reformating and some minor bugs/things found on the way.

This commit is contained in:
Bernhard Kubicek 2011-11-06 19:23:08 +01:00
parent 900e0c9bf2
commit 1d171e9e52
17 changed files with 1204 additions and 1192 deletions

View file

@ -1,5 +1,5 @@
#ifndef CONFIGURATION_H #ifndef __CONFIGURATION_H
#define CONFIGURATION_H #define __CONFIGURATION_H
//#define DEBUG_STEPS //#define DEBUG_STEPS
@ -118,10 +118,7 @@ const int dropsegments=5; //everything with this number of steps will be ignore
#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E #define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
//note: on bernhards ultimaker 200 200 12 are working well. //note: on bernhards ultimaker 200 200 12 are working well.
#define HOMING_FEEDRATE {50*60, 50*60, 12*60, 0} // set the homing speeds #define HOMING_FEEDRATE {50*60, 50*60, 12*60, 0} // set the homing speeds
//the followint checks if an extrusion is existent in the move. if _not_, the speed of the move is set to the maximum speed.
//!!!!!!Use only if you know that your printer works at the maximum declared speeds.
// works around the skeinforge cool-bug. There all moves are slowed to have a minimum layer time. However slow travel moves= ooze
#define TRAVELING_AT_MAXSPEED
#define AXIS_RELATIVE_MODES {false, false, false, false} #define AXIS_RELATIVE_MODES {false, false, false, false}
#define MAX_STEP_FREQUENCY 40000 // Max step frequency for Ultimaker (5000 pps / half step) #define MAX_STEP_FREQUENCY 40000 // Max step frequency for Ultimaker (5000 pps / half step)
@ -177,41 +174,50 @@ const int dropsegments=5; //everything with this number of steps will be ignore
//#define_HEATER_1_MAXTEMP 275 //#define_HEATER_1_MAXTEMP 275
//#define BED_MAXTEMP 150 //#define BED_MAXTEMP 150
/// PID settings:
// Uncomment the following line to enable PID support.
#define PIDTEMP #define PIDTEMP
#ifdef PIDTEMP #ifdef PIDTEMP
/// PID settings:
// Uncomment the following line to enable PID support.
//#define SMOOTHING
//#define SMOOTHFACTOR 5.0
//float current_raw_average=0;
#define K1 0.95 //smoothing of the PID
//#define PID_DEBUG // Sends debug data to the serial port. //#define PID_DEBUG // Sends debug data to the serial port.
//#define PID_OPENLOOP 1 // Puts PID in open loop. M104 sets the output power in % //#define PID_OPENLOOP 1 // Puts PID in open loop. M104 sets the output power in %
#define PID_MAX 255 // limits current to nozzle
#define PID_INTEGRAL_DRIVE_MAX 255 #define PID_MAX 255 // limits current to nozzle; 255=full current
#define PID_dT 0.1 #define PID_INTEGRAL_DRIVE_MAX 255 //limit for the integral term
//machine with red silicon: 1950:45 second ; with fan fully blowin 3000:47 #define K1 0.95 //smoothing factor withing the PID
#define PID_dT 0.1 //sampling period of the PID
//To develop some PID settings for your machine, you can initiall follow
// the Ziegler-Nichols method.
// set Ki and Kd to zero.
// heat with a defined Kp and see if the temperature stabilizes
// ideally you do this graphically with repg.
// the PID_CRITIAL_GAIN should be the Kp at which temperature oscillatins are not dampned out/decreas in amplitutde
// PID_SWING_AT_CRITIAL is the time for a full period of the oscillations at the critical Gain
// usually further manual tunine is necessary.
#define PID_CRITIAL_GAIN 3000 #define PID_CRITIAL_GAIN 3000
#define PID_SWING_AT_CRITIAL 45 //seconds #define PID_SWING_AT_CRITIAL 45 //seconds
#define PIDIADD 5
/*
//PID according to Ziegler-Nichols method
float Kp = 0.6*PID_CRITIAL_GAIN;
float Ki =PIDIADD+2*Kp/PID_SWING_AT_CRITIAL*PID_dT;
float Kd = Kp*PID_SWING_AT_CRITIAL/8./PID_dT;
*/
//PI according to Ziegler-Nichols method
#define DEFAULT_Kp (PID_CRITIAL_GAIN/2.2)
#define DEFAULT_Ki (1.2*Kp/PID_SWING_AT_CRITIAL*PID_dT)
#define DEFAULT_Kd (0)
#define PID_PI //no differentail term
//#define PID_PID //normal PID
#ifdef PID_PID
//PID according to Ziegler-Nichols method
#define DEFAULT_Kp (0.6*PID_CRITIAL_GAIN)
#define DEFAULT_Ki (2*Kp/PID_SWING_AT_CRITIAL*PID_dT)
#define DEFAULT_Kd (PID_SWING_AT_CRITIAL/8./PID_dT)
#endif
#ifdef PID_PI
//PI according to Ziegler-Nichols method
#define DEFAULT_Kp (PID_CRITIAL_GAIN/2.2)
#define DEFAULT_Ki (1.2*Kp/PID_SWING_AT_CRITIAL*PID_dT)
#define DEFAULT_Kd (0)
#endif
// this adds an experimental additional term to the heatingpower, proportional to the extrusion speed.
// if Kc is choosen well, the additional required power due to increased melting should be compensated.
#define PID_ADD_EXTRUSION_RATE #define PID_ADD_EXTRUSION_RATE
#ifdef PID_ADD_EXTRUSION_RATE #ifdef PID_ADD_EXTRUSION_RATE
#define DEFAULT_Kc (5) //heatingpower=Kc*(e_speed) #define DEFAULT_Kc (5) //heatingpower=Kc*(e_speed)
@ -228,22 +234,21 @@ const int dropsegments=5; //everything with this number of steps will be ignore
//#define ADVANCE //#define ADVANCE
#ifdef ADVANCE #ifdef ADVANCE
#define EXTRUDER_ADVANCE_K .3 #define EXTRUDER_ADVANCE_K .3
#define D_FILAMENT 1.7 #define D_FILAMENT 1.7
#define STEPS_MM_E 65 #define STEPS_MM_E 65
#define EXTRUTION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159) #define EXTRUTION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159)
#define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS]/ EXTRUTION_AREA) #define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS]/ EXTRUTION_AREA)
#endif // ADVANCE #endif // ADVANCE
// THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, e.g. 8,16,32
#if defined SDSUPPORT
// The number of linear motions that can be in the plan at any give time. // The number of linear motions that can be in the plan at any give time.
// THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, i.g. 8,16,32 because shifts and ors are used to do the ringbuffering.
#if defined SDSUPPORT
#define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller #define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller
#else #else
#define BLOCK_BUFFER_SIZE 16 // maximize block buffer #define BLOCK_BUFFER_SIZE 16 // maximize block buffer
#endif #endif
#endif //__CONFIGURATION_H
#endif

View file

@ -1,39 +1,42 @@
#ifndef __EEPROMH #ifndef __EEPROMH
#define __EEPROMH #define __EEPROMH
#include "Marlin.h"
#include "planner.h" #include "planner.h"
#include "temperature.h" #include "temperature.h"
#include <EEPROM.h> #include <EEPROM.h>
#include "Marlin.h"
#include "streaming.h"
//======================================================================================
template <class T> int EEPROM_writeAnything(int &ee, const T& value) template <class T> int EEPROM_writeAnything(int &ee, const T& value)
{ {
const byte* p = (const byte*)(const void*)&value; const byte* p = (const byte*)(const void*)&value;
int i; int i;
for (i = 0; i < (int)sizeof(value); i++) for (i = 0; i < (int)sizeof(value); i++)
EEPROM.write(ee++, *p++); EEPROM.write(ee++, *p++);
return i; return i;
} }
//======================================================================================
template <class T> int EEPROM_readAnything(int &ee, T& value) template <class T> int EEPROM_readAnything(int &ee, T& value)
{ {
byte* p = (byte*)(void*)&value; byte* p = (byte*)(void*)&value;
int i; int i;
for (i = 0; i < (int)sizeof(value); i++) for (i = 0; i < (int)sizeof(value); i++)
*p++ = EEPROM.read(ee++); *p++ = EEPROM.read(ee++);
return i; return i;
} }
//====================================================================================== //======================================================================================
#define EEPROM_OFFSET 100 #define EEPROM_OFFSET 100
#define EEPROM_VERSION "V04" // IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
// in the functions below, also increment the version number. This makes sure that // IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
// the default values are used whenever there is a change to the data, to prevent // in the functions below, also increment the version number. This makes sure that
// wrong data being written to the variables. // the default values are used whenever there is a change to the data, to prevent
// ALSO: always make sure the variables in the Store and retrieve sections are in the same order. // wrong data being written to the variables.
void StoreSettings() { // ALSO: always make sure the variables in the Store and retrieve sections are in the same order.
#define EEPROM_VERSION "V04"
void StoreSettings()
{
char ver[4]= "000"; char ver[4]= "000";
int i=EEPROM_OFFSET; int i=EEPROM_OFFSET;
EEPROM_writeAnything(i,ver); // invalidate data first EEPROM_writeAnything(i,ver); // invalidate data first
@ -48,52 +51,55 @@ void StoreSettings() {
EEPROM_writeAnything(i,max_xy_jerk); EEPROM_writeAnything(i,max_xy_jerk);
EEPROM_writeAnything(i,max_z_jerk); EEPROM_writeAnything(i,max_z_jerk);
#ifdef PIDTEMP #ifdef PIDTEMP
EEPROM_writeAnything(i,Kp); EEPROM_writeAnything(i,Kp);
EEPROM_writeAnything(i,Ki); EEPROM_writeAnything(i,Ki);
EEPROM_writeAnything(i,Kd); EEPROM_writeAnything(i,Kd);
#else #else
EEPROM_writeAnything(i,3000); EEPROM_writeAnything(i,3000);
EEPROM_writeAnything(i,0); EEPROM_writeAnything(i,0);
EEPROM_writeAnything(i,0); EEPROM_writeAnything(i,0);
#endif #endif
char ver2[4]=EEPROM_VERSION; char ver2[4]=EEPROM_VERSION;
i=EEPROM_OFFSET; i=EEPROM_OFFSET;
EEPROM_writeAnything(i,ver2); // validate data EEPROM_writeAnything(i,ver2); // validate data
SERIAL_ECHOLN("Settings Stored"); SERIAL_ECHOLN("Settings Stored");
} }
void RetrieveSettings(bool def=false){ // if def=true, the default values will be used void RetrieveSettings(bool def=false)
{ // if def=true, the default values will be used
int i=EEPROM_OFFSET; int i=EEPROM_OFFSET;
char stored_ver[4]; char stored_ver[4];
char ver[4]=EEPROM_VERSION; char ver[4]=EEPROM_VERSION;
EEPROM_readAnything(i,stored_ver); //read stored version EEPROM_readAnything(i,stored_ver); //read stored version
// SERIAL_ECHOLN("Version: [" << ver << "] Stored version: [" << stored_ver << "]"); // SERIAL_ECHOLN("Version: [" << ver << "] Stored version: [" << stored_ver << "]");
if ((!def)&&(strncmp(ver,stored_ver,3)==0)) { // version number match if ((!def)&&(strncmp(ver,stored_ver,3)==0))
EEPROM_readAnything(i,axis_steps_per_unit); { // version number match
EEPROM_readAnything(i,max_feedrate); EEPROM_readAnything(i,axis_steps_per_unit);
EEPROM_readAnything(i,max_acceleration_units_per_sq_second); EEPROM_readAnything(i,max_feedrate);
EEPROM_readAnything(i,acceleration); EEPROM_readAnything(i,max_acceleration_units_per_sq_second);
EEPROM_readAnything(i,retract_acceleration); EEPROM_readAnything(i,acceleration);
EEPROM_readAnything(i,minimumfeedrate); EEPROM_readAnything(i,retract_acceleration);
EEPROM_readAnything(i,mintravelfeedrate); EEPROM_readAnything(i,minimumfeedrate);
EEPROM_readAnything(i,minsegmenttime); EEPROM_readAnything(i,mintravelfeedrate);
EEPROM_readAnything(i,max_xy_jerk); EEPROM_readAnything(i,minsegmenttime);
EEPROM_readAnything(i,max_z_jerk); EEPROM_readAnything(i,max_xy_jerk);
#ifndef PIDTEMP EEPROM_readAnything(i,max_z_jerk);
#ifndef PIDTEMP
float Kp,Ki,Kd; float Kp,Ki,Kd;
#endif #endif
EEPROM_readAnything(i,Kp); EEPROM_readAnything(i,Kp);
EEPROM_readAnything(i,Ki); EEPROM_readAnything(i,Ki);
EEPROM_readAnything(i,Kd); EEPROM_readAnything(i,Kd);
SERIAL_ECHOLN("Stored settings retreived:"); SERIAL_ECHOLN("Stored settings retreived:");
} }
else { else
{
float tmp1[]=DEFAULT_AXIS_STEPS_PER_UNIT; float tmp1[]=DEFAULT_AXIS_STEPS_PER_UNIT;
float tmp2[]=DEFAULT_MAX_FEEDRATE; float tmp2[]=DEFAULT_MAX_FEEDRATE;
long tmp3[]=DEFAULT_MAX_ACCELERATION; long tmp3[]=DEFAULT_MAX_ACCELERATION;
for (int i=0;i<4;i++) { for (short i=0;i<4;i++)
{
axis_steps_per_unit[i]=tmp1[i]; axis_steps_per_unit[i]=tmp1[i];
max_feedrate[i]=tmp2[i]; max_feedrate[i]=tmp2[i];
max_acceleration_units_per_sq_second[i]=tmp3[i]; max_acceleration_units_per_sq_second[i]=tmp3[i];
@ -117,11 +123,10 @@ void RetrieveSettings(bool def=false){ // if def=true, the default values will
SERIAL_ECHOLN(" M204 S" <<_FLOAT(acceleration,2) << " T" << _FLOAT(retract_acceleration,2)); SERIAL_ECHOLN(" M204 S" <<_FLOAT(acceleration,2) << " T" << _FLOAT(retract_acceleration,2));
SERIAL_ECHOLN("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum xY jerk (mm/s), Z=maximum Z jerk (mm/s)"); SERIAL_ECHOLN("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum xY jerk (mm/s), Z=maximum Z jerk (mm/s)");
SERIAL_ECHOLN(" M205 S" <<_FLOAT(minimumfeedrate/60,2) << " T" << _FLOAT(mintravelfeedrate/60,2) << " B" << _FLOAT(minsegmenttime,2) << " X" << _FLOAT(max_xy_jerk/60,2) << " Z" << _FLOAT(max_z_jerk/60,2)); SERIAL_ECHOLN(" M205 S" <<_FLOAT(minimumfeedrate/60,2) << " T" << _FLOAT(mintravelfeedrate/60,2) << " B" << _FLOAT(minsegmenttime,2) << " X" << _FLOAT(max_xy_jerk/60,2) << " Z" << _FLOAT(max_z_jerk/60,2));
#ifdef PIDTEMP #ifdef PIDTEMP
SERIAL_ECHOLN("PID settings:"); SERIAL_ECHOLN("PID settings:");
SERIAL_ECHOLN(" M301 P" << _FLOAT(Kp,3) << " I" << _FLOAT(Ki,3) << " D" << _FLOAT(Kd,3)); SERIAL_ECHOLN(" M301 P" << _FLOAT(Kp,3) << " I" << _FLOAT(Ki,3) << " D" << _FLOAT(Kd,3));
#endif #endif
} }
#endif #endif

