diff --git a/Marlin/Marlin_main.cpp b/Marlin/Marlin_main.cpp index 318baea49..dfb64a94d 100644 --- a/Marlin/Marlin_main.cpp +++ b/Marlin/Marlin_main.cpp @@ -1838,7 +1838,8 @@ static void clean_up_after_endstop_or_probe_move() { #endif //HAS_BED_PROBE -#if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE) +#if HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE) || ENABLED(DELTA_AUTO_CALIBRATION) + bool axis_unhomed_error(const bool x, const bool y, const bool z) { const bool xx = x && !axis_homed[X_AXIS], yy = y && !axis_homed[Y_AXIS], @@ -1858,6 +1859,7 @@ static void clean_up_after_endstop_or_probe_move() { } return false; } + #endif #if ENABLED(Z_PROBE_SLED) @@ -4941,11 +4943,12 @@ inline void gcode_G28() { /** * G30: Do a single Z probe at the current XY - * Usage: - * G30 - * X = Probe X position (default=current probe position) - * Y = Probe Y position (default=current probe position) - * S = Stows the probe if 1 (default=1) + * + * Parameters: + * + * X Probe X position (default current X) + * Y Probe Y position (default current Y) + * S0 Leave the probe deployed */ inline void gcode_G30() { const float xpos = code_seen('X') ? code_value_linear_units() : current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER, @@ -4996,42 +4999,56 @@ inline void gcode_G28() { * C0 Calibrate height * C1 Probe the center to set the Z height * C-1 same but 1 iteration only - * C2 probes center and towers / sets height, endstops and delta radius + * C2 probe center and towers, set height, endstops, and delta radius * C-2 same but opposite towers - * C3 probes all points: center, towers and opposite towers / sets all - * C0-C3 same but tower angle calibration disabled - * C4-C7 probes all points multiple times and averages * - * V Verbose level (0-2, default 1) - * V0 dry-run mode. no calibration - * V1 settings - * V2 setting and probe results + * C3 probe all points: center, towers and opposite towers / sets all + * + * C4-C7 probe all points multiple times and average + * C0-C3 same but tower angle calibration disabled + * + * V0 Dry-run mode + * V1 Output settings + * V2 Output setting and probe results */ inline void gcode_G33() { + if (axis_unhomed_error(true, true, true)) return; + + const int8_t c_value = code_seen('C') ? code_value_int() : DELTA_CALIBRATION_DEFAULT_POINTS; + if (!WITHIN(c_value, -7, 7)) { + SERIAL_PROTOCOLLNPGM("?C parameter is implausible (-7 to 7)."); + return; + } + + const int8_t verbose_level = code_seen('V') ? code_value_byte() : 1; + if (!WITHIN(verbose_level, 0, 2)) { + SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-2)."); + return; + } + stepper.synchronize(); #if PLANNER_LEVELING set_bed_leveling_enabled(false); #endif - const int8_t pp = code_seen('C') ? code_value_int() : DELTA_CALIBRATION_DEFAULT_POINTS, - probe_points = (WITHIN(pp, -7, -1) || WITHIN(pp, 1, 7)) ? pp : DELTA_CALIBRATION_DEFAULT_POINTS; + const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h"; - int8_t verbose_level = code_seen('V') ? code_value_byte() : 1; + const uint8_t probe_points = abs(c_value); - if (!WITHIN(verbose_level, 0, 2)) verbose_level = 1; - - float zero_std_dev = verbose_level ? 