Merge pull request #12093 from p3p/pr_bf2_pulloutlpcframework

[HAL][LPC176x] Pull out framework, improve build, fix things
This commit is contained in:
Scott Lahteine 2018-10-14 17:57:21 -05:00 committed by GitHub
commit 3d5be2ea4b
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
149 changed files with 816 additions and 69874 deletions

View file

@ -0,0 +1,318 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifdef TARGET_LPC1768
#include "../../core/macros.h"
#include "../../core/serial.h"
#include <stdarg.h>
#include "../shared/backtrace/unwinder.h"
#include "../shared/backtrace/unwmemaccess.h"
#include "watchdog.h"
#include <debug_frmwrk.h>
// Debug monitor that dumps to the Programming port all status when
// an exception or WDT timeout happens - And then resets the board
// All the Monitor routines must run with interrupts disabled and
// under an ISR execution context. That is why we cannot reuse the
// Serial interrupt routines or any C runtime, as we don't know the
// state we are when running them
// A SW memory barrier, to ensure GCC does not overoptimize loops
#define sw_barrier() __asm__ volatile("": : :"memory");
// (re)initialize UART0 as a monitor output to 250000,n,8,1
static void TXBegin(void) {
}
// Send character through UART with no interrupts
static void TX(char c) {
_DBC(c);
}
// Send String through UART
static void TX(const char* s) {
while (*s) TX(*s++);
}
static void TXDigit(uint32_t d) {
if (d < 10) TX((char)(d+'0'));
else if (d < 16) TX((char)(d+'A'-10));
else TX('?');
}
// Send Hex number thru UART
static void TXHex(uint32_t v) {
TX("0x");
for (uint8_t i = 0; i < 8; i++, v <<= 4)
TXDigit((v >> 28) & 0xF);
}
// Send Decimal number thru UART
static void TXDec(uint32_t v) {
if (!v) {
TX('0');
return;
}
char nbrs[14];
char *p = &nbrs[0];
while (v != 0) {
*p++ = '0' + (v % 10);
v /= 10;
}
do {
p--;
TX(*p);
} while (p != &nbrs[0]);
}
// Dump a backtrace entry
static bool UnwReportOut(void* ctx, const UnwReport* bte) {
int* p = (int*)ctx;
(*p)++;
TX('#'); TXDec(*p); TX(" : ");
TX(bte->name?bte->name:"unknown"); TX('@'); TXHex(bte->function);
TX('+'); TXDec(bte->address - bte->function);
TX(" PC:");TXHex(bte->address); TX('\n');
return true;
}
#ifdef UNW_DEBUG
void UnwPrintf(const char* format, ...) {
char dest[256];
va_list argptr;
va_start(argptr, format);
vsprintf(dest, format, argptr);
va_end(argptr);
TX(&dest[0]);
}
#endif
/* Table of function pointers for passing to the unwinder */
static const UnwindCallbacks UnwCallbacks = {
UnwReportOut,
UnwReadW,
UnwReadH,
UnwReadB
#if defined(UNW_DEBUG)
,UnwPrintf
#endif
};
/**
* HardFaultHandler_C:
* This is called from the HardFault_HandlerAsm with a pointer the Fault stack
* as the parameter. We can then read the values from the stack and place them
* into local variables for ease of reading.
* We then read the various Fault Status and Address Registers to help decode
* cause of the fault.
* The function ends with a BKPT instruction to force control back into the debugger
*/
extern "C"
void HardFault_HandlerC(unsigned long *sp, unsigned long lr, unsigned long cause) {
static const char* causestr[] = {
"NMI","Hard","Mem","Bus","Usage","Debug","WDT","RSTC"
};
UnwindFrame btf;
// Dump report to the Programming port (interrupts are DISABLED)
TXBegin();
TX("\n\n## Software Fault detected ##\n");
TX("Cause: "); TX(causestr[cause]); TX('\n');
TX("R0 : "); TXHex(((unsigned long)sp[0])); TX('\n');
TX("R1 : "); TXHex(((unsigned long)sp[1])); TX('\n');
TX("R2 : "); TXHex(((unsigned long)sp[2])); TX('\n');
TX("R3 : "); TXHex(((unsigned long)sp[3])); TX('\n');
TX("R12 : "); TXHex(((unsigned long)sp[4])); TX('\n');
TX("LR : "); TXHex(((unsigned long)sp[5])); TX('\n');
TX("PC : "); TXHex(((unsigned long)sp[6])); TX('\n');
TX("PSR : "); TXHex(((unsigned long)sp[7])); TX('\n');
// Configurable Fault Status Register
// Consists of MMSR, BFSR and UFSR
TX("CFSR : "); TXHex((*((volatile unsigned long *)(0xE000ED28)))); TX('\n');
// Hard Fault Status Register
TX("HFSR : "); TXHex((*((volatile unsigned long *)(0xE000ED2C)))); TX('\n');
// Debug Fault Status Register
TX("DFSR : "); TXHex((*((volatile unsigned long *)(0xE000ED30)))); TX('\n');
// Auxiliary Fault Status Register
TX("AFSR : "); TXHex((*((volatile unsigned long *)(0xE000ED3C)))); TX('\n');
// Read the Fault Address Registers. These may not contain valid values.
// Check BFARVALID/MMARVALID to see if they are valid values
// MemManage Fault Address Register
TX("MMAR : "); TXHex((*((volatile unsigned long *)(0xE000ED34)))); TX('\n');
// Bus Fault Address Register
TX("BFAR : "); TXHex((*((volatile unsigned long *)(0xE000ED38)))); TX('\n');
TX("ExcLR: "); TXHex(lr); TX('\n');
TX("ExcSP: "); TXHex((unsigned long)sp); TX('\n');
btf.sp = ((unsigned long)sp) + 8*4; // The original stack pointer
btf.fp = btf.sp;
btf.lr = ((unsigned long)sp[5]);
btf.pc = ((unsigned long)sp[6]) | 1; // Force Thumb, as CORTEX only support it
// Perform a backtrace
TX("\nBacktrace:\n\n");
int ctr = 0;
UnwindStart(&btf, &UnwCallbacks, &ctr);
// Disable all NVIC interrupts
NVIC->ICER[0] = 0xFFFFFFFF;
NVIC->ICER[1] = 0xFFFFFFFF;
// Relocate VTOR table to default position
SCB->VTOR = 0;
// Clear cause of reset to prevent entering smoothie bootstrap
HAL_clear_reset_source();
// Restart watchdog
//WDT_Restart(WDT);
watchdog_init();
// Reset controller
NVIC_SystemReset();
while(1) { watchdog_init(); }
}
extern "C" {
__attribute__((naked)) void NMI_Handler(void) {
__asm__ __volatile__ (
".syntax unified" "\n\t"
A("tst lr, #4")
A("ite eq")
A("mrseq r0, msp")
A("mrsne r0, psp")
A("mov r1,lr")
A("mov r2,#0")
A("b HardFault_HandlerC")
);
}
__attribute__((naked)) void HardFault_Handler(void) {
__asm__ __volatile__ (
".syntax unified" "\n\t"
A("tst lr, #4")
A("ite eq")
A("mrseq r0, msp")
A("mrsne r0, psp")
A("mov r1,lr")
A("mov r2,#1")
A("b HardFault_HandlerC")
);
}
__attribute__((naked)) void MemManage_Handler(void) {
__asm__ __volatile__ (
".syntax unified" "\n\t"
A("tst lr, #4")
A("ite eq")
A("mrseq r0, msp")
A("mrsne r0, psp")
A("mov r1,lr")
A("mov r2,#2")
A("b HardFault_HandlerC")
);
}
__attribute__((naked)) void BusFault_Handler(void) {
__asm__ __volatile__ (
".syntax unified" "\n\t"
A("tst lr, #4")
A("ite eq")
A("mrseq r0, msp")
A("mrsne r0, psp")
A("mov r1,lr")
A("mov r2,#3")
A("b HardFault_HandlerC")
);
}
__attribute__((naked)) void UsageFault_Handler(void) {
__asm__ __volatile__ (
".syntax unified" "\n\t"
A("tst lr, #4")
A("ite eq")
A("mrseq r0, msp")
A("mrsne r0, psp")
A("mov r1,lr")
A("mov r2,#4")
A("b HardFault_HandlerC")
);
}
__attribute__((naked)) void DebugMon_Handler(void) {
__asm__ __volatile__ (
".syntax unified" "\n\t"
A("tst lr, #4")
A("ite eq")
A("mrseq r0, msp")
A("mrsne r0, psp")
A("mov r1,lr")
A("mov r2,#5")
A("b HardFault_HandlerC")
);
}
/* This is NOT an exception, it is an interrupt handler - Nevertheless, the framing is the same */
__attribute__((naked)) void WDT_IRQHandler(void) {
__asm__ __volatile__ (
".syntax unified" "\n\t"
A("tst lr, #4")
A("ite eq")
A("mrseq r0, msp")
A("mrsne r0, psp")
A("mov r1,lr")
A("mov r2,#6")
A("b HardFault_HandlerC")
);
}
__attribute__((naked)) void RSTC_Handler(void) {
__asm__ __volatile__ (
".syntax unified" "\n\t"
A("tst lr, #4")
A("ite eq")
A("mrseq r0, msp")
A("mrsne r0, psp")
A("mov r1,lr")
A("mov r2,#7")
A("b HardFault_HandlerC")
);
}
}
#endif // TARGET_LPC1768

View file

@ -22,8 +22,7 @@
#include "../../inc/MarlinConfig.h" #include "../../inc/MarlinConfig.h"
#include "../shared/Delay.h" #include "../shared/Delay.h"
#include "../../../gcode/parser.h"
HalSerial usb_serial;
// U8glib required functions // U8glib required functions
extern "C" void u8g_xMicroDelay(uint16_t val) { extern "C" void u8g_xMicroDelay(uint16_t val) {
@ -51,231 +50,11 @@ int freeMemory() {
return result; return result;
} }
// -------------------------------------------------------------------------- int16_t PARSED_PIN_INDEX(const char code, const int16_t dval) {
// ADC const uint16_t val = (uint16_t)parser.intval(code), port = val / 100, pin = val % 100;
// -------------------------------------------------------------------------- const int16_t ind = (port < (NUM_DIGITAL_PINS >> 5) && (pin < 32))
? GET_PIN_MAP_INDEX(port << 5 | pin) : -2;
#define ADC_DONE 0x80000000 return ind > -2 ? ind : dval;
#define ADC_OVERRUN 0x40000000
void HAL_adc_init(void) {
LPC_SC->PCONP |= (1 << 12); // Enable CLOCK for internal ADC controller
LPC_SC->PCLKSEL0 &= ~(0x3 << 24);
LPC_SC->PCLKSEL0 |= (0x1 << 24); // 0: 25MHz, 1: 100MHz, 2: 50MHz, 3: 12.5MHZ to ADC clock divider
LPC_ADC->ADCR = (0 << 0) // SEL: 0 = no channels selected
| (0xFF << 8) // select slowest clock for A/D conversion 150 - 190 uS for a complete conversion
| (0 << 16) // BURST: 0 = software control
| (0 << 17) // CLKS: not applicable
| (1 << 21) // PDN: 1 = operational
| (0 << 24) // START: 0 = no start
| (0 << 27); // EDGE: not applicable
}
// externals need to make the call to KILL compile
#include "../../core/language.h"
extern void kill(PGM_P);
void HAL_adc_enable_channel(int ch) {
pin_t pin = analogInputToDigitalPin(ch);
if (pin == -1) {
serial_error_start();
SERIAL_PRINTF("INVALID ANALOG PORT:%d\n", ch);
kill(MSG_KILLED);
}
int8_t pin_port = LPC1768_PIN_PORT(pin),
pin_port_pin = LPC1768_PIN_PIN(pin),
pinsel_start_bit = pin_port_pin > 15 ? 2 * (pin_port_pin - 16) : 2 * pin_port_pin;
uint8_t pin_sel_register = (pin_port == 0 && pin_port_pin <= 15) ? 0 :
pin_port == 0 ? 1 :
pin_port == 1 ? 3 : 10;
switch (pin_sel_register) {
case 1:
LPC_PINCON->PINSEL1 &= ~(0x3 << pinsel_start_bit);
LPC_PINCON->PINSEL1 |= (0x1 << pinsel_start_bit);
break;
case 3:
LPC_PINCON->PINSEL3 &= ~(0x3 << pinsel_start_bit);
LPC_PINCON->PINSEL3 |= (0x3 << pinsel_start_bit);
break;
case 0:
LPC_PINCON->PINSEL0 &= ~(0x3 << pinsel_start_bit);
LPC_PINCON->PINSEL0 |= (0x2 << pinsel_start_bit);
break;
};
}
void HAL_adc_start_conversion(const uint8_t ch) {
if (analogInputToDigitalPin(ch) == -1) {
SERIAL_PRINTF("HAL: HAL_adc_start_conversion: invalid channel %d\n", ch);
return;
}
LPC_ADC->ADCR &= ~0xFF; // Reset
SBI(LPC_ADC->ADCR, ch); // Select Channel
SBI(LPC_ADC->ADCR, 24); // Start conversion
}
bool HAL_adc_finished(void) {
return LPC_ADC->ADGDR & ADC_DONE;
}
// possible config options if something similar is extended to more platforms.
#define ADC_USE_MEDIAN_FILTER // Filter out erroneous readings
#define ADC_MEDIAN_FILTER_SIZE 23 // Higher values increase step delay (phase shift),
// (ADC_MEDIAN_FILTER_SIZE + 1) / 2 sample step delay (12 samples @ 500Hz: 24ms phase shift)
// Memory usage per ADC channel (bytes): (6 * ADC_MEDIAN_FILTER_SIZE) + 16
// 8 * ((6 * 23) + 16 ) = 1232 Bytes for 8 channels
#define ADC_USE_LOWPASS_FILTER // Filter out high frequency noise
#define ADC_LOWPASS_K_VALUE 6 // Higher values increase rise time
// Rise time sample delays for 100% signal convergence on full range step
// (1 : 13, 2 : 32, 3 : 67, 4 : 139, 5 : 281, 6 : 565, 7 : 1135, 8 : 2273)
// K = 6, 565 samples, 500Hz sample rate, 1.13s convergence on full range step
// Memory usage per ADC channel (bytes): 4 (32 Bytes for 8 channels)
// Sourced from https://embeddedgurus.com/stack-overflow/tag/median-filter/
struct MedianFilter {
#define STOPPER 0 // Smaller than any datum
struct Pair {
Pair *point; // Pointers forming list linked in sorted order
uint16_t value; // Values to sort
};
Pair buffer[ADC_MEDIAN_FILTER_SIZE] = {}; // Buffer of nwidth pairs
Pair *datpoint = buffer; // Pointer into circular buffer of data
Pair small = {NULL, STOPPER}; // Chain stopper
Pair big = {&small, 0}; // Pointer to head (largest) of linked list.
uint16_t update(uint16_t datum) {
Pair *successor; // Pointer to successor of replaced data item
Pair *scan; // Pointer used to scan down the sorted list
Pair *scanold; // Previous value of scan
Pair *median; // Pointer to median
uint16_t i;
if (datum == STOPPER) {
datum = STOPPER + 1; // No stoppers allowed.
}
if ( (++datpoint - buffer) >= (ADC_MEDIAN_FILTER_SIZE)) {
datpoint = buffer; // Increment and wrap data in pointer.
}
datpoint->value = datum; // Copy in new datum
successor = datpoint->point; // Save pointer to old value's successor
median = &big; // Median initially to first in chain
scanold = NULL; // Scanold initially null.
scan = &big; // Points to pointer to first (largest) datum in chain
// Handle chain-out of first item in chain as special case
if (scan->point == datpoint) {
scan->point = successor;
}
scanold = scan; // Save this pointer and
scan = scan->point ; // step down chain
// Loop through the chain, normal loop exit via break.
for (i = 0 ; i < ADC_MEDIAN_FILTER_SIZE; ++i) {
// Handle odd-numbered item in chain
if (scan->point == datpoint) {
scan->point = successor; // Chain out the old datum
}
if (scan->value < datum) { // If datum is larger than scanned value
datpoint->point = scanold->point; // Chain it in here
scanold->point = datpoint; // Mark it chained in
datum = STOPPER;
}
// Step median pointer down chain after doing odd-numbered element
median = median->point; // Step median pointer
if (scan == &small) {
break; // Break at end of chain
}
scanold = scan; // Save this pointer and
scan = scan->point; // step down chain
// Handle even-numbered item in chain.
if (scan->point == datpoint) {
scan->point = successor;
}
if (scan->value < datum) {
datpoint->point = scanold->point;
scanold->point = datpoint;
datum = STOPPER;
}
if (scan == &small) {
break;
}
scanold = scan;
scan = scan->point;
}
return median->value;
}
};
struct LowpassFilter {
uint32_t data_delay = 0;
uint16_t update(const uint16_t value) {
data_delay -= (data_delay >> (ADC_LOWPASS_K_VALUE)) - value;
return (uint16_t)(data_delay >> (ADC_LOWPASS_K_VALUE));
}
};
uint16_t HAL_adc_get_result(void) {
uint32_t adgdr = LPC_ADC->ADGDR;
CBI(LPC_ADC->ADCR, 24); // Stop conversion
if (adgdr & ADC_OVERRUN) return 0;
uint16_t data = (adgdr >> 4) & 0xFFF; // copy the 12bit data value
uint8_t adc_channel = (adgdr >> 24) & 0x7; // copy the 3bit used channel
#ifdef ADC_USE_MEDIAN_FILTER
static MedianFilter median_filter[NUM_ANALOG_INPUTS];
data = median_filter[adc_channel].update(data);
#endif
#ifdef ADC_USE_LOWPASS_FILTER
static LowpassFilter lowpass_filter[NUM_ANALOG_INPUTS];
data = lowpass_filter[adc_channel].update(data);
#endif
return ((data >> 2) & 0x3FF); // return 10bit value as Marlin expects
}
#define SBIT_CNTEN 0
#define SBIT_PWMEN 2
#define SBIT_PWMMR0R 1
#define PWM_1 0 //P2_00 (0-1 Bits of PINSEL4)
#define PWM_2 2 //P2_01 (2-3 Bits of PINSEL4)
#define PWM_3 4 //P2_02 (4-5 Bits of PINSEL4)
#define PWM_4 6 //P2_03 (6-7 Bits of PINSEL4)
#define PWM_5 8 //P2_04 (8-9 Bits of PINSEL4)
#define PWM_6 10 //P2_05 (10-11 Bits of PINSEL4)
void HAL_pwm_init(void) {
LPC_PINCON->PINSEL4 = _BV(PWM_5) | _BV(PWM_6);
LPC_PWM1->TCR = _BV(SBIT_CNTEN) | _BV(SBIT_PWMEN);
LPC_PWM1->PR = 0x0; // No prescalar
LPC_PWM1->MCR = _BV(SBIT_PWMMR0R); // Reset on PWMMR0, reset TC if it matches MR0
LPC_PWM1->MR0 = 255; // set PWM cycle(Ton+Toff)=255)
LPC_PWM1->MR5 = 0; // Set 50% Duty Cycle for the channels
LPC_PWM1->MR6 = 0;
// Trigger the latch Enable Bits to load the new Match Values MR0, MR5, MR6
LPC_PWM1->LER = _BV(0) | _BV(5) | _BV(6);
// Enable the PWM output pins for PWM_5-PWM_6(P2_04 - P2_05)
LPC_PWM1->PCR = _BV(13) | _BV(14);
} }
#endif // TARGET_LPC1768 #endif // TARGET_LPC1768

View file

@ -29,42 +29,27 @@
#define _HAL_LPC1768_H_ #define _HAL_LPC1768_H_
#define CPU_32_BIT #define CPU_32_BIT
#define HAL_INIT
// -------------------------------------------------------------------------- void HAL_init();
// Includes
// --------------------------------------------------------------------------
#include <stdint.h> #include <stdint.h>
#include <stdarg.h> #include <stdarg.h>
#undef min
#undef max
#include <algorithm> #include <algorithm>
void _printf (const char *format, ...);
void _putc(uint8_t c);
uint8_t _getc();
extern "C" volatile uint32_t _millis; extern "C" volatile uint32_t _millis;
//arduino: Print.h
#define DEC 10
#define HEX 16
#define OCT 8
#define BIN 2
//arduino: binary.h (weird defines)
#define B01 1
#define B10 2
#include <Arduino.h> #include <Arduino.h>
#include <pinmapping.h> #include <pinmapping.h>
#include <CDCSerial.h>
#include "../shared/math_32bit.h" #include "../shared/math_32bit.h"
#include "../shared/HAL_SPI.h" #include "../shared/HAL_SPI.h"
#include "fastio.h" #include "fastio.h"
#include <adc.h>
#include "watchdog.h" #include "watchdog.h"
#include "HAL_timers.h" #include "HAL_timers.h"
#include "MarlinSerial.h"
// //
// Default graphical display delays // Default graphical display delays
@ -79,32 +64,20 @@ extern "C" volatile uint32_t _millis;
#define ST7920_DELAY_3 DELAY_NS(750) #define ST7920_DELAY_3 DELAY_NS(750)
#endif #endif
//
// Arduino-style serial ports
//
#include "serial.h"
#include "HardwareSerial.h"
extern HalSerial usb_serial;
#if !WITHIN(SERIAL_PORT, -1, 3) #if !WITHIN(SERIAL_PORT, -1, 3)
#error "SERIAL_PORT must be from -1 to 3" #error "SERIAL_PORT must be from -1 to 3"
#endif #endif
#if SERIAL_PORT == -1 #if SERIAL_PORT == -1
#define MYSERIAL0 usb_serial #define MYSERIAL0 UsbSerial
#elif SERIAL_PORT == 0 #elif SERIAL_PORT == 0
extern HardwareSerial Serial; #define MYSERIAL0 MSerial
#define MYSERIAL0 Serial
#elif SERIAL_PORT == 1 #elif SERIAL_PORT == 1
extern HardwareSerial Serial1; #define MYSERIAL0 MSerial1
#define MYSERIAL0 Serial1
#elif SERIAL_PORT == 2 #elif SERIAL_PORT == 2
extern HardwareSerial Serial2; #define MYSERIAL0 MSerial2
#define MYSERIAL0 Serial2
#elif SERIAL_PORT == 3 #elif SERIAL_PORT == 3
#define MYSERIAL0 Serial3 #define MYSERIAL0 MSerial3
extern HardwareSerial Serial3;
#endif #endif
#ifdef SERIAL_PORT_2 #ifdef SERIAL_PORT_2
@ -115,19 +88,15 @@ extern HalSerial usb_serial;
#endif #endif
#define NUM_SERIAL 2 #define NUM_SERIAL 2
#if SERIAL_PORT_2 == -1 #if SERIAL_PORT_2 == -1
#define MYSERIAL1 usb_serial #define MYSERIAL1 UsbSerial
#elif SERIAL_PORT_2 == 0 #elif SERIAL_PORT_2 == 0
extern HardwareSerial Serial; #define MYSERIAL1 MSerial
#define MYSERIAL1 Serial
#elif SERIAL_PORT_2 == 1 #elif SERIAL_PORT_2 == 1
extern HardwareSerial Serial1; #define MYSERIAL1 MSerial1
#define MYSERIAL1 Serial1
#elif SERIAL_PORT_2 == 2 #elif SERIAL_PORT_2 == 2
extern HardwareSerial Serial2; #define MYSERIAL1 MSerial2
#define MYSERIAL1 Serial2
#elif SERIAL_PORT_2 == 3 #elif SERIAL_PORT_2 == 3
extern HardwareSerial Serial3; #define MYSERIAL1 MSerial3
#define MYSERIAL1 Serial3
#endif #endif
#else #else
#define NUM_SERIAL 1 #define NUM_SERIAL 1
@ -159,17 +128,33 @@ void spiSend(uint32_t chan, const uint8_t* buf, size_t n);
uint8_t spiRec(uint32_t chan); uint8_t spiRec(uint32_t chan);
// //
// ADC // ADC API
// //
#define HAL_ANALOG_SELECT(pin) HAL_adc_enable_channel(pin)
#define HAL_START_ADC(pin) HAL_adc_start_conversion(pin)
#define HAL_READ_ADC() HAL_adc_get_result()
#define HAL_ADC_READY() HAL_adc_finished()
void HAL_adc_init(void); #define ADC_MEDIAN_FILTER_SIZE (23) // Higher values increase step delay (phase shift),
void HAL_adc_enable_channel(int pin); // (ADC_MEDIAN_FILTER_SIZE + 1) / 2 sample step delay (12 samples @ 500Hz: 24ms phase shift)
void HAL_adc_start_conversion(const uint8_t adc_pin); // Memory usage per ADC channel (bytes): (6 * ADC_MEDIAN_FILTER_SIZE) + 16
uint16_t HAL_adc_get_result(void); // 8 * ((6 * 23) + 16 ) = 1232 Bytes for 8 channels
bool HAL_adc_finished(void);
#define ADC_LOWPASS_K_VALUE (6) // Higher values increase rise time
// Rise time sample delays for 100% signal convergence on full range step
// (1 : 13, 2 : 32, 3 : 67, 4 : 139, 5 : 281, 6 : 565, 7 : 1135, 8 : 2273)
// K = 6, 565 samples, 500Hz sample rate, 1.13s convergence on full range step
// Memory usage per ADC channel (bytes): 4 (32 Bytes for 8 channels)
using FilteredADC = LPC176x::ADC<ADC_LOWPASS_K_VALUE, ADC_MEDIAN_FILTER_SIZE>;
#define HAL_adc_init() FilteredADC::init()
#define HAL_ANALOG_SELECT(pin) FilteredADC::enable_channel(pin)
#define HAL_START_ADC(pin) FilteredADC::start_conversion(pin)
#define HAL_READ_ADC() FilteredADC::get_result()
#define HAL_ADC_READY() FilteredADC::finished_conversion()
// Parse a G-code word into a pin index
int16_t PARSED_PIN_INDEX(const char code, const int16_t dval);
// P0.6 thru P0.9 are for the onboard SD card
#define HAL_SENSITIVE_PINS P0_06, P0_07, P0_08, P0_09
#define HAL_IDLETASK 1
void HAL_idletask(void);
#endif // _HAL_LPC1768_H_ #endif // _HAL_LPC1768_H_