View file

@ -18,41 +18,39 @@ void process_commands();
void manage_inactivity(byte debug); void manage_inactivity(byte debug);
#if X_ENABLE_PIN > -1 #if X_ENABLE_PIN > -1
#define enable_x() WRITE(X_ENABLE_PIN, X_ENABLE_ON) #define enable_x() WRITE(X_ENABLE_PIN, X_ENABLE_ON)
#define disable_x() WRITE(X_ENABLE_PIN,!X_ENABLE_ON) #define disable_x() WRITE(X_ENABLE_PIN,!X_ENABLE_ON)
#else #else
#define enable_x() ; #define enable_x() ;
#define disable_x() ; #define disable_x() ;
#endif #endif
#if Y_ENABLE_PIN > -1 #if Y_ENABLE_PIN > -1
#define enable_y() WRITE(Y_ENABLE_PIN, Y_ENABLE_ON) #define enable_y() WRITE(Y_ENABLE_PIN, Y_ENABLE_ON)
#define disable_y() WRITE(Y_ENABLE_PIN,!Y_ENABLE_ON) #define disable_y() WRITE(Y_ENABLE_PIN,!Y_ENABLE_ON)
#else #else
#define enable_y() ; #define enable_y() ;
#define disable_y() ; #define disable_y() ;
#endif #endif
#if Z_ENABLE_PIN > -1 #if Z_ENABLE_PIN > -1
#define enable_z() WRITE(Z_ENABLE_PIN, Z_ENABLE_ON) #define enable_z() WRITE(Z_ENABLE_PIN, Z_ENABLE_ON)
#define disable_z() WRITE(Z_ENABLE_PIN,!Z_ENABLE_ON) #define disable_z() WRITE(Z_ENABLE_PIN,!Z_ENABLE_ON)
#else #else
#define enable_z() ; #define enable_z() ;
#define disable_z() ; #define disable_z() ;
#endif #endif
#if E_ENABLE_PIN > -1 #if E_ENABLE_PIN > -1
#define enable_e() WRITE(E_ENABLE_PIN, E_ENABLE_ON)
#define enable_e() WRITE(E_ENABLE_PIN, E_ENABLE_ON) #define disable_e() WRITE(E_ENABLE_PIN,!E_ENABLE_ON)
#define disable_e() WRITE(E_ENABLE_PIN,!E_ENABLE_ON)
#else #else
#define enable_e() ; #define enable_e() ;
#define disable_e() ; #define disable_e() ;
#endif #endif
#define X_AXIS 0 enum AxisEnum {X_AXIS=0, Y_AXIS=1, Z_AXIS=2, E_AXIS=3};
#define Y_AXIS 1
#define Z_AXIS 2
#define E_AXIS 3
void FlushSerialRequestResend(); void FlushSerialRequestResend();
void ClearToSend(); void ClearToSend();
@ -61,26 +59,15 @@ void get_coordinates();
void prepare_move(); void prepare_move();
void kill(); void kill();
//void check_axes_activity();
//void plan_init();
//void st_init();
//void tp_init();
//void plan_buffer_line(float x, float y, float z, float e, float feed_rate);
//void plan_set_position(float x, float y, float z, float e);
//void st_wake_up();
//void st_synchronize();
void enquecommand(const char *cmd); //put an ascii command at the end of the current buffer. void enquecommand(const char *cmd); //put an ascii command at the end of the current buffer.
#ifndef CRITICAL_SECTION_START #ifndef CRITICAL_SECTION_START
#define CRITICAL_SECTION_START unsigned char _sreg = SREG; cli(); #define CRITICAL_SECTION_START unsigned char _sreg = SREG; cli();
#define CRITICAL_SECTION_END SREG = _sreg; #define CRITICAL_SECTION_END SREG = _sreg;
#endif //CRITICAL_SECTION_START #endif //CRITICAL_SECTION_START
extern float homing_feedrate[]; extern float homing_feedrate[];
extern bool axis_relative_modes[]; extern bool axis_relative_modes[];
void kill();
#endif #endif

File diff suppressed because it is too large Load diff

View file

@ -33,8 +33,8 @@
void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8_t axis_1, void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8_t axis_1,
uint8_t axis_linear, float feed_rate, float radius, uint8_t isclockwise) uint8_t axis_linear, float feed_rate, float radius, uint8_t isclockwise)
{ {
// int acceleration_manager_was_enabled = plan_is_acceleration_manager_enabled(); // int acceleration_manager_was_enabled = plan_is_acceleration_manager_enabled();
// plan_set_acceleration_manager_enabled(false); // disable acceleration management for the duration of the arc // plan_set_acceleration_manager_enabled(false); // disable acceleration management for the duration of the arc
SERIAL_ECHOLN("mc_arc."); SERIAL_ECHOLN("mc_arc.");
float center_axis0 = position[axis_0] + offset[axis_0]; float center_axis0 = position[axis_0] + offset[axis_0];
float center_axis1 = position[axis_1] + offset[axis_1]; float center_axis1 = position[axis_1] + offset[axis_1];
@ -52,12 +52,12 @@ void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8
float millimeters_of_travel = hypot(angular_travel*radius, fabs(linear_travel)); float millimeters_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
if (millimeters_of_travel == 0.0) { return; } if (millimeters_of_travel == 0.0) { return; }
uint16_t segments = floor(millimeters_of_travel/MM_PER_ARC_SEGMENT); uint16_t segments = floor(millimeters_of_travel/MM_PER_ARC_SEGMENT);
/* /*
// Multiply inverse feed_rate to compensate for the fact that this movement is approximated // Multiply inverse feed_rate to compensate for the fact that this movement is approximated
// by a number of discrete segments. The inverse feed_rate should be correct for the sum of // by a number of discrete segments. The inverse feed_rate should be correct for the sum of
// all segments. // all segments.
if (invert_feed_rate) { feed_rate *= segments; } if (invert_feed_rate) { feed_rate *= segments; }
*/ */
float theta_per_segment = angular_travel/segments; float theta_per_segment = angular_travel/segments;
float linear_per_segment = linear_travel/segments; float linear_per_segment = linear_travel/segments;
@ -128,6 +128,6 @@ void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8
// Ensure last segment arrives at target location. // Ensure last segment arrives at target location.
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate); plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate);
// plan_set_acceleration_manager_enabled(acceleration_manager_was_enabled); // plan_set_acceleration_manager_enabled(acceleration_manager_was_enabled);
} }

View file

@ -557,6 +557,74 @@
#define FAN_PIN 7 #define FAN_PIN 7
#define PS_ON_PIN 12 #define PS_ON_PIN 12
#define KILL_PIN -1 #define KILL_PIN -1
#ifdef ULTRA_LCD
#ifdef NEWPANEL
//arduino pin witch triggers an piezzo beeper
#define BEEPER 18
#define LCD_PINS_RS 20
#define LCD_PINS_ENABLE 17
#define LCD_PINS_D4 16
#define LCD_PINS_D5 21
#define LCD_PINS_D6 5
#define LCD_PINS_D7 6
//buttons are directly attached
#define BTN_EN1 40
#define BTN_EN2 42
#define BTN_ENC 19 //the click
#define BLEN_C 2
#define BLEN_B 1
#define BLEN_A 0
#define SDCARDDETECT 38
//encoder rotation values
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1
#else //old style panel with shift register
//arduino pin witch triggers an piezzo beeper
#define BEEPER 18
//buttons are attached to a shift register
#define SHIFT_CLK 38
#define SHIFT_LD 42
#define SHIFT_OUT 40
#define SHIFT_EN 17
#define LCD_PINS_RS 16
#define LCD_PINS_ENABLE 5
#define LCD_PINS_D4 6
#define LCD_PINS_D5 21
#define LCD_PINS_D6 20
#define LCD_PINS_D7 19
//encoder rotation values
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1
//bits in the shift register that carry the buttons for:
// left up center down right red
#define BL_LE 7
#define BL_UP 6
#define BL_MI 5
#define BL_DW 4
#define BL_RI 3
#define BL_ST 2
#define BLEN_B 1
#define BLEN_A 0
#endif
#endif //ULTRA_LCD
#endif #endif