999.0 : 0.0; // 0.0 in dry-run mode : forced end - - gcode_G28(); + const bool neg = c_value < 0, + equals4 = probe_points == 4, + over4 = probe_points > 4, + over5 = probe_points > 5; float e_old[XYZ], dr_old = delta_radius, zh_old = home_offset[Z_AXIS], alpha_old = delta_tower_angle_trim[A_AXIS], beta_old = delta_tower_angle_trim[B_AXIS]; - COPY(e_old,endstop_adj); + + COPY(e_old, endstop_adj); // print settings @@ -5042,7 +5059,7 @@ inline void gcode_G28() { LCD_MESSAGEPGM("Checking... AC"); SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]); - if (abs(probe_points) > 1) { + if (probe_points > 1) { SERIAL_PROTOCOLPGM(" Ex:"); if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2); @@ -5055,7 +5072,7 @@ inline void gcode_G28() { SERIAL_PROTOCOLPAIR(" Radius:", delta_radius); } SERIAL_EOL; - if (probe_points > 2) { + if (c_value > 2) { SERIAL_PROTOCOLPGM(".Tower angle : Tx:"); if (delta_tower_angle_trim[A_AXIS] >= 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(delta_tower_angle_trim[A_AXIS], 2); @@ -5070,10 +5087,10 @@ inline void gcode_G28() { DEPLOY_PROBE(); #endif - float test_precision; + float zero_std_dev = verbose_level ? 999.0 : 0.0, // 0.0 in dry-run mode : forced end + test_precision; int8_t iterations = 0; - - do { // start iterations + do { setup_for_endstop_or_probe_move(); @@ -5085,57 +5102,58 @@ inline void gcode_G28() { int16_t center_points = 0; - if (abs(probe_points) != 3 && abs(probe_points != 6)) { // probe centre + if (probe_points != 3 && probe_points != 6) { // probe center z_at_pt[0] += probe_pt(0.0, 0.0 , true, 1); center_points = 1; } - int16_t step_axis = (abs(probe_points) > 4) ? 2 : 4; - if (abs(probe_points) >= 3) { // probe extra 3 or 6 centre points - for (int8_t axis = (abs(probe_points) > 4) ? 11 : 9; axis > 0; axis -= step_axis) { + int16_t step_axis = over4 ? 2 : 4; + if (probe_points >= 3) { // probe extra 3 or 6 center points + for (int8_t axis = over4 ? 11 : 9; axis > 0; axis -= step_axis) { z_at_pt[0] += probe_pt( cos(RADIANS(180 + 30 * axis)) * (0.1 * delta_calibration_radius), sin(RADIANS(180 + 30 * axis)) * (0.1 * delta_calibration_radius), true, 1); } - center_points += (abs(probe_points) > 4) ? 6 : 3; // average centre points + center_points += over4 ? 6 : 3; // average center points z_at_pt[0] /= center_points; } float S1 = z_at_pt[0], S2 = sq(S1); - int16_t N = 1, start = (probe_points == -2) ? 3 : 1; - step_axis = (abs(probe_points) == 2) ? 4 : (abs(probe_points) == 4 || abs(probe_points) > 5) ? 1 : 2; - float start_circles = (abs(probe_points) > 6) ? -1.5 : (abs(probe_points) > 4) ? -1 : 0, // one or multi radius points - end_circles = (abs(probe_points) > 6) ? 1.5 : (abs(probe_points) > 4) ? 1 : 0; // one or multi radius points - int8_t zig_zag = 1; + int16_t N = 1, start = (c_value == -2) ? 3 : 1; + step_axis = (probe_points == 2) ? 4 : (equals4 || over5) ? 1 : 2; - if (abs(probe_points) > 1) { + if (probe_points > 1) { + float start_circles = (probe_points > 6) ? -1.5 : over4 ? -1 : 0, // one or multi radius points + end_circles = -start_circles; + bool zig_zag = true; for (uint8_t axis = start; axis < 13; axis += step_axis) { // probes 3, 6 or 12 points on the calibration radius for (float circles = start_circles ; circles <= end_circles; circles++) // one or multi radius points z_at_pt[axis] += probe_pt( - cos(RADIANS(180 + 30 * axis)) * ((1 + circles * 0.1 * zig_zag) * delta_calibration_radius), - sin(RADIANS(180 + 30 * axis)) * ((1 + circles * 0.1 * zig_zag) * delta_calibration_radius), true, 1); + cos(RADIANS(180 + 30 * axis)) * ((1 + circles * 0.1 * (zig_zag ? 1 : -1)) * delta_calibration_radius), + sin(RADIANS(180 + 30 * axis)) * ((1 + circles * 0.1 * (zig_zag ? 