View file

@ -49,7 +49,6 @@
#ifdef TARGET_LPC1768 #ifdef TARGET_LPC1768
#include "../../inc/MarlinConfig.h" #include "../../inc/MarlinConfig.h"
// -------------------------------------------------------------------------- // --------------------------------------------------------------------------
// Includes // Includes
// -------------------------------------------------------------------------- // --------------------------------------------------------------------------
@ -59,7 +58,6 @@
// -------------------------------------------------------------------------- // --------------------------------------------------------------------------
// Public functions // Public functions
// -------------------------------------------------------------------------- // --------------------------------------------------------------------------
#if ENABLED(LPC_SOFTWARE_SPI) #if ENABLED(LPC_SOFTWARE_SPI)
#include "SoftwareSPI.h" #include "SoftwareSPI.h"
@ -127,8 +125,25 @@
#include <lpc17xx_ssp.h> #include <lpc17xx_ssp.h>
#include <lpc17xx_clkpwr.h> #include <lpc17xx_clkpwr.h>
void spiBegin() { // setup SCK, MOSI & MISO pins for SSP0 // decide which HW SPI device to use
#ifndef LPC_HW_SPI_DEV
#if (SCK_PIN == P0_07 && MISO_PIN == P0_08 && MOSI_PIN == P0_09)
#define LPC_HW_SPI_DEV 1
#else
#if (SCK_PIN == P0_15 && MISO_PIN == P0_17 && MOSI_PIN == P0_18)
#define LPC_HW_SPI_DEV 0
#else
#error "Invalid pins selected for hardware SPI"
#endif
#endif
#endif
#if (LPC_HW_SPI_DEV == 0)
#define LPC_SSPn LPC_SSP0
#else
#define LPC_SSPn LPC_SSP1
#endif
void spiBegin() { // setup SCK, MOSI & MISO pins for SSP0
PINSEL_CFG_Type PinCfg; // data structure to hold init values PINSEL_CFG_Type PinCfg; // data structure to hold init values
PinCfg.Funcnum = 2; PinCfg.Funcnum = 2;
PinCfg.OpenDrain = 0; PinCfg.OpenDrain = 0;
@ -147,10 +162,13 @@
PinCfg.Portnum = LPC1768_PIN_PORT(MOSI_PIN); PinCfg.Portnum = LPC1768_PIN_PORT(MOSI_PIN);
PINSEL_ConfigPin(&PinCfg); PINSEL_ConfigPin(&PinCfg);
SET_OUTPUT(MOSI_PIN); SET_OUTPUT(MOSI_PIN);
// divide PCLK by 2 for SSP0
CLKPWR_SetPCLKDiv(LPC_HW_SPI_DEV == 0 ? CLKPWR_PCLKSEL_SSP0 : CLKPWR_PCLKSEL_SSP1, CLKPWR_PCLKSEL_CCLK_DIV_2);
spiInit(0);
SSP_Cmd(LPC_SSPn, ENABLE); // start SSP running
} }
void spiInit(uint8_t spiRate) { void spiInit(uint8_t spiRate) {
SSP_Cmd(LPC_SSP0, DISABLE); // Disable SSP0 before changing rate
// table to convert Marlin spiRates (0-5 plus default) into bit rates // table to convert Marlin spiRates (0-5 plus default) into bit rates
uint32_t Marlin_speed[7]; // CPSR is always 2 uint32_t Marlin_speed[7]; // CPSR is always 2
Marlin_speed[0] = 8333333; //(SCR: 2) desired: 8,000,000 actual: 8,333,333 +4.2% SPI_FULL_SPEED Marlin_speed[0] = 8333333; //(SCR: 2) desired: 8,000,000 actual: 8,333,333 +4.2% SPI_FULL_SPEED
@ -160,33 +178,32 @@
Marlin_speed[4] = 500000; //(SCR: 49) desired: 500,000 actual: 500,000 SPI_SPEED_5 Marlin_speed[4] = 500000; //(SCR: 49) desired: 500,000 actual: 500,000 SPI_SPEED_5
Marlin_speed[5] = 250000; //(SCR: 99) desired: 250,000 actual: 250,000 SPI_SPEED_6 Marlin_speed[5] = 250000; //(SCR: 99) desired: 250,000 actual: 250,000 SPI_SPEED_6
Marlin_speed[6] = 125000; //(SCR:199) desired: 125,000 actual: 125,000 Default from HAL.h Marlin_speed[6] = 125000; //(SCR:199) desired: 125,000 actual: 125,000 Default from HAL.h
// divide PCLK by 2 for SSP0
CLKPWR_SetPCLKDiv(CLKPWR_PCLKSEL_SSP0, CLKPWR_PCLKSEL_CCLK_DIV_2);
// setup for SPI mode // setup for SPI mode
SSP_CFG_Type HW_SPI_init; // data structure to hold init values SSP_CFG_Type HW_SPI_init; // data structure to hold init values
SSP_ConfigStructInit(&HW_SPI_init); // set values for SPI mode SSP_ConfigStructInit(&HW_SPI_init); // set values for SPI mode
HW_SPI_init.ClockRate = Marlin_speed[MIN(spiRate, 6)]; // put in the specified bit rate HW_SPI_init.ClockRate = Marlin_speed[MIN(spiRate, 6)]; // put in the specified bit rate
SSP_Init(LPC_SSP0, &HW_SPI_init); // puts the values into the proper bits in the SSP0 registers HW_SPI_init.Mode |= SSP_CR1_SSP_EN;
SSP_Init(LPC_SSPn, &HW_SPI_init); // puts the values into the proper bits in the SSP0 registers
}
SSP_Cmd(LPC_SSP0, ENABLE); // start SSP0 running
static uint8_t doio(uint8_t b) {
/* send and receive a single byte */
SSP_SendData(LPC_SSPn, b & 0x00FF);
while (SSP_GetStatus(LPC_SSPn, SSP_STAT_BUSY)); // wait for it to finish
return SSP_ReceiveData(LPC_SSPn) & 0x00FF;
} }
void spiSend(uint8_t b) { void spiSend(uint8_t b) {
while (!SSP_GetStatus(LPC_SSP0, SSP_STAT_TXFIFO_NOTFULL)); // wait for room in the buffer doio(b);
SSP_SendData(LPC_SSP0, b & 0x00FF);
while (SSP_GetStatus(LPC_SSP0, SSP_STAT_BUSY)); // wait for it to finish
} }
void spiSend(const uint8_t* buf, size_t n) { void spiSend(const uint8_t* buf, size_t n) {
if (n == 0) return; if (n == 0) return;
for (uint16_t i = 0; i < n; i++) { for (uint16_t i = 0; i < n; i++) {
while (!SSP_GetStatus(LPC_SSP0, SSP_STAT_TXFIFO_NOTFULL)); // wait for room in the buffer doio(buf[i]);
SSP_SendData(LPC_SSP0, buf[i] & 0x00FF);
} }
while (SSP_GetStatus(LPC_SSP0, SSP_STAT_BUSY)); // wait for it to finish
} }
void spiSend(uint32_t chan, byte b) { void spiSend(uint32_t chan, byte b) {
@ -195,17 +212,9 @@
void spiSend(uint32_t chan, const uint8_t* buf, size_t n) { void spiSend(uint32_t chan, const uint8_t* buf, size_t n) {
} }
static uint8_t get_one_byte() {
// send a dummy byte so can clock in receive data
SSP_SendData(LPC_SSP0,0x00FF);
while (SSP_GetStatus(LPC_SSP0, SSP_STAT_BUSY)); // wait for it to finish
return SSP_ReceiveData(LPC_SSP0) & 0x00FF;
}
// Read single byte from SPI // Read single byte from SPI
uint8_t spiRec() { uint8_t spiRec() {
while (SSP_GetStatus(LPC_SSP0, SSP_STAT_RXFIFO_NOTEMPTY) || SSP_GetStatus(LPC_SSP0, SSP_STAT_BUSY)) SSP_ReceiveData(LPC_SSP0); //flush the receive buffer return doio(0xff);
return get_one_byte();
} }
uint8_t spiRec(uint32_t chan) { uint8_t spiRec(uint32_t chan) {
@ -214,22 +223,25 @@
// Read from SPI into buffer // Read from SPI into buffer
void spiRead(uint8_t*buf, uint16_t nbyte) { void spiRead(uint8_t*buf, uint16_t nbyte) {
while (SSP_GetStatus(LPC_SSP0, SSP_STAT_RXFIFO_NOTEMPTY) || SSP_GetStatus(LPC_SSP0, SSP_STAT_BUSY)) SSP_ReceiveData(LPC_SSP0); //flush the receive buffer
if (nbyte == 0) return; if (nbyte == 0) return;
for (int i = 0; i < nbyte; i++) { for (int i = 0; i < nbyte; i++) {
buf[i] = get_one_byte(); buf[i] = doio(0xff);
} }
} }
static uint8_t spiTransfer(uint8_t b) { static uint8_t spiTransfer(uint8_t b) {
while (SSP_GetStatus(LPC_SSP0, SSP_STAT_RXFIFO_NOTEMPTY) || SSP_GetStatus(LPC_SSP0, SSP_STAT_BUSY)) SSP_ReceiveData(LPC_SSP0); //flush the receive buffer return doio(b);
SSP_SendData(LPC_SSP0, b); // send the byte
while (SSP_GetStatus(LPC_SSP0, SSP_STAT_BUSY)); // wait for it to finish
return SSP_ReceiveData(LPC_SSP0) & 0x00FF;
} }
// Write from buffer to SPI // Write from buffer to SPI
void spiSendBlock(uint8_t token, const uint8_t* buf) { void spiSendBlock(uint8_t token, const uint8_t* buf) {
uint8_t response;
response = spiTransfer(token);
for (uint16_t i = 0; i < 512; i++) {
response = spiTransfer(buf[i]);
}
UNUSED(response);
} }
/** Begin SPI transaction, set clock, bit order, data mode */ /** Begin SPI transaction, set clock, bit order, data mode */
@ -270,4 +282,3 @@ uint16_t SPIClass::transfer16(uint16_t data) {
SPIClass SPI; SPIClass SPI;
#endif // TARGET_LPC1768 #endif // TARGET_LPC1768

View file

@ -1 +0,0 @@
// blank file needed until I get platformio to update it's copy of U8Glib-HAL

View file

@ -20,9 +20,8 @@
*/ */
/** /**
* HAL for Arduino Due and compatible (SAM3X8E)
* *
* For ARDUINO_ARCH_SAM * HAL For LPC1768
*/ */
#ifndef _HAL_TIMERS_H #ifndef _HAL_TIMERS_H