View file

@ -83,7 +83,7 @@ static volatile unsigned char block_buffer_head; // Index of the next
static volatile unsigned char block_buffer_tail; // Index of the block to process now static volatile unsigned char block_buffer_tail; // Index of the block to process now
// The current position of the tool in absolute steps // The current position of the tool in absolute steps
long position[4]; long position[4];
#define ONE_MINUTE_OF_MICROSECONDS 60000000.0 #define ONE_MINUTE_OF_MICROSECONDS 60000000.0
@ -123,10 +123,10 @@ void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit
long initial_rate = ceil(block->nominal_rate*entry_factor); long initial_rate = ceil(block->nominal_rate*entry_factor);
long final_rate = ceil(block->nominal_rate*exit_factor); long final_rate = ceil(block->nominal_rate*exit_factor);
#ifdef ADVANCE #ifdef ADVANCE
long initial_advance = block->advance*entry_factor*entry_factor; long initial_advance = block->advance*entry_factor*entry_factor;
long final_advance = block->advance*exit_factor*exit_factor; long final_advance = block->advance*exit_factor*exit_factor;
#endif // ADVANCE #endif // ADVANCE
// Limit minimal step rate (Otherwise the timer will overflow.) // Limit minimal step rate (Otherwise the timer will overflow.)
if(initial_rate <120) initial_rate=120; if(initial_rate <120) initial_rate=120;
@ -155,10 +155,10 @@ void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit
block->decelerate_after = decelerate_after; block->decelerate_after = decelerate_after;
block->initial_rate = initial_rate; block->initial_rate = initial_rate;
block->final_rate = final_rate; block->final_rate = final_rate;
#ifdef ADVANCE #ifdef ADVANCE
block->initial_advance = initial_advance; block->initial_advance = initial_advance;
block->final_advance = final_advance; block->final_advance = final_advance;
#endif //ADVANCE #endif //ADVANCE
} }
CRITICAL_SECTION_END; CRITICAL_SECTION_END;
} }
@ -166,18 +166,15 @@ void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit
// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
// acceleration within the allotted distance. // acceleration within the allotted distance.
inline float max_allowable_speed(float acceleration, float target_velocity, float distance) { inline float max_allowable_speed(float acceleration, float target_velocity, float distance) {
return( return sqrt(target_velocity*target_velocity-2*acceleration*60*60*distance);
sqrt(target_velocity*target_velocity-2*acceleration*60*60*distance)
);
} }
// "Junction jerk" in this context is the immediate change in speed at the junction of two blocks. // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
// This method will calculate the junction jerk as the euclidean distance between the nominal // This method will calculate the junction jerk as the euclidean distance between the nominal
// velocities of the respective blocks. // velocities of the respective blocks.
inline float junction_jerk(block_t *before, block_t *after) { inline float junction_jerk(block_t *before, block_t *after) {
return(sqrt( return sqrt(
pow((before->speed_x-after->speed_x), 2)+ pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
pow((before->speed_y-after->speed_y), 2)));
} }
// Return the safe speed which is max_jerk/2, e.g. the // Return the safe speed which is max_jerk/2, e.g. the
@ -185,8 +182,10 @@ inline float junction_jerk(block_t *before, block_t *after) {
float safe_speed(block_t *block) { float safe_speed(block_t *block) {
float safe_speed; float safe_speed;
safe_speed = max_xy_jerk/2; safe_speed = max_xy_jerk/2;
if(abs(block->speed_z) > max_z_jerk/2) safe_speed = max_z_jerk/2; if(abs(block->speed_z) > max_z_jerk/2)
if (safe_speed > block->nominal_speed) safe_speed = block->nominal_speed; safe_speed = max_z_jerk/2;
if (safe_speed > block->nominal_speed)
safe_speed = block->nominal_speed;
return safe_speed; return safe_speed;
} }
@ -379,9 +378,8 @@ void check_axes_activity() {
// Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
// mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
// calculation the caller must also provide the physical length of the line in millimeters. // calculation the caller must also provide the physical length of the line in millimeters.
void plan_buffer_line(float x, float y, float z, float e, float feed_rate) { void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate)
{
// Calculate the buffer head after we push this byte // Calculate the buffer head after we push this byte
int next_buffer_head = (block_buffer_head + 1) & (BLOCK_BUFFER_SIZE - 1); int next_buffer_head = (block_buffer_head + 1) & (BLOCK_BUFFER_SIZE - 1);
@ -469,11 +467,8 @@ void plan_buffer_line(float x, float y, float z, float e, float feed_rate) {
// Limit speed per axis // Limit speed per axis
float speed_factor = 1; //factor <=1 do decrease speed float speed_factor = 1; //factor <=1 do decrease speed
if(abs(block->speed_x) > max_feedrate[X_AXIS]) { if(abs(block->speed_x) > max_feedrate[X_AXIS]) {
//// [ErikDeBruijn] IS THIS THE BUG WE'RE LOOING FOR????
//// [bernhard] No its not, according to Zalm.
//// the if would always be true, since tmp_speedfactor <=0 due the inial if, so its safe to set. the next lines actually compare.
speed_factor = max_feedrate[X_AXIS] / abs(block->speed_x); speed_factor = max_feedrate[X_AXIS] / abs(block->speed_x);
//if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor; //if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor; /is not need here because auf the init above
} }
if(abs(block->speed_y) > max_feedrate[Y_AXIS]){ if(abs(block->speed_y) > max_feedrate[Y_AXIS]){
float tmp_speed_factor = max_feedrate[Y_AXIS] / abs(block->speed_y); float tmp_speed_factor = max_feedrate[Y_AXIS] / abs(block->speed_y);
@ -495,7 +490,8 @@ void plan_buffer_line(float x, float y, float z, float e, float feed_rate) {
block->nominal_speed = block->millimeters * multiplier; block->nominal_speed = block->millimeters * multiplier;
block->nominal_rate = ceil(block->step_event_count * multiplier / 60); block->nominal_rate = ceil(block->step_event_count * multiplier / 60);
if(block->nominal_rate < 120) block->nominal_rate = 120; if(block->nominal_rate < 120)
block->nominal_rate = 120;
block->entry_speed = safe_speed(block); block->entry_speed = safe_speed(block);
// Compute the acceleration rate for the trapezoid generator. // Compute the acceleration rate for the trapezoid generator.
@ -527,25 +523,25 @@ void plan_buffer_line(float x, float y, float z, float e, float feed_rate) {
block->acceleration = block->acceleration_st * travel_per_step; block->acceleration = block->acceleration_st * travel_per_step;
block->acceleration_rate = (long)((float)block->acceleration_st * 8.388608); block->acceleration_rate = (long)((float)block->acceleration_st * 8.388608);
#ifdef ADVANCE #ifdef ADVANCE
// Calculate advance rate // Calculate advance rate
if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) { if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
block->advance_rate = 0;
block->advance = 0;
}
else {
long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
(block->speed_e * block->speed_e * EXTRUTION_AREA * EXTRUTION_AREA / 3600.0)*65536;
block->advance = advance;
if(acc_dist == 0) {
block->advance_rate = 0; block->advance_rate = 0;
block->advance = 0;
} }
else { else {
block->advance_rate = advance / (float)acc_dist; long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
(block->speed_e * block->speed_e * EXTRUTION_AREA * EXTRUTION_AREA / 3600.0)*65536;
block->advance = advance;
if(acc_dist == 0) {
block->advance_rate = 0;
}
else {
block->advance_rate = advance / (float)acc_dist;
}
} }
} #endif // ADVANCE
#endif // ADVANCE
// compute a preliminary conservative acceleration trapezoid // compute a preliminary conservative acceleration trapezoid
float safespeed = safe_speed(block); float safespeed = safe_speed(block);
@ -576,7 +572,7 @@ void plan_buffer_line(float x, float y, float z, float e, float feed_rate) {
st_wake_up(); st_wake_up();
} }
void plan_set_position(float x, float y, float z, float e) void plan_set_position(const float &x, const float &y, const float &z, const float &e)
{ {
position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]); position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]); position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);

View file

@ -32,16 +32,16 @@ typedef struct {
// Fields used by the bresenham algorithm for tracing the line // Fields used by the bresenham algorithm for tracing the line
long steps_x, steps_y, steps_z, steps_e; // Step count along each axis long steps_x, steps_y, steps_z, steps_e; // Step count along each axis
long step_event_count; // The number of step events required to complete this block long step_event_count; // The number of step events required to complete this block
volatile long accelerate_until; // The index of the step event on which to stop acceleration volatile long accelerate_until; // The index of the step event on which to stop acceleration
volatile long decelerate_after; // The index of the step event on which to start decelerating volatile long decelerate_after; // The index of the step event on which to start decelerating
volatile long acceleration_rate; // The acceleration rate used for acceleration calculation volatile long acceleration_rate; // The acceleration rate used for acceleration calculation
unsigned char direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h) unsigned char direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
#ifdef ADVANCE #ifdef ADVANCE
long advance_rate; long advance_rate;
volatile long initial_advance; volatile long initial_advance;
volatile long final_advance; volatile long final_advance;
float advance; float advance;
#endif #endif
// Fields used by the motion planner to manage acceleration // Fields used by the motion planner to manage acceleration
float speed_x, speed_y, speed_z, speed_e; // Nominal mm/minute for each axis float speed_x, speed_y, speed_z, speed_e; // Nominal mm/minute for each axis
@ -63,10 +63,11 @@ void plan_init();
// Add a new linear movement to the buffer. x, y and z is the signed, absolute target position in // Add a new linear movement to the buffer. x, y and z is the signed, absolute target position in
// millimaters. Feed rate specifies the speed of the motion. // millimaters. Feed rate specifies the speed of the motion.
void plan_buffer_line(float x, float y, float z, float e, float feed_rate); void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate);
// Set position. Used for G92 instructions. // Set position. Used for G92 instructions.
void plan_set_position(float x, float y, float z, float e); void plan_set_position(const float &x, const float &y, const float &z, const float &e);
// Called when the current block is no longer needed. Discards the block and makes the memory // Called when the current block is no longer needed. Discards the block and makes the memory
// availible for new blocks. // availible for new blocks.

View file

@ -37,6 +37,7 @@ uint16_t speed_lookuptable_fast[256][2] PROGMEM = {\
{ 32, 0}, { 32, 0}, { 32, 0}, { 32, 0}, { 32, 1}, { 31, 0}, { 31, 0}, { 31, 0}, { 32, 0}, { 32, 0}, { 32, 0}, { 32, 0}, { 32, 1}, { 31, 0}, { 31, 0}, { 31, 0},
{ 31, 0}, { 31, 0}, { 31, 0}, { 31, 1}, { 30, 0}, { 30, 0}, { 30, 0}, { 30, 0} { 31, 0}, { 31, 0}, { 31, 0}, { 31, 1}, { 30, 0}, { 30, 0}, { 30, 0}, { 30, 0}
}; };
uint16_t speed_lookuptable_slow[256][2] PROGMEM = {\ uint16_t speed_lookuptable_slow[256][2] PROGMEM = {\
{ 62500, 12500}, { 50000, 8334}, { 41666, 5952}, { 35714, 4464}, { 31250, 3473}, { 27777, 2777}, { 25000, 2273}, { 22727, 1894}, { 62500, 12500}, { 50000, 8334}, { 41666, 5952}, { 35714, 4464}, { 31250, 3473}, { 27777, 2777}, { 25000, 2273}, { 22727, 1894},
{ 20833, 1603}, { 19230, 1373}, { 17857, 1191}, { 16666, 1041}, { 15625, 920}, { 14705, 817}, { 13888, 731}, { 13157, 657}, { 20833, 1603}, { 19230, 1373}, { 17857, 1191}, { 16666, 1041}, { 15625, 920}, { 14705, 817}, { 13888, 731}, { 13157, 657},

