||||
// millimaters. Feed rate specifies the speed of the motion.
|
||||
void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder);
|
||||
// Set position. Used for G92 instructions.
|
||||
void plan_set_position(float x, float y, float z, const float &e);
|
||||
#ifndef DELTA
|
||||
// Get the position applying the bed level matrix if enabled
|
||||
vector_3 plan_get_position();
|
||||
// Get the position applying the bed level matrix if enabled
|
||||
vector_3 plan_get_position();
|
||||
#endif
|
||||
#else
|
||||
void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder);
|
||||
#endif // ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
// Set position. Used for G92 instructions.
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
void plan_set_position(float x, float y, float z, const float &e);
|
||||
#else
|
||||
void plan_set_position(const float &x, const float &y, const float &z, const float &e);
|
||||
#endif // ENABLE_AUTO_BED_LEVELING
|
||||
#else //!ENABLE_AUTO_BED_LEVELING
|
||||
void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder);
|
||||
void plan_set_position(const float &x, const float &y, const float &z, const float &e);
|
||||
#endif //!ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
void plan_set_e_position(const float &e);
|
||||
|
||||
|
||||
|
||||
void check_axes_activity();
|
||||
uint8_t movesplanned(); //return the nr of buffered moves
|
||||
|
||||
extern unsigned long minsegmenttime;
|
||||
extern float max_feedrate[NUM_AXIS]; // set the max speeds
|
||||
extern float axis_steps_per_unit[NUM_AXIS];
|
||||
|
@ -122,44 +114,41 @@ extern float mintravelfeedrate;
|
|||
extern unsigned long axis_steps_per_sqr_second[NUM_AXIS];
|
||||
|
||||
#ifdef AUTOTEMP
|
||||
extern bool autotemp_enabled;
|
||||
extern float autotemp_max;
|
||||
extern float autotemp_min;
|
||||
extern float autotemp_factor;
|
||||
extern bool autotemp_enabled;
|
||||
extern float autotemp_max;
|
||||
extern float autotemp_min;
|
||||
extern float autotemp_factor;
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
|
||||
extern block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
|
||||
extern block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instructions
|
||||
extern volatile unsigned char block_buffer_head; // Index of the next block to be pushed
|
||||
extern volatile unsigned char block_buffer_tail;
|
||||
// Called when the current block is no longer needed. Discards the block and makes the memory
|
||||
// availible for new blocks.
|
||||
FORCE_INLINE void plan_discard_current_block()
|
||||
{
|
||||
if (block_buffer_head != block_buffer_tail) {
|
||||
block_buffer_tail = (block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
|
||||
}
|
||||
}
|
||||
|
||||
// Gets the current block. Returns NULL if buffer empty
|
||||
FORCE_INLINE block_t *plan_get_current_block()
|
||||
{
|
||||
if (block_buffer_head == block_buffer_tail) {
|
||||
return(NULL);
|
||||
}
|
||||
block_t *block = &block_buffer[block_buffer_tail];
|
||||
block->busy = true;
|
||||
return(block);
|
||||
}
|
||||
|
||||
// Returns true if the buffer has a queued block, false otherwise
|
||||
FORCE_INLINE bool blocks_queued() { return (block_buffer_head != block_buffer_tail); }
|
||||
|
||||
// Called when the current block is no longer needed. Discards
|
||||
// the block and makes the memory available for new blocks.