View file

@ -1,576 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* The class Servo uses the PWM class to implement its functions
*
* All PWMs use the same repetition rate - 20mS because that's the normal servo rate
*/
/**
* This is a hybrid system.
*
* The PWM1 module is used to directly control the Servo 0, 1 & 3 pins and D9 & D10 pins. This keeps
* the pulse width jitter to under a microsecond.
*
* For all other pins a timer is used to generate interrupts. The ISR
* routine does the actual setting/clearing of pins. The upside is that any pin can
* have a PWM channel assigned to it. The downside is that there is more pulse width
* jitter. The jitter depends on what else is happening in the system and what ISRs
* pre-empt the PWM ISR.
*/
/**
* The data structures are set up to minimize the computation done by the ISR which
* minimizes ISR execution time. Execution times are 5-14µs depending on how full the
* ISR table is. 14uS is for a 20 element ISR table.
*
* Two tables are used. One table contains the data used by the ISR to update/control
* the PWM pins. The other is used as an aid when updating the ISR table.
*
* See the end of this file for details on the hardware/firmware interaction
*/
/**
* Directly controlled PWM pins (
* NA means not being used as a directly controlled PWM pin
*
* Re-ARM MKS Sbase
* PWM1.1 P1_18 SERVO3_PIN NA(no connection)
* PWM1.1 P2_00 NA(E0_STEP_PIN) NA(X stepper)
* PWM1.2 P1_20 SERVO0_PIN NA(no connection)
* PWM1.2 P2_01 NA(X_STEP_PIN) NA(Y stepper)
* PWM1.3 P1_21 SERVO1_PIN NA(no connection)
* PWM1.3 P2_02 NA(Y_STEP_PIN) NA(Z stepper)
* PWM1.4 P1_23 NA(SDSS(SSEL0)) SERVO0_PIN
* PWM1.4 P2_03 NA(Z_STEP_PIN) NA(E0 stepper)
* PWM1.5 P1_24 NA(X_MIN_PIN) NA(X_MIN_pin)
* PWM1.5 P2_04 RAMPS_D9_PIN FAN_PIN
* PWM1.6 P1_26 NA(Y_MIN_PIN) NA(Y_MIN_pin)
* PWM1.6 P2_05 RAMPS_D10_PIN HEATER_BED_PIN
*/
#ifdef TARGET_LPC1768
#include "../../inc/MarlinConfig.h"
#include <lpc17xx_pinsel.h>
#include "LPC1768_PWM.h"
#include <Arduino.h>
#define NUM_ISR_PWMS 20
#define HAL_PWM_TIMER LPC_TIM3
#define HAL_PWM_TIMER_ISR extern "C" void TIMER3_IRQHandler(void)
#define HAL_PWM_TIMER_IRQn TIMER3_IRQn
#define LPC_PORT_OFFSET (0x0020)
#define LPC_PIN(pin) (1UL << pin)
#define LPC_GPIO(port) ((volatile LPC_GPIO_TypeDef *)(LPC_GPIO0_BASE + LPC_PORT_OFFSET * port))
typedef struct { // holds all data needed to control/init one of the PWM channels
bool active_flag; // THIS TABLE ENTRY IS ACTIVELY TOGGLING A PIN
pin_t pin;
volatile uint32_t* set_register;
volatile uint32_t* clr_register;
uint32_t write_mask; // USED BY SET/CLEAR COMMANDS
uint32_t microseconds; // value written to MR register
uint32_t min; // lower value limit checked by WRITE routine before writing to the MR register
uint32_t max; // upper value limit checked by WRITE routine before writing to the MR register
uint8_t servo_index; // 0 - MAX_SERVO -1 : servo index, 0xFF : PWM channel
} PWM_map;
PWM_map PWM1_map_A[NUM_ISR_PWMS]; // compiler will initialize to all zeros
PWM_map PWM1_map_B[NUM_ISR_PWMS]; // compiler will initialize to all zeros
PWM_map *active_table = PWM1_map_A;
PWM_map *work_table = PWM1_map_B;
PWM_map *temp_table;
#define P1_18_PWM_channel 1 // servo 3
#define P1_20_PWM_channel 2 // servo 0
#define P1_21_PWM_channel 3 // servo 1
#define P1_23_PWM_channel 4 // servo 0 for MKS Sbase
#define P2_04_PWM_channel 5 // D9
#define P2_05_PWM_channel 6 // D10
typedef struct {
uint32_t min;
uint32_t max;
bool assigned;
} table_direct;
table_direct direct_table[6]; // compiler will initialize to all zeros
/**
* Prescale register and MR0 register values
*
* 100MHz PCLK 50MHz PCLK 25MHz PCLK 12.5MHz PCLK
* ----------------- ----------------- ----------------- -----------------
* desired prescale MR0 prescale MR0 prescale MR0 prescale MR0 resolution
* prescale register register register register register register register register in degrees
* freq value value value value value value value value
*
* 8 11.5 159,999 5.25 159,999 2.13 159,999 0.5625 159,999 0.023
* 4 24 79,999 11.5 79,999 5.25 79,999 2.125 79,999 0.045
* 2 49 39,999 24 39,999 11.5 39,999 5.25 39,999 0.090
* 1 99 19,999 49 19,999 24 19,999 11.5 19,999 0.180
* 0.5 199 9,999 99 9,999 49 9,999 24 9,999 0.360
* 0.25 399 4,999 199 4,999 99 4,999 49 4,999 0.720
* 0.125 799 2,499 399 2,499 199 2,499 99 2,499 1.440
*
* The desired prescale frequency column comes from an input in the range of 544 - 2400 microseconds
* and the desire to just shift the input left or right as needed.
*
* A resolution of 0.2 degrees seems reasonable so a prescale frequency output of 1MHz is being used.
* It also means we don't need to scale the input.
*
* The PCLK is set to 25MHz because that's the slowest one that gives whole numbers for prescale and
* MR0 registers.
*
* Final settings:
* PCLKSEL0: 0x0
* PWM1PR: 0x018 (24)
* PWM1MR0: 0x04E1F (19,999)
*
*/
void LPC1768_PWM_init(void) {
///// directly controlled PWM pins (interrupts not used for these)
#define SBIT_CNTEN 0 // PWM1 counter & pre-scaler enable/disable
#define SBIT_CNTRST 1 // reset counters to known state
#define SBIT_PWMEN 3 // 1 - PWM, 0 - timer
#define SBIT_PWMMR0R 1
#define PCPWM1 6
#define PCLK_PWM1 12
SBI(LPC_SC->PCONP, PCPWM1); // Enable PWM1 controller (enabled on power up)
LPC_SC->PCLKSEL0 &= ~(0x3 << PCLK_PWM1);
LPC_SC->PCLKSEL0 |= (LPC_PWM1_PCLKSEL0 << PCLK_PWM1);
uint32_t PR = (CLKPWR_GetPCLK(CLKPWR_PCLKSEL_PWM1) / 1000000) - 1; // Prescalar to create 1 MHz output
LPC_PWM1->MR0 = LPC_PWM1_MR0; // TC resets every 19,999 + 1 cycles - sets PWM cycle(Ton+Toff) to 20 mS
// MR0 must be set before TCR enables the PWM
LPC_PWM1->TCR = _BV(SBIT_CNTEN) | _BV(SBIT_CNTRST) | _BV(SBIT_PWMEN); // Enable counters, reset counters, set mode to PWM
CBI(LPC_PWM1->TCR, SBIT_CNTRST); // Take counters out of reset
LPC_PWM1->PR = PR;
LPC_PWM1->MCR = _BV(SBIT_PWMMR0R) | _BV(0); // Reset TC if it matches MR0, disable all interrupts except for MR0
LPC_PWM1->CTCR = 0; // Disable counter mode (enable PWM mode)
LPC_PWM1->LER = 0x07F; // Set the latch Enable Bits to load the new Match Values for MR0 - MR6
LPC_PWM1->PCR = 0; // Single edge mode for all channels, PWM1 control of outputs off
//// interrupt controlled PWM setup
LPC_SC->PCONP |= 1 << 23; // power on timer3
HAL_PWM_TIMER->PR = PR;
HAL_PWM_TIMER->MCR = 0x0B; // Interrupt on MR0 & MR1, reset on MR0
HAL_PWM_TIMER->MR0 = LPC_PWM1_MR0;
HAL_PWM_TIMER->MR1 = 0;
HAL_PWM_TIMER->TCR = _BV(0); // enable
NVIC_EnableIRQ(HAL_PWM_TIMER_IRQn);
NVIC_SetPriority(HAL_PWM_TIMER_IRQn, NVIC_EncodePriority(0, 4, 0));
}
bool ISR_table_update = false; // flag to tell the ISR that the tables need to be updated & swapped
uint8_t ISR_index = 0; // index used by ISR to skip already actioned entries
#define COPY_ACTIVE_TABLE for (uint8_t i = 0; i < NUM_ISR_PWMS ; i++) work_table[i] = active_table[i]
uint32_t first_MR1_value = LPC_PWM1_MR0 + 1;
void LPC1768_PWM_sort(void) {
for (uint8_t i = NUM_ISR_PWMS; --i;) { // (bubble) sort table by microseconds
bool didSwap = false;
PWM_map temp;
for (uint16_t j = 0; j < i; ++j) {
if (work_table[j].microseconds > work_table[j + 1].microseconds) {
temp = work_table[j + 1];
work_table[j + 1] = work_table[j];
work_table[j] = temp;
didSwap = true;
}
}
if (!didSwap) break;
}
}
bool LPC1768_PWM_attach_pin(pin_t pin, uint32_t min /* = 1 */, uint32_t max /* = (LPC_PWM1_MR0 - 1) */, uint8_t servo_index /* = 0xFF */) {
pin = GET_PIN_MAP_PIN(GET_PIN_MAP_INDEX(pin & 0xFF)); // Sometimes the upper byte is garbled
//// direct control PWM code
switch (pin) {
case P1_23: // MKS Sbase Servo 0, PWM1 channel 4 (J3-8 PWM1.4)
direct_table[P1_23_PWM_channel - 1].min = min;
direct_table[P1_23_PWM_channel - 1].max = MIN(max, LPC_PWM1_MR0 - MR0_MARGIN);
direct_table[P1_23_PWM_channel - 1].assigned = true;
return true;
case P1_20: // Servo 0, PWM1 channel 2 (Pin 11 P1.20 PWM1.2)
direct_table[P1_20_PWM_channel - 1].min = min;
direct_table[P1_20_PWM_channel - 1].max = MIN(max, LPC_PWM1_MR0 - MR0_MARGIN);
direct_table[P1_20_PWM_channel - 1].assigned = true;
return true;
case P1_21: // Servo 1, PWM1 channel 3 (Pin 6 P1.21 PWM1.3)
direct_table[P1_21_PWM_channel - 1].min = min;
direct_table[P1_21_PWM_channel - 1].max = MIN(max, LPC_PWM1_MR0 - MR0_MARGIN);
direct_table[P1_21_PWM_channel - 1].assigned = true;
return true;
case P1_18: // Servo 3, PWM1 channel 1 (Pin 4 P1.18 PWM1.1)
direct_table[P1_18_PWM_channel - 1].min = min;
direct_table[P1_18_PWM_channel - 1].max = MIN(max, LPC_PWM1_MR0 - MR0_MARGIN);
direct_table[P1_18_PWM_channel - 1].assigned = true;
return true;
case P2_04: // D9 FET, PWM1 channel 5 (Pin 9 P2_04 PWM1.5)
direct_table[P2_04_PWM_channel - 1].min = min;
direct_table[P2_04_PWM_channel - 1].max = MIN(max, LPC_PWM1_MR0 - MR0_MARGIN);
direct_table[P2_04_PWM_channel - 1].assigned = true;
return true;
case P2_05: // D10 FET, PWM1 channel 6 (Pin 10 P2_05 PWM1.6)
direct_table[P2_05_PWM_channel - 1].min = min;
direct_table[P2_05_PWM_channel - 1].max = MIN(max, LPC_PWM1_MR0 - MR0_MARGIN);
direct_table[P2_05_PWM_channel - 1].assigned = true;
return true;
}
//// interrupt controlled PWM code
NVIC_DisableIRQ(HAL_PWM_TIMER_IRQn); // make it safe to update the active table
// OK to update the active table because the
// ISR doesn't use any of the changed items
// We NEED memory barriers to ensure Interrupts are actually disabled!
// ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the )
__DSB();
__ISB();
if (ISR_table_update) //use work table if that's the newest
temp_table = work_table;
else
temp_table = active_table;
uint8_t slot = 0;
for (uint8_t i = 0; i < NUM_ISR_PWMS; i++) // see if already in table
if (temp_table[i].pin == pin) {
NVIC_EnableIRQ(HAL_PWM_TIMER_IRQn); // re-enable PWM interrupts
return 1;
}
for (uint8_t i = 1; (i < NUM_ISR_PWMS + 1) && !slot; i++) // find empty slot
if ( !(temp_table[i - 1].set_register)) { slot = i; break; } // any item that can't be zero when active or just attached is OK
if (!slot) {
NVIC_EnableIRQ(HAL_PWM_TIMER_IRQn); // re-enable PWM interrupts
return 0;
}
slot--; // turn it into array index
temp_table[slot].pin = pin; // init slot
temp_table[slot].set_register = &LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOSET;
temp_table[slot].clr_register = &LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOCLR;
temp_table[slot].write_mask = LPC_PIN(LPC1768_PIN_PIN(pin));
temp_table[slot].min = min;
temp_table[slot].max = max; // different max for ISR PWMs than for direct PWMs
temp_table[slot].servo_index = servo_index;
temp_table[slot].active_flag = false;
NVIC_EnableIRQ(HAL_PWM_TIMER_IRQn); // re-enable PWM interrupts
return 1;
}
bool LPC1768_PWM_detach_pin(pin_t pin) {
pin = GET_PIN_MAP_PIN(GET_PIN_MAP_INDEX(pin & 0xFF));
//// direct control PWM code
switch (pin) {
case P1_23: // MKS Sbase Servo 0, PWM1 channel 4 (J3-8 PWM1.4)
if (!direct_table[P1_23_PWM_channel - 1].assigned) return false;
CBI(LPC_PWM1->PCR, 8 + P1_23_PWM_channel); // disable PWM1 module control of this pin
LPC_PINCON->PINSEL3 &= ~(0x3 << 14); // return pin to general purpose I/O
direct_table[P1_23_PWM_channel - 1].assigned = false;
return true;
case P1_20: // Servo 0, PWM1 channel 2 (Pin 11 P1.20 PWM1.2)
if (!direct_table[P1_20_PWM_channel - 1].assigned) return false;
CBI(LPC_PWM1->PCR, 8 + P1_20_PWM_channel); // disable PWM1 module control of this pin
LPC_PINCON->PINSEL3 &= ~(0x3 << 8); // return pin to general purpose I/O
direct_table[P1_20_PWM_channel - 1].assigned = false;
return true;
case P1_21: // Servo 1, PWM1 channel 3 (Pin 6 P1.21 PWM1.3)
if (!direct_table[P1_21_PWM_channel - 1].assigned) return false;
CBI(LPC_PWM1->PCR, 8 + P1_21_PWM_channel); // disable PWM1 module control of this pin
LPC_PINCON->PINSEL3 &= ~(0x3 << 10); // return pin to general purpose I/O
direct_table[P1_21_PWM_channel - 1].assigned = false;
return true;
case P1_18: // Servo 3, PWM1 channel 1 (Pin 4 P1.18 PWM1.1)
if (!direct_table[P1_18_PWM_channel - 1].assigned) return false;
CBI(LPC_PWM1->PCR, 8 + P1_18_PWM_channel); // disable PWM1 module control of this pin
LPC_PINCON->PINSEL3 &= ~(0x3 << 4); // return pin to general purpose I/O
direct_table[P1_18_PWM_channel - 1].assigned = false;
return true;
case P2_04: // D9 FET, PWM1 channel 5 (Pin 9 P2_04 PWM1.5)
if (!direct_table[P2_04_PWM_channel - 1].assigned) return false;
CBI(LPC_PWM1->PCR, 8 + P2_04_PWM_channel); // disable PWM1 module control of this pin
LPC_PINCON->PINSEL4 &= ~(0x3 << 10); // return pin to general purpose I/O
direct_table[P2_04_PWM_channel - 1].assigned = false;
return true;
case P2_05: // D10 FET, PWM1 channel 6 (Pin 10 P2_05 PWM1.6)
if (!direct_table[P2_05_PWM_channel - 1].assigned) return false;
CBI(LPC_PWM1->PCR, 8 + P2_05_PWM_channel); // disable PWM1 module control of this pin
LPC_PINCON->PINSEL4 &= ~(0x3 << 4); // return pin to general purpose I/O
direct_table[P2_05_PWM_channel - 1].assigned = false;
return true;
}
//// interrupt controlled PWM code
NVIC_DisableIRQ(HAL_PWM_TIMER_IRQn);
// We NEED memory barriers to ensure Interrupts are actually disabled!
// ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the )
__DSB();
__ISB();
if (ISR_table_update) {
ISR_table_update = false; // don't update yet - have another update to do
NVIC_EnableIRQ(HAL_PWM_TIMER_IRQn); // re-enable PWM interrupts
}
else {
NVIC_EnableIRQ(HAL_PWM_TIMER_IRQn); // re-enable PWM interrupts
COPY_ACTIVE_TABLE; // copy active table into work table
}
uint8_t slot = 0xFF;
for (uint8_t i = 0; i < NUM_ISR_PWMS; i++) { // find slot
if (work_table[i].pin == pin) {
slot = i;
break;
}
}
if (slot == 0xFF) // return error if pin not found
return false;
work_table[slot] = {0, 0, 0, 0, 0, 0, 0, 0, 0};
LPC1768_PWM_sort(); // sort table by microseconds
ISR_table_update = true;
return true;
}
// value is 0-20,000 microseconds (0% to 100% duty cycle)
// servo routine provides values in the 544 - 2400 range
bool LPC1768_PWM_write(pin_t pin, uint32_t value) {
pin = GET_PIN_MAP_PIN(GET_PIN_MAP_INDEX(pin & 0xFF));
//// direct control PWM code
switch (pin) {
case P1_23: // MKS Sbase Servo 0, PWM1 channel 4 (J3-8 PWM1.4)
if (!direct_table[P1_23_PWM_channel - 1].assigned) return false;
LPC_PWM1->PCR |= _BV(8 + P1_23_PWM_channel); // enable PWM1 module control of this pin
LPC_PINCON->PINSEL3 = 0x2 << 14; // must set pin function AFTER setting PCR
// load the new time value
LPC_PWM1->MR4 = MAX(MIN(value, direct_table[P1_23_PWM_channel - 1].max), direct_table[P1_23_PWM_channel - 1].min);
LPC_PWM1->LER = 0x1 << P1_23_PWM_channel; // Set the latch Enable Bit to load the new Match Value on the next MR0
return true;
case P1_20: // Servo 0, PWM1 channel 2 (Pin 11 P1.20 PWM1.2)
if (!direct_table[P1_20_PWM_channel - 1].assigned) return false;
LPC_PWM1->PCR |= _BV(8 + P1_20_PWM_channel); // enable PWM1 module control of this pin
LPC_PINCON->PINSEL3 |= 0x2 << 8; // must set pin function AFTER setting PCR
// load the new time value
LPC_PWM1->MR2 = MAX(MIN(value, direct_table[P1_20_PWM_channel - 1].max), direct_table[P1_20_PWM_channel - 1].min);
LPC_PWM1->LER = 0x1 << P1_20_PWM_channel; // Set the latch Enable Bit to load the new Match Value on the next MR0
return true;
case P1_21: // Servo 1, PWM1 channel 3 (Pin 6 P1.21 PWM1.3)
if (!direct_table[P1_21_PWM_channel - 1].assigned) return false;
LPC_PWM1->PCR |= _BV(8 + P1_21_PWM_channel); // enable PWM1 module control of this pin
LPC_PINCON->PINSEL3 |= 0x2 << 10; // must set pin function AFTER setting PCR
// load the new time value
LPC_PWM1->MR3 = MAX(MIN(value, direct_table[P1_21_PWM_channel - 1].max), direct_table[P1_21_PWM_channel - 1].min);
LPC_PWM1->LER = 0x1 << P1_21_PWM_channel; // Set the latch Enable Bit to load the new Match Value on the next MR0
return true;
case P1_18: // Servo 3, PWM1 channel 1 (Pin 4 P1.18 PWM1.1)
if (!direct_table[P1_18_PWM_channel - 1].assigned) return false;
LPC_PWM1->PCR |= _BV(8 + P1_18_PWM_channel); // enable PWM1 module control of this pin
LPC_PINCON->PINSEL3 |= 0x2 << 4; // must set pin function AFTER setting PCR
// load the new time value
LPC_PWM1->MR1 = MAX(MIN(value, direct_table[P1_18_PWM_channel - 1].max), direct_table[P1_18_PWM_channel - 1].min);
LPC_PWM1->LER = 0x1 << P1_18_PWM_channel; // Set the latch Enable Bit to load the new Match Value on the next MR0
return true;
case P2_04: // D9 FET, PWM1 channel 5 (Pin 9 P2_04 PWM1.5)
if (!direct_table[P2_04_PWM_channel - 1].assigned) return false;
LPC_PWM1->PCR |= _BV(8 + P2_04_PWM_channel); // enable PWM1 module control of this pin
LPC_PINCON->PINSEL4 |= 0x1 << 8; // must set pin function AFTER setting PCR
// load the new time value
LPC_PWM1->MR5 = MAX(MIN(value, direct_table[P2_04_PWM_channel - 1].max), direct_table[P2_04_PWM_channel - 1].min);
LPC_PWM1->LER = 0x1 << P2_04_PWM_channel; // Set the latch Enable Bit to load the new Match Value on the next MR0
return true;
case P2_05: // D10 FET, PWM1 channel 6 (Pin 10 P2_05 PWM1.6)
if (!direct_table[P2_05_PWM_channel - 1].assigned) return false;
LPC_PWM1->PCR |= _BV(8 + P2_05_PWM_channel); // enable PWM1 module control of this pin
LPC_PINCON->PINSEL4 |= 0x1 << 10; // must set pin function AFTER setting PCR
// load the new time value
LPC_PWM1->MR6 = MAX(MIN(value, direct_table[P2_05_PWM_channel - 1].max), direct_table[P2_05_PWM_channel - 1].min);
LPC_PWM1->LER = 0x1 << P2_05_PWM_channel; // Set the latch Enable Bit to load the new Match Value on the next MR0
return true;
}
//// interrupt controlled PWM code
NVIC_DisableIRQ(HAL_PWM_TIMER_IRQn);
// We NEED memory barriers to ensure Interrupts are actually disabled!
// ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the )
__DSB();
__ISB();
if (!ISR_table_update) // use the most up to date table
COPY_ACTIVE_TABLE; // copy active table into work table
uint8_t slot = 0xFF;
for (uint8_t i = 0; i < NUM_ISR_PWMS; i++) // find slot
if (work_table[i].pin == pin) { slot = i; break; }
if (slot == 0xFF) { // return error if pin not found
NVIC_EnableIRQ(HAL_PWM_TIMER_IRQn);
return false;
}
work_table[slot].microseconds = MAX(MIN(value, work_table[slot].max), work_table[slot].min);;
work_table[slot].active_flag = true;
LPC1768_PWM_sort(); // sort table by microseconds
ISR_table_update = true;
NVIC_EnableIRQ(HAL_PWM_TIMER_IRQn); // re-enable PWM interrupts
return 1;
}
bool useable_hardware_PWM(pin_t pin) {
pin = GET_PIN_MAP_PIN(GET_PIN_MAP_INDEX(pin & 0xFF));
NVIC_DisableIRQ(HAL_PWM_TIMER_IRQn);
// We NEED memory barriers to ensure Interrupts are actually disabled!
// ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the )
__DSB();
__ISB();
bool return_flag = false;
for (uint8_t i = 0; i < NUM_ISR_PWMS; i++) // see if it's already setup
if (active_table[i].pin == pin) return_flag = true;
for (uint8_t i = 0; i < NUM_ISR_PWMS; i++) // see if there is an empty slot
if (!active_table[i].set_register) return_flag = true;
NVIC_EnableIRQ(HAL_PWM_TIMER_IRQn); // re-enable PWM interrupts
return return_flag;
}
////////////////////////////////////////////////////////////////////////////////
#define PWM_LPC1768_ISR_SAFETY_FACTOR 5 // amount of time needed to guarantee MR1 count will be above TC
volatile bool in_PWM_isr = false;
HAL_PWM_TIMER_ISR {
bool first_active_entry = true;
uint32_t next_MR1_val;
if (in_PWM_isr) goto exit_PWM_ISR; // prevent re-entering this ISR
in_PWM_isr = true;
if (HAL_PWM_TIMER->IR & 0x01) { // MR0 interrupt
next_MR1_val = first_MR1_value; // only used if have a blank ISR table
if (ISR_table_update) { // new values have been loaded so swap tables
temp_table = active_table;
active_table = work_table;
work_table = temp_table;
ISR_table_update = false;
}
}
HAL_PWM_TIMER->IR = 0x3F; // clear all interrupts
for (uint8_t i = 0; i < NUM_ISR_PWMS; i++) {
if (active_table[i].active_flag) {
if (first_active_entry) {
first_active_entry = false;
next_MR1_val = active_table[i].microseconds;
}
if (HAL_PWM_TIMER->TC < active_table[i].microseconds) {
*active_table[i].set_register = active_table[i].write_mask; // set pin high
}
else {
*active_table[i].clr_register = active_table[i].write_mask; // set pin low
next_MR1_val = (i == NUM_ISR_PWMS -1)
? LPC_PWM1_MR0 + 1 // done with table, wait for MR0
: active_table[i + 1].microseconds; // set next MR1 interrupt?
}
}
}
if (first_active_entry) next_MR1_val = LPC_PWM1_MR0 + 1; // empty table so disable MR1 interrupt
HAL_PWM_TIMER->MR1 = MAX(next_MR1_val, HAL_PWM_TIMER->TC + PWM_LPC1768_ISR_SAFETY_FACTOR); // set next
in_PWM_isr = false;
exit_PWM_ISR:
return;
}
#endif
/////////////////////////////////////////////////////////////////
///////////////// HARDWARE FIRMWARE INTERACTION ////////////////
/////////////////////////////////////////////////////////////////
/**
* There are two distinct systems used for PWMs:
* directly controlled pins
* ISR controlled pins.
*
* The two systems are independent of each other. The use the same counter frequency so there's no
* translation needed when setting the time values. The init, attach, detach and write routines all
* start with the direct pin code which is followed by the ISR pin code.
*
* The PMW1 module handles the directly controlled pins. Each directly controlled pin is associated
* with a match register (MR1 - MR6). When the associated MR equals the module's TIMER/COUNTER (TC)
* then the pins is set to low. The MR0 register controls the repetition rate. When the TC equals
* MR0 then the TC is reset and ALL directly controlled pins are set high. The resulting pulse widths
* are almost immune to system loading and ISRs. No PWM1 interrupts are used.
*
* The ISR controlled pins use the TIMER/COUNTER, MR0 and MR1 registers from one timer. MR0 controls
* period of the controls the repetition rate. When the TC equals MR0 then the TC is reset and an
* interrupt is generated. When the TC equals MR1 then an interrupt is generated.
*
* Each interrupt does the following:
* 1) Swaps the tables if it's a MR0 interrupt and the swap flag is set. It then clears the swap flag.
* 2) Scans the entire ISR table (it's been sorted low to high time)
* a. If its the first active entry then it grabs the time as a tentative time for MR1
* b. If active and TC is less than the time then it sets the pin high
* c. If active and TC is more than the time it sets the pin high
* d. On every entry that sets a pin low it grabs the NEXT entry's time for use as the next MR1.
* This results in MR1 being set to the time in the first active entry that does NOT set a
* pin low.
* e. If it's setting the last entry's pin low then it sets MR1 to a value bigger than MR0
* f. If no value has been grabbed for the next MR1 then it's an empty table and MR1 is set to a
* value greater than MR0
*/

View file

@ -1,79 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* The class Servo uses the PWM class to implement its functions
*
* All PWMs use the same repetition rate - 20mS because that's the normal servo rate
*/
/**
* This is a hybrid system.
*
* The PWM1 module is used to directly control the Servo 0, 1 & 3 pins. This keeps
* the pulse width jitter to under a microsecond.
*
* For all other pins the PWM1 module is used to generate interrupts. The ISR
* routine does the actual setting/clearing of pins. The upside is that any pin can
* have a PWM channel assigned to it. The downside is that there is more pulse width
* jitter. The jitter depends on what else is happening in the system and what ISRs
* prempt the PWM ISR. Writing to the SD card can add 20 microseconds to the pulse
* width.
*/
/**
* The data structures are setup to minimize the computation done by the ISR which
* minimizes ISR execution time. Execution times are 2.2 - 3.7 microseconds.
*
* Two tables are used. active_table is used by the ISR. Changes to the table are
* are done by copying the active_table into the work_table, updating the work_table
* and then swapping the two tables. Swapping is done by manipulating pointers.
*
* Immediately after the swap the ISR uses the work_table until the start of the
* next 20mS cycle. During this transition the "work_table" is actually the table
* that was being used before the swap. The "active_table" contains the data that
* will start being used at the start of the next 20mS period. This keeps the pins
* well behaved during the transition.
*
* The ISR's priority is set to the maximum otherwise other ISRs can cause considerable
* jitter in the PWM high time.
*
* See the end of this file for details on the hardware/firmware interaction
*/
#ifndef _LPC1768_PWM_H_
#define _LPC1768_PWM_H_
#include <pinmapping.h>
#include <lpc17xx_clkpwr.h>
#define LPC_PWM1_MR0 19999 // base repetition rate minus one count - 20mS
#define LPC_PWM1_PCLKSEL0 CLKPWR_PCLKSEL_CCLK_DIV_4 // select clock divider for prescaler - defaults to 4 on power up
#define MR0_MARGIN 200 // if channel value too close to MR0 the system locks up
void LPC1768_PWM_init(void);
bool LPC1768_PWM_attach_pin(pin_t pin, uint32_t min=1, uint32_t max=(LPC_PWM1_MR0 - (MR0_MARGIN)), uint8_t servo_index=0xFF);
bool LPC1768_PWM_write(pin_t pin, uint32_t value);
bool LPC1768_PWM_detach_pin(pin_t pin);
bool useable_hardware_PWM(pin_t pin);
#endif // _LPC1768_PWM_H_

View file

@ -1,163 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* Based on servo.cpp - Interrupt driven Servo library for Arduino using 16 bit
* timers- Version 2 Copyright (c) 2009 Michael Margolis. All right reserved.
*/
/**
* A servo is activated by creating an instance of the Servo class passing the desired pin to the attach() method.
* The servos are pulsed in the background using the value most recently written using the write() method
*
* Note that analogWrite of PWM on pins associated with the timer are disabled when the first servo is attached.
* Timers are seized as needed in groups of 12 servos - 24 servos use two timers, 48 servos will use four.
*
* The methods are:
*
* Servo - Class for manipulating servo motors connected to Arduino pins.
*
* attach(pin) - Attach a servo motor to an i/o pin.
* attach(pin, min, max) - Attach to a pin, setting min and max values in microseconds
* Default min is 544, max is 2400
*
* write() - Set the servo angle in degrees. (Invalid angles over MIN_PULSE_WIDTH are treated as µs.)
* writeMicroseconds() - Set the servo pulse width in microseconds.
* move(pin, angle) - Sequence of attach(pin), write(angle), safe_delay(servo_delay[servoIndex]).
* With DEACTIVATE_SERVOS_AFTER_MOVE it detaches after servo_delay[servoIndex].
* read() - Get the last-written servo pulse width as an angle between 0 and 180.
* readMicroseconds() - Get the last-written servo pulse width in microseconds.
* attached() - Return true if a servo is attached.
* detach() - Stop an attached servo from pulsing its i/o pin.
*
*/
/**
* The only time that this library wants physical movement is when a WRITE
* command is issued. Before that all the attach & detach activity is solely
* within the data base.
*
* The PWM output is inactive until the first WRITE. After that it stays active
* unless DEACTIVATE_SERVOS_AFTER_MOVE is enabled and a MOVE command was issued.
*/
#ifdef TARGET_LPC1768
#include "../../inc/MarlinConfig.h"
#if HAS_SERVOS
#include "LPC1768_PWM.h"
#include "LPC1768_Servo.h"
#include "servo_private.h"
ServoInfo_t servo_info[MAX_SERVOS]; // static array of servo info structures
uint8_t ServoCount = 0; // the total number of attached servos
#define US_TO_PULSE_WIDTH(p) p
#define PULSE_WIDTH_TO_US(p) p
#define TRIM_DURATION 0
#define SERVO_MIN() MIN_PULSE_WIDTH // minimum value in uS for this servo
#define SERVO_MAX() MAX_PULSE_WIDTH // maximum value in uS for this servo
Servo::Servo() {
if (ServoCount < MAX_SERVOS) {
this->servoIndex = ServoCount++; // assign a servo index to this instance
servo_info[this->servoIndex].pulse_width = US_TO_PULSE_WIDTH(DEFAULT_PULSE_WIDTH); // store default values - 12 Aug 2009
}
else
this->servoIndex = INVALID_SERVO; // too many servos
}
int8_t Servo::attach(const int pin) {
return this->attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
}
int8_t Servo::attach(const int pin, const int min, const int max) {
if (this->servoIndex >= MAX_SERVOS) return -1;
if (pin > 0) servo_info[this->servoIndex].Pin.nbr = pin; // only assign a pin value if the pin info is
// greater than zero. This way the init routine can
// assign the pin and the MOVE command only needs the value.
this->min = MIN_PULSE_WIDTH; //resolution of min/max is 1 uS
this->max = MAX_PULSE_WIDTH;
servo_info[this->servoIndex].Pin.isActive = true;
return this->servoIndex;
}
void Servo::detach() {
servo_info[this->servoIndex].Pin.isActive = false;
}
void Servo::write(int value) {
if (value < MIN_PULSE_WIDTH) { // treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds)
value = map(constrain(value, 0, 180), 0, 180, SERVO_MIN(), SERVO_MAX());
// odd - this sets zero degrees to 544 and 180 degrees to 2400 microseconds but the literature says
// zero degrees should be 500 microseconds and 180 should be 2500
}
this->writeMicroseconds(value);
}
void Servo::writeMicroseconds(int value) {
// calculate and store the values for the given channel
byte channel = this->servoIndex;
if (channel < MAX_SERVOS) { // ensure channel is valid
// ensure pulse width is valid
value = constrain(value, SERVO_MIN(), SERVO_MAX()) - (TRIM_DURATION);
value = US_TO_PULSE_WIDTH(value); // convert to pulse_width after compensating for interrupt overhead - 12 Aug 2009
servo_info[channel].pulse_width = value;
LPC1768_PWM_attach_pin(servo_info[this->servoIndex].Pin.nbr, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH, this->servoIndex);
LPC1768_PWM_write(servo_info[this->servoIndex].Pin.nbr, value);
}
}
// return the value as degrees
int Servo::read() { return map(this->readMicroseconds() + 1, SERVO_MIN(), SERVO_MAX(), 0, 180); }
int Servo::readMicroseconds() {
return (this->servoIndex == INVALID_SERVO) ? 0 : PULSE_WIDTH_TO_US(servo_info[this->servoIndex].pulse_width) + TRIM_DURATION;
}
bool Servo::attached() { return servo_info[this->servoIndex].Pin.isActive; }
void Servo::move(const int value) {
constexpr uint16_t servo_delay[] = SERVO_DELAY;
static_assert(COUNT(servo_delay) == NUM_SERVOS, "SERVO_DELAY must be an array NUM_SERVOS long.");
if (this->attach(0) >= 0) { // notice the pin number is zero here
this->write(value);
safe_delay(servo_delay[this->servoIndex]);
#if ENABLED(DEACTIVATE_SERVOS_AFTER_MOVE)
this->detach();
LPC1768_PWM_detach_pin(servo_info[this->servoIndex].Pin.nbr); // shut down the PWM signal
LPC1768_PWM_attach_pin(servo_info[this->servoIndex].Pin.nbr, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH, this->servoIndex); // make sure no one else steals the slot
#endif
}
}
#endif // HAS_SERVOS
#endif // TARGET_LPC1768