View file

@ -35,8 +35,8 @@
// if DEBUG_STEPS is enabled, M114 can be used to compare two methods of determining the X,Y,Z position of the printer. // if DEBUG_STEPS is enabled, M114 can be used to compare two methods of determining the X,Y,Z position of the printer.
// for debugging purposes only, should be disabled by default // for debugging purposes only, should be disabled by default
#ifdef DEBUG_STEPS #ifdef DEBUG_STEPS
volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0}; volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
volatile int count_direction[NUM_AXIS] = { 1, 1, 1, 1}; volatile int count_direction[NUM_AXIS] = { 1, 1, 1, 1};
#endif #endif
@ -117,6 +117,8 @@ asm volatile ( \
block_t *current_block; // A pointer to the block currently being traced block_t *current_block; // A pointer to the block currently being traced
//static makes it inpossible to be called from outside of this file by extern.!
// Variables used by The Stepper Driver Interrupt // Variables used by The Stepper Driver Interrupt
static unsigned char out_bits; // The next stepping-bits to be output static unsigned char out_bits; // The next stepping-bits to be output
static long counter_x, // Counter variables for the bresenham line tracer static long counter_x, // Counter variables for the bresenham line tracer
@ -125,9 +127,9 @@ static long counter_x, // Counter variables for the bresenham line tracer
counter_e; counter_e;
static unsigned long step_events_completed; // The number of step events executed in the current block static unsigned long step_events_completed; // The number of step events executed in the current block
#ifdef ADVANCE #ifdef ADVANCE
static long advance_rate, advance, final_advance = 0; static long advance_rate, advance, final_advance = 0;
static short old_advance = 0; static short old_advance = 0;
static short e_steps; static short e_steps;
#endif #endif
static unsigned char busy = false; // TRUE when SIG_OUTPUT_COMPARE1A is being serviced. Used to avoid retriggering that handler. static unsigned char busy = false; // TRUE when SIG_OUTPUT_COMPARE1A is being serviced. Used to avoid retriggering that handler.
static long acceleration_time, deceleration_time; static long acceleration_time, deceleration_time;
@ -195,10 +197,10 @@ inline unsigned short calc_timer(unsigned short step_rate) {
// Initializes the trapezoid generator from the current block. Called whenever a new // Initializes the trapezoid generator from the current block. Called whenever a new
// block begins. // block begins.
inline void trapezoid_generator_reset() { inline void trapezoid_generator_reset() {
#ifdef ADVANCE #ifdef ADVANCE
advance = current_block->initial_advance; advance = current_block->initial_advance;
final_advance = current_block->final_advance; final_advance = current_block->final_advance;
#endif #endif
deceleration_time = 0; deceleration_time = 0;
// advance_rate = current_block->advance_rate; // advance_rate = current_block->advance_rate;
// step_rate to timer interval // step_rate to timer interval
@ -211,7 +213,8 @@ inline void trapezoid_generator_reset() {
// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
ISR(TIMER1_COMPA_vect) ISR(TIMER1_COMPA_vect)
{ {
if(busy){ SERIAL_ERRORLN(*(unsigned short *)OCR1A<< " ISR overtaking itself."); if(busy){
SERIAL_ERRORLN(*(unsigned short *)OCR1A<< " ISR overtaking itself.");
return; return;
} // The busy-flag is used to avoid reentering this interrupt } // The busy-flag is used to avoid reentering this interrupt
@ -242,74 +245,74 @@ ISR(TIMER1_COMPA_vect)
// Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
out_bits = current_block->direction_bits; out_bits = current_block->direction_bits;
#ifdef ADVANCE #ifdef ADVANCE
// Calculate E early. // Calculate E early.
counter_e += current_block->steps_e; counter_e += current_block->steps_e;
if (counter_e > 0) { if (counter_e > 0) {
counter_e -= current_block->step_event_count; counter_e -= current_block->step_event_count;
if ((out_bits & (1<<E_AXIS)) != 0) { // - direction if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
CRITICAL_SECTION_START;
e_steps--;
CRITICAL_SECTION_END;
}
else {
CRITICAL_SECTION_START;
e_steps++;
CRITICAL_SECTION_END;
}
}
// Do E steps + advance steps
CRITICAL_SECTION_START; CRITICAL_SECTION_START;
e_steps--; e_steps += ((advance >> 16) - old_advance);
CRITICAL_SECTION_END; CRITICAL_SECTION_END;
} old_advance = advance >> 16;
else { #endif //ADVANCE
CRITICAL_SECTION_START;
e_steps++;
CRITICAL_SECTION_END;
}
}
// Do E steps + advance steps
CRITICAL_SECTION_START;
e_steps += ((advance >> 16) - old_advance);
CRITICAL_SECTION_END;
old_advance = advance >> 16;
#endif //ADVANCE
// Set direction en check limit switches // Set direction en check limit switches
if ((out_bits & (1<<X_AXIS)) != 0) { // -direction if ((out_bits & (1<<X_AXIS)) != 0) { // -direction
WRITE(X_DIR_PIN, INVERT_X_DIR); WRITE(X_DIR_PIN, INVERT_X_DIR);
#ifdef DEBUG_STEPS #ifdef DEBUG_STEPS
count_direction[X_AXIS]=-1; count_direction[X_AXIS]=-1;
#endif
#if X_MIN_PIN > -1
if(READ(X_MIN_PIN) != ENDSTOPS_INVERTING) {
step_events_completed = current_block->step_event_count;
}
#endif #endif
#if X_MIN_PIN > -1
if(READ(X_MIN_PIN) != ENDSTOPS_INVERTING) {
step_events_completed = current_block->step_event_count;
}
#endif
} }
else { // +direction else { // +direction
WRITE(X_DIR_PIN,!INVERT_X_DIR); WRITE(X_DIR_PIN,!INVERT_X_DIR);
#ifdef DEBUG_STEPS #ifdef DEBUG_STEPS
count_direction[X_AXIS]=1; count_direction[X_AXIS]=1;
#endif #endif
#if X_MAX_PIN > -1 #if X_MAX_PIN > -1
if((READ(X_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_x >0)){ if((READ(X_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_x >0)){
step_events_completed = current_block->step_event_count; step_events_completed = current_block->step_event_count;
} }
#endif #endif
} }
if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
WRITE(Y_DIR_PIN,INVERT_Y_DIR); WRITE(Y_DIR_PIN,INVERT_Y_DIR);
#ifdef DEBUG_STEPS #ifdef DEBUG_STEPS
count_direction[Y_AXIS]=-1; count_direction[Y_AXIS]=-1;
#endif
#if Y_MIN_PIN > -1
if(READ(Y_MIN_PIN) != ENDSTOPS_INVERTING) {
step_events_completed = current_block->step_event_count;
}
#endif #endif
#if Y_MIN_PIN > -1
if(READ(Y_MIN_PIN) != ENDSTOPS_INVERTING) {
step_events_completed = current_block->step_event_count;
}
#endif
} }
else { // +direction else { // +direction
WRITE(Y_DIR_PIN,!INVERT_Y_DIR); WRITE(Y_DIR_PIN,!INVERT_Y_DIR);
#ifdef DEBUG_STEPS #ifdef DEBUG_STEPS
count_direction[Y_AXIS]=1; count_direction[Y_AXIS]=1;
#endif
#if Y_MAX_PIN > -1
if((READ(Y_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_y >0)){
step_events_completed = current_block->step_event_count;
}
#endif #endif
#if Y_MAX_PIN > -1
if((READ(Y_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_y >0)){
step_events_completed = current_block->step_event_count;
}
#endif
} }
if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
@ -317,30 +320,30 @@ if ((out_bits & (1<<X_AXIS)) != 0) { // -direction
#ifdef DEBUG_STEPS #ifdef DEBUG_STEPS
count_direction[Z_AXIS]=-1; count_direction[Z_AXIS]=-1;
#endif #endif
#if Z_MIN_PIN > -1 #if Z_MIN_PIN > -1
if(READ(Z_MIN_PIN) != ENDSTOPS_INVERTING) { if(READ(Z_MIN_PIN) != ENDSTOPS_INVERTING) {
step_events_completed = current_block->step_event_count; step_events_completed = current_block->step_event_count;
} }
#endif #endif
} }
else { // +direction else { // +direction
WRITE(Z_DIR_PIN,!INVERT_Z_DIR); WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
#ifdef DEBUG_STEPS #ifdef DEBUG_STEPS
count_direction[Z_AXIS]=1; count_direction[Z_AXIS]=1;
#endif #endif
#if Z_MAX_PIN > -1 #if Z_MAX_PIN > -1
if((READ(Z_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_z >0)){ if((READ(Z_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_z >0)){
step_events_completed = current_block->step_event_count; step_events_completed = current_block->step_event_count;
} }
#endif #endif
} }
#ifndef ADVANCE #ifndef ADVANCE
if ((out_bits & (1<<E_AXIS)) != 0) // -direction if ((out_bits & (1<<E_AXIS)) != 0) // -direction
WRITE(E_DIR_PIN,INVERT_E_DIR); WRITE(E_DIR_PIN,INVERT_E_DIR);
else // +direction else // +direction
WRITE(E_DIR_PIN,!INVERT_E_DIR); WRITE(E_DIR_PIN,!INVERT_E_DIR);