|
||||
FORCE_INLINE void plan_discard_current_block() {
|
||||
if (blocks_queued())
|
||||
block_buffer_tail = BLOCK_MOD(block_buffer_tail + 1);
|
||||
}
|
||||
|
||||
// Gets the current block. Returns NULL if buffer empty
|
||||
FORCE_INLINE block_t *plan_get_current_block() {
|
||||
if (blocks_queued()) {
|
||||
block_t *block = &block_buffer[block_buffer_tail];
|
||||
block->busy = true;
|
||||
return block;
|
||||
}
|
||||
else
|
||||
return NULL;
|
||||
}
|
||||
|
||||
#ifdef PREVENT_DANGEROUS_EXTRUDE
|
||||
void set_extrude_min_temp(float temp);
|
||||
void set_extrude_min_temp(float temp);
|
||||
#endif
|
||||
|
||||
void reset_acceleration_rates();
|
||||
#endif
|
||||
|
||||
#endif //PLANNER_H
|
||||
|
|
|
@ -370,7 +370,7 @@ ISR(TIMER1_COMPA_vect) {
|
|||
step_events_completed = 0;
|
||||
|
||||
#ifdef Z_LATE_ENABLE
|
||||
if (current_block->steps_z > 0) {
|
||||
if (current_block->steps[Z_AXIS] > 0) {
|
||||
enable_z();
|
||||
OCR1A = 2000; //1ms wait
|
||||
return;
|
||||
|
@ -411,7 +411,7 @@ ISR(TIMER1_COMPA_vect) {
|
|||
|
||||
#define UPDATE_ENDSTOP(axis,AXIS,minmax,MINMAX) \
|
||||
bool axis ##_## minmax ##_endstop = (READ(AXIS ##_## MINMAX ##_PIN) != AXIS ##_## MINMAX ##_ENDSTOP_INVERTING); \
|
||||
if (axis ##_## minmax ##_endstop && old_## axis ##_## minmax ##_endstop && (current_block->steps_## axis > 0)) { \
|
||||
if (axis ##_## minmax ##_endstop && old_## axis ##_## minmax ##_endstop && (current_block->steps[AXIS ##_AXIS] > 0)) { \
|
||||
endstops_trigsteps[AXIS ##_AXIS] = count_position[AXIS ##_AXIS]; \
|
||||
endstop_## axis ##_hit = true; \
|
||||
step_events_completed = current_block->step_event_count; \
|
||||
|
@ -420,54 +420,54 @@ ISR(TIMER1_COMPA_vect) {
|
|||
|
||||
// Check X and Y endstops
|
||||
if (check_endstops) {
|
||||
#ifndef COREXY
|
||||
if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular cartesians bot)
|
||||
#else
|
||||
#ifdef COREXY
|
||||
// Head direction in -X axis for CoreXY bots.
|
||||
// If DeltaX == -DeltaY, the movement is only in Y axis
|
||||
if (current_block->steps_x != current_block->steps_y || (TEST(out_bits, X_AXIS) == TEST(out_bits, Y_AXIS)))
|
||||
if (TEST(out_bits, X_HEAD))
|
||||
#endif
|
||||
{ // -direction
|
||||
#ifdef DUAL_X_CARRIAGE
|
||||
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
|
||||
if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
|
||||
#endif
|
||||
{
|
||||
#if defined(X_MIN_PIN) && X_MIN_PIN >= 0
|
||||
UPDATE_ENDSTOP(x, X, min, MIN);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
else { // +direction
|
||||
#ifdef DUAL_X_CARRIAGE
|
||||
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
|
||||
if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
|
||||
#endif
|
||||
{
|
||||
#if defined(X_MAX_PIN) && X_MAX_PIN >= 0
|
||||
UPDATE_ENDSTOP(x, X, max, MAX);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
#ifndef COREXY
|
||||
if (TEST(out_bits, Y_AXIS)) // -direction
|
||||
if (current_block->steps[A_AXIS] != current_block->steps[B_AXIS] || (TEST(out_bits, A_AXIS) == TEST(out_bits, B_AXIS)))
|
||||
if (TEST(out_bits, X_HEAD))
|
||||
#else
|
||||
if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular cartesians bot)
|
||||
#endif
|
||||
{ // -direction
|
||||
#ifdef DUAL_X_CARRIAGE
|
||||
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
|
||||
if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
|
||||
#endif
|
||||
{
|
||||
#if defined(X_MIN_PIN) && X_MIN_PIN >= 0
|
||||
UPDATE_ENDSTOP(x, X, min, MIN);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
else { // +direction
|
||||
#ifdef DUAL_X_CARRIAGE
|
||||
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
|
||||
if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
|
||||
#endif
|
||||
{
|
||||
#if defined(X_MAX_PIN) && X_MAX_PIN >= 0
|
||||
UPDATE_ENDSTOP(x, X, max, MAX);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
#ifdef COREXY
|
||||
// Head direction in -Y axis for CoreXY bots.