View file

@ -1,62 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* The class Servo uses the PWM class to implement its functions
*
* The PWM1 module is only used to generate interrups at specified times. It
* is NOT used to directly toggle pins. The ISR writes to the pin assigned to
* that interrupt
*
* All PWMs use the same repetition rate - 20mS because that's the normal servo rate
*
*/
#ifndef LPC1768_SERVO_H
#define LPC1768_SERVO_H
#include <stdint.h>
class Servo {
public:
Servo();
int8_t attach(const int pin); // attach the given pin to the next free channel, set pinMode, return channel number (-1 on fail)
int8_t attach(const int pin, const int min, const int max); // as above but also sets min and max values for writes.
void detach();
void write(int value); // if value is < 200 it is treated as an angle, otherwise as pulse width in microseconds
void writeMicroseconds(int value); // write pulse width in microseconds
void move(const int value); // attach the servo, then move to value
// if value is < 200 it is treated as an angle, otherwise as pulse width in microseconds
// if DEACTIVATE_SERVOS_AFTER_MOVE wait SERVO_DELAY, then detach
int read(); // returns current pulse width as an angle between 0 and 180 degrees
int readMicroseconds(); // returns current pulse width in microseconds for this servo (was read_us() in first release)
bool attached(); // return true if this servo is attached, otherwise false
private:
uint8_t servoIndex; // index into the channel data for this servo
int min;
int max;
};
#define HAL_SERVO_LIB Servo
#endif // LPC1768_SERVO_H

View file

@ -0,0 +1,56 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifdef TARGET_LPC1768
#include "../../inc/MarlinConfigPre.h"
#include "MarlinSerial.h"
#if (defined(SERIAL_PORT) && SERIAL_PORT == 0) || (defined(SERIAL_PORT_2) && SERIAL_PORT_2 == 0)
MarlinSerial MSerial(LPC_UART0);
extern "C" void UART0_IRQHandler(void) {
MSerial.IRQHandler();
}
#endif
#if (defined(SERIAL_PORT) && SERIAL_PORT == 1) || (defined(SERIAL_PORT_2) && SERIAL_PORT_2 == 1)
MarlinSerial MSerial1((LPC_UART_TypeDef *) LPC_UART1);
extern "C" void UART1_IRQHandler(void) {
MSerial1.IRQHandler();
}
#endif
#if (defined(SERIAL_PORT) && SERIAL_PORT == 2) || (defined(SERIAL_PORT_2) && SERIAL_PORT_2 == 2)
MarlinSerial MSerial2(LPC_UART2);
extern "C" void UART2_IRQHandler(void) {
MSerial2.IRQHandler();
}
#endif
#if (defined(SERIAL_PORT) && SERIAL_PORT == 3) || (defined(SERIAL_PORT_2) && SERIAL_PORT_2 == 3)
MarlinSerial MSerial3(LPC_UART3);
extern "C" void UART3_IRQHandler(void) {
MSerial3.IRQHandler();
}
#endif
#endif // TARGET_LPC1768

View file

@ -0,0 +1,71 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef MARLINSERIAL_H
#define MARLINSERIAL_H
#include <HardwareSerial.h>
#include <WString.h>
#include "../../inc/MarlinConfigPre.h"
#if ENABLED(EMERGENCY_PARSER)
#include "../../feature/emergency_parser.h"
#endif
#ifndef SERIAL_PORT
#define SERIAL_PORT 0
#endif
#ifndef RX_BUFFER_SIZE
#define RX_BUFFER_SIZE 128
#endif
#ifndef TX_BUFFER_SIZE
#define TX_BUFFER_SIZE 32
#endif
class MarlinSerial : public HardwareSerial<RX_BUFFER_SIZE, TX_BUFFER_SIZE> {
public:
MarlinSerial(LPC_UART_TypeDef *UARTx) :
HardwareSerial<RX_BUFFER_SIZE, TX_BUFFER_SIZE>(UARTx)
#if ENABLED(EMERGENCY_PARSER)
, emergency_state(EmergencyParser::State::EP_RESET)
#endif
{
}
#if ENABLED(EMERGENCY_PARSER)
bool recv_callback(const char c) override {
emergency_parser.update(emergency_state, c);
return true; // do not discard character
}
#endif
#if ENABLED(EMERGENCY_PARSER)
EmergencyParser::State emergency_state;
#endif
};
extern MarlinSerial MSerial;
extern MarlinSerial MSerial1;
extern MarlinSerial MSerial2;
extern MarlinSerial MSerial3;
#endif // MARLINSERIAL_H

View file

@ -50,35 +50,25 @@
#ifndef SERVO_PRIVATE_H #ifndef SERVO_PRIVATE_H
#define SERVO_PRIVATE_H #define SERVO_PRIVATE_H
#include <stdint.h> #include <Servo.h>
// Macros class MarlinServo: public Servo {
//values in microseconds public:
#define MIN_PULSE_WIDTH 544 // the shortest pulse sent to a servo void move(const int value) {
#define MAX_PULSE_WIDTH 2400 // the longest pulse sent to a servo constexpr uint16_t servo_delay[] = SERVO_DELAY;
#define DEFAULT_PULSE_WIDTH 1500 // default pulse width when servo is attached static_assert(COUNT(servo_delay) == NUM_SERVOS, "SERVO_DELAY must be an array NUM_SERVOS long.");
#define REFRESH_INTERVAL 20000 // minimum time to refresh servos in microseconds
#define MAX_SERVOS 4 if (this->attach(servo_info[this->servoIndex].Pin.nbr) >= 0) { // try to reattach
this->write(value);
safe_delay(servo_delay[this->servoIndex]); // delay to allow servo to reach position
#if ENABLED(DEACTIVATE_SERVOS_AFTER_MOVE)
this->detach();
#endif
}
#define INVALID_SERVO 255 // flag indicating an invalid servo index }
};
#define HAL_SERVO_LIB MarlinServo
// Types
typedef struct {
uint8_t nbr : 8 ; // a pin number from 0 to 254 (255 signals invalid pin)
uint8_t isActive : 1 ; // true if this channel is enabled, pin not pulsed if false
} ServoPin_t;
typedef struct {
ServoPin_t Pin;
unsigned int pulse_width; // pulse width in microseconds
} ServoInfo_t;
// Global variables
extern uint8_t ServoCount;
extern ServoInfo_t servo_info[MAX_SERVOS];
#endif // SERVO_PRIVATE_H #endif // SERVO_PRIVATE_H

View file

@ -1,90 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* Software SPI functions originally from Arduino Sd2Card Library
* Copyright (C) 2009 by William Greiman
*/
/**
* For TARGET_LPC1768
*/
#ifdef TARGET_LPC1768
#include "../../inc/MarlinConfig.h"
// --------------------------------------------------------------------------
// Software SPI
// --------------------------------------------------------------------------
/**
* This software SPI runs at multiple rates. The SD software provides an index
* (spiRate) of 0-6. The mapping is:
* 0 - about 5 MHz peak (6 MHz on LPC1769)
* 1-2 - about 2 MHz peak
* 3 - about 1 MHz peak
* 4 - about 500 kHz peak
* 5 - about 250 kHz peak
* 6 - about 125 kHz peak
*/
uint8_t swSpiTransfer(uint8_t b, const uint8_t spi_speed, const pin_t sck_pin, const pin_t miso_pin, const pin_t mosi_pin) {
for (uint8_t i = 0; i < 8; i++) {
if (spi_speed == 0) {
WRITE(mosi_pin, !!(b & 0x80));
WRITE(sck_pin, HIGH);
b <<= 1;
if (miso_pin >= 0 && READ(miso_pin)) b |= 1;
WRITE(sck_pin, LOW);
}
else {
const uint8_t state = (b & 0x80) ? HIGH : LOW;
for (uint8_t j = 0; j < spi_speed; j++)
WRITE(mosi_pin, state);
for (uint8_t j = 0; j < spi_speed + (miso_pin >= 0 ? 0 : 1); j++)
WRITE(sck_pin, HIGH);
b <<= 1;
if (miso_pin >= 0 && READ(miso_pin)) b |= 1;
for (uint8_t j = 0; j < spi_speed; j++)
WRITE(sck_pin, LOW);
}
}
return b;
}
void swSpiBegin(const pin_t sck_pin, const pin_t miso_pin, const pin_t mosi_pin) {
SET_OUTPUT(sck_pin);
if (VALID_PIN(miso_pin)) SET_INPUT(miso_pin);
SET_OUTPUT(mosi_pin);
}
uint8_t swSpiInit(const uint8_t spiRate, const pin_t sck_pin, const pin_t mosi_pin) {
WRITE(mosi_pin, HIGH);
WRITE(sck_pin, LOW);
return (SystemCoreClock == 120000000 ? 44 : 38) / POW(2, 6 - MIN(spiRate, 6));
}
#endif // TARGET_LPC1768

View file

@ -1,50 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef _SOFTWARE_SPI_H_
#define _SOFTWARE_SPI_H_
#include <pinmapping.h>
// --------------------------------------------------------------------------
// Software SPI
// --------------------------------------------------------------------------
/**
* This software SPI runs at multiple rates. The SD software provides an index
* (spiRate) of 0-6. The mapping is:
* 0 - about 5 MHz peak (6 MHz on LPC1769)
* 1-2 - about 2 MHz peak
* 3 - about 1 MHz peak
* 4 - about 500 kHz peak
* 5 - about 250 kHz peak
* 6 - about 125 kHz peak
*/
void swSpiBegin(const pin_t sck_pin, const pin_t miso_pin, const pin_t mosi_pin);
// Returns the spi_speed value to be passed to swSpiTransfer
uint8_t swSpiInit(const uint8_t spiRate, const pin_t sck_pin, const pin_t mosi_pin);
uint8_t swSpiTransfer(uint8_t b, const uint8_t spi_speed, const pin_t sck_pin, const pin_t miso_pin, const pin_t mosi_pin);
#endif // _SOFTWARE_SPI_H_

View file

@ -1,162 +0,0 @@
/**
* Copyright (c) 2011-2012 Arduino. All right reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifdef TARGET_LPC1768
#include "../../inc/MarlinConfig.h"
#define GNUM 31
typedef void (*interruptCB)(void);
static interruptCB callbacksP0[GNUM] = {};
static interruptCB callbacksP2[GNUM] = {};
extern "C" void GpioEnableInt(const uint32_t port, const uint32_t pin, const uint32_t mode);
extern "C" void GpioDisableInt(const uint32_t port, const uint32_t pin);
static void __initialize() {
NVIC_SetPriority(EINT3_IRQn, NVIC_EncodePriority(0, 1, 0));
NVIC_EnableIRQ(EINT3_IRQn);
}
void attachInterrupt(const pin_t pin, void (*callback)(void), uint32_t mode) {
static int enabled = 0;
if (!INTERRUPT_PIN(pin)) return;
if (!enabled) {
__initialize();
++enabled;
}
uint8_t myport = LPC1768_PIN_PORT(pin),
mypin = LPC1768_PIN_PIN(pin);
if (myport == 0)
callbacksP0[mypin] = callback;
else
callbacksP2[mypin] = callback;
// Enable interrupt
GpioEnableInt(myport,mypin,mode);
}
void detachInterrupt(const pin_t pin) {
if (!INTERRUPT_PIN(pin)) return;
const uint8_t myport = LPC1768_PIN_PORT(pin),
mypin = LPC1768_PIN_PIN(pin);
// Disable interrupt
GpioDisableInt(myport, mypin);
// unset callback
if (myport == 0)
callbacksP0[mypin] = 0;
else //if (myport == 2 )
callbacksP2[mypin] = 0;
}
extern "C" void GpioEnableInt(uint32_t port, uint32_t pin, uint32_t mode) {
//pin here is the processor pin, not logical pin
if (port == 0) {
LPC_GPIOINT->IO0IntClr = _BV(pin);
if (mode == RISING) {
SBI(LPC_GPIOINT->IO0IntEnR, pin);
CBI(LPC_GPIOINT->IO0IntEnF, pin);
}
else if (mode == FALLING) {
SBI(LPC_GPIOINT->IO0IntEnF, pin);
CBI(LPC_GPIOINT->IO0IntEnR, pin);
}
else if (mode == CHANGE) {
SBI(LPC_GPIOINT->IO0IntEnR, pin);
SBI(LPC_GPIOINT->IO0IntEnF, pin);
}
}
else {
LPC_GPIOINT->IO2IntClr = _BV(pin);
if (mode == RISING) {
SBI(LPC_GPIOINT->IO2IntEnR, pin);
CBI(LPC_GPIOINT->IO2IntEnF, pin);
}
else if (mode == FALLING) {
SBI(LPC_GPIOINT->IO2IntEnF, pin);
CBI(LPC_GPIOINT->IO2IntEnR, pin);
}
else if (mode == CHANGE) {
SBI(LPC_GPIOINT->IO2IntEnR, pin);
SBI(LPC_GPIOINT->IO2IntEnF, pin);
}
}
}
extern "C" void GpioDisableInt(const uint32_t port, const uint32_t pin) {
if (port == 0) {
CBI(LPC_GPIOINT->IO0IntEnR, pin);
CBI(LPC_GPIOINT->IO0IntEnF, pin);
LPC_GPIOINT->IO0IntClr = _BV(pin);
}
else {
CBI(LPC_GPIOINT->IO2IntEnR, pin);
CBI(LPC_GPIOINT->IO2IntEnF, pin);
LPC_GPIOINT->IO2IntClr = _BV(pin);
}
}
extern "C" void EINT3_IRQHandler(void) {
// Read in all current interrupt registers. We do this once as the
// GPIO interrupt registers are on the APB bus, and this is slow.
uint32_t rise0 = LPC_GPIOINT->IO0IntStatR,
fall0 = LPC_GPIOINT->IO0IntStatF,
rise2 = LPC_GPIOINT->IO2IntStatR,
fall2 = LPC_GPIOINT->IO2IntStatF;
// Clear the interrupts ASAP
LPC_GPIOINT->IO0IntClr = LPC_GPIOINT->IO2IntClr = 0xFFFFFFFF;
NVIC_ClearPendingIRQ(EINT3_IRQn);
while (rise0 > 0) { // If multiple pins changes happened continue as long as there are interrupts pending
const uint8_t bitloc = 31 - __CLZ(rise0); // CLZ returns number of leading zeros, 31 minus that is location of first pending interrupt
if (callbacksP0[bitloc] != NULL) callbacksP0[bitloc]();
rise0 -= _BV(bitloc);
}
while (fall0 > 0) {
const uint8_t bitloc = 31 - __CLZ(fall0);
if (callbacksP0[bitloc] != NULL) callbacksP0[bitloc]();
fall0 -= _BV(bitloc);
}
while(rise2 > 0) {
const uint8_t bitloc = 31 - __CLZ(rise2);
if (callbacksP2[bitloc] != NULL) callbacksP2[bitloc]();
rise2 -= _BV(bitloc);
}
while (fall2 > 0) {
const uint8_t bitloc = 31 - __CLZ(fall2);
if (callbacksP2[bitloc] != NULL) callbacksP2[bitloc]();
fall2 -= _BV(bitloc);
}
}
#endif // TARGET_LPC1768

View file

@ -1,179 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifdef TARGET_LPC1768
#include "LPC1768_PWM.h"
#include <lpc17xx_pinsel.h>
#include "../../inc/MarlinConfig.h"
#include "../shared/Delay.h"
// Interrupts
void cli(void) { __disable_irq(); } // Disable
void sei(void) { __enable_irq(); } // Enable
// Time functions
void _delay_ms(const int delay_ms) {
delay(delay_ms);
}
uint32_t millis() {
return _millis;
}
// This is required for some Arduino libraries we are using
void delayMicroseconds(uint32_t us) {
DELAY_US(us);
}
extern "C" void delay(const int msec) {
volatile millis_t end = _millis + msec;
SysTick->VAL = SysTick->LOAD; // reset systick counter so next systick is in exactly 1ms
// this could extend the time between systicks by upto 1ms
while PENDING(_millis, end) __WFE();
}
// IO functions
// As defined by Arduino INPUT(0x0), OUTPUT(0x1), INPUT_PULLUP(0x2)
void pinMode(const pin_t pin, const uint8_t mode) {
if (!VALID_PIN(pin)) return;
PINSEL_CFG_Type config = { LPC1768_PIN_PORT(pin),
LPC1768_PIN_PIN(pin),
PINSEL_FUNC_0,
PINSEL_PINMODE_TRISTATE,
PINSEL_PINMODE_NORMAL };
switch (mode) {
case INPUT:
LPC_GPIO(LPC1768_PIN_PORT(pin))->FIODIR &= ~LPC_PIN(LPC1768_PIN_PIN(pin));
break;
case OUTPUT:
LPC_GPIO(LPC1768_PIN_PORT(pin))->FIODIR |= LPC_PIN(LPC1768_PIN_PIN(pin));
break;
case INPUT_PULLUP:
LPC_GPIO(LPC1768_PIN_PORT(pin))->FIODIR &= ~LPC_PIN(LPC1768_PIN_PIN(pin));
config.Pinmode = PINSEL_PINMODE_PULLUP;
break;
case INPUT_PULLDOWN:
LPC_GPIO(LPC1768_PIN_PORT(pin))->FIODIR &= ~LPC_PIN(LPC1768_PIN_PIN(pin));
config.Pinmode = PINSEL_PINMODE_PULLDOWN;
break;
default: return;
}
PINSEL_ConfigPin(&config);
}
void digitalWrite(pin_t pin, uint8_t pin_status) {
if (!VALID_PIN(pin)) return;
if (pin_status)
LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOSET = LPC_PIN(LPC1768_PIN_PIN(pin));
else
LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOCLR = LPC_PIN(LPC1768_PIN_PIN(pin));
pinMode(pin, OUTPUT); // Set pin mode on every write (Arduino version does this)
/**
* Must be done AFTER the output state is set. Doing this before will cause a
* 2uS glitch if writing a "1".
*
* When the Port Direction bit is written to a "1" the output is immediately set
* to the value of the FIOPIN bit which is "0" because of power up defaults.
*/
}
bool digitalRead(pin_t pin) {
if (!VALID_PIN(pin)) return false;
return LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOPIN & LPC_PIN(LPC1768_PIN_PIN(pin)) ? 1 : 0;
}
void analogWrite(pin_t pin, int pwm_value) { // 1 - 254: pwm_value, 0: LOW, 255: HIGH
if (!VALID_PIN(pin)) return;
#define MR0_MARGIN 200 // if channel value too close to MR0 the system locks up
static bool out_of_PWM_slots = false;
uint value = MAX(MIN(pwm_value, 255), 0);
if (value == 0 || value == 255) { // treat as digital pin
LPC1768_PWM_detach_pin(pin); // turn off PWM
digitalWrite(pin, value);
}
else {
if (LPC1768_PWM_attach_pin(pin, 1, LPC_PWM1->MR0, 0xFF))
LPC1768_PWM_write(pin, map(value, 0, 255, 1, LPC_PWM1->MR0)); // map 1-254 onto PWM range
else { // out of PWM channels
if (!out_of_PWM_slots) SERIAL_ECHOPGM(".\nWARNING - OUT OF PWM CHANNELS\n.\n"); //only warn once
out_of_PWM_slots = true;
digitalWrite(pin, value); // treat as a digital pin if out of channels
}
}
}
extern bool HAL_adc_finished();
uint16_t analogRead(pin_t adc_pin) {
HAL_adc_start_conversion(adc_pin);
while (!HAL_adc_finished()); // Wait for conversion to finish
return HAL_adc_get_result();
}
// **************************
// Persistent Config Storage
// **************************
void eeprom_write_byte(uint8_t *pos, unsigned char value) {
}
uint8_t eeprom_read_byte(uint8_t * pos) { return '\0'; }
void eeprom_read_block(void *__dst, const void *__src, size_t __n) { }
void eeprom_update_block(const void *__src, void *__dst, size_t __n) { }
char *dtostrf (double __val, signed char __width, unsigned char __prec, char *__s) {
char format_string[20];
snprintf(format_string, 20, "%%%d.%df", __width, __prec);
sprintf(__s, format_string, __val);
return __s;
}
int32_t random(int32_t max) {
return rand() % max;
}
int32_t random(int32_t min, int32_t max) {
return min + rand() % (max - min);
}
void randomSeed(uint32_t value) {
srand(value);
}
int map(uint16_t x, uint16_t in_min, uint16_t in_max, uint16_t out_min, uint16_t out_max) {
return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
}
#endif // TARGET_LPC1768

View file

@ -1,21 +0,0 @@
Import("env")
env.AddPostAction(
"$BUILD_DIR/firmware.hex",
env.VerboseAction(" ".join([
"sed", "-i.bak",
"s/:10040000FFFFFFFFFFFFFFFFFFFFFFFFDEF9FFFF23/:10040000FFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFD/",
"$BUILD_DIR/firmware.hex"
]), "Fixing $BUILD_DIR/firmware.hex secure flash flags"))
env.AddPreAction(
"upload",
env.VerboseAction(" ".join([
"echo",
"'h\\nloadfile $BUILD_DIR/firmware.hex\\nr\\nq\\n'",
">$BUILD_DIR/aux.jlink"
]), "Creating auxiliary files"))
env.Replace(
UPLOADHEXCMD=
'JLinkExe -device MK20DX256xxx7 -speed 4000 -if swd -autoconnect 1 -CommanderScript $BUILD_DIR/aux.jlink -SkipProgOnCRCMatch = 1 -VerifyDownload = 1'
)