#endif //!ADVANCE #endif //!ADVANCE
for(char i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves) for(char i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
counter_x += current_block->steps_x; counter_x += current_block->steps_x;
@ -349,7 +352,7 @@ if ((out_bits & (1<<X_AXIS)) != 0) { // -direction
counter_x -= current_block->step_event_count; counter_x -= current_block->step_event_count;
WRITE(X_STEP_PIN, LOW); WRITE(X_STEP_PIN, LOW);
#ifdef DEBUG_STEPS #ifdef DEBUG_STEPS
count_position[X_AXIS]+=count_direction[X_AXIS]; count_position[X_AXIS]+=count_direction[X_AXIS];
#endif #endif
} }
@ -359,7 +362,7 @@ if ((out_bits & (1<<X_AXIS)) != 0) { // -direction
counter_y -= current_block->step_event_count; counter_y -= current_block->step_event_count;
WRITE(Y_STEP_PIN, LOW); WRITE(Y_STEP_PIN, LOW);
#ifdef DEBUG_STEPS #ifdef DEBUG_STEPS
count_position[Y_AXIS]+=count_direction[Y_AXIS]; count_position[Y_AXIS]+=count_direction[Y_AXIS];
#endif #endif
} }
@ -369,18 +372,18 @@ if ((out_bits & (1<<X_AXIS)) != 0) { // -direction
counter_z -= current_block->step_event_count; counter_z -= current_block->step_event_count;
WRITE(Z_STEP_PIN, LOW); WRITE(Z_STEP_PIN, LOW);
#ifdef DEBUG_STEPS #ifdef DEBUG_STEPS
count_position[Z_AXIS]+=count_direction[Z_AXIS]; count_position[Z_AXIS]+=count_direction[Z_AXIS];
#endif #endif
} }
#ifndef ADVANCE #ifndef ADVANCE
counter_e += current_block->steps_e; counter_e += current_block->steps_e;
if (counter_e > 0) { if (counter_e > 0) {
WRITE(E_STEP_PIN, HIGH); WRITE(E_STEP_PIN, HIGH);
counter_e -= current_block->step_event_count; counter_e -= current_block->step_event_count;
WRITE(E_STEP_PIN, LOW); WRITE(E_STEP_PIN, LOW);
} }
#endif //!ADVANCE #endif //!ADVANCE
step_events_completed += 1; step_events_completed += 1;
if(step_events_completed >= current_block->step_event_count) break; if(step_events_completed >= current_block->step_event_count) break;
} }
@ -397,9 +400,9 @@ if ((out_bits & (1<<X_AXIS)) != 0) { // -direction
// step_rate to timer interval // step_rate to timer interval
timer = calc_timer(acc_step_rate); timer = calc_timer(acc_step_rate);
#ifdef ADVANCE #ifdef ADVANCE
advance += advance_rate; advance += advance_rate;
#endif #endif
acceleration_time += timer; acceleration_time += timer;
OCR1A = timer; OCR1A = timer;
} }
@ -419,11 +422,11 @@ if ((out_bits & (1<<X_AXIS)) != 0) { // -direction
// step_rate to timer interval // step_rate to timer interval
timer = calc_timer(step_rate); timer = calc_timer(step_rate);
#ifdef ADVANCE #ifdef ADVANCE
advance -= advance_rate; advance -= advance_rate;
if(advance < final_advance) if(advance < final_advance)
advance = final_advance; advance = final_advance;
#endif //ADVANCE #endif //ADVANCE
deceleration_time += timer; deceleration_time += timer;
OCR1A = timer; OCR1A = timer;
} }
@ -438,127 +441,126 @@ if ((out_bits & (1<<X_AXIS)) != 0) { // -direction
} }
#ifdef ADVANCE #ifdef ADVANCE
unsigned char old_OCR0A;
unsigned char old_OCR0A; // Timer interrupt for E. e_steps is set in the main routine;
// Timer interrupt for E. e_steps is set in the main routine; // Timer 0 is shared with millies
// Timer 0 is shared with millies ISR(TIMER0_COMPA_vect)
ISR(TIMER0_COMPA_vect) {
{ // Critical section needed because Timer 1 interrupt has higher priority.
// Critical section needed because Timer 1 interrupt has higher priority. // The pin set functions are placed on trategic position to comply with the stepper driver timing.
// The pin set functions are placed on trategic position to comply with the stepper driver timing. WRITE(E_STEP_PIN, LOW);
WRITE(E_STEP_PIN, LOW); // Set E direction (Depends on E direction + advance)
// Set E direction (Depends on E direction + advance) if (e_steps < 0) {
if (e_steps < 0) { WRITE(E_DIR_PIN,INVERT_E_DIR);
WRITE(E_DIR_PIN,INVERT_E_DIR); e_steps++;
e_steps++; WRITE(E_STEP_PIN, HIGH);
WRITE(E_STEP_PIN, HIGH); }
if (e_steps > 0) {
WRITE(E_DIR_PIN,!INVERT_E_DIR);
e_steps--;
WRITE(E_STEP_PIN, HIGH);
}
old_OCR0A += 25; // 10kHz interrupt
OCR0A = old_OCR0A;
} }
if (e_steps > 0) {
WRITE(E_DIR_PIN,!INVERT_E_DIR);
e_steps--;
WRITE(E_STEP_PIN, HIGH);
}
old_OCR0A += 25; // 10kHz interrupt
OCR0A = old_OCR0A;
}
#endif // ADVANCE #endif // ADVANCE
void st_init() void st_init()
{ {
//Initialize Dir Pins //Initialize Dir Pins
#if X_DIR_PIN > -1 #if X_DIR_PIN > -1
SET_OUTPUT(X_DIR_PIN); SET_OUTPUT(X_DIR_PIN);
#endif #endif
#if Y_DIR_PIN > -1 #if Y_DIR_PIN > -1
SET_OUTPUT(Y_DIR_PIN); SET_OUTPUT(Y_DIR_PIN);
#endif #endif
#if Z_DIR_PIN > -1 #if Z_DIR_PIN > -1
SET_OUTPUT(Z_DIR_PIN); SET_OUTPUT(Z_DIR_PIN);
#endif #endif
#if E_DIR_PIN > -1 #if E_DIR_PIN > -1
SET_OUTPUT(E_DIR_PIN); SET_OUTPUT(E_DIR_PIN);
#endif #endif
//Initialize Enable Pins - steppers default to disabled. //Initialize Enable Pins - steppers default to disabled.
#if (X_ENABLE_PIN > -1) #if (X_ENABLE_PIN > -1)
SET_OUTPUT(X_ENABLE_PIN); SET_OUTPUT(X_ENABLE_PIN);
if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH); if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
#endif #endif
#if (Y_ENABLE_PIN > -1) #if (Y_ENABLE_PIN > -1)
SET_OUTPUT(Y_ENABLE_PIN); SET_OUTPUT(Y_ENABLE_PIN);
if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH); if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
#endif #endif
#if (Z_ENABLE_PIN > -1) #if (Z_ENABLE_PIN > -1)
SET_OUTPUT(Z_ENABLE_PIN); SET_OUTPUT(Z_ENABLE_PIN);
if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH); if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
#endif #endif
#if (E_ENABLE_PIN > -1) #if (E_ENABLE_PIN > -1)
SET_OUTPUT(E_ENABLE_PIN); SET_OUTPUT(E_ENABLE_PIN);
if(!E_ENABLE_ON) WRITE(E_ENABLE_PIN,HIGH); if(!E_ENABLE_ON) WRITE(E_ENABLE_PIN,HIGH);
#endif #endif
//endstops and pullups //endstops and pullups
#ifdef ENDSTOPPULLUPS #ifdef ENDSTOPPULLUPS
#if X_MIN_PIN > -1 #if X_MIN_PIN > -1
SET_INPUT(X_MIN_PIN); SET_INPUT(X_MIN_PIN);
WRITE(X_MIN_PIN,HIGH); WRITE(X_MIN_PIN,HIGH);
#endif #endif
#if X_MAX_PIN > -1 #if X_MAX_PIN > -1
SET_INPUT(X_MAX_PIN); SET_INPUT(X_MAX_PIN);
WRITE(X_MAX_PIN,HIGH); WRITE(X_MAX_PIN,HIGH);
#endif #endif
#if Y_MIN_PIN > -1 #if Y_MIN_PIN > -1
SET_INPUT(Y_MIN_PIN); SET_INPUT(Y_MIN_PIN);
WRITE(Y_MIN_PIN,HIGH); WRITE(Y_MIN_PIN,HIGH);
#endif #endif
#if Y_MAX_PIN > -1 #if Y_MAX_PIN > -1
SET_INPUT(Y_MAX_PIN); SET_INPUT(Y_MAX_PIN);
WRITE(Y_MAX_PIN,HIGH); WRITE(Y_MAX_PIN,HIGH);
#endif #endif
#if Z_MIN_PIN > -1 #if Z_MIN_PIN > -1
SET_INPUT(Z_MIN_PIN); SET_INPUT(Z_MIN_PIN);
WRITE(Z_MIN_PIN,HIGH); WRITE(Z_MIN_PIN,HIGH);
#endif #endif
#if Z_MAX_PIN > -1 #if Z_MAX_PIN > -1
SET_INPUT(Z_MAX_PIN); SET_INPUT(Z_MAX_PIN);
WRITE(Z_MAX_PIN,HIGH); WRITE(Z_MAX_PIN,HIGH);
#endif #endif
#else //ENDSTOPPULLUPS #else //ENDSTOPPULLUPS
#if X_MIN_PIN > -1 #if X_MIN_PIN > -1
SET_INPUT(X_MIN_PIN); SET_INPUT(X_MIN_PIN);
#endif #endif
#if X_MAX_PIN > -1 #if X_MAX_PIN > -1
SET_INPUT(X_MAX_PIN); SET_INPUT(X_MAX_PIN);
#endif #endif
#if Y_MIN_PIN > -1 #if Y_MIN_PIN > -1
SET_INPUT(Y_MIN_PIN); SET_INPUT(Y_MIN_PIN);
#endif #endif
#if Y_MAX_PIN > -1 #if Y_MAX_PIN > -1
SET_INPUT(Y_MAX_PIN); SET_INPUT(Y_MAX_PIN);
#endif #endif
#if Z_MIN_PIN > -1 #if Z_MIN_PIN > -1
SET_INPUT(Z_MIN_PIN); SET_INPUT(Z_MIN_PIN);
#endif #endif
#if Z_MAX_PIN > -1 #if Z_MAX_PIN > -1
SET_INPUT(Z_MAX_PIN); SET_INPUT(Z_MAX_PIN);
#endif #endif
#endif //ENDSTOPPULLUPS #endif //ENDSTOPPULLUPS
//Initialize Step Pins //Initialize Step Pins
#if (X_STEP_PIN > -1) #if (X_STEP_PIN > -1)
SET_OUTPUT(X_STEP_PIN); SET_OUTPUT(X_STEP_PIN);
#endif #endif
#if (Y_STEP_PIN > -1) #if (Y_STEP_PIN > -1)
SET_OUTPUT(Y_STEP_PIN); SET_OUTPUT(Y_STEP_PIN);
#endif #endif
#if (Z_STEP_PIN > -1) #if (Z_STEP_PIN > -1)
SET_OUTPUT(Z_STEP_PIN); SET_OUTPUT(Z_STEP_PIN);
#endif #endif
#if (E_STEP_PIN > -1) #if (E_STEP_PIN > -1)
SET_OUTPUT(E_STEP_PIN); SET_OUTPUT(E_STEP_PIN);
#endif #endif
// waveform generation = 0100 = CTC // waveform generation = 0100 = CTC
TCCR1B &= ~(1<<WGM13); TCCR1B &= ~(1<<WGM13);
@ -574,10 +576,10 @@ void st_init()
OCR1A = 0x4000; OCR1A = 0x4000;
DISABLE_STEPPER_DRIVER_INTERRUPT(); DISABLE_STEPPER_DRIVER_INTERRUPT();
#ifdef ADVANCE #ifdef ADVANCE
e_steps = 0; e_steps = 0;
TIMSK0 |= (1<<OCIE0A); TIMSK0 |= (1<<OCIE0A);
#endif //ADVANCE #endif //ADVANCE
sei(); sei();
} }