1 : -1)) * delta_calibration_radius), true, 1); - if (abs(probe_points) > 5) start_circles += (zig_zag == 1) ? +0.5 : -0.5; // opposites: one radius point less - if (abs(probe_points) > 5) end_circles += (zig_zag == 1) ? -0.5 : +0.5; - zig_zag = -zig_zag; - if (abs(probe_points) > 4) z_at_pt[axis] /= (zig_zag == 1) ? 3.0 : 2.0; // average between radius points + if (over5) start_circles += zig_zag ? +0.5 : -0.5; // opposites: one radius point less + if (over5) end_circles += zig_zag ? -0.5 : +0.5; + zig_zag = !zig_zag; + if (over4) z_at_pt[axis] /= (zig_zag ? 3.0 : 2.0); // average between radius points } } - if (abs(probe_points) == 4 || abs(probe_points) > 5) step_axis = 2; + if (equals4 || over5) step_axis = 2; for (uint8_t axis = start; axis < 13; axis += step_axis) { // average half intermediates to towers and opposites - if (abs(probe_points) == 4 || abs(probe_points) > 5) + if (equals4 || over5) z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0; S1 += z_at_pt[axis]; S2 += sq(z_at_pt[axis]); N++; } - zero_std_dev = round(sqrt(S2 / N) * 1000.0) / 1000.0 + 0.00001; // deviation from zero plane // Solve matrices + zero_std_dev = round(sqrt(S2 / N) * 1000.0) / 1000.0 + 0.00001; // deviation from zero plane + if (zero_std_dev < test_precision) { COPY(e_old, endstop_adj); dr_old = delta_radius; @@ -5145,6 +5163,7 @@ inline void gcode_G28() { float e_delta[XYZ] = { 0.0 }, r_delta = 0.0, t_alpha = 0.0, t_beta = 0.0; + const float r_diff = delta_radius - delta_calibration_radius, h_factor = 1.00 + r_diff * 0.001, //1.02 for r_diff = 20mm r_factor = -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), //2.25 for r_diff = 20mm @@ -5162,7 +5181,7 @@ inline void gcode_G28() { #define Z0444(I) ZP(a_factor * 4.0 / 9.0, I) #define Z0888(I) ZP(a_factor * 8.0 / 9.0, I) - switch (probe_points) { + switch (c_value) { case -1: test_precision = 0.00; case 1: @@ -5177,10 +5196,10 @@ inline void gcode_G28() { break; case -2: - e_delta[X_AXIS] = Z1050(0) - Z0700(7) + Z0350(11) + Z0350(3); - e_delta[Y_AXIS] = Z1050(0) + Z0350(7) - Z0700(11) + Z0350(3); - e_delta[Z_AXIS] = Z1050(0) + Z0350(7) + Z0350(11) - Z0700(3); - r_delta = Z2250(0) - Z0750(7) - Z0750(11) - Z0750(3); + e_delta[X_AXIS] = Z1050(0) - Z0700(7) + Z0350(11) + Z0350(3); + e_delta[Y_AXIS] = Z1050(0) + Z0350(7) - Z0700(11) + Z0350(3); + e_delta[Z_AXIS] = Z1050(0) + Z0350(7) + Z0350(11) - Z0700(3); + r_delta = Z2250(0) - Z0750(7) - Z0750(11) - Z0750(3); break; default: @@ -5188,10 +5207,10 @@ inline void gcode_G28() { e_delta[Y_AXIS] = Z1050(0) - Z0175(1) + Z0350(5) - Z0175(9) + Z0175(7) - Z0350(11) + Z0175(3); e_delta[Z_AXIS] = Z1050(0) - Z0175(1) - Z0175(5) + Z0350(9) + Z0175(7) + Z0175(11) - Z0350(3); r_delta = Z2250(0) - Z0375(1) - Z0375(5) - Z0375(9) - Z0375(7) - Z0375(11) - Z0375(3); - - if (probe_points > 0) { //probe points negative disables tower angles - t_alpha = + Z0444(1) - Z0888(5) + Z0444(9) + Z0444(7) - Z0888(11) + Z0444(3); - t_beta = - Z0888(1) + Z0444(5) + Z0444(9) - Z0888(7) + Z0444(11) + Z0444(3); + + if (c_value > 0) { //probe points negative disables tower angles + t_alpha = + Z0444(1) - Z0888(5) + Z0444(9) + Z0444(7) - Z0888(11) + Z0444(3); + t_beta = - Z0888(1) + Z0444(5) + Z0444(9) - Z0888(7) + Z0444(11) + Z0444(3); } break; } @@ -5216,7 +5235,6 @@ inline void gcode_G28() { home_offset[Z_AXIS] = zh_old; delta_tower_angle_trim[A_AXIS] = alpha_old; delta_tower_angle_trim[B_AXIS] = beta_old; - recalc_delta_settings(delta_radius, delta_diagonal_rod); } @@ -5226,7 +5244,7 @@ inline void gcode_G28() { SERIAL_PROTOCOLPGM(". c:"); if (z_at_pt[0] > 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(z_at_pt[0], 2); - if (abs(probe_points) > 2 || probe_points == 2) { + if (probe_points > 2 || c_value == 2) { SERIAL_PROTOCOLPGM(" x:"); if (z_at_pt[1] >= 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(z_at_pt[1], 2); @@ -5237,9 +5255,12 @@ inline void gcode_G28() { if (z_at_pt[9] >= 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(z_at_pt[9], 2); } - if (probe_points != -2) SERIAL_EOL; - if (abs(probe_points) > 2 || probe_points == -2) { - if (abs(probe_points) > 2) SERIAL_PROTOCOLPGM(". "); + if (c_value != -2) SERIAL_EOL; + if (probe_points > 2 || c_value == -2) { + if (probe_points > 2) { + SERIAL_CHAR('.'); + SERIAL_PROTOCOL_SP(12); + } SERIAL_PROTOCOLPGM(" yz:"); if (z_at_pt[7] >= 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(z_at_pt[7], 2); @@ -5255,7 +5276,8 @@ inline void gcode_G28() { if (test_precision != 0.0) { // !forced end if (zero_std_dev >= test_precision) { // end iterations SERIAL_PROTOCOLPGM("Calibration OK"); - SERIAL_PROTOCOLPGM(" rolling back."); + SERIAL_PROTOCOL_SP(36); + SERIAL_PROTOCOLPGM("rolling back."); SERIAL_EOL; LCD_MESSAGEPGM("Calibration OK"); } @@ -5264,13 +5286,14 @@ inline void gcode_G28() { if (iterations < 31) sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations); SERIAL_PROTOCOL(mess); - SERIAL_PROTOCOLPGM(" std dev:"); + SERIAL_PROTOCOL_SP(36); + SERIAL_PROTOCOLPGM("std dev:"); SERIAL_PROTOCOL_F(zero_std_dev, 3); SERIAL_EOL; lcd_setstatus(mess); } SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]); - if (abs(probe_points) > 1) { + if (probe_points > 1) { SERIAL_PROTOCOLPGM(" Ex:"); if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2); @@ -5283,7 +5306,7 @@ inline void gcode_G28() { SERIAL_PROTOCOLPAIR(" Radius:", delta_radius); } SERIAL_EOL; - if (probe_points > 2) { + if (c_value > 2) { SERIAL_PROTOCOLPGM(".Tower angle : Tx:"); if (delta_tower_angle_trim[A_AXIS] >= 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(delta_tower_angle_trim[A_AXIS], 2); @@ -5294,11 +5317,13 @@ inline void gcode_G28() { SERIAL_EOL; } if (zero_std_dev >= test_precision) - SERIAL_PROTOCOLLNPGM("save with M500 and/or copy to configuration.h"); + serialprintPGM(save_message); } else { // forced end if (verbose_level == 0) { - SERIAL_PROTOCOLPGM("End DRY-RUN std dev:"); + SERIAL_PROTOCOLPGM("End DRY-RUN"); + SERIAL_PROTOCOL_SP(39); + SERIAL_PROTOCOLPGM("std dev:"); SERIAL_PROTOCOL_F(zero_std_dev, 3); SERIAL_EOL; } @@ -5307,7 +5332,7 @@ inline void gcode_G28() { LCD_MESSAGEPGM("Calibration OK"); SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]); SERIAL_EOL; - SERIAL_PROTOCOLLNPGM("save with M500 and/or copy to configuration.h"); + serialprintPGM(save_message); } } diff --git a/Marlin/ultralcd.cpp b/Marlin/ultralcd.cpp index 1a32d3ef7..d524ad9dd 100755 --- a/Marlin/ultralcd.cpp +++ b/Marlin/ultralcd.cpp @@ -1833,7 +1833,7 @@ void kill_screen(const char* lcd_msg) { START_MENU(); MENU_BACK(MSG_MAIN); #if ENABLED(DELTA_AUTO_CALIBRATION) - MENU_ITEM(gcode, MSG_DELTA_AUTO_CALIBRATE, PSTR("G33 C")); + MENU_ITEM(gcode, MSG_DELTA_AUTO_CALIBRATE, PSTR("G33")); MENU_ITEM(gcode, MSG_DELTA_HEIGHT_CALIBRATE, PSTR("G33 C-1")); #endif MENU_ITEM(submenu, MSG_AUTO_HOME, _lcd_delta_calibrate_home);