View file

@ -35,27 +35,23 @@
#ifndef _FASTIO_LPC1768_H #ifndef _FASTIO_LPC1768_H
#define _FASTIO_LPC1768_H #define _FASTIO_LPC1768_H
#include <LPC17xx.h>
#include <Arduino.h> #include <Arduino.h>
#include <pinmapping.h>
bool useable_hardware_PWM(pin_t pin);
#define USEABLE_HARDWARE_PWM(pin) useable_hardware_PWM(pin) #define USEABLE_HARDWARE_PWM(pin) useable_hardware_PWM(pin)
#define LPC_PORT_OFFSET (0x0020) #define LPC_PIN(pin) gpio_pin(pin)
#define LPC_PIN(pin) (1UL << pin) #define LPC_GPIO(port) gpio_port(port)
#define LPC_GPIO(port) ((volatile LPC_GPIO_TypeDef *)(LPC_GPIO0_BASE + LPC_PORT_OFFSET * port))
#define SET_DIR_INPUT(IO) (LPC_GPIO(LPC1768_PIN_PORT(IO))->FIODIR &= ~LPC_PIN(LPC1768_PIN_PIN(IO))) #define SET_DIR_INPUT(IO) gpio_set_input(IO)
#define SET_DIR_OUTPUT(IO) (LPC_GPIO(LPC1768_PIN_PORT(IO))->FIODIR |= LPC_PIN(LPC1768_PIN_PIN(IO))) #define SET_DIR_OUTPUT(IO) gpio_set_output(IO)
#define SET_MODE(IO, mode) (pin_mode((LPC1768_PIN_PORT(IO), LPC1768_PIN_PIN(IO)), mode)) #define SET_MODE(IO, mode) pinMode(IO, mode)
#define WRITE_PIN_SET(IO) (LPC_GPIO(LPC1768_PIN_PORT(IO))->FIOSET = LPC_PIN(LPC1768_PIN_PIN(IO))) #define WRITE_PIN_SET(IO) gpio_set(IO)
#define WRITE_PIN_CLR(IO) (LPC_GPIO(LPC1768_PIN_PORT(IO))->FIOCLR = LPC_PIN(LPC1768_PIN_PIN(IO))) #define WRITE_PIN_CLR(IO) gpio_clear(IO)
#define READ_PIN(IO) ((LPC_GPIO(LPC1768_PIN_PORT(IO))->FIOPIN & LPC_PIN(LPC1768_PIN_PIN(IO))) ? 1 : 0) #define READ_PIN(IO) gpio_get(IO)
#define WRITE_PIN(IO,V) ((V) ? WRITE_PIN_SET(IO) : WRITE_PIN_CLR(IO)) #define WRITE_PIN(IO,V) gpio_set(IO, V)
/** /**
* Magic I/O routines * Magic I/O routines
@ -89,10 +85,10 @@ bool useable_hardware_PWM(pin_t pin);
#define _PULLDOWN(IO,V) pinMode(IO, (V) ? INPUT_PULLDOWN : INPUT) #define _PULLDOWN(IO,V) pinMode(IO, (V) ? INPUT_PULLDOWN : INPUT)
/// check if pin is an input /// check if pin is an input
#define _GET_INPUT(IO) (LPC_GPIO(LPC1768_PIN_PORT(IO))->FIODIR & LPC_PIN(LPC1768_PIN_PIN(IO)) != 0) #define _GET_INPUT(IO) (!gpio_get_dir(IO))
/// check if pin is an output /// check if pin is an output
#define _GET_OUTPUT(IO) (LPC_GPIO(LPC1768_PIN_PORT(IO))->FIODIR & LPC_PIN(LPC1768_PIN_PIN(IO)) == 0) #define _GET_OUTPUT(IO) (gpio_get_dir(IO))
/// check if pin is a timer /// check if pin is a timer
/// all gpio pins are pwm capable, either interrupt or hardware pwm controlled /// all gpio pins are pwm capable, either interrupt or hardware pwm controlled

View file

@ -1,125 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef __ARDUINO_H__
#define __ARDUINO_H__
#include <stddef.h>
#include <stdint.h>
#include <math.h>
#include <pinmapping.h>
#define HIGH 0x01
#define LOW 0x00
#define INPUT 0x00
#define OUTPUT 0x01
#define INPUT_PULLUP 0x02
#define INPUT_PULLDOWN 0x03
#define LSBFIRST 0
#define MSBFIRST 1
#define CHANGE 0x02
#define FALLING 0x03
#define RISING 0x04
typedef uint8_t byte;
#define PROGMEM
#define PSTR(v) (v)
#define PGM_P const char *
// Used for libraries, preprocessor, and constants
#define min(a,b) ((a)<(b)?(a):(b))
#define max(a,b) ((a)>(b)?(a):(b))
#define abs(x) ((x)>0?(x):-(x))
#ifndef isnan
#define isnan std::isnan
#endif
#ifndef isinf
#define isinf std::isinf
#endif
#define sq(v) ((v) * (v))
#define square(v) sq(v)
#define constrain(value, arg_min, arg_max) ((value) < (arg_min) ? (arg_min) :((value) > (arg_max) ? (arg_max) : (value)))
//Interrupts
void cli(void); // Disable
void sei(void); // Enable
void attachInterrupt(const pin_t pin, void (*callback)(void), uint32_t mode);
void detachInterrupt(const pin_t pin);
extern "C" void GpioEnableInt(uint32_t port, uint32_t pin, uint32_t mode);
extern "C" void GpioDisableInt(uint32_t port, uint32_t pin);
// Program Memory
#define pgm_read_ptr(addr) (*((void**)(addr)))
#define pgm_read_byte_near(addr) (*((uint8_t*)(addr)))
#define pgm_read_float_near(addr) (*((float*)(addr)))
#define pgm_read_word_near(addr) (*((uint16_t*)(addr)))
#define pgm_read_dword_near(addr) (*((uint32_t*)(addr)))
#define pgm_read_byte(addr) pgm_read_byte_near(addr)
#define pgm_read_float(addr) pgm_read_float_near(addr)
#define pgm_read_word(addr) pgm_read_word_near(addr)
#define pgm_read_dword(addr) pgm_read_dword_near(addr)
#define memcpy_P memcpy
#define sprintf_P sprintf
#define strstr_P strstr
#define strncpy_P strncpy
#define vsnprintf_P vsnprintf
#define strcpy_P strcpy
#define snprintf_P snprintf
#define strlen_P strlen
#define strchr_P strchr
// Time functions
extern "C" {
void delay(const int milis);
}
void _delay_ms(const int delay);
void delayMicroseconds(unsigned long);
uint32_t millis();
//IO functions
void pinMode(const pin_t, const uint8_t);
void digitalWrite(pin_t, uint8_t);
bool digitalRead(pin_t);
void analogWrite(pin_t, int);
uint16_t analogRead(pin_t);
// EEPROM
void eeprom_write_byte(uint8_t *pos, unsigned char value);
uint8_t eeprom_read_byte(uint8_t *pos);
void eeprom_read_block (void *__dst, const void *__src, size_t __n);
void eeprom_update_block (const void *__src, void *__dst, size_t __n);
int32_t random(int32_t);
int32_t random(int32_t, int32_t);
void randomSeed(uint32_t);
char *dtostrf (double __val, signed char __width, unsigned char __prec, char *__s);
int map(uint16_t x, uint16_t in_min, uint16_t in_max, uint16_t out_min, uint16_t out_max);
#endif // __ARDUINO_DEF_H__

View file

@ -1,335 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifdef TARGET_LPC1768
#include "HardwareSerial.h"
#if SERIAL_PORT == 0 || SERIAL_PORT_2 == 0
HardwareSerial Serial = HardwareSerial(LPC_UART0);
#elif SERIAL_PORT == 1 || SERIAL_PORT_2 == 1
HardwareSerial Serial1 = HardwareSerial((LPC_UART_TypeDef *) LPC_UART1);
#elif SERIAL_PORT == 2 || SERIAL_PORT_2 == 2
HardwareSerial Serial2 = HardwareSerial(LPC_UART2);
#elif SERIAL_PORT == 3 || SERIAL_PORT_2 == 3
HardwareSerial Serial3 = HardwareSerial(LPC_UART3);
#endif
void HardwareSerial::begin(uint32_t baudrate) {
UART_CFG_Type UARTConfigStruct;
PINSEL_CFG_Type PinCfg;
UART_FIFO_CFG_Type FIFOConfig;
if (Baudrate == baudrate) return; // No need to re-initialize
if (UARTx == LPC_UART0) {
// Initialize UART0 pin connect
PinCfg.Funcnum = 1;
PinCfg.OpenDrain = 0;
PinCfg.Pinmode = 0;
PinCfg.Pinnum = 2;
PinCfg.Portnum = 0;
PINSEL_ConfigPin(&PinCfg);
PinCfg.Pinnum = 3;
PINSEL_ConfigPin(&PinCfg);
} else if ((LPC_UART1_TypeDef *) UARTx == LPC_UART1) {
// Initialize UART1 pin connect
PinCfg.Funcnum = 1;
PinCfg.OpenDrain = 0;
PinCfg.Pinmode = 0;
PinCfg.Pinnum = 15;
PinCfg.Portnum = 0;
PINSEL_ConfigPin(&PinCfg);
PinCfg.Pinnum = 16;
PINSEL_ConfigPin(&PinCfg);
} else if (UARTx == LPC_UART2) {
// Initialize UART2 pin connect
PinCfg.Funcnum = 1;
PinCfg.OpenDrain = 0;
PinCfg.Pinmode = 0;
PinCfg.Pinnum = 10;
PinCfg.Portnum = 0;
PINSEL_ConfigPin(&PinCfg);
PinCfg.Pinnum = 11;
PINSEL_ConfigPin(&PinCfg);
} else if (UARTx == LPC_UART3) {
// Initialize UART2 pin connect
PinCfg.Funcnum = 1;
PinCfg.OpenDrain = 0;
PinCfg.Pinmode = 0;
PinCfg.Pinnum = 0;
PinCfg.Portnum = 0;
PINSEL_ConfigPin(&PinCfg);
PinCfg.Pinnum = 1;
PINSEL_ConfigPin(&PinCfg);
}
/* Initialize UART Configuration parameter structure to default state:
* Baudrate = 9600bps
* 8 data bit
* 1 Stop bit
* None parity
*/
UART_ConfigStructInit(&UARTConfigStruct);
// Re-configure baudrate
UARTConfigStruct.Baud_rate = baudrate;
// Initialize eripheral with given to corresponding parameter
UART_Init(UARTx, &UARTConfigStruct);
// Enable and reset the TX and RX FIFOs
UART_FIFOConfigStructInit(&FIFOConfig);
UART_FIFOConfig(UARTx, &FIFOConfig);
// Enable UART Transmit
UART_TxCmd(UARTx, ENABLE);
// Configure Interrupts
UART_IntConfig(UARTx, UART_INTCFG_RBR, ENABLE);
UART_IntConfig(UARTx, UART_INTCFG_RLS, ENABLE);
// Set proper priority and enable interrupts
if (UARTx == LPC_UART0) {
NVIC_SetPriority(UART0_IRQn, NVIC_EncodePriority(0, 3, 0));
NVIC_EnableIRQ(UART0_IRQn);
}
else if ((LPC_UART1_TypeDef *) UARTx == LPC_UART1) {
NVIC_SetPriority(UART1_IRQn, NVIC_EncodePriority(0, 3, 0));
NVIC_EnableIRQ(UART1_IRQn);
}
else if (UARTx == LPC_UART2) {
NVIC_SetPriority(UART2_IRQn, NVIC_EncodePriority(0, 3, 0));
NVIC_EnableIRQ(UART2_IRQn);
}
else if (UARTx == LPC_UART3) {
NVIC_SetPriority(UART3_IRQn, NVIC_EncodePriority(0, 3, 0));
NVIC_EnableIRQ(UART3_IRQn);
}
RxQueueWritePos = RxQueueReadPos = 0;
#if TX_BUFFER_SIZE > 0
TxQueueWritePos = TxQueueReadPos = 0;
#endif
// Save the configured baudrate
Baudrate = baudrate;
}
int16_t HardwareSerial::peek() {
int16_t byte = -1;
// Temporarily lock out UART receive interrupts during this read so the UART receive
// interrupt won't cause problems with the index values
UART_IntConfig(UARTx, UART_INTCFG_RBR, DISABLE);
if (RxQueueReadPos != RxQueueWritePos)
byte = RxBuffer[RxQueueReadPos];
// Re-enable UART interrupts
UART_IntConfig(UARTx, UART_INTCFG_RBR, ENABLE);
return byte;
}
int16_t HardwareSerial::read() {
int16_t byte = -1;
// Temporarily lock out UART receive interrupts during this read so the UART receive
// interrupt won't cause problems with the index values
UART_IntConfig(UARTx, UART_INTCFG_RBR, DISABLE);
if (RxQueueReadPos != RxQueueWritePos) {
byte = RxBuffer[RxQueueReadPos];
RxQueueReadPos = (RxQueueReadPos + 1) % RX_BUFFER_SIZE;
}
// Re-enable UART interrupts
UART_IntConfig(UARTx, UART_INTCFG_RBR, ENABLE);
return byte;
}
size_t HardwareSerial::write(uint8_t send) {
#if TX_BUFFER_SIZE > 0
size_t bytes = 0;
uint32_t fifolvl = 0;
// If the Tx Buffer is full, wait for space to clear
if ((TxQueueWritePos+1) % TX_BUFFER_SIZE == TxQueueReadPos) flushTX();
// Temporarily lock out UART transmit interrupts during this read so the UART transmit interrupt won't
// cause problems with the index values
UART_IntConfig(UARTx, UART_INTCFG_THRE, DISABLE);
// LPC17xx.h incorrectly defines FIFOLVL as a uint8_t, when it's actually a 32-bit register
if ((LPC_UART1_TypeDef *) UARTx == LPC_UART1) {
fifolvl = *(reinterpret_cast<volatile uint32_t *>(&((LPC_UART1_TypeDef *) UARTx)->FIFOLVL));
} else fifolvl = *(reinterpret_cast<volatile uint32_t *>(&UARTx->FIFOLVL));
// If the queue is empty and there's space in the FIFO, immediately send the byte
if (TxQueueWritePos == TxQueueReadPos && fifolvl < UART_TX_FIFO_SIZE) {
bytes = UART_Send(UARTx, &send, 1, BLOCKING);
}
// Otherwiise, write the byte to the transmit buffer
else if ((TxQueueWritePos+1) % TX_BUFFER_SIZE != TxQueueReadPos) {
TxBuffer[TxQueueWritePos] = send;
TxQueueWritePos = (TxQueueWritePos+1) % TX_BUFFER_SIZE;
bytes++;
}
// Re-enable the TX Interrupt
UART_IntConfig(UARTx, UART_INTCFG_THRE, ENABLE);
return bytes;
#else
return UART_Send(UARTx, &send, 1, BLOCKING);
#endif
}
#if TX_BUFFER_SIZE > 0
void HardwareSerial::flushTX() {
// Wait for the tx buffer and FIFO to drain
while (TxQueueWritePos != TxQueueReadPos && UART_CheckBusy(UARTx) == SET);
}
#endif
size_t HardwareSerial::available() {
return (RxQueueWritePos + RX_BUFFER_SIZE - RxQueueReadPos) % RX_BUFFER_SIZE;
}
void HardwareSerial::flush() {
RxQueueWritePos = 0;
RxQueueReadPos = 0;
}
size_t HardwareSerial::printf(const char *format, ...) {
char RxBuffer[256];
va_list vArgs;
va_start(vArgs, format);
int length = vsnprintf(RxBuffer, 256, format, vArgs);
va_end(vArgs);
if (length > 0 && length < 256) {
for (size_t i = 0; i < (size_t)length; ++i)
write(RxBuffer[i]);
}
return length;
}
void HardwareSerial::IRQHandler() {
uint32_t IIRValue;
uint8_t LSRValue, byte;
IIRValue = UART_GetIntId(UARTx);
IIRValue &= UART_IIR_INTID_MASK; // check bit 1~3, interrupt identification
// Receive Line Status
if (IIRValue == UART_IIR_INTID_RLS) {
LSRValue = UART_GetLineStatus(UARTx);
// Receive Line Status
if (LSRValue & (UART_LSR_OE | UART_LSR_PE | UART_LSR_FE | UART_LSR_RXFE | UART_LSR_BI)) {
// There are errors or break interrupt
// Read LSR will clear the interrupt
Status = LSRValue;
byte = UART_ReceiveByte(UARTx); // Dummy read on RX to clear interrupt, then bail out
return;
}
}
// Receive Data Available
if (IIRValue == UART_IIR_INTID_RDA) {
// Clear the FIFO
while (UART_Receive(UARTx, &byte, 1, NONE_BLOCKING)) {
#if ENABLED(EMERGENCY_PARSER)
emergency_parser.update(emergency_state, byte);
#endif
if ((RxQueueWritePos + 1) % RX_BUFFER_SIZE != RxQueueReadPos) {
RxBuffer[RxQueueWritePos] = byte;
RxQueueWritePos = (RxQueueWritePos + 1) % RX_BUFFER_SIZE;
} else
break;
}
// Character timeout indicator
} else if (IIRValue == UART_IIR_INTID_CTI) {
// Character Time-out indicator
Status |= 0x100; // Bit 9 as the CTI error
}
#if TX_BUFFER_SIZE > 0
if (IIRValue == UART_IIR_INTID_THRE) {
// Disable THRE interrupt
UART_IntConfig(UARTx, UART_INTCFG_THRE, DISABLE);
// Wait for FIFO buffer empty
while (UART_CheckBusy(UARTx) == SET);
// Transfer up to UART_TX_FIFO_SIZE bytes of data
for (int i = 0; i < UART_TX_FIFO_SIZE && TxQueueWritePos != TxQueueReadPos; i++) {
// Move a piece of data into the transmit FIFO
if (UART_Send(UARTx, &TxBuffer[TxQueueReadPos], 1, NONE_BLOCKING)) {
TxQueueReadPos = (TxQueueReadPos+1) % TX_BUFFER_SIZE;
} else break;
}
// If there is no more data to send, disable the transmit interrupt - else enable it or keep it enabled
if (TxQueueWritePos == TxQueueReadPos) {
UART_IntConfig(UARTx, UART_INTCFG_THRE, DISABLE);
} else UART_IntConfig(UARTx, UART_INTCFG_THRE, ENABLE);
}
#endif
}
#ifdef __cplusplus
extern "C" {
#endif
void UART0_IRQHandler(void) {
#if SERIAL_PORT == 0 || SERIAL_PORT_2 == 0
Serial.IRQHandler();
#endif
}
void UART1_IRQHandler(void) {
#if SERIAL_PORT == 1 || SERIAL_PORT_2 == 1
Serial1.IRQHandler();
#endif
}
void UART2_IRQHandler(void) {
#if SERIAL_PORT == 2 || SERIAL_PORT_2 == 2
Serial2.IRQHandler();
#endif
}
void UART3_IRQHandler(void) {
#if SERIAL_PORT == 3 || SERIAL_PORT_2 == 3
Serial3.IRQHandler();
#endif
}
#ifdef __cplusplus
}
#endif
#endif // TARGET_LPC1768

View file

@ -1,91 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef HARDWARE_SERIAL_H_
#define HARDWARE_SERIAL_H_
#include "../../../inc/MarlinConfigPre.h"
#if ENABLED(EMERGENCY_PARSER)
#include "../../../feature/emergency_parser.h"
#endif
#include <stdarg.h>
#include <stdio.h>
#include <Stream.h>
extern "C" {
#include <lpc17xx_uart.h>
#include "lpc17xx_pinsel.h"
}
class HardwareSerial : public Stream {
private:
LPC_UART_TypeDef *UARTx;
uint32_t Baudrate;
uint32_t Status;
uint8_t RxBuffer[RX_BUFFER_SIZE];
uint32_t RxQueueWritePos;
uint32_t RxQueueReadPos;
#if TX_BUFFER_SIZE > 0
uint8_t TxBuffer[TX_BUFFER_SIZE];
uint32_t TxQueueWritePos;
uint32_t TxQueueReadPos;
#endif
#if ENABLED(EMERGENCY_PARSER)
EmergencyParser::State emergency_state;
#endif
public:
HardwareSerial(LPC_UART_TypeDef *UARTx)
: UARTx(UARTx)
, Baudrate(0)
, RxQueueWritePos(0)
, RxQueueReadPos(0)
#if TX_BUFFER_SIZE > 0
, TxQueueWritePos(0)
, TxQueueReadPos(0)
#endif
#if ENABLED(EMERGENCY_PARSER)
, emergency_state(EmergencyParser::State::EP_RESET)
#endif
{
}
void begin(uint32_t baudrate);
int16_t peek();
int16_t read();
size_t write(uint8_t send);
#if TX_BUFFER_SIZE > 0
void flushTX();
#endif
size_t available();
void flush();
size_t printf(const char *format, ...);
operator bool() { return true; }
void IRQHandler();
};
#endif // MARLIN_SRC_HAL_HAL_SERIAL_H_