View file

@ -36,8 +36,8 @@ void st_wake_up();
// if DEBUG_STEPS is enabled, M114 can be used to compare two methods of determining the X,Y,Z position of the printer. // if DEBUG_STEPS is enabled, M114 can be used to compare two methods of determining the X,Y,Z position of the printer.
// for debugging purposes only, should be disabled by default // for debugging purposes only, should be disabled by default
#ifdef DEBUG_STEPS #ifdef DEBUG_STEPS
extern volatile long count_position[NUM_AXIS]; extern volatile long count_position[NUM_AXIS];
extern volatile int count_direction[NUM_AXIS]; extern volatile int count_direction[NUM_AXIS];
#endif #endif
extern block_t *current_block; // A pointer to the block currently being traced extern block_t *current_block; // A pointer to the block currently being traced

View file

@ -74,24 +74,24 @@ unsigned long previous_millis_heater, previous_millis_bed_heater;
#endif //WATCHPERIOD #endif //WATCHPERIOD
#ifdef HEATER_0_MINTEMP #ifdef HEATER_0_MINTEMP
int minttemp_0 = temp2analog(HEATER_0_MINTEMP); int minttemp_0 = temp2analog(HEATER_0_MINTEMP);
#endif //MINTEMP #endif //MINTEMP
#ifdef HEATER_0_MAXTEMP #ifdef HEATER_0_MAXTEMP
int maxttemp_0 = temp2analog(HEATER_0_MAXTEMP); int maxttemp_0 = temp2analog(HEATER_0_MAXTEMP);
#endif //MAXTEMP #endif //MAXTEMP
#ifdef HEATER_1_MINTEMP #ifdef HEATER_1_MINTEMP
int minttemp_1 = temp2analog(HEATER_1_MINTEMP); int minttemp_1 = temp2analog(HEATER_1_MINTEMP);
#endif //MINTEMP #endif //MINTEMP
#ifdef HEATER_1_MAXTEMP #ifdef HEATER_1_MAXTEMP
int maxttemp_1 = temp2analog(HEATER_1_MAXTEMP); int maxttemp_1 = temp2analog(HEATER_1_MAXTEMP);
#endif //MAXTEMP #endif //MAXTEMP
#ifdef BED_MINTEMP #ifdef BED_MINTEMP
int bed_minttemp = temp2analog(BED_MINTEMP); int bed_minttemp = temp2analog(BED_MINTEMP);
#endif //BED_MINTEMP #endif //BED_MINTEMP
#ifdef BED_MAXTEMP #ifdef BED_MAXTEMP
int bed_maxttemp = temp2analog(BED_MAXTEMP); int bed_maxttemp = temp2analog(BED_MAXTEMP);
#endif //BED_MAXTEMP #endif //BED_MAXTEMP
void manage_heater() void manage_heater()
@ -105,50 +105,49 @@ void manage_heater()
if(temp_meas_ready != true) //better readability if(temp_meas_ready != true) //better readability
return; return;
CRITICAL_SECTION_START; CRITICAL_SECTION_START;
temp_meas_ready = false; temp_meas_ready = false;
CRITICAL_SECTION_END; CRITICAL_SECTION_END;
#ifdef PIDTEMP #ifdef PIDTEMP
pid_input = analog2temp(current_raw[TEMPSENSOR_HOTEND_0]); pid_input = analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);
#ifndef PID_OPENLOOP #ifndef PID_OPENLOOP
pid_error = pid_setpoint - pid_input; pid_error = pid_setpoint - pid_input;
if(pid_error > 10){ if(pid_error > 10){
pid_output = PID_MAX; pid_output = PID_MAX;
pid_reset = true; pid_reset = true;
} }
else if(pid_error < -10) { else if(pid_error < -10) {
pid_output = 0; pid_output = 0;
pid_reset = true; pid_reset = true;
} }
else { else {
if(pid_reset == true) { if(pid_reset == true) {
temp_iState = 0.0; temp_iState = 0.0;
pid_reset = false; pid_reset = false;
} }
pTerm = Kp * pid_error; pTerm = Kp * pid_error;
temp_iState += pid_error; temp_iState += pid_error;
temp_iState = constrain(temp_iState, temp_iState_min, temp_iState_max); temp_iState = constrain(temp_iState, temp_iState_min, temp_iState_max);
iTerm = Ki * temp_iState; iTerm = Ki * temp_iState;
//K1 defined in Configuration.h in the PID settings //K1 defined in Configuration.h in the PID settings
#define K2 (1.0-K1) #define K2 (1.0-K1)
dTerm = (Kd * (pid_input - temp_dState))*K2 + (K1 * dTerm); dTerm = (Kd * (pid_input - temp_dState))*K2 + (K1 * dTerm);
temp_dState = pid_input; temp_dState = pid_input;
#ifdef PID_ADD_EXTRUSION_RATE #ifdef PID_ADD_EXTRUSION_RATE
pTerm+=Kc*current_block->speed_e; //additional heating if extrusion speed is high pTerm+=Kc*current_block->speed_e; //additional heating if extrusion speed is high
#endif #endif
pid_output = constrain(pTerm + iTerm - dTerm, 0, PID_MAX); pid_output = constrain(pTerm + iTerm - dTerm, 0, PID_MAX);
} }
#endif //PID_OPENLOOP #endif //PID_OPENLOOP
#ifdef PID_DEBUG #ifdef PID_DEBUG
SERIAL_ECHOLN(" PIDDEBUG Input "<<pid_input<<" Output "<<pid_output" pTerm "<<pTerm<<" iTerm "<<iTerm<<" dTerm "<<dTerm); SERIAL_ECHOLN(" PIDDEBUG Input "<<pid_input<<" Output "<<pid_output" pTerm "<<pTerm<<" iTerm "<<iTerm<<" dTerm "<<dTerm);
#endif //PID_DEBUG
#endif //PID_DEBUG
analogWrite(HEATER_0_PIN, pid_output); analogWrite(HEATER_0_PIN, pid_output);
#endif //PIDTEMP #endif //PIDTEMP
#ifndef PIDTEMP #ifndef PIDTEMP
if(current_raw[0] >= target_raw[0]) if(current_raw[0] >= target_raw[0])
{ {
WRITE(HEATER_0_PIN,LOW); WRITE(HEATER_0_PIN,LOW);
@ -157,7 +156,7 @@ CRITICAL_SECTION_END;
{ {
WRITE(HEATER_0_PIN,HIGH); WRITE(HEATER_0_PIN,HIGH);
} }
#endif #endif
if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL) if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
return; return;
@ -173,7 +172,7 @@ CRITICAL_SECTION_END;
WRITE(HEATER_1_PIN,HIGH); WRITE(HEATER_1_PIN,HIGH);
} }
#endif #endif
} }
// Takes hot end temperature value as input and returns corresponding raw value. // Takes hot end temperature value as input and returns corresponding raw value.
// For a thermistor, it uses the RepRap thermistor temp table. // For a thermistor, it uses the RepRap thermistor temp table.
@ -300,26 +299,26 @@ float analog2tempBed(int raw) {
void tp_init() void tp_init()
{ {
#if (HEATER_0_PIN > -1) #if (HEATER_0_PIN > -1)
SET_OUTPUT(HEATER_0_PIN); SET_OUTPUT(HEATER_0_PIN);
#endif #endif
#if (HEATER_1_PIN > -1) #if (HEATER_1_PIN > -1)
SET_OUTPUT(HEATER_1_PIN); SET_OUTPUT(HEATER_1_PIN);
#endif #endif
#if (HEATER_2_PIN > -1) #if (HEATER_2_PIN > -1)
SET_OUTPUT(HEATER_2_PIN); SET_OUTPUT(HEATER_2_PIN);
#endif #endif
#ifdef PIDTEMP #ifdef PIDTEMP
temp_iState_min = 0.0; temp_iState_min = 0.0;
temp_iState_max = PID_INTEGRAL_DRIVE_MAX / Ki; temp_iState_max = PID_INTEGRAL_DRIVE_MAX / Ki;
#endif //PIDTEMP #endif //PIDTEMP
// Set analog inputs // Set analog inputs
ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07; ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07;
// Use timer0 for temperature measurement // Use timer0 for temperature measurement
// Interleave temperature interrupt with millies interrupt // Interleave temperature interrupt with millies interrupt
OCR0B = 128; OCR0B = 128;
TIMSK0 |= (1<<OCIE0B); TIMSK0 |= (1<<OCIE0B);
} }
@ -344,23 +343,25 @@ void setWatch()
void disable_heater() void disable_heater()
{ {
#if TEMP_0_PIN > -1 #if TEMP_0_PIN > -1
target_raw[0]=0; target_raw[0]=0;
#if HEATER_0_PIN > -1 #if HEATER_0_PIN > -1
WRITE(HEATER_0_PIN,LOW); WRITE(HEATER_0_PIN,LOW);
#endif #endif
#endif #endif
#if TEMP_1_PIN > -1 #if TEMP_1_PIN > -1
target_raw[1]=0; target_raw[1]=0;
#if HEATER_1_PIN > -1 #if HEATER_1_PIN > -1
WRITE(HEATER_1_PIN,LOW); WRITE(HEATER_1_PIN,LOW);
#endif #endif
#endif #endif
#if TEMP_2_PIN > -1 #if TEMP_2_PIN > -1
target_raw[2]=0; target_raw[2]=0;
#if HEATER_2_PIN > -1 #if HEATER_2_PIN > -1
WRITE(HEATER_2_PIN,LOW); WRITE(HEATER_2_PIN,LOW);
#endif #endif
#endif #endif
} }
@ -376,75 +377,75 @@ ISR(TIMER0_COMPB_vect)
switch(temp_state) { switch(temp_state) {
case 0: // Prepare TEMP_0 case 0: // Prepare TEMP_0
#if (TEMP_0_PIN > -1) #if (TEMP_0_PIN > -1)
#if TEMP_0_PIN < 8 #if TEMP_0_PIN < 8
DIDR0 = 1 << TEMP_0_PIN; DIDR0 = 1 << TEMP_0_PIN;
#else #else
DIDR2 = 1<<(TEMP_0_PIN - 8); DIDR2 = 1<<(TEMP_0_PIN - 8);
ADCSRB = 1<<MUX5; ADCSRB = 1<<MUX5;
#endif #endif
ADMUX = ((1 << REFS0) | (TEMP_0_PIN & 0x07)); ADMUX = ((1 << REFS0) | (TEMP_0_PIN & 0x07));
ADCSRA |= 1<<ADSC; // Start conversion ADCSRA |= 1<<ADSC; // Start conversion
#endif #endif
#ifdef ULTIPANEL #ifdef ULTIPANEL
buttons_check(); buttons_check();
#endif #endif
temp_state = 1; temp_state = 1;
break; break;
case 1: // Measure TEMP_0 case 1: // Measure TEMP_0
#if (TEMP_0_PIN > -1) #if (TEMP_0_PIN > -1)
raw_temp_0_value += ADC; raw_temp_0_value += ADC;
#endif #endif
temp_state = 2; temp_state = 2;
break; break;
case 2: // Prepare TEMP_1 case 2: // Prepare TEMP_1
#if (TEMP_1_PIN > -1) #if (TEMP_1_PIN > -1)
#if TEMP_1_PIN < 7 #if TEMP_1_PIN < 7
DIDR0 = 1<<TEMP_1_PIN; DIDR0 = 1<<TEMP_1_PIN;
#else #else
DIDR2 = 1<<(TEMP_1_PIN - 8); DIDR2 = 1<<(TEMP_1_PIN - 8);
ADCSRB = 1<<MUX5; ADCSRB = 1<<MUX5;
#endif #endif
ADMUX = ((1 << REFS0) | (TEMP_1_PIN & 0x07)); ADMUX = ((1 << REFS0) | (TEMP_1_PIN & 0x07));
ADCSRA |= 1<<ADSC; // Start conversion ADCSRA |= 1<<ADSC; // Start conversion
#endif #endif
#ifdef ULTIPANEL #ifdef ULTIPANEL
buttons_check(); buttons_check();
#endif #endif
temp_state = 3; temp_state = 3;
break; break;
case 3: // Measure TEMP_1 case 3: // Measure TEMP_1
#if (TEMP_1_PIN > -1) #if (TEMP_1_PIN > -1)
raw_temp_1_value += ADC; raw_temp_1_value += ADC;
#endif #endif
temp_state = 4; temp_state = 4;
break; break;
case 4: // Prepare TEMP_2 case 4: // Prepare TEMP_2
#if (TEMP_2_PIN > -1) #if (TEMP_2_PIN > -1)
#if TEMP_2_PIN < 7 #if TEMP_2_PIN < 7
DIDR0 = 1 << TEMP_2_PIN; DIDR0 = 1 << TEMP_2_PIN;
#else #else
DIDR2 = 1<<(TEMP_2_PIN - 8); DIDR2 = 1<<(TEMP_2_PIN - 8);
ADCSRB = 1<<MUX5; ADCSRB = 1<<MUX5;
#endif #endif
ADMUX = ((1 << REFS0) | (TEMP_2_PIN & 0x07)); ADMUX = ((1 << REFS0) | (TEMP_2_PIN & 0x07));
ADCSRA |= 1<<ADSC; // Start conversion ADCSRA |= 1<<ADSC; // Start conversion
#endif #endif
#ifdef ULTIPANEL #ifdef ULTIPANEL
buttons_check(); buttons_check();
#endif #endif
temp_state = 5; temp_state = 5;
break; break;
case 5: // Measure TEMP_2 case 5: // Measure TEMP_2
#if (TEMP_2_PIN > -1) #if (TEMP_2_PIN > -1)
raw_temp_2_value += ADC; raw_temp_2_value += ADC;
#endif #endif
temp_state = 0; temp_state = 0;
temp_count++; temp_count++;
break; break;
default: default:
SERIAL_ERRORLN("Temp measurement error!"); SERIAL_ERRORLN("Temp measurement error!");
break; break;
} }
if(temp_count >= 16) // 6 ms * 16 = 96ms. if(temp_count >= 16) // 6 ms * 16 = 96ms.
@ -472,67 +473,71 @@ ISR(TIMER0_COMPB_vect)
raw_temp_0_value = 0; raw_temp_0_value = 0;
raw_temp_1_value = 0; raw_temp_1_value = 0;
raw_temp_2_value = 0; raw_temp_2_value = 0;
#ifdef HEATER_0_MAXTEMP #ifdef HEATER_0_MAXTEMP
#if (HEATER_0_PIN > -1) #if (HEATER_0_PIN > -1)
if(current_raw[TEMPSENSOR_HOTEND_0] >= maxttemp_0) { if(current_raw[TEMPSENSOR_HOTEND_0] >= maxttemp_0) {
target_raw[TEMPSENSOR_HOTEND_0] = 0; target_raw[TEMPSENSOR_HOTEND_0] = 0;
analogWrite(HEATER_0_PIN, 0); analogWrite(HEATER_0_PIN, 0);
SERIAL_ERRORLN("Temperature extruder 0 switched off. MAXTEMP triggered !!"); SERIAL_ERRORLN("Temperature extruder 0 switched off. MAXTEMP triggered !!");
kill(); kill();
} }
#endif
#endif
#ifdef HEATER_1_MAXTEMP
#if (HEATER_1_PIN > -1)
if(current_raw[TEMPSENSOR_HOTEND_1] >= maxttemp_1) {
target_raw[TEMPSENSOR_HOTEND_1] = 0;
if(current_raw[2] >= maxttemp_1) {
analogWrite(HEATER_2_PIN, 0);
SERIAL_ERRORLN("Temperature extruder 1 switched off. MAXTEMP triggered !!");
kill()
}
#endif
#endif //MAXTEMP
#ifdef HEATER_0_MINTEMP
#if (HEATER_0_PIN > -1)
if(current_raw[TEMPSENSOR_HOTEND_0] <= minttemp_0) {
target_raw[TEMPSENSOR_HOTEND_0] = 0;
analogWrite(HEATER_0_PIN, 0);
SERIAL_ERRORLN("Temperature extruder 0 switched off. MINTEMP triggered !!");
kill();
}
#endif
#endif #endif
#endif
#ifdef HEATER_1_MAXTEMP #ifdef HEATER_1_MINTEMP
#if (HEATER_1_PIN > -1) #if (HEATER_2_PIN > -1)
if(current_raw[TEMPSENSOR_HOTEND_1] >= maxttemp_1) { if(current_raw[TEMPSENSOR_HOTEND_1] <= minttemp_1) {
target_raw[TEMPSENSOR_HOTEND_1] = 0; target_raw[TEMPSENSOR_HOTEND_1] = 0;
if(current_raw[2] >= maxttemp_1) { analogWrite(HEATER_2_PIN, 0);
analogWrite(HEATER_2_PIN, 0); SERIAL_ERRORLN("Temperature extruder 1 switched off. MINTEMP triggered !!");
SERIAL_ERRORLN("Temperature extruder 1 switched off. MAXTEMP triggered !!"); kill();
kill() }
} #endif
#endif //MAXTEMP
#ifdef BED_MINTEMP
#if (HEATER_1_PIN > -1)
if(current_raw[1] <= bed_minttemp) {
target_raw[1] = 0;
WRITE(HEATER_1_PIN, 0);
SERIAL_ERRORLN("Temperatur heated bed switched off. MINTEMP triggered !!");
kill();
}
#endif
#endif #endif
#endif //MAXTEMP
#ifdef HEATER_0_MINTEMP #ifdef BED_MAXTEMP
#if (HEATER_0_PIN > -1) #if (HEATER_1_PIN > -1)
if(current_raw[TEMPSENSOR_HOTEND_0] <= minttemp_0) { if(current_raw[1] >= bed_maxttemp) {
target_raw[TEMPSENSOR_HOTEND_0] = 0; target_raw[1] = 0;
analogWrite(HEATER_0_PIN, 0); WRITE(HEATER_1_PIN, 0);
SERIAL_ERRORLN("Temperature extruder 0 switched off. MINTEMP triggered !!"); SERIAL_ERRORLN("Temperature heated bed switched off. MAXTEMP triggered !!");
kill(); kill();
} }
#endif
#endif #endif
#endif
#ifdef HEATER_1_MINTEMP
#if (HEATER_2_PIN > -1)
if(current_raw[TEMPSENSOR_HOTEND_1] <= minttemp_1) {
target_raw[TEMPSENSOR_HOTEND_1] = 0;
analogWrite(HEATER_2_PIN, 0);
SERIAL_ERRORLN("Temperature extruder 1 switched off. MINTEMP triggered !!");
kill();
}
#endif
#endif //MAXTEMP
#ifdef BED_MINTEMP
#if (HEATER_1_PIN > -1)
if(current_raw[1] <= bed_minttemp) {
target_raw[1] = 0;
WRITE(HEATER_1_PIN, 0);
SERIAL_ERRORLN("Temperatur heated bed switched off. MINTEMP triggered !!");
kill();
}
#endif
#endif
#ifdef BED_MAXTEMP
#if (HEATER_1_PIN > -1)
if(current_raw[1] >= bed_maxttemp) {
target_raw[1] = 0;
WRITE(HEATER_1_PIN, 0);
SERIAL_ERRORLN("Temperature heated bed switched off. MAXTEMP triggered !!");
kill();
}
#endif
#endif
} }
} }