|
||||
// If DeltaX == DeltaY, the movement is only in X axis
|
||||
if (current_block->steps_x != current_block->steps_y || (TEST(out_bits, X_AXIS) != TEST(out_bits, Y_AXIS)))
|
||||
if (TEST(out_bits, Y_HEAD))
|
||||
if (current_block->steps[A_AXIS] != current_block->steps[B_AXIS] || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS)))
|
||||
if (TEST(out_bits, Y_HEAD))
|
||||
#else
|
||||
if (TEST(out_bits, Y_AXIS)) // -direction
|
||||
#endif
|
||||
{ // -direction
|
||||
#if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
|
||||
UPDATE_ENDSTOP(y, Y, min, MIN);
|
||||
#endif
|
||||
}
|
||||
else { // +direction
|
||||
#if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
|
||||
UPDATE_ENDSTOP(y, Y, max, MAX);
|
||||
#endif
|
||||
}
|
||||
{ // -direction
|
||||
#if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
|
||||
UPDATE_ENDSTOP(y, Y, min, MIN);
|
||||
#endif
|
||||
}
|
||||
else { // +direction
|
||||
#if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
|
||||
UPDATE_ENDSTOP(y, Y, max, MAX);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
if (TEST(out_bits, Z_AXIS)) { // -direction
|
||||
|
@ -515,7 +515,7 @@ ISR(TIMER1_COMPA_vect) {
|
|||
#endif
|
||||
|
||||
#ifdef ADVANCE
|
||||
counter_e += current_block->steps_e;
|
||||
counter_e += current_block->steps[E_AXIS];
|
||||
if (counter_e > 0) {
|
||||
counter_e -= current_block->step_event_count;
|
||||
e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
|
||||
|
@ -529,15 +529,14 @@ ISR(TIMER1_COMPA_vect) {
|
|||
* instead of doing each in turn. The extra tests add enough
|
||||
* lag to allow it work with without needing NOPs
|
||||
*/
|
||||
counter_x += current_block->steps_x;
|
||||
if (counter_x > 0) X_STEP_WRITE(HIGH);
|
||||
counter_y += current_block->steps_y;
|
||||
if (counter_y > 0) Y_STEP_WRITE(HIGH);
|
||||
counter_z += current_block->steps_z;
|
||||
if (counter_z > 0) Z_STEP_WRITE(HIGH);
|
||||
#define STEP_ADD(axis, AXIS) \
|
||||
counter_## axis += current_block->steps[AXIS ##_AXIS]; \
|
||||
if (counter_## axis > 0) { AXIS ##_STEP_WRITE(HIGH); }
|
||||
STEP_ADD(x,X);
|
||||
STEP_ADD(y,Y);
|
||||
STEP_ADD(z,Z);
|
||||
#ifndef ADVANCE
|
||||
counter_e += current_block->steps_e;
|
||||
if (counter_e > 0) E_STEP_WRITE(HIGH);
|
||||
STEP_ADD(e,E);
|
||||
#endif
|
||||
|
||||
#define STEP_IF_COUNTER(axis, AXIS) \
|
||||
|
@ -557,7 +556,7 @@ ISR(TIMER1_COMPA_vect) {
|
|||
#else // !CONFIG_STEPPERS_TOSHIBA
|
||||
|
||||
#define APPLY_MOVEMENT(axis, AXIS) \
|
||||
counter_## axis += current_block->steps_## axis; \
|
||||
counter_## axis += current_block->steps[AXIS ##_AXIS]; \
|
||||
if (counter_## axis > 0) { \
|
||||
AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN,0); \
|
||||
counter_## axis -= current_block->step_event_count; \
|
||||
|
|
Loading…
Reference in a new issue