View file

@ -1,329 +0,0 @@
/*
* SoftwareSerial.cpp (formerly NewSoftSerial.cpp)
*
* Multi-instance software serial library for Arduino/Wiring
* -- Interrupt-driven receive and other improvements by ladyada
* (http://ladyada.net)
* -- Tuning, circular buffer, derivation from class Print/Stream,
* multi-instance support, porting to 8MHz processors,
* various optimizations, PROGMEM delay tables, inverse logic and
* direct port writing by Mikal Hart (http://www.arduiniana.org)
* -- Pin change interrupt macros by Paul Stoffregen (http://www.pjrc.com)
* -- 20MHz processor support by Garrett Mace (http://www.macetech.com)
* -- ATmega1280/2560 support by Brett Hagman (http://www.roguerobotics.com/)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* The latest version of this library can always be found at
* http://arduiniana.org.
*/
#ifdef TARGET_LPC1768
//
// Includes
//
//#include <WInterrupts.h>
#include "../../../inc/MarlinConfig.h"
#include "../../shared/Delay.h"
#include <stdint.h>
#include <stdarg.h>
#include <Arduino.h>
#include <pinmapping.h>
#include "../fastio.h"
#include "SoftwareSerial.h"
void GpioEnableInt(uint32_t port, uint32_t pin, uint32_t mode);
void GpioDisableInt(uint32_t port, uint32_t pin);
//
// Statics
//
SoftwareSerial *SoftwareSerial::active_object = 0;
unsigned char SoftwareSerial::_receive_buffer[_SS_MAX_RX_BUFF];
volatile uint8_t SoftwareSerial::_receive_buffer_tail = 0;
volatile uint8_t SoftwareSerial::_receive_buffer_head = 0;
typedef struct _DELAY_TABLE {
long baud;
uint16_t rx_delay_centering;
uint16_t rx_delay_intrabit;
uint16_t rx_delay_stopbit;
uint16_t tx_delay;
} DELAY_TABLE;
// rough delay estimation
static const DELAY_TABLE table[] = {
//baud |rxcenter|rxintra |rxstop |tx { 250000, 2, 4, 4, 4, }, //Done but not good due to instruction cycle error { 115200, 4, 8, 8, 8, }, //Done but not good due to instruction cycle error
//{ 74880, 69, 139, 62, 162, }, // estimation
//{ 57600, 100, 185, 1, 208, }, // Done but not good due to instruction cycle error
//{ 38400, 13, 26, 26, 26, }, // Done
//{ 19200, 26, 52, 52, 52, }, // Done { 9600, 52, 104, 104, 104, }, // Done
//{ 4800, 104, 208, 208, 208, },
//{ 2400, 208, 417, 417, 417, },
//{ 1200, 416, 833, 833, 833,},
};
//
// Private methods
//
inline void SoftwareSerial::tunedDelay(const uint32_t count) {
DELAY_US(count);
}
// This function sets the current object as the "listening"
// one and returns true if it replaces another
bool SoftwareSerial::listen() {
if (!_rx_delay_stopbit)
return false;
if (active_object != this) {
if (active_object)
active_object->stopListening();
_buffer_overflow = false;
_receive_buffer_head = _receive_buffer_tail = 0;
active_object = this;
setRxIntMsk(true);
return true;
}
return false;
}
// Stop listening. Returns true if we were actually listening.
bool SoftwareSerial::stopListening() {
if (active_object == this) {
setRxIntMsk(false);
active_object = NULL;
return true;
}
return false;
}
//
// The receive routine called by the interrupt handler
//
void SoftwareSerial::recv() {
uint8_t d = 0;
// If RX line is high, then we don't see any start bit
// so interrupt is probably not for us
if (_inverse_logic ? rx_pin_read() : !rx_pin_read()) {
// Disable further interrupts during reception, this prevents
// triggering another interrupt directly after we return, which can
// cause problems at higher baudrates.
setRxIntMsk(false);//__disable_irq();//
// Wait approximately 1/2 of a bit width to "center" the sample
tunedDelay(_rx_delay_centering);
// Read each of the 8 bits
for (uint8_t i=8; i > 0; --i) {
tunedDelay(_rx_delay_intrabit);
d >>= 1;
if (rx_pin_read()) d |= 0x80;
}
if (_inverse_logic) d = ~d;
// if buffer full, set the overflow flag and return
uint8_t next = (_receive_buffer_tail + 1) % _SS_MAX_RX_BUFF;
if (next != _receive_buffer_head) {
// save new data in buffer: tail points to where byte goes
_receive_buffer[_receive_buffer_tail] = d; // save new byte
_receive_buffer_tail = next;
}
else {
_buffer_overflow = true;
}
tunedDelay(_rx_delay_stopbit);
// Re-enable interrupts when we're sure to be inside the stop bit
setRxIntMsk(true); //__enable_irq();//
}
}
uint32_t SoftwareSerial::rx_pin_read() {
return digitalRead(_receivePin);
}
//
// Interrupt handling
//
/* static */
inline void SoftwareSerial::handle_interrupt() {
if (active_object)
active_object->recv();
}
extern "C" void intWrapper() {
SoftwareSerial::handle_interrupt();
}
//
// Constructor
//
SoftwareSerial::SoftwareSerial(pin_t receivePin, pin_t transmitPin, bool inverse_logic /* = false */) :
_rx_delay_centering(0),
_rx_delay_intrabit(0),
_rx_delay_stopbit(0),
_tx_delay(0),
_buffer_overflow(false),
_inverse_logic(inverse_logic) {
setTX(transmitPin);
setRX(receivePin);
}
//
// Destructor
//
SoftwareSerial::~SoftwareSerial() {
end();
}
void SoftwareSerial::setTX(pin_t tx) {
// First write, then set output. If we do this the other way around,
// the pin would be output low for a short while before switching to
// output hihg. Now, it is input with pullup for a short while, which
// is fine. With inverse logic, either order is fine.
digitalWrite(tx, _inverse_logic ? LOW : HIGH);
pinMode(tx,OUTPUT);
_transmitPin = tx;
}
void SoftwareSerial::setRX(pin_t rx) {
pinMode(rx, INPUT_PULLUP); // pullup for normal logic!
//if (!_inverse_logic)
// digitalWrite(rx, HIGH);
_receivePin = rx;
_receivePort = LPC1768_PIN_PORT(rx);
_receivePortPin = LPC1768_PIN_PIN(rx);
/* GPIO_T * rxPort = digitalPinToPort(rx);
_receivePortRegister = portInputRegister(rxPort);
_receiveBitMask = digitalPinToBitMask(rx);*/
}
//
// Public methods
//
void SoftwareSerial::begin(long speed) {
_rx_delay_centering = _rx_delay_intrabit = _rx_delay_stopbit = _tx_delay = 0;
for(uint8_t i = 0; i < sizeof(table)/sizeof(table[0]); ++i) {
long baud = table[i].baud;
if (baud == speed) {
_rx_delay_centering = table[i].rx_delay_centering;
_rx_delay_intrabit = table[i].rx_delay_intrabit;
_rx_delay_stopbit = table[i].rx_delay_stopbit;
_tx_delay = table[i].tx_delay;
break;
}
}
attachInterrupt(_receivePin, intWrapper, CHANGE); //this->handle_interrupt, CHANGE);
listen();
tunedDelay(_tx_delay);
}
void SoftwareSerial::setRxIntMsk(bool enable) {
if (enable)
GpioEnableInt(_receivePort,_receivePin,CHANGE);
else
GpioDisableInt(_receivePort,_receivePin);
}
void SoftwareSerial::end() {
stopListening();
}
// Read data from buffer
int16_t SoftwareSerial::read() {
if (!isListening()) return -1;
// Empty buffer?
if (_receive_buffer_head == _receive_buffer_tail) return -1;
// Read from "head"
uint8_t d = _receive_buffer[_receive_buffer_head]; // grab next byte
_receive_buffer_head = (_receive_buffer_head + 1) % _SS_MAX_RX_BUFF;
return d;
}
size_t SoftwareSerial::available() {
if (!isListening()) return 0;
return (_receive_buffer_tail + _SS_MAX_RX_BUFF - _receive_buffer_head) % _SS_MAX_RX_BUFF;
}
size_t SoftwareSerial::write(uint8_t b) {
// By declaring these as local variables, the compiler will put them
// in registers _before_ disabling interrupts and entering the
// critical timing sections below, which makes it a lot easier to
// verify the cycle timings
bool inv = _inverse_logic;
uint16_t delay = _tx_delay;
if (inv) b = ~b;
cli(); // turn off interrupts for a clean txmit
// Write the start bit
digitalWrite(_transmitPin, !!inv);
tunedDelay(delay);
// Write each of the 8 bits
for (uint8_t i = 8; i > 0; --i) {
digitalWrite(_transmitPin, b & 1); // send 1 //(GPIO_Desc[_transmitPin].P)->DOUT |= GPIO_Desc[_transmitPin].bit;
// send 0 //(GPIO_Desc[_transmitPin].P)->DOUT &= ~GPIO_Desc[_transmitPin].bit;
tunedDelay(delay);
b >>= 1;
}
// restore pin to natural state
digitalWrite(_transmitPin, !inv);
sei(); // turn interrupts back on
tunedDelay(delay);
return 1;
}
void SoftwareSerial::flush() {
if (!isListening()) return;
cli();
_receive_buffer_head = _receive_buffer_tail = 0;
sei();
}
int16_t SoftwareSerial::peek() {
if (!isListening())
return -1;
// Empty buffer?
if (_receive_buffer_head == _receive_buffer_tail)
return -1;
// Read from "head"
return _receive_buffer[_receive_buffer_head];
}
#endif // TARGET_LPC1768

View file

@ -1,120 +0,0 @@
/*
* SoftwareSerial.h (formerly NewSoftSerial.h)
*
* Multi-instance software serial library for Arduino/Wiring
* -- Interrupt-driven receive and other improvements by ladyada
* (http://ladyada.net)
* -- Tuning, circular buffer, derivation from class Print/Stream,
* multi-instance support, porting to 8MHz processors,
* various optimizations, PROGMEM delay tables, inverse logic and
* direct port writing by Mikal Hart (http://www.arduiniana.org)
* -- Pin change interrupt macros by Paul Stoffregen (http://www.pjrc.com)
* -- 20MHz processor support by Garrett Mace (http://www.macetech.com)
* -- ATmega1280/2560 support by Brett Hagman (http://www.roguerobotics.com/)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* The latest version of this library can always be found at
* http://arduiniana.org.
*/
#ifndef SOFTWARESERIAL_H
#define SOFTWARESERIAL_H
#include <Arduino.h>
#include <stdint.h>
//#include "serial.h"
#include <Stream.h>
#include <Print.h>
/******************************************************************************
* Definitions
******************************************************************************/
#define _SS_MAX_RX_BUFF 64 // RX buffer size
class SoftwareSerial : public Stream
{
private:
// per object data
pin_t _receivePin;
pin_t _transmitPin;
// uint32_t _receiveBitMask; // for rx interrupts
uint32_t _receivePort;
uint32_t _receivePortPin;
// Expressed as 4-cycle delays (must never be 0!)
uint16_t _rx_delay_centering;
uint16_t _rx_delay_intrabit;
uint16_t _rx_delay_stopbit;
uint16_t _tx_delay;
uint16_t _buffer_overflow:1;
uint16_t _inverse_logic:1;
// static data
static unsigned char _receive_buffer[_SS_MAX_RX_BUFF];
static volatile uint8_t _receive_buffer_tail;
static volatile uint8_t _receive_buffer_head;
static SoftwareSerial *active_object;
// private methods
void recv();
uint32_t rx_pin_read();
void tx_pin_write(uint8_t pin_state);
void setTX(pin_t transmitPin);
void setRX(pin_t receivePin);
void setRxIntMsk(bool enable);
// private static method for timing
static inline void tunedDelay(uint32_t delay);
public:
// public methods
SoftwareSerial(pin_t receivePin, pin_t transmitPin, bool inverse_logic = false);
~SoftwareSerial();
void begin(long speed);
bool listen();
void end();
bool isListening() { return this == active_object; }
bool stopListening();
bool overflow() { bool ret = _buffer_overflow; if (ret) _buffer_overflow = false; return ret; }
int16_t peek();
virtual size_t write(uint8_t byte);
virtual int16_t read();
virtual size_t available();
virtual void flush();
operator bool() { return true; }
using Print::write;
//using HalSerial::write;
// public only for easy access by interrupt handlers
static inline void handle_interrupt() __attribute__((__always_inline__));
};
// Arduino 0012 workaround
#undef int
#undef char
#undef long
#undef byte
#undef float
#undef abs
#undef round
#endif // SOFTWARESERIAL_H

View file

@ -1,219 +0,0 @@
/*
TwoWire.cpp - TWI/I2C library for Wiring & Arduino
Copyright (c) 2006 Nicholas Zambetti. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifdef TARGET_LPC1768
extern "C" {
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
#include <lpc17xx_i2c.h>
#include <lpc17xx_pinsel.h>
#include <lpc17xx_libcfg_default.h>
}
#include <Wire.h>
#define USEDI2CDEV_M 1
#if (USEDI2CDEV_M == 0)
#define I2CDEV_M LPC_I2C0
#elif (USEDI2CDEV_M == 1)
#define I2CDEV_M LPC_I2C1
#elif (USEDI2CDEV_M == 2)
#define I2CDEV_M LPC_I2C2
#else
#error "Master I2C device not defined!"
#endif
// Initialize Class Variables //////////////////////////////////////////////////
uint8_t TwoWire::rxBuffer[BUFFER_LENGTH];
uint8_t TwoWire::rxBufferIndex = 0;
uint8_t TwoWire::rxBufferLength = 0;
uint8_t TwoWire::txAddress = 0;
uint8_t TwoWire::txBuffer[BUFFER_LENGTH];
uint8_t TwoWire::txBufferIndex = 0;
uint8_t TwoWire::txBufferLength = 0;
uint8_t TwoWire::transmitting = 0;
// Constructors ////////////////////////////////////////////////////////////////
TwoWire::TwoWire() {
}
// Public Methods //////////////////////////////////////////////////////////////
void TwoWire::begin(void) {
rxBufferIndex = 0;
rxBufferLength = 0;
txBufferIndex = 0;
txBufferLength = 0;
/*
* Init I2C pin connect
*/
PINSEL_CFG_Type PinCfg;
PinCfg.OpenDrain = 0;
PinCfg.Pinmode = 0;
#if USEDI2CDEV_M == 0
PinCfg.Funcnum = 1;
PinCfg.Pinnum = 27;
PinCfg.Portnum = 0;
PINSEL_ConfigPin(&PinCfg); // SDA0 / D57 AUX-1
PinCfg.Pinnum = 28;
PINSEL_ConfigPin(&PinCfg); // SCL0 / D58 AUX-1
#endif
#if USEDI2CDEV_M == 1
PinCfg.Funcnum = 3;
PinCfg.Pinnum = 0;
PinCfg.Portnum = 0;
PINSEL_ConfigPin(&PinCfg); // SDA1 / D20 SCA
PinCfg.Pinnum = 1;
PINSEL_ConfigPin(&PinCfg); // SCL1 / D21 SCL
#endif
#if USEDI2CDEV_M == 2
PinCfg.Funcnum = 2;
PinCfg.Pinnum = 10;
PinCfg.Portnum = 0;
PINSEL_ConfigPin(&PinCfg); // SDA2 / D38 X_ENABLE_PIN
PinCfg.Pinnum = 11;
PINSEL_ConfigPin(&PinCfg); // SCL2 / D55 X_DIR_PIN
#endif
// Initialize I2C peripheral
I2C_Init(I2CDEV_M, 100000);
// Enable Master I2C operation
I2C_Cmd(I2CDEV_M, I2C_MASTER_MODE, ENABLE);
}
uint8_t TwoWire::requestFrom(uint8_t address, uint8_t quantity) {
// clamp to buffer length
if (quantity > BUFFER_LENGTH)
quantity = BUFFER_LENGTH;
// perform blocking read into buffer
I2C_M_SETUP_Type transferMCfg;
transferMCfg.sl_addr7bit = address >> 1; // not sure about the right shift
transferMCfg.tx_data = NULL;
transferMCfg.tx_length = 0;
transferMCfg.rx_data = rxBuffer;
transferMCfg.rx_length = quantity;
transferMCfg.retransmissions_max = 3;
I2C_MasterTransferData(I2CDEV_M, &transferMCfg, I2C_TRANSFER_POLLING);
// set rx buffer iterator vars
rxBufferIndex = 0;
rxBufferLength = transferMCfg.rx_count;
return transferMCfg.rx_count;
}
uint8_t TwoWire::requestFrom(int address, int quantity) {
return requestFrom((uint8_t)address, (uint8_t)quantity);
}
void TwoWire::beginTransmission(uint8_t address) {
// indicate that we are transmitting
transmitting = 1;
// set address of targeted slave
txAddress = address;
// reset tx buffer iterator vars
txBufferIndex = 0;
txBufferLength = 0;
}
void TwoWire::beginTransmission(int address) {
beginTransmission((uint8_t)address);
}
uint8_t TwoWire::endTransmission(void) {
// transmit buffer (blocking)
I2C_M_SETUP_Type transferMCfg;
transferMCfg.sl_addr7bit = txAddress >> 1; // not sure about the right shift
transferMCfg.tx_data = txBuffer;
transferMCfg.tx_length = txBufferLength;
transferMCfg.rx_data = NULL;
transferMCfg.rx_length = 0;
transferMCfg.retransmissions_max = 3;
Status status = I2C_MasterTransferData(I2CDEV_M, &transferMCfg, I2C_TRANSFER_POLLING);
// reset tx buffer iterator vars
txBufferIndex = 0;
txBufferLength = 0;
// indicate that we are done transmitting
transmitting = 0;
return status == SUCCESS ? 0 : 4;
}
// must be called after beginTransmission(address)
size_t TwoWire::write(uint8_t data) {
if (transmitting) {
// don't bother if buffer is full
if (txBufferLength >= BUFFER_LENGTH) return 0;
// put byte in tx buffer
txBuffer[txBufferIndex++] = data;
// update amount in buffer
txBufferLength = txBufferIndex;
}
return 1;
}
// must be called after beginTransmission(address)
size_t TwoWire::write(const uint8_t *data, size_t quantity) {
size_t sent = 0;
if (transmitting)
for (sent = 0; sent < quantity; ++sent)
if (!write(data[sent])) break;
return sent;
}
// Must be called after requestFrom(address, numBytes)
int TwoWire::available(void) {
return rxBufferLength - rxBufferIndex;
}
// Must be called after requestFrom(address, numBytes)
int TwoWire::read(void) {
return rxBufferIndex < rxBufferLength ? rxBuffer[rxBufferIndex++] : -1;
}
// Must be called after requestFrom(address, numBytes)
int TwoWire::peek(void) {
return rxBufferIndex < rxBufferLength ? rxBuffer[rxBufferIndex] : -1;
}
// Preinstantiate Objects //////////////////////////////////////////////////////
TwoWire Wire = TwoWire();
#endif // TARGET_LPC1768

View file

@ -1,67 +0,0 @@
/**
* TwoWire.h - TWI/I2C library for Arduino & Wiring
* Copyright (c) 2006 Nicholas Zambetti. All right reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* Modified 2012 by Todd Krein (todd@krein.org) to implement repeated starts
*/
#ifndef _TWOWIRE_H_
#define _TWOWIRE_H_
#include <inttypes.h>
#define BUFFER_LENGTH 32
class TwoWire {
private:
static uint8_t rxBuffer[];
static uint8_t rxBufferIndex;
static uint8_t rxBufferLength;
static uint8_t txAddress;
static uint8_t txBuffer[];
static uint8_t txBufferIndex;
static uint8_t txBufferLength;
static uint8_t transmitting;
public:
TwoWire();
void begin();
void beginTransmission(uint8_t);
void beginTransmission(int);
uint8_t endTransmission(void);
uint8_t endTransmission(uint8_t);
uint8_t requestFrom(uint8_t, uint8_t);
uint8_t requestFrom(int, int);
virtual size_t write(uint8_t);
virtual size_t write(const uint8_t *, size_t);
virtual int available(void);
virtual int read(void);
virtual int peek(void);
inline size_t write(unsigned long n) { return write((uint8_t)n); }
inline size_t write(long n) { return write((uint8_t)n); }
inline size_t write(unsigned int n) { return write((uint8_t)n); }
inline size_t write(int n) { return write((uint8_t)n); }
};
extern TwoWire Wire;
#endif // _TWOWIRE_H_

View file

@ -1,74 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifdef TARGET_LPC1768
#include <pinmapping.h>
#include "../../../gcode/parser.h"
// Get the digital pin for an analog index
pin_t analogInputToDigitalPin(const int8_t p) {
return (WITHIN(p, 0, NUM_ANALOG_INPUTS) ? adc_pin_table[p] : P_NC);
}
// Return the index of a pin number
// The pin number given here is in the form ppp:nnnnn
int16_t GET_PIN_MAP_INDEX(const pin_t pin) {
const uint16_t index = (LPC1768_PIN_PORT(pin) << 5) | LPC1768_PIN_PIN(pin);
return (index < NUM_DIGITAL_PINS && pin_map[index] != P_NC) ? index : -1;
}
// Test whether the pin is valid
bool VALID_PIN(const pin_t p) {
const int16_t ind = GET_PIN_MAP_INDEX(p);
return ind >= 0 && pin_map[ind] >= 0;
}
// Get the analog index for a digital pin
int8_t DIGITAL_PIN_TO_ANALOG_PIN(const pin_t p) {
return (VALID_PIN(p) ? LPC1768_PIN_ADC(p) : -1);
}
// Test whether the pin is PWM
bool PWM_PIN(const pin_t p) {
return VALID_PIN(p) && LPC1768_PIN_PWM(p);
}
// Test whether the pin is interruptable
bool INTERRUPT_PIN(const pin_t p) {
return VALID_PIN(p) && LPC1768_PIN_INTERRUPT(p);
}
// Get the pin number at the given index
pin_t GET_PIN_MAP_PIN(const int16_t ind) {
return WITHIN(ind, 0, NUM_DIGITAL_PINS - 1) ? pin_map[ind] : P_NC;
}
int16_t PARSED_PIN_INDEX(const char code, const int16_t dval) {
const uint16_t val = (uint16_t)parser.intval(code), port = val / 100, pin = val % 100;
const int16_t ind = (port < (NUM_DIGITAL_PINS >> 5) && (pin < 32))
? GET_PIN_MAP_INDEX(port << 5 | pin) : -2;
return ind > -2 ? ind : dval;
}
#endif // TARGET_LPC1768