View file

@ -27,9 +27,11 @@
#include "stepper.h" #include "stepper.h"
#endif #endif
// public functions
void tp_init(); //initialise the heating void tp_init(); //initialise the heating
void manage_heater(); //it is critical that this is called periodically. void manage_heater(); //it is critical that this is called periodically.
enum TempSensor {TEMPSENSOR_HOTEND_0=0,TEMPSENSOR_BED=1, TEMPSENSOR_HOTEND_1=2}; enum TempSensor {TEMPSENSOR_HOTEND_0=0,TEMPSENSOR_BED=1, TEMPSENSOR_HOTEND_1=2};
//low leven conversion routines //low leven conversion routines
@ -41,9 +43,11 @@ float analog2tempBed(int raw);
extern int target_raw[3]; extern int target_raw[3];
extern int current_raw[3]; extern int current_raw[3];
extern float Kp,Ki,Kd,Kc; extern float Kp,Ki,Kd,Kc;
#ifdef PIDTEMP #ifdef PIDTEMP
extern float pid_setpoint ; extern float pid_setpoint ;
#endif #endif
#ifdef WATCHPERIOD #ifdef WATCHPERIOD
extern int watch_raw[3] ; extern int watch_raw[3] ;
extern unsigned long watchmillis; extern unsigned long watchmillis;
@ -63,15 +67,15 @@ inline float degTargetHotend0() { return analog2temp(target_raw[TEMPSENSOR_HOTE
inline float degTargetHotend1() { return analog2temp(target_raw[TEMPSENSOR_HOTEND_1]);}; inline float degTargetHotend1() { return analog2temp(target_raw[TEMPSENSOR_HOTEND_1]);};
inline float degTargetBed() { return analog2tempBed(target_raw[TEMPSENSOR_BED]);}; inline float degTargetBed() { return analog2tempBed(target_raw[TEMPSENSOR_BED]);};
inline void setTargetHotend0(float celsius) inline void setTargetHotend0(const float &celsius)
{ {
target_raw[TEMPSENSOR_HOTEND_0]=temp2analog(celsius); target_raw[TEMPSENSOR_HOTEND_0]=temp2analog(celsius);
#ifdef PIDTEMP #ifdef PIDTEMP
pid_setpoint = celsius; pid_setpoint = celsius;
#endif //PIDTEMP #endif //PIDTEMP
}; };
inline void setTargetHotend1(float celsius) { target_raw[TEMPSENSOR_HOTEND_1]=temp2analog(celsius);}; inline void setTargetHotend1(const float &celsius) { target_raw[TEMPSENSOR_HOTEND_1]=temp2analog(celsius);};
inline void setTargetBed(float celsius) { target_raw[TEMPSENSOR_BED ]=temp2analogBed(celsius);}; inline void setTargetBed(const float &celsius) { target_raw[TEMPSENSOR_BED ]=temp2analogBed(celsius);};
inline bool isHeatingHotend0() {return target_raw[TEMPSENSOR_HOTEND_0] > current_raw[TEMPSENSOR_HOTEND_0];}; inline bool isHeatingHotend0() {return target_raw[TEMPSENSOR_HOTEND_0] > current_raw[TEMPSENSOR_HOTEND_0];};
inline bool isHeatingHotend1() {return target_raw[TEMPSENSOR_HOTEND_1] > current_raw[TEMPSENSOR_HOTEND_1];}; inline bool isHeatingHotend1() {return target_raw[TEMPSENSOR_HOTEND_1] > current_raw[TEMPSENSOR_HOTEND_1];};
@ -84,16 +88,5 @@ inline bool isCoolingBed() {return target_raw[TEMPSENSOR_BED] < current_raw[TEMP
void disable_heater(); void disable_heater();
void setWatch(); void setWatch();
#ifdef HEATER_0_USES_THERMISTOR
#define HEATERSOURCE 1
#endif
#ifdef BED_USES_THERMISTOR
#define BEDSOURCE 1
#endif
#endif #endif

View file

@ -9,107 +9,48 @@
void lcd_status(const char* message); void lcd_status(const char* message);
void beep(); void beep();
void buttons_check(); void buttons_check();
#define LCDSTATUSRIGHT
#define LCD_UPDATE_INTERVAL 100 #define LCD_UPDATE_INTERVAL 100
#define STATUSTIMEOUT 15000 #define STATUSTIMEOUT 15000
#include "Configuration.h"
#include <LiquidCrystal.h> #include <LiquidCrystal.h>
extern LiquidCrystal lcd; extern LiquidCrystal lcd;
//lcd display size
#ifdef NEWPANEL #ifdef NEWPANEL
//arduino pin witch triggers an piezzo beeper
#define BEEPER 18
#define LCD_PINS_RS 20
#define LCD_PINS_ENABLE 17
#define LCD_PINS_D4 16
#define LCD_PINS_D5 21
#define LCD_PINS_D6 5
#define LCD_PINS_D7 6
//buttons are directly attached
#define BTN_EN1 40
#define BTN_EN2 42
#define BTN_ENC 19 //the click
#define BLEN_C 2
#define BLEN_B 1
#define BLEN_A 0
#define SDCARDDETECT 38
#define EN_C (1<<BLEN_C)
#define EN_B (1<<BLEN_B)
#define EN_A (1<<BLEN_A)
//encoder rotation values
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1
#define CLICKED (buttons&EN_C) #define EN_C (1<<BLEN_C)
#define BLOCK {blocking=millis()+blocktime;} #define EN_B (1<<BLEN_B)
#define CARDINSERTED (READ(SDCARDDETECT)==0) #define EN_A (1<<BLEN_A)
#else #define CLICKED (buttons&EN_C)
//arduino pin witch triggers an piezzo beeper #define BLOCK {blocking=millis()+blocktime;}
#define BEEPER 18 #define CARDINSERTED (READ(SDCARDDETECT)==0)
//buttons are attached to a shift register #else
#define SHIFT_CLK 38
#define SHIFT_LD 42
#define SHIFT_OUT 40
#define SHIFT_EN 17
#define LCD_PINS_RS 16 //atomatic, do not change
#define LCD_PINS_ENABLE 5 #define B_LE (1<<BL_LE)
#define LCD_PINS_D4 6 #define B_UP (1<<BL_UP)
#define LCD_PINS_D5 21 #define B_MI (1<<BL_MI)
#define LCD_PINS_D6 20 #define B_DW (1<<BL_DW)
#define LCD_PINS_D7 19 #define B_RI (1<<BL_RI)
#define B_ST (1<<BL_ST)
#define EN_B (1<<BLEN_B)
#define EN_A (1<<BLEN_A)
//bits in the shift register that carry the buttons for: #define CLICKED ((buttons&B_MI)||(buttons&B_ST))
// left up center down right red #define BLOCK {blocking[BL_MI]=millis()+blocktime;blocking[BL_ST]=millis()+blocktime;}
#define BL_LE 7
#define BL_UP 6
#define BL_MI 5
#define BL_DW 4
#define BL_RI 3
#define BL_ST 2
#define BLEN_B 1 #endif
#define BLEN_A 0
//encoder rotation values
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1
//atomatic, do not change
#define B_LE (1<<BL_LE)
#define B_UP (1<<BL_UP)
#define B_MI (1<<BL_MI)
#define B_DW (1<<BL_DW)
#define B_RI (1<<BL_RI)
#define B_ST (1<<BL_ST)
#define EN_B (1<<BLEN_B)
#define EN_A (1<<BLEN_A)
#define CLICKED ((buttons&B_MI)||(buttons&B_ST))
#define BLOCK {blocking[BL_MI]=millis()+blocktime;blocking[BL_ST]=millis()+blocktime;}
#endif
// blocking time for recognizing a new keypress of one key, ms // blocking time for recognizing a new keypress of one key, ms
#define blocktime 500 #define blocktime 500
#define lcdslow 5 #define lcdslow 5
enum MainStatus{Main_Status, Main_Menu, Main_Prepare, Main_Control, Main_SD}; enum MainStatus{Main_Status, Main_Menu, Main_Prepare, Main_Control, Main_SD};
class MainMenu{ class MainMenu{
@ -134,6 +75,7 @@
bool linechanging; bool linechanging;
}; };
//conversion routines, could need some overworking
char *fillto(int8_t n,char *c); char *fillto(int8_t n,char *c);
char *ftostr51(const float &x); char *ftostr51(const float &x);
char *ftostr31(const float &x); char *ftostr31(const float &x);
@ -146,11 +88,15 @@
#else //no lcd #else //no lcd
#define LCD_STATUS #define LCD_STATUS
#define LCD_MESSAGE(x) #define LCD_MESSAGE(x)
inline void lcd_status() {};
#endif #endif
#ifndef ULTIPANEL #ifndef ULTIPANEL
#define CLICKED false #define CLICKED false
#define BLOCK ; #define BLOCK ;
#endif #endif
#endif //ULTRALCD #endif //ULTRALCD