View file

@ -1,294 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef _PINMAPPING_H_
#define _PINMAPPING_H_
#include "../../../inc/MarlinConfigPre.h"
#include <stdint.h>
typedef int16_t pin_t;
#define PORT_0 000
#define PORT_1 001
#define PORT_2 010
#define PORT_3 011
#define PORT_4 100
#define PORT_(p) PORT_##p
#define PORT(p) PORT_(p)
#define PIN_0 00000
#define PIN_1 00001
#define PIN_2 00010
#define PIN_3 00011
#define PIN_4 00100
#define PIN_5 00101
#define PIN_6 00110
#define PIN_7 00111
#define PIN_8 01000
#define PIN_9 01001
#define PIN_10 01010
#define PIN_11 01011
#define PIN_12 01100
#define PIN_13 01101
#define PIN_14 01110
#define PIN_15 01111
#define PIN_16 10000
#define PIN_17 10001
#define PIN_18 10010
#define PIN_19 10011
#define PIN_20 10100
#define PIN_21 10101
#define PIN_22 10110
#define PIN_23 10111
#define PIN_24 11000
#define PIN_25 11001
#define PIN_26 11010
#define PIN_27 11011
#define PIN_28 11100
#define PIN_29 11101
#define PIN_30 11110
#define PIN_31 11111
#define PIN_(p) PIN_##p
#define PIN(p) PIN_(p)
#define ADC_NONE 0000
#define ADC_CHAN_0 0001
#define ADC_CHAN_1 0010
#define ADC_CHAN_2 0011
#define ADC_CHAN_3 0100
#define ADC_CHAN_4 0101
#define ADC_CHAN_5 0110
#define ADC_CHAN_6 0111
#define ADC_CHAN_7 1000
#define ADC_CHAN_(c) ADC_CHAN_##c
#define ADC_CHAN(p) ADC_CHAN_(p)
#define BOOL_0 0
#define BOOL_1 1
#define BOOL_(b) BOOL_##b
#define INTERRUPT(b) BOOL_(b)
#define PWM(b) BOOL_(b)
// Combine elements into pin bits: 0b00AAAAWIPPPNNNNN
#define LPC1768_PIN_(port, pin, int, pwm, adc) 0b00##adc##pwm##int##port##pin
#define LPC1768_PIN(port, pin, int, pwm, adc) LPC1768_PIN_(port, pin, int, pwm, adc)
constexpr uint8_t LPC1768_PIN_PORT(const pin_t pin) { return ((uint8_t)((pin >> 5) & 0b111)); }
constexpr uint8_t LPC1768_PIN_PIN(const pin_t pin) { return ((uint8_t)(pin & 0b11111)); }
constexpr bool LPC1768_PIN_INTERRUPT(const pin_t pin) { return (((pin >> 8) & 0b1) != 0); }
constexpr bool LPC1768_PIN_PWM(const pin_t pin) { return (((pin >> 9) & 0b1) != 0); }
constexpr int8_t LPC1768_PIN_ADC(const pin_t pin) { return (int8_t)((pin >> 10) & 0b1111) - 1; }
// ******************
// Runtime pinmapping
// ******************
#define P_NC -1
#if SERIAL_PORT != 3 && SERIAL_PORT_2 != 3
#define P0_00 LPC1768_PIN(PORT(0), PIN( 0), INTERRUPT(1), PWM(0), ADC_NONE)
#define P0_01 LPC1768_PIN(PORT(0), PIN( 1), INTERRUPT(1), PWM(0), ADC_NONE)
#endif
#if SERIAL_PORT != 0 && SERIAL_PORT_2 != 0
#define P0_02 LPC1768_PIN(PORT(0), PIN( 2), INTERRUPT(1), PWM(0), ADC_CHAN(7))
#define P0_03 LPC1768_PIN(PORT(0), PIN( 3), INTERRUPT(1), PWM(0), ADC_CHAN(6))
#endif
#define P0_04 LPC1768_PIN(PORT(0), PIN( 4), INTERRUPT(1), PWM(0), ADC_NONE)
#define P0_05 LPC1768_PIN(PORT(0), PIN( 5), INTERRUPT(1), PWM(0), ADC_NONE)
#define P0_06 LPC1768_PIN(PORT(0), PIN( 6), INTERRUPT(1), PWM(0), ADC_NONE)
#define P0_07 LPC1768_PIN(PORT(0), PIN( 7), INTERRUPT(1), PWM(0), ADC_NONE)
#define P0_08 LPC1768_PIN(PORT(0), PIN( 8), INTERRUPT(1), PWM(0), ADC_NONE)
#define P0_09 LPC1768_PIN(PORT(0), PIN( 9), INTERRUPT(1), PWM(0), ADC_NONE)
#if SERIAL_PORT != 2 && SERIAL_PORT_2 != 2
#define P0_10 LPC1768_PIN(PORT(0), PIN(10), INTERRUPT(1), PWM(0), ADC_NONE)
#define P0_11 LPC1768_PIN(PORT(0), PIN(11), INTERRUPT(1), PWM(0), ADC_NONE)
#endif
#if SERIAL_PORT != 1 && SERIAL_PORT_2 != 1
#define P0_15 LPC1768_PIN(PORT(0), PIN(15), INTERRUPT(1), PWM(0), ADC_NONE)
#define P0_16 LPC1768_PIN(PORT(0), PIN(16), INTERRUPT(1), PWM(0), ADC_NONE)
#endif
#define P0_17 LPC1768_PIN(PORT(0), PIN(17), INTERRUPT(1), PWM(0), ADC_NONE)
#define P0_18 LPC1768_PIN(PORT(0), PIN(18), INTERRUPT(1), PWM(0), ADC_NONE)
#define P0_19 LPC1768_PIN(PORT(0), PIN(19), INTERRUPT(1), PWM(0), ADC_NONE)
#define P0_20 LPC1768_PIN(PORT(0), PIN(20), INTERRUPT(1), PWM(0), ADC_NONE)
#define P0_21 LPC1768_PIN(PORT(0), PIN(21), INTERRUPT(1), PWM(0), ADC_NONE)
#define P0_22 LPC1768_PIN(PORT(0), PIN(22), INTERRUPT(1), PWM(0), ADC_NONE)
#define P0_23 LPC1768_PIN(PORT(0), PIN(23), INTERRUPT(1), PWM(0), ADC_CHAN(0))
#define P0_24 LPC1768_PIN(PORT(0), PIN(24), INTERRUPT(1), PWM(0), ADC_CHAN(1))
#define P0_25 LPC1768_PIN(PORT(0), PIN(25), INTERRUPT(1), PWM(0), ADC_CHAN(2))
#define P0_26 LPC1768_PIN(PORT(0), PIN(26), INTERRUPT(1), PWM(0), ADC_CHAN(3))
#define P0_27 LPC1768_PIN(PORT(0), PIN(27), INTERRUPT(1), PWM(0), ADC_NONE)
#define P0_28 LPC1768_PIN(PORT(0), PIN(28), INTERRUPT(1), PWM(0), ADC_NONE)
#if SERIAL_PORT != -1 && SERIAL_PORT_2 != -1
#define P0_29 LPC1768_PIN(PORT(0), PIN(29), INTERRUPT(1), PWM(0), ADC_NONE)
#define P0_30 LPC1768_PIN(PORT(0), PIN(30), INTERRUPT(1), PWM(0), ADC_NONE)
#endif
#define P1_00 LPC1768_PIN(PORT(1), PIN( 0), INTERRUPT(0), PWM(0), ADC_NONE)
#define P1_01 LPC1768_PIN(PORT(1), PIN( 1), INTERRUPT(0), PWM(0), ADC_NONE)
#define P1_04 LPC1768_PIN(PORT(1), PIN( 4), INTERRUPT(0), PWM(0), ADC_NONE)
#define P1_08 LPC1768_PIN(PORT(1), PIN( 8), INTERRUPT(0), PWM(0), ADC_NONE)
#define P1_09 LPC1768_PIN(PORT(1), PIN( 9), INTERRUPT(0), PWM(0), ADC_NONE)
#define P1_10 LPC1768_PIN(PORT(1), PIN(10), INTERRUPT(0), PWM(0), ADC_NONE)
#define P1_14 LPC1768_PIN(PORT(1), PIN(14), INTERRUPT(0), PWM(0), ADC_NONE)
#define P1_15 LPC1768_PIN(PORT(1), PIN(15), INTERRUPT(0), PWM(0), ADC_NONE)
#define P1_16 LPC1768_PIN(PORT(1), PIN(16), INTERRUPT(0), PWM(0), ADC_NONE)
#define P1_17 LPC1768_PIN(PORT(1), PIN(17), INTERRUPT(0), PWM(0), ADC_NONE)
#define P1_18 LPC1768_PIN(PORT(1), PIN(18), INTERRUPT(0), PWM(1), ADC_NONE)
#define P1_19 LPC1768_PIN(PORT(1), PIN(19), INTERRUPT(0), PWM(0), ADC_NONE)
#define P1_20 LPC1768_PIN(PORT(1), PIN(20), INTERRUPT(0), PWM(1), ADC_NONE)
#define P1_21 LPC1768_PIN(PORT(1), PIN(21), INTERRUPT(0), PWM(1), ADC_NONE)
#define P1_22 LPC1768_PIN(PORT(1), PIN(22), INTERRUPT(0), PWM(0), ADC_NONE)
#define P1_23 LPC1768_PIN(PORT(1), PIN(23), INTERRUPT(0), PWM(1), ADC_NONE)
#define P1_24 LPC1768_PIN(PORT(1), PIN(24), INTERRUPT(0), PWM(1), ADC_NONE)
#define P1_25 LPC1768_PIN(PORT(1), PIN(25), INTERRUPT(0), PWM(0), ADC_NONE)
#define P1_26 LPC1768_PIN(PORT(1), PIN(26), INTERRUPT(0), PWM(1), ADC_NONE)
#define P1_27 LPC1768_PIN(PORT(1), PIN(27), INTERRUPT(0), PWM(0), ADC_NONE)
#define P1_28 LPC1768_PIN(PORT(1), PIN(28), INTERRUPT(0), PWM(0), ADC_NONE)
#define P1_29 LPC1768_PIN(PORT(1), PIN(29), INTERRUPT(0), PWM(0), ADC_NONE)
#define P1_30 LPC1768_PIN(PORT(1), PIN(30), INTERRUPT(0), PWM(0), ADC_CHAN(4))
#define P1_31 LPC1768_PIN(PORT(1), PIN(31), INTERRUPT(0), PWM(0), ADC_CHAN(5))
#define P2_00 LPC1768_PIN(PORT(2), PIN( 0), INTERRUPT(1), PWM(1), ADC_NONE)
#define P2_01 LPC1768_PIN(PORT(2), PIN( 1), INTERRUPT(1), PWM(1), ADC_NONE)
#define P2_02 LPC1768_PIN(PORT(2), PIN( 2), INTERRUPT(1), PWM(1), ADC_NONE)
#define P2_03 LPC1768_PIN(PORT(2), PIN( 3), INTERRUPT(1), PWM(1), ADC_NONE)
#define P2_04 LPC1768_PIN(PORT(2), PIN( 4), INTERRUPT(1), PWM(1), ADC_NONE)
#define P2_05 LPC1768_PIN(PORT(2), PIN( 5), INTERRUPT(1), PWM(1), ADC_NONE)
#define P2_06 LPC1768_PIN(PORT(2), PIN( 6), INTERRUPT(1), PWM(0), ADC_NONE)
#define P2_07 LPC1768_PIN(PORT(2), PIN( 7), INTERRUPT(1), PWM(0), ADC_NONE)
#define P2_08 LPC1768_PIN(PORT(2), PIN( 8), INTERRUPT(1), PWM(0), ADC_NONE)
#define P2_09 LPC1768_PIN(PORT(2), PIN( 9), INTERRUPT(1), PWM(0), ADC_NONE)
#define P2_10 LPC1768_PIN(PORT(2), PIN(10), INTERRUPT(1), PWM(0), ADC_NONE)
#define P2_11 LPC1768_PIN(PORT(2), PIN(11), INTERRUPT(1), PWM(0), ADC_NONE)
#define P2_12 LPC1768_PIN(PORT(2), PIN(12), INTERRUPT(1), PWM(0), ADC_NONE)
#define P2_13 LPC1768_PIN(PORT(2), PIN(13), INTERRUPT(1), PWM(0), ADC_NONE)
#define P3_25 LPC1768_PIN(PORT(3), PIN(25), INTERRUPT(0), PWM(1), ADC_NONE)
#define P3_26 LPC1768_PIN(PORT(3), PIN(26), INTERRUPT(0), PWM(1), ADC_NONE)
#define P4_28 LPC1768_PIN(PORT(4), PIN(28), INTERRUPT(0), PWM(0), ADC_NONE)
#define P4_29 LPC1768_PIN(PORT(4), PIN(29), INTERRUPT(0), PWM(0), ADC_NONE)
// Pin index for M43 and M226
constexpr pin_t pin_map[] = {
#if SERIAL_PORT != 3 && SERIAL_PORT_2 != 3
P0_00, P0_01,
#else
P_NC, P_NC,
#endif
#if SERIAL_PORT != 0 && SERIAL_PORT_2 != 0
P0_02, P0_03,
#else
P_NC, P_NC,
#endif
P0_04, P0_05, P0_06, P0_07,
P0_08, P0_09,
#if SERIAL_PORT != 2 && SERIAL_PORT_2 != 2
P0_10, P0_11,
#else
P_NC, P_NC,
#endif
P_NC, P_NC, P_NC,
#if SERIAL_PORT != 1 && SERIAL_PORT_2 != 1
P0_15,
P0_16,
#else
P_NC,
P_NC,
#endif
P0_17, P0_18, P0_19, P0_20, P0_21, P0_22, P0_23,
P0_24, P0_25, P0_26, P0_27, P0_28,
#if SERIAL_PORT != -1 && SERIAL_PORT_2 != -1
P0_29, P0_30,
#else
P_NC, P_NC,
#endif
P_NC,
P1_00, P1_01, P_NC, P_NC, P1_04, P_NC, P_NC, P_NC,
P1_08, P1_09, P1_10, P_NC, P_NC, P_NC, P1_14, P1_15,
P1_16, P1_17, P1_18, P1_19, P1_20, P1_21, P1_22, P1_23,
P1_24, P1_25, P1_26, P1_27, P1_28, P1_29, P1_30, P1_31,
P2_00, P2_01, P2_02, P2_03, P2_04, P2_05, P2_06, P2_07,
P2_08, P2_09, P2_10, P2_11, P2_12, P2_13, P_NC, P_NC,
P_NC, P_NC, P_NC, P_NC, P_NC, P_NC, P_NC, P_NC,
P_NC, P_NC, P_NC, P_NC, P_NC, P_NC, P_NC, P_NC,
P_NC, P_NC, P_NC, P_NC, P_NC, P_NC, P_NC, P_NC,
P_NC, P_NC, P_NC, P_NC, P_NC, P_NC, P_NC, P_NC,
P_NC, P_NC, P_NC, P_NC, P_NC, P_NC, P_NC, P_NC,
P_NC, P3_25, P3_26, P_NC, P_NC, P_NC, P_NC, P_NC,
P_NC, P_NC, P_NC, P_NC, P_NC, P_NC, P_NC, P_NC,
P_NC, P_NC, P_NC, P_NC, P_NC, P_NC, P_NC, P_NC,
P_NC, P_NC, P_NC, P_NC, P_NC, P_NC, P_NC, P_NC,
P_NC, P_NC, P_NC, P_NC, P4_28, P4_29, P_NC, P_NC
};
constexpr uint8_t NUM_DIGITAL_PINS = COUNT(pin_map);
constexpr pin_t adc_pin_table[] = {
P0_23, P0_24, P0_25, P0_26, P1_30, P1_31,
#if SERIAL_PORT != 0 && SERIAL_PORT_2 != 0
P0_03, P0_02
#endif
};
#if SERIAL_PORT != 0 && SERIAL_PORT_2 != 0
#define NUM_ANALOG_INPUTS 8
#else
#define NUM_ANALOG_INPUTS 6
#endif
// P0.6 thru P0.9 are for the onboard SD card
#define HAL_SENSITIVE_PINS P0_06, P0_07, P0_08, P0_09
// Get the digital pin for an analog index
pin_t analogInputToDigitalPin(const int8_t p);
#define digitalPinToInterrupt(pin) (pin)
// Return the index of a pin number
// The pin number given here is in the form ppp:nnnnn
int16_t GET_PIN_MAP_INDEX(const pin_t pin);
// Test whether the pin is valid
bool VALID_PIN(const pin_t p);
// Get the analog index for a digital pin
int8_t DIGITAL_PIN_TO_ANALOG_PIN(const pin_t p);
// Test whether the pin is PWM
bool PWM_PIN(const pin_t p);
// Test whether the pin is interruptable
bool INTERRUPT_PIN(const pin_t p);
#define LPC1768_PIN_INTERRUPT_M(pin) (((pin >> 8) & 0b1) != 0)
// Get the pin number at the given index
pin_t GET_PIN_MAP_PIN(const int16_t ind);
// Parse a G-code word into a pin index
int16_t PARSED_PIN_INDEX(const char code, const int16_t dval);
#endif // _PINMAPPING_H_

View file

@ -1,161 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef _HAL_SERIAL_H_
#define _HAL_SERIAL_H_
#include "../../../inc/MarlinConfigPre.h"
#if ENABLED(EMERGENCY_PARSER)
#include "../../../feature/emergency_parser.h"
#endif
#include <stdarg.h>
#include <stdio.h>
#include <Print.h>
/**
* Generic RingBuffer
* T type of the buffer array
* S size of the buffer (must be power of 2)
*/
template <typename T, uint32_t S> class RingBuffer {
public:
RingBuffer() {index_read = index_write = 0;}
uint32_t available() {return mask(index_write - index_read);}
uint32_t free() {return buffer_size - available();}
bool empty() {return index_read == index_write;}
bool full() {return next(index_write) == index_read;}
void clear() {index_read = index_write = 0;}
bool peek(T *const value) {
if (value == nullptr || empty()) return false;
*value = buffer[index_read];
return true;
}
uint32_t read(T *const value) {
if (value == nullptr || empty()) return 0;
*value = buffer[index_read];
index_read = next(index_read);
return 1;
}
uint32_t write(T value) {
uint32_t next_head = next(index_write);
if (next_head == index_read) return 0; // buffer full
buffer[index_write] = value;
index_write = next_head;
return 1;
}
private:
inline uint32_t mask(uint32_t val) {
return val & buffer_mask;
}
inline uint32_t next(uint32_t val) {
return mask(val + 1);
}
static const uint32_t buffer_size = S;
static const uint32_t buffer_mask = buffer_size - 1;
T buffer[buffer_size];
volatile uint32_t index_write;
volatile uint32_t index_read;
};
/**
* Serial Interface Class
* Data is injected directly into, and consumed from, the fifo buffers
*/
class HalSerial: public Print {
public:
#if ENABLED(EMERGENCY_PARSER)
EmergencyParser::State emergency_state;
#endif
HalSerial() : host_connected(false) { }
virtual ~HalSerial() { }
operator bool() { return host_connected; }
void begin(int32_t baud) { }
int16_t peek() {
uint8_t value;
return receive_buffer.peek(&value) ? value : -1;
}
int16_t read() {
uint8_t value;
return receive_buffer.read(&value) ? value : -1;
}
size_t write(const uint8_t c) {
if (!host_connected) return 0; // Do not fill buffer when host disconnected
while (transmit_buffer.write(c) == 0) { // Block until there is free room in buffer
if (!host_connected) return 0; // Break infinite loop on host disconect
}
return 1;
}
size_t available() {
return (size_t)receive_buffer.available();
}
void flush() {
receive_buffer.clear();
}
uint8_t availableForWrite(void) {
return transmit_buffer.free() > 255 ? 255 : (uint8_t)transmit_buffer.free();
}
void flushTX(void) {
while (transmit_buffer.available() && host_connected) { /* nada */}
}
size_t printf(const char *format, ...) {
static char buffer[256];
va_list vArgs;
va_start(vArgs, format);
int length = vsnprintf((char *) buffer, 256, (char const *) format, vArgs);
va_end(vArgs);
size_t i = 0;
if (length > 0 && length < 256) {
while (i < (size_t)length && host_connected) {
i += transmit_buffer.write(buffer[i]);
}
}
return i;
}
RingBuffer<uint8_t, 128> receive_buffer;
RingBuffer<uint8_t, 128> transmit_buffer;
volatile bool host_connected;
};
#endif // _HAL_SERIAL_H_

View file

@ -1,60 +0,0 @@
from __future__ import print_function
import sys
#dynamic build flags for generic compile options
if __name__ == "__main__":
args = " ".join([ "-std=gnu11",
"-std=gnu++11",
"-Os",
"-mcpu=cortex-m3",
"-mthumb",
"-fsigned-char",
"-fno-move-loop-invariants",
"-fno-strict-aliasing",
"-fsingle-precision-constant",
"--specs=nano.specs",
"--specs=nosys.specs",
# For external libraries
"-IMarlin/src/HAL/HAL_LPC1768/include",
# For MarlinFirmware/U8glib-HAL
"-IMarlin/src/HAL/HAL_LPC1768/u8g",
"-DU8G_HAL_LINKS",
"-MMD",
"-MP",
"-DTARGET_LPC1768"
])
for i in range(1, len(sys.argv)):
args += " " + sys.argv[i]
print(args)
# extra script for linker options
else:
from SCons.Script import DefaultEnvironment
env = DefaultEnvironment()
env.Append(
ARFLAGS=["rcs"],
ASFLAGS=["-x", "assembler-with-cpp"],
CXXFLAGS=[
"-fabi-version=0",
"-fno-use-cxa-atexit",
"-fno-threadsafe-statics"
],
LINKFLAGS=[
"-Wl,-Tframeworks/CMSIS/LPC1768/system/LPC1768.ld,--gc-sections",
"-Os",
"-mcpu=cortex-m3",
"-mthumb",
"--specs=nano.specs",
"--specs=nosys.specs",
"-u_printf_float"
],
)

View file

@ -1,15 +1,5 @@
#ifdef TARGET_LPC1768 #ifdef TARGET_LPC1768
// ---------------------
// Userspace entry point
// ---------------------
extern void setup();
extern void loop();
extern "C" {
#include <lpc17xx_gpio.h>
}
#include <usb/usb.h> #include <usb/usb.h>
#include <usb/usbcfg.h> #include <usb/usbcfg.h>
#include <usb/usbhw.h> #include <usb/usbhw.h>
@ -17,84 +7,67 @@ extern "C" {
#include <usb/cdc.h> #include <usb/cdc.h>
#include <usb/cdcuser.h> #include <usb/cdcuser.h>
#include <usb/mscuser.h> #include <usb/mscuser.h>
#include <CDCSerial.h>
#include <usb/mscuser.h>
extern "C" { extern "C" {
#include <debug_frmwrk.h> #include <debug_frmwrk.h>
#include <chanfs/diskio.h>
#include <chanfs/ff.h>
} }
#include "../../sd/cardreader.h"
#include "../../inc/MarlinConfig.h" #include "../../inc/MarlinConfig.h"
#include "HAL.h" #include "HAL.h"
#include "fastio.h"
#include "HAL_timers.h" #include "HAL_timers.h"
#include <stdio.h>
#include <stdarg.h>
#include <Arduino.h>
#include "serial.h"
#include "LPC1768_PWM.h"
static __INLINE uint32_t SysTick_Config(uint32_t ticks) {
if (ticks > SysTick_LOAD_RELOAD_Msk) return 1;
SysTick->LOAD = (ticks & SysTick_LOAD_RELOAD_Msk) - 1; // Set reload register
SysTick->VAL = 0; // Load the SysTick Counter Value
SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk |
SysTick_CTRL_TICKINT_Msk |
SysTick_CTRL_ENABLE_Msk; // Enable SysTick IRQ and SysTick Timer
NVIC_SetPriority(SysTick_IRQn, NVIC_EncodePriority(0, 0, 0)); // Set Priority for Cortex-M3 System Interrupts
return 0;
}
extern "C" {
extern int isLPC1769();
extern void disk_timerproc(void);
volatile uint32_t _millis;
void SysTick_Handler(void) {
++_millis;
disk_timerproc();
}
// Runs after clock init and before global static constructors
void SystemPostInit() {
_millis = 0; // Initialize the millisecond counter value
SysTick_Config(SystemCoreClock / 1000); // Start millisecond global counter
// Runs before setup() to configure LED_PIN and used to indicate successful bootloader execution
#if PIN_EXISTS(LED)
SET_DIR_OUTPUT(LED_PIN);
WRITE_PIN_CLR(LED_PIN);
// MKS_SBASE has 3 other LEDs the bootloader uses during flashing. Clear them.
SET_DIR_OUTPUT(P1_19);
WRITE_PIN_CLR(P1_19);
SET_DIR_OUTPUT(P1_20);
WRITE_PIN_CLR(P1_20);
SET_DIR_OUTPUT(P1_21);
WRITE_PIN_CLR(P1_21);
for (uint8_t i = 6; i--;) {
TOGGLE(LED_PIN);
delay(100);
}
#endif
}
}
extern uint32_t MSC_SD_Init(uint8_t pdrv); extern uint32_t MSC_SD_Init(uint8_t pdrv);
extern "C" int isLPC1769();
extern "C" void disk_timerproc(void);
int main(void) { void SysTick_Callback() {
disk_timerproc();
}
(void)MSC_SD_Init(0); void HAL_init() {
#if PIN_EXISTS(LED)
SET_DIR_OUTPUT(LED_PIN);
WRITE_PIN_CLR(LED_PIN);
// MKS_SBASE has 3 other LEDs the bootloader uses during flashing. Clear them.
SET_DIR_OUTPUT(P1_19);
WRITE_PIN_CLR(P1_19);
SET_DIR_OUTPUT(P1_20);
WRITE_PIN_CLR(P1_20);
SET_DIR_OUTPUT(P1_21);
WRITE_PIN_CLR(P1_21);
// Flash status LED 3 times to indicate Marlin has started booting
for (uint8_t i = 0; i < 6; ++i) {
TOGGLE(LED_PIN);
delay(100);
}
#endif
//debug_frmwrk_init();
//_DBG("\n\nDebug running\n");
// Initialise the SD card chip select pins as soon as possible
#ifdef SS_PIN
digitalWrite(SS_PIN, HIGH);
pinMode(SS_PIN, OUTPUT);
#endif
#ifdef ONBOARD_SD_CS
digitalWrite(ONBOARD_SD_CS, HIGH);
pinMode(ONBOARD_SD_CS, OUTPUT);
#endif
USB_Init(); // USB Initialization USB_Init(); // USB Initialization
USB_Connect(TRUE); // USB Connect USB_Connect(FALSE); // USB clear connection
delay(1000); // Give OS time to notice
USB_Connect(TRUE);
#ifndef USB_SD_DISABLED
MSC_SD_Init(0); // Enable USB SD card access
#endif
const uint32_t usb_timeout = millis() + 2000; const uint32_t usb_timeout = millis() + 2000;
while (!USB_Configuration && PENDING(millis(), usb_timeout)) { while (!USB_Configuration && PENDING(millis(), usb_timeout)) {
delay(50); delay(50);
HAL_idletask();
#if PIN_EXISTS(LED) #if PIN_EXISTS(LED)
TOGGLE(LED_PIN); // Flash quickly during USB initialization TOGGLE(LED_PIN); // Flash quickly during USB initialization
#endif #endif
@ -110,11 +83,25 @@ int main(void) {
#endif #endif
HAL_timer_init(); HAL_timer_init();
}
LPC1768_PWM_init(); // HAL idle task
void HAL_idletask(void) {
setup(); #if ENABLED(SDSUPPORT) && defined(SHARED_SD_CARD)
for (;;) loop(); // If Marlin is using the SD card we need to lock it to prevent access from
// a PC via USB.
// Other HALs use IS_SD_PRINTING and IS_SD_FILE_OPEN to check for access but
// this will not reliably detect delete operations. To be safe we will lock
// the disk if Marlin has it mounted. Unfortuately there is currently no way
// to unmount the disk from the LCD menu.
// if (IS_SD_PRINTING || IS_SD_FILE_OPEN)
if (card.cardOK)
MSC_Aquire_Lock();
else
MSC_Release_Lock();
#endif
// Perform USB stack housekeeping
MSC_RunDeferredCommands();
} }
#endif // TARGET_LPC1768 #endif // TARGET_LPC1768

View file

@ -21,4 +21,4 @@
*/ */
#include "../shared/persistent_store_api.h" #include "../shared/persistent_store_api.h"
//#define FLASH_EEPROM #define FLASH_EEPROM