View file

@ -1,7 +1,7 @@
#include "ultralcd.h" #include "ultralcd.h"
#ifdef ULTRA_LCD #ifdef ULTRA_LCD
extern volatile int feedmultiply; extern volatile int feedmultiply;
extern long position[4]; extern long position[4];
@ -122,58 +122,57 @@ void lcd_status()
menu.update(); menu.update();
} }
#ifdef ULTIPANEL #ifdef ULTIPANEL
void buttons_init() void buttons_init()
{ {
#ifdef NEWPANEL #ifdef NEWPANEL
pinMode(BTN_EN1,INPUT); pinMode(BTN_EN1,INPUT);
pinMode(BTN_EN2,INPUT); pinMode(BTN_EN2,INPUT);
pinMode(BTN_ENC,INPUT); pinMode(BTN_ENC,INPUT);
pinMode(SDCARDDETECT,INPUT); pinMode(SDCARDDETECT,INPUT);
WRITE(BTN_EN1,HIGH); WRITE(BTN_EN1,HIGH);
WRITE(BTN_EN2,HIGH); WRITE(BTN_EN2,HIGH);
WRITE(BTN_ENC,HIGH); WRITE(BTN_ENC,HIGH);
WRITE(SDCARDDETECT,HIGH); WRITE(SDCARDDETECT,HIGH);
#else #else
pinMode(SHIFT_CLK,OUTPUT); pinMode(SHIFT_CLK,OUTPUT);
pinMode(SHIFT_LD,OUTPUT); pinMode(SHIFT_LD,OUTPUT);
pinMode(SHIFT_EN,OUTPUT); pinMode(SHIFT_EN,OUTPUT);
pinMode(SHIFT_OUT,INPUT); pinMode(SHIFT_OUT,INPUT);
WRITE(SHIFT_OUT,HIGH); WRITE(SHIFT_OUT,HIGH);
WRITE(SHIFT_LD,HIGH); WRITE(SHIFT_LD,HIGH);
WRITE(SHIFT_EN,LOW); WRITE(SHIFT_EN,LOW);
#endif #endif
} }
void buttons_check() void buttons_check()
{ {
// volatile static bool busy=false;
// if(busy)
// return;
// busy=true;
#ifdef NEWPANEL #ifdef NEWPANEL
uint8_t newbutton=0; uint8_t newbutton=0;
if(READ(BTN_EN1)==0) newbutton|=EN_A; if(READ(BTN_EN1)==0) newbutton|=EN_A;
if(READ(BTN_EN2)==0) newbutton|=EN_B; if(READ(BTN_EN2)==0) newbutton|=EN_B;
if((blocking<millis()) &&(READ(BTN_ENC)==0)) if((blocking<millis()) &&(READ(BTN_ENC)==0))
newbutton|=EN_C; newbutton|=EN_C;
buttons=newbutton; buttons=newbutton;
#else //read it from the shift register #else //read it from the shift register
uint8_t newbutton=0; uint8_t newbutton=0;
WRITE(SHIFT_LD,LOW); WRITE(SHIFT_LD,LOW);
WRITE(SHIFT_LD,HIGH); WRITE(SHIFT_LD,HIGH);
unsigned char tmp_buttons=0; unsigned char tmp_buttons=0;
for(unsigned char i=0;i<8;i++) for(unsigned char i=0;i<8;i++)
{ {
newbutton = newbutton>>1; newbutton = newbutton>>1;
if(READ(SHIFT_OUT)) if(READ(SHIFT_OUT))
newbutton|=(1<<7); newbutton|=(1<<7);
WRITE(SHIFT_CLK,HIGH); WRITE(SHIFT_CLK,HIGH);
WRITE(SHIFT_CLK,LOW); WRITE(SHIFT_CLK,LOW);
} }
buttons=~newbutton; //invert it, because a pressed switch produces a logical 0 buttons=~newbutton; //invert it, because a pressed switch produces a logical 0
#endif #endif
char enc=0; char enc=0;
if(buttons&EN_A) if(buttons&EN_A)
enc|=(1<<0); enc|=(1<<0);
@ -212,7 +211,6 @@ void buttons_check()
} }
} }
lastenc=enc; lastenc=enc;
// busy=false;
} }
#endif #endif
@ -223,9 +221,9 @@ MainMenu::MainMenu()
displayStartingRow=0; displayStartingRow=0;
activeline=0; activeline=0;
force_lcd_update=true; force_lcd_update=true;
#ifdef ULTIPANEL #ifdef ULTIPANEL
buttons_init(); buttons_init();
#endif #endif
lcd_init(); lcd_init();
linechanging=false; linechanging=false;
} }
@ -1154,12 +1152,13 @@ uint8_t getnrfilenames()
cnt++; cnt++;
} }
return cnt; return cnt;
#else
return 0;
#endif #endif
} }
void MainMenu::showSD() void MainMenu::showSD()
{ {
#ifdef SDSUPPORT #ifdef SDSUPPORT
uint8_t line=0; uint8_t line=0;
@ -1205,11 +1204,11 @@ void MainMenu::showSD()
if(force_lcd_update) if(force_lcd_update)
{ {
lcd.setCursor(0,line); lcd.setCursor(0,line);
#ifdef CARDINSERTED #ifdef CARDINSERTED
if(CARDINSERTED) if(CARDINSERTED)
#else #else
if(true) if(true)
#endif #endif
{ {
lcd.print(" \004Refresh"); lcd.print(" \004Refresh");
} }
@ -1306,9 +1305,9 @@ void MainMenu::showMainMenu()
{ {
//if(int(encoderpos/lcdslow)!=int(lastencoderpos/lcdslow)) //if(int(encoderpos/lcdslow)!=int(lastencoderpos/lcdslow))
// force_lcd_update=true; // force_lcd_update=true;
#ifndef ULTIPANEL #ifndef ULTIPANEL
force_lcd_update=false; force_lcd_update=false;
#endif #endif
//Serial.println((int)activeline); //Serial.println((int)activeline);
if(force_lcd_update) if(force_lcd_update)
clear(); clear();
@ -1347,17 +1346,17 @@ void MainMenu::showMainMenu()
beepshort(); beepshort();
} }
}break; }break;
#ifdef SDSUPPORT #ifdef SDSUPPORT
case ItemM_file: case ItemM_file:
{ {
if(force_lcd_update) if(force_lcd_update)
{ {
lcd.setCursor(0,line); lcd.setCursor(0,line);
#ifdef CARDINSERTED #ifdef CARDINSERTED
if(CARDINSERTED) if(CARDINSERTED)
#else #else
if(true) if(true)
#endif #endif
{ {
if(sdmode) if(sdmode)
lcd.print(" Stop Print \x7E"); lcd.print(" Stop Print \x7E");
@ -1370,7 +1369,7 @@ void MainMenu::showMainMenu()
} }
} }
#ifdef CARDINSERTED #ifdef CARDINSERTED
if(CARDINSERTED) if(CARDINSERTED)
#endif #endif
if((activeline==line)&&CLICKED) if((activeline==line)&&CLICKED)
{ {
@ -1380,28 +1379,30 @@ void MainMenu::showMainMenu()
beepshort(); beepshort();
} }
}break; }break;
#endif #endif
default: default:
SERIAL_ERRORLN("Something is wrong in the MenuStructure."); SERIAL_ERRORLN("Something is wrong in the MenuStructure.");
break; break;
} }
} }
if(activeline<0) activeline=0; if(activeline<0)
if(activeline>=LCD_HEIGHT) activeline=LCD_HEIGHT-1; activeline=0;
if(activeline>=LCD_HEIGHT)
activeline=LCD_HEIGHT-1;
if((encoderpos!=lastencoderpos)||force_lcd_update) if((encoderpos!=lastencoderpos)||force_lcd_update)
{ {
lcd.setCursor(0,activeline);lcd.print(activeline?' ':' '); lcd.setCursor(0,activeline);lcd.print(activeline?' ':' ');
if(encoderpos<0) encoderpos=0; if(encoderpos<0) encoderpos=0;
if(encoderpos>3*lcdslow) encoderpos=3*lcdslow; if(encoderpos>3*lcdslow)
encoderpos=3*lcdslow;
activeline=abs(encoderpos/lcdslow)%LCD_HEIGHT; activeline=abs(encoderpos/lcdslow)%LCD_HEIGHT;
if(activeline<0) activeline=0; if(activeline<0)
if(activeline>=LCD_HEIGHT) activeline=LCD_HEIGHT-1; activeline=0;
if(activeline>=LCD_HEIGHT)
activeline=LCD_HEIGHT-1;
lastencoderpos=encoderpos; lastencoderpos=encoderpos;
lcd.setCursor(0,activeline);lcd.print(activeline?'>':'\003'); lcd.setCursor(0,activeline);lcd.print(activeline?'>':'\003');
} }
} }
void MainMenu::update() void MainMenu::update()
@ -1409,25 +1410,24 @@ void MainMenu::update()
static MainStatus oldstatus=Main_Menu; //init automatically causes foce_lcd_update=true static MainStatus oldstatus=Main_Menu; //init automatically causes foce_lcd_update=true
static long timeoutToStatus=0; static long timeoutToStatus=0;
static bool oldcardstatus=false; static bool oldcardstatus=false;
#ifdef CARDINSERTED #ifdef CARDINSERTED
if((CARDINSERTED != oldcardstatus)) if((CARDINSERTED != oldcardstatus))
{
force_lcd_update=true;
oldcardstatus=CARDINSERTED;
//Serial.println("echo: SD CHANGE");
if(CARDINSERTED)
{ {
initsd(); force_lcd_update=true;
lcd_status("Card inserted"); oldcardstatus=CARDINSERTED;
//Serial.println("echo: SD CHANGE");
if(CARDINSERTED)
{
initsd();
lcd_status("Card inserted");
}
else
{
sdactive=false;
lcd_status("Card removed");
}
} }
else #endif
{
sdactive=false;
lcd_status("Card removed");
}
}
#endif
if(status!=oldstatus) if(status!=oldstatus)
{ {
@ -1484,9 +1484,9 @@ void MainMenu::update()
//return for string conversion routines //return for string conversion routines
char conv[8]; static char conv[8];
/// convert float to string with +123.4 format // convert float to string with +123.4 format
char *ftostr3(const float &x) char *ftostr3(const float &x)
{ {
//sprintf(conv,"%5.1f",x); //sprintf(conv,"%5.1f",x);
@ -1497,6 +1497,7 @@ char *ftostr3(const float &x)
conv[3]=0; conv[3]=0;
return conv; return conv;
} }
char *itostr2(const uint8_t &x) char *itostr2(const uint8_t &x)
{ {
//sprintf(conv,"%5.1f",x); //sprintf(conv,"%5.1f",x);
@ -1506,10 +1507,10 @@ char *itostr2(const uint8_t &x)
conv[2]=0; conv[2]=0;
return conv; return conv;
} }
/// convert float to string with +123.4 format
// convert float to string with +123.4 format
char *ftostr31(const float &x) char *ftostr31(const float &x)
{ {
//sprintf(conv,"%5.1f",x);
int xx=x*10; int xx=x*10;
conv[0]=(xx>=0)?'+':'-'; conv[0]=(xx>=0)?'+':'-';
xx=abs(xx); xx=abs(xx);
@ -1524,7 +1525,6 @@ char *ftostr31(const float &x)
char *itostr31(const int &xx) char *itostr31(const int &xx)
{ {
//sprintf(conv,"%5.1f",x);
conv[0]=(xx>=0)?'+':'-'; conv[0]=(xx>=0)?'+':'-';
conv[1]=(xx/1000)%10+'0'; conv[1]=(xx/1000)%10+'0';
conv[2]=(xx/100)%10+'0'; conv[2]=(xx/100)%10+'0';
@ -1534,6 +1534,7 @@ char *itostr31(const int &xx)
conv[6]=0; conv[6]=0;
return conv; return conv;
} }
char *itostr3(const int &xx) char *itostr3(const int &xx)
{ {
conv[0]=(xx/100)%10+'0'; conv[0]=(xx/100)%10+'0';
@ -1553,7 +1554,7 @@ char *itostr4(const int &xx)
return conv; return conv;
} }
/// convert float to string with +1234.5 format // convert float to string with +1234.5 format
char *ftostr51(const float &x) char *ftostr51(const float &x)
{ {
int xx=x*10; int xx=x*10;
@ -1587,11 +1588,9 @@ char *fillto(int8_t n,char *c)
} }
ret[n]=0; ret[n]=0;
return ret; return ret;
} }
#else
inline void lcd_status() {}; #endif //ULTRA_LCD
#endif

View file

@ -1,13 +1,16 @@
#ifndef __WATCHDOGH #ifndef __WATCHDOGH
#define __WATCHDOGH #define __WATCHDOGH
#include "Configuration.h" #include "Configuration.h"
//#ifdef USE_WATCHDOG #ifdef USE_WATCHDOG
/// intialise watch dog with a 1 sec interrupt time // intialise watch dog with a 1 sec interrupt time
void wd_init(); void wd_init();
/// pad the dog/reset watchdog. MUST be called at least every second after the first wd_init or avr will go into emergency procedures.. // pad the dog/reset watchdog. MUST be called at least every second after the first wd_init or avr will go into emergency procedures..
void wd_reset(); void wd_reset();
//#endif #else
inline void wd_init() {};
inline void wd_reset() {};
#endif
#endif #endif

View file

@ -3,7 +3,7 @@
#include <avr/wdt.h> #include <avr/wdt.h>
#include <avr/interrupt.h> #include <avr/interrupt.h>
volatile uint8_t timeout_seconds=0; static volatile uint8_t timeout_seconds=0;
void(* ctrlaltdelete) (void) = 0; //does not work on my atmega2560 void(* ctrlaltdelete) (void) = 0; //does not work on my atmega2560