View file

@ -69,20 +69,15 @@ bool PersistentStore::access_start() {
__disable_irq(); __disable_irq();
status = BlankCheckSector(EEPROM_SECTOR, EEPROM_SECTOR, &first_nblank_loc, &first_nblank_val); status = BlankCheckSector(EEPROM_SECTOR, EEPROM_SECTOR, &first_nblank_loc, &first_nblank_val);
__enable_irq(); __enable_irq();
SERIAL_PROTOCOLLNPAIR("Blank check status: ", status);
if (status == CMD_SUCCESS) { if (status == CMD_SUCCESS) {
// sector is blank so nothing stored yet // sector is blank so nothing stored yet
SERIAL_PROTOCOLLNPGM("FLASH empty");
for (int i = 0; i < EEPROM_SIZE; i++) ram_eeprom[i] = EEPROM_ERASE; for (int i = 0; i < EEPROM_SIZE; i++) ram_eeprom[i] = EEPROM_ERASE;
current_slot = EEPROM_SLOTS; current_slot = EEPROM_SLOTS;
} } else {
else {
// current slot is the first non blank one // current slot is the first non blank one
current_slot = first_nblank_loc / EEPROM_SIZE; current_slot = first_nblank_loc / EEPROM_SIZE;
SERIAL_PROTOCOLLNPAIR("Flash slot: ", current_slot);
uint8_t *eeprom_data = SLOT_ADDRESS(EEPROM_SECTOR, current_slot); uint8_t *eeprom_data = SLOT_ADDRESS(EEPROM_SECTOR, current_slot);
SERIAL_PROTOCOLLNPAIR("Address: ", (int)eeprom_data);
// load current settings // load current settings
for (int i = 0; i < EEPROM_SIZE; i++) ram_eeprom[i] = eeprom_data[i]; for (int i = 0; i < EEPROM_SIZE; i++) ram_eeprom[i] = eeprom_data[i];
} }
@ -100,15 +95,15 @@ bool PersistentStore::access_finish() {
PrepareSector(EEPROM_SECTOR, EEPROM_SECTOR); PrepareSector(EEPROM_SECTOR, EEPROM_SECTOR);
status = EraseSector(EEPROM_SECTOR, EEPROM_SECTOR); status = EraseSector(EEPROM_SECTOR, EEPROM_SECTOR);
__enable_irq(); __enable_irq();
SERIAL_PROTOCOLLNPAIR("Erase status: ", status);
current_slot = EEPROM_SLOTS - 1; current_slot = EEPROM_SLOTS - 1;
} }
SERIAL_PROTOCOLLNPAIR("Writing data to: ", current_slot);
__disable_irq(); __disable_irq();
PrepareSector(EEPROM_SECTOR, EEPROM_SECTOR); PrepareSector(EEPROM_SECTOR, EEPROM_SECTOR);
status = CopyRAM2Flash(SLOT_ADDRESS(EEPROM_SECTOR, current_slot), ram_eeprom, IAP_WRITE_4096); status = CopyRAM2Flash(SLOT_ADDRESS(EEPROM_SECTOR, current_slot), ram_eeprom, IAP_WRITE_4096);
__enable_irq(); __enable_irq();
SERIAL_PROTOCOLLNPAIR("CopyRAM2Flash status: ", status);
if (status != CMD_SUCCESS) return false; if (status != CMD_SUCCESS) return false;
eeprom_dirty = false; eeprom_dirty = false;
} }
@ -116,7 +111,7 @@ bool PersistentStore::access_finish() {
} }
bool PersistentStore::write_data(int &pos, const uint8_t *value, size_t size, uint16_t *crc) { bool PersistentStore::write_data(int &pos, const uint8_t *value, size_t size, uint16_t *crc) {
for (int i = 0; i < size; i++) ram_eeprom[pos + i] = value[i]; for (size_t i = 0; i < size; i++) ram_eeprom[pos + i] = value[i];
eeprom_dirty = true; eeprom_dirty = true;
crc16(crc, value, size); crc16(crc, value, size);
pos += size; pos += size;
@ -125,7 +120,7 @@ bool PersistentStore::write_data(int &pos, const uint8_t *value, size_t size, ui
bool PersistentStore::read_data(int &pos, uint8_t* value, size_t size, uint16_t *crc, const bool writing/*=true*/) { bool PersistentStore::read_data(int &pos, uint8_t* value, size_t size, uint16_t *crc, const bool writing/*=true*/) {
const uint8_t * const buff = writing ? &value[0] : &ram_eeprom[pos]; const uint8_t * const buff = writing ? &value[0] : &ram_eeprom[pos];
if (writing) for (int i = 0; i < size; i++) value[i] = ram_eeprom[pos + i]; if (writing) for (size_t i = 0; i < size; i++) value[i] = ram_eeprom[pos + i];
crc16(crc, buff, size); crc16(crc, buff, size);
pos += size; pos += size;
return false; // return true for any error return false; // return true for any error

View file

@ -50,7 +50,8 @@
#ifndef SS_PIN #ifndef SS_PIN
#define SS_PIN P1_23 #define SS_PIN P1_23
#endif #endif
#ifndef SDSS #if !defined(SDSS) || SDSS == P_NC // gets defaulted in pins.h
#undef SDSS
#define SDSS SS_PIN #define SDSS SS_PIN
#endif #endif

View file

@ -55,7 +55,7 @@
#ifdef TARGET_LPC1768 #ifdef TARGET_LPC1768
#include "../../inc/MarlinConfigPre.h" #include "../../../inc/MarlinConfigPre.h"
#if ENABLED(DOGLCD) #if ENABLED(DOGLCD)

View file

@ -77,7 +77,7 @@
#ifdef TARGET_LPC1768 #ifdef TARGET_LPC1768
#include "../../inc/MarlinConfigPre.h" #include "../../../inc/MarlinConfigPre.h"
#if ENABLED(DOGLCD) #if ENABLED(DOGLCD)

View file

@ -55,13 +55,13 @@
#ifdef TARGET_LPC1768 #ifdef TARGET_LPC1768
#include "../../inc/MarlinConfigPre.h" #include "../../../inc/MarlinConfigPre.h"
#if ENABLED(DOGLCD) #if ENABLED(DOGLCD)
//#include <inttypes.h> //#include <inttypes.h>
#include <U8glib.h> #include <U8glib.h>
#include "../shared/Delay.h" #include "../../shared/Delay.h"
#define SPI_FULL_SPEED 0 #define SPI_FULL_SPEED 0
#define SPI_HALF_SPEED 1 #define SPI_HALF_SPEED 1

View file

@ -55,14 +55,15 @@
#ifdef TARGET_LPC1768 #ifdef TARGET_LPC1768
#include "../../inc/MarlinConfigPre.h" #include "../../../inc/MarlinConfigPre.h"
#if ENABLED(DOGLCD) #if ENABLED(DOGLCD)
#include <U8glib.h> #include <U8glib.h>
#include "SoftwareSPI.h" #include "SoftwareSPI.h"
#include "../shared/Delay.h" #include "../../shared/Delay.h"
#undef SPI_SPEED
#define SPI_SPEED 3 // About 1 MHz #define SPI_SPEED 3 // About 1 MHz
static pin_t SCK_pin_ST7920_HAL, MOSI_pin_ST7920_HAL_HAL; static pin_t SCK_pin_ST7920_HAL, MOSI_pin_ST7920_HAL_HAL;

View file

@ -55,13 +55,14 @@
#ifdef TARGET_LPC1768 #ifdef TARGET_LPC1768
#include "../../inc/MarlinConfigPre.h" #include "../../../inc/MarlinConfigPre.h"
#if ENABLED(DOGLCD) #if ENABLED(DOGLCD)
#include <U8glib.h> #include <U8glib.h>
#include "SoftwareSPI.h" #include "SoftwareSPI.h"
#undef SPI_SPEED
#define SPI_SPEED 2 // About 2 MHz #define SPI_SPEED 2 // About 2 MHz
static uint8_t SPI_speed = 0; static uint8_t SPI_speed = 0;

View file

@ -0,0 +1,13 @@
#ifdef TARGET_LPC1768
#include "../../inc/MarlinConfigPre.h"
#if ENABLED(EMERGENCY_PARSER)
#include "../../feature/emergency_parser.h"
EmergencyParser::State emergency_state;
bool CDC_RecvCallback(const char buffer) {
emergency_parser.update(emergency_state, buffer);
return true;
}
#endif // ENABLED(EMERGENCY_PARSER)
#endif // TARGET_LPC1768

View file

@ -30,7 +30,29 @@
#include "watchdog.h" #include "watchdog.h"
void watchdog_init(void) { void watchdog_init(void) {
WDT_Init(WDT_CLKSRC_IRC, WDT_MODE_RESET); #if ENABLED(WATCHDOG_RESET_MANUAL)
// We enable the watchdog timer, but only for the interrupt.
// Configure WDT to only trigger an interrupt
// Disable WDT interrupt (just in case, to avoid triggering it!)
NVIC_DisableIRQ(WDT_IRQn);
// We NEED memory barriers to ensure Interrupts are actually disabled!
// ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the )
__DSB();
__ISB();
// Configure WDT to only trigger an interrupt
// Initialize WDT with the given parameters
WDT_Init(WDT_CLKSRC_IRC, WDT_MODE_INT_ONLY);
// Configure and enable WDT interrupt.
NVIC_ClearPendingIRQ(WDT_IRQn);
NVIC_SetPriority(WDT_IRQn, 0); // Use highest priority, so we detect all kinds of lockups
NVIC_EnableIRQ(WDT_IRQn);
#else
WDT_Init(WDT_CLKSRC_IRC, WDT_MODE_RESET);
#endif
WDT_Start(WDT_TIMEOUT); WDT_Start(WDT_TIMEOUT);
} }

View file

@ -73,7 +73,7 @@
#elif IS_TEENSY35 || IS_TEENSY36 #elif IS_TEENSY35 || IS_TEENSY36
#include "../HAL_TEENSY35_36/HAL_Servo_Teensy.h" #include "../HAL_TEENSY35_36/HAL_Servo_Teensy.h"
#elif defined(TARGET_LPC1768) #elif defined(TARGET_LPC1768)
#include "../HAL_LPC1768/LPC1768_Servo.h" #include "../HAL_LPC1768/MarlinServo.h"
#elif defined(__STM32F1__) || defined(TARGET_STM32F1) #elif defined(__STM32F1__) || defined(TARGET_STM32F1)
#include "../HAL_STM32F1/HAL_Servo_STM32F1.h" #include "../HAL_STM32F1/HAL_Servo_STM32F1.h"
#elif defined(STM32GENERIC) && defined(STM32F4) #elif defined(STM32GENERIC) && defined(STM32F4)

View file

@ -27,6 +27,7 @@
#ifndef _SERVO_H_ #ifndef _SERVO_H_
#define _SERVO_H_ #define _SERVO_H_
#include "../inc/MarlinConfig.h"
#include "../HAL/shared/servo.h" #include "../HAL/shared/servo.h"
extern HAL_SERVO_LIB servo[NUM_SERVOS]; extern HAL_SERVO_LIB servo[NUM_SERVOS];
@ -35,8 +36,6 @@ extern void servo_init();
#define MOVE_SERVO(I, P) servo[I].move(P) #define MOVE_SERVO(I, P) servo[I].move(P)
#include "../inc/MarlinConfig.h"
#if HAS_Z_SERVO_PROBE #if HAS_Z_SERVO_PROBE
#define DEPLOY_Z_SERVO() MOVE_SERVO(Z_PROBE_SERVO_NR, servo_angles[Z_PROBE_SERVO_NR][0]) #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_PROBE_SERVO_NR, servo_angles[Z_PROBE_SERVO_NR][0])
#define STOW_Z_SERVO() MOVE_SERVO(Z_PROBE_SERVO_NR, servo_angles[Z_PROBE_SERVO_NR][1]) #define STOW_Z_SERVO() MOVE_SERVO(Z_PROBE_SERVO_NR, servo_angles[Z_PROBE_SERVO_NR][1])

View file

@ -299,19 +299,19 @@
#elif MB(AZSMZ_MINI) #elif MB(AZSMZ_MINI)
#include "pins_AZSMZ_MINI.h" // LPC1768 env:LPC1768 #include "pins_AZSMZ_MINI.h" // LPC1768 env:LPC1768
#elif MB(AZTEEG_X5_GT) #elif MB(AZTEEG_X5_GT)
#include "pins_AZTEEG_X5_GT.h" // LPC1769 env:LPC1768 #include "pins_AZTEEG_X5_GT.h" // LPC1769 env:LPC1769
#elif MB(AZTEEG_X5_MINI_WIFI) #elif MB(AZTEEG_X5_MINI_WIFI)
#include "pins_AZTEEG_X5_MINI_WIFI.h" // LPC1769 env:LPC1768 #include "pins_AZTEEG_X5_MINI_WIFI.h" // LPC1769 env:LPC1769
#elif MB(BIQU_BQ111_A4) #elif MB(BIQU_BQ111_A4)
#include "pins_BIQU_BQ111_A4.h" // LPC1768 env:LPC1768 #include "pins_BIQU_BQ111_A4.h" // LPC1768 env:LPC1768
#elif MB(SELENA_COMPACT) #elif MB(SELENA_COMPACT)
#include "pins_SELENA_COMPACT.h" // LPC1768 env:LPC1768 #include "pins_SELENA_COMPACT.h" // LPC1768 env:LPC1768
#elif MB(COHESION3D_REMIX) #elif MB(COHESION3D_REMIX)
#include "pins_COHESION3D_REMIX.h" // LPC1769 env:LPC1768 #include "pins_COHESION3D_REMIX.h" // LPC1769 env:LPC1769
#elif MB(COHESION3D_MINI) #elif MB(COHESION3D_MINI)
#include "pins_COHESION3D_MINI.h" // LPC1769 env:LPC1768 #include "pins_COHESION3D_MINI.h" // LPC1769 env:LPC1769
#elif MB(SMOOTHIEBOARD) #elif MB(SMOOTHIEBOARD)
#include "pins_SMOOTHIEBOARD.h" // LPC1769 env:LPC1768 #include "pins_SMOOTHIEBOARD.h" // LPC1769 env:LPC1769
// //
// Other 32-bit Boards // Other 32-bit Boards

View file

@ -141,8 +141,6 @@
// Misc. Functions // Misc. Functions
// //
#define PS_ON_PIN P0_25 //TH3 Connector #define PS_ON_PIN P0_25 //TH3 Connector
#define LPC_SOFTWARE_SPI // MKS_SBASE needs a software SPI because the
// selected pins are not on a hardware SPI controller
/** /**
* Smart LCD adapter * Smart LCD adapter
@ -185,14 +183,76 @@
#define ENET_TXD0 P1_00 // J12-11 #define ENET_TXD0 P1_00 // J12-11
#define ENET_TXD1 P1_01 // J12-12 #define ENET_TXD1 P1_01 // J12-12
// A custom cable is needed. See the README file in the
// Marlin\src\config\examples\Mks\Sbase directory
#define SCK_PIN P1_22 // J8-2 (moved from EXP2 P0.7) /*
#define MISO_PIN P1_23 // J8-3 (moved from EXP2 P0.8) * The SBase can share the on-board SD card with a PC via USB the following
#define MOSI_PIN P2_12 // J8-4 (moved from EXP2 P0.5) * definitions control this feature:
#define SS_PIN P0_28 */
#define SDSS P0_06 //#define USB_SD_DISABLED
#define USB_SD_ONBOARD // Provide the onboard SD card to the host as a USB mass storage device
/*
* There are a number of configurations available for the SBase SD card reader.
* A custom cable can be used to allow access to the LCD based SD card.
* A standard cable can be used for access to the LCD SD card (but no SD detect).
* The onboard SD card can be used and optionally shared with a PC via USB.
*/
//#define LPC_SD_CUSTOM_CABLE // Use a custom cable to access the SD
//#define LPC_SD_LCD // Marlin uses the SD drive attached to the LCD
#define LPC_SD_ONBOARD // Marlin uses the SD drive attached to the control board
#ifdef LPC_SD_CUSTOM_CABLE
/**
* A custom cable is needed. See the README file in the
* Marlin\src\config\examples\Mks\Sbase directory
* P0.27 is on EXP2 and the on-board SD card's socket. That means it can't be
* used as the SD_DETECT for the LCD's SD card.
*
* The best solution is to use the custom cable to connect the LCD's SD_DETECT
* to a pin NOT on EXP2.
*
* If you can't find a pin to use for the LCD's SD_DETECT then comment out
* SD_DETECT_PIN entirely and remove that wire from the the custom cable.
*/
#define SD_DETECT_PIN P2_11 // J8-5 (moved from EXP2 P0.27)
#define SCK_PIN P1_22 // J8-2 (moved from EXP2 P0.7)
#define MISO_PIN P1_23 // J8-3 (moved from EXP2 P0.8)
#define MOSI_PIN P2_12 // J8-4 (moved from EXP2 P0.9)
#define SS_PIN P0_28 // Chip select for SD card used by Marlin
#define ONBOARD_SD_CS P0_06 // Chip select for "System" SD card
#define LPC_SOFTWARE_SPI // With a custom cable we need software SPI because the
// selected pins are not on a hardware SPI controller
#endif
#ifdef LPC_SD_LCD
// use standard cable and header, SPI and SD detect sre shared with on-board SD card
// hardware SPI is used for both SD cards. The detect pin is shred between the
// LCD and onboard SD readers so we disable it.
#undef SD_DETECT_PIN
#define SCK_PIN P0_07
#define MISO_PIN P0_08
#define MOSI_PIN P0_09
#define SS_PIN P0_28 // Chip select for SD card used by Marlin
#define ONBOARD_SD_CS P0_06 // Chip select for "System" SD card
#endif
#ifdef LPC_SD_ONBOARD
// The external SD card is not used. Hardware SPI is used to access the card.
#ifdef USB_SD_ONBOARD
// When sharing the SD card with a PC we want the menu options to
// mount/unmount the card and refresh it. So we disable card detect.
#define SHARED_SD_CARD
#undef SD_DETECT_PIN
#else
#define SD_DETECT_PIN P0_27
#endif
#define SCK_PIN P0_07
#define MISO_PIN P0_08
#define MOSI_PIN P0_09
#define SS_PIN P0_06 // Chip select for SD card used by Marlin
#define ONBOARD_SD_CS P0_06 // Chip select for "System" SD card
#endif
/** /**
* Example for trinamic drivers using the J8 connector on MKs Sbase. * Example for trinamic drivers using the J8 connector on MKs Sbase.
@ -237,18 +297,6 @@
#define E0_SERIAL_RX_PIN P0_26 // TH4 #define E0_SERIAL_RX_PIN P0_26 // TH4
#endif #endif
/**
* P0.27 is on EXP2 and the on-board SD card's socket. That means it can't be
* used as the SD_DETECT for the LCD's SD card.
*
* The best solution is to use the custom cable to connect the LCD's SD_DETECT
* to a pin NOT on EXP2.
*
* If you can't find a pin to use for the LCD's SD_DETECT then comment out
* SD_DETECT_PIN entirely and remove that wire from the the custom cable.
*/
#define SD_DETECT_PIN P2_11 // J8-5 (moved from EXP2 P0.27)
/** /**
* PWMs * PWMs
* *

View file

@ -198,7 +198,6 @@
// Misc. Functions // Misc. Functions
// //
#define LED_PIN P4_28 // (13) #define LED_PIN P4_28 // (13)
#define SDSS P1_23 // (53)
// define digital pin 4 for the filament runout sensor. Use the RAMPS 1.4 digital input 4 on the servos connector // define digital pin 4 for the filament runout sensor. Use the RAMPS 1.4 digital input 4 on the servos connector
#ifndef FIL_RUNOUT_PIN #ifndef FIL_RUNOUT_PIN
@ -364,6 +363,35 @@
#define ENET_TXD0 P1_00 // (78) J12-11 #define ENET_TXD0 P1_00 // (78) J12-11
#define ENET_TXD1 P1_01 // (79) J12-12 #define ENET_TXD1 P1_01 // (79) J12-12
//#define USB_SD_DISABLED
#define USB_SD_ONBOARD // Provide the onboard SD card to the host as a USB mass storage device
//#define LPC_SD_LCD // Marlin uses the SD drive attached to the LCD
#define LPC_SD_ONBOARD // Marlin uses the SD drive on the control board
#ifdef LPC_SD_LCD
#define SCK_PIN P0_15
#define MISO_PIN P0_17
#define MOSI_PIN P0_18
#define SS_PIN P1_23 // Chip select for SD card used by Marlin
#define ONBOARD_SD_CS P0_06 // Chip select for "System" SD card
#endif
#ifdef LPC_SD_ONBOARD
#ifdef USB_SD_ONBOARD
// When sharing the SD card with a PC we want the menu options to
// mount/unmount the card and refresh it. So we disable card detect.
#define SHARED_SD_CARD
#undef SD_DETECT_PIN // there is also no detect pin for the onboard card
#endif
#define SCK_PIN P0_07
#define MISO_PIN P0_08
#define MOSI_PIN P0_09
#define SS_PIN P0_06 // Chip select for SD card used by Marlin
#define ONBOARD_SD_CS P0_06 // Chip select for "System" SD card
#endif
/** /**
* Fast PWMS * Fast PWMS
* *

View file

@ -1,306 +0,0 @@
/**********************************************************************
* $Id$ debug_frmwrk.c 2010-05-21
*
* @file debug_frmwrk.c
* @brief Contains some utilities that used for debugging through UART
* @version 2.0
* @date 21. May. 2010
* @author NXP MCU SW Application Team
*
* Copyright(C) 2010, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
#include "debug_frmwrk.h"
#include "lpc17xx_pinsel.h"
/* If this source file built with example, the LPC17xx FW library configuration
* file in each example directory ("lpc17xx_libcfg.h") must be included,
* otherwise the default FW library configuration file must be included instead
*/
#ifdef __BUILD_WITH_EXAMPLE__
#include "lpc17xx_libcfg.h"
#else
#include "lpc17xx_libcfg_default.h"
#endif
#ifdef _DBGFWK
/* Debug framework */
static Bool debug_frmwrk_initialized = FALSE;
void (*_db_msg)(LPC_UART_TypeDef *UARTx, const void *s) = UARTPuts;
void (*_db_msg_)(LPC_UART_TypeDef *UARTx, const void *s) = UARTPuts_;
void (*_db_char)(LPC_UART_TypeDef *UARTx, uint8_t ch) = UARTPutChar;
void (*_db_dec)(LPC_UART_TypeDef *UARTx, uint8_t decn) = UARTPutHex;
void (*_db_dec_16)(LPC_UART_TypeDef *UARTx, uint16_t decn) = UARTPutHex16;
void (*_db_dec_32)(LPC_UART_TypeDef *UARTx, uint32_t decn) = UARTPutHex32;
void (*_db_hex)(LPC_UART_TypeDef *UARTx, uint8_t hexn) = UARTPutDec;
void (*_db_hex_16)(LPC_UART_TypeDef *UARTx, uint16_t hexn) = UARTPutDec16;
void (*_db_hex_32)(LPC_UART_TypeDef *UARTx, uint32_t hexn) = UARTPutDec32;
uint8_t (*_db_get_char)(LPC_UART_TypeDef *UARTx) = UARTGetChar;
/*********************************************************************//**
* @brief Puts a character to UART port
* @param[in] UARTx Pointer to UART peripheral
* @param[in] ch Character to put
* @return None
**********************************************************************/
void UARTPutChar(LPC_UART_TypeDef *UARTx, uint8_t ch) {
if (debug_frmwrk_initialized)
UART_Send(UARTx, &ch, 1, BLOCKING);
}
/*********************************************************************//**
* @brief Get a character to UART port
* @param[in] UARTx Pointer to UART peripheral
* @return character value that returned
**********************************************************************/
uint8_t UARTGetChar(LPC_UART_TypeDef *UARTx) {
uint8_t tmp = 0;
if (debug_frmwrk_initialized)
UART_Receive(UARTx, &tmp, 1, BLOCKING);
return(tmp);
}
/*********************************************************************//**
* @brief Puts a string to UART port
* @param[in] UARTx Pointer to UART peripheral
* @param[in] str string to put
* @return None
**********************************************************************/
void UARTPuts(LPC_UART_TypeDef *UARTx, const void *str) {
if (!debug_frmwrk_initialized) return;
uint8_t *s = (uint8_t*)str;
while (*s) UARTPutChar(UARTx, *s++);
}
/*********************************************************************//**
* @brief Puts a string to UART port and print new line
* @param[in] UARTx Pointer to UART peripheral
* @param[in] str String to put
* @return None
**********************************************************************/
void UARTPuts_(LPC_UART_TypeDef *UARTx, const void *str) {
if (!debug_frmwrk_initialized) return;
UARTPuts (UARTx, str);
UARTPuts (UARTx, "\n\r");
}
/*********************************************************************//**
* @brief Puts a decimal number to UART port
* @param[in] UARTx Pointer to UART peripheral
* @param[in] decnum Decimal number (8-bit long)
* @return None
**********************************************************************/
void UARTPutDec(LPC_UART_TypeDef *UARTx, uint8_t decnum) {
if (!debug_frmwrk_initialized) return;
uint8_t c1 = decnum%10;
uint8_t c2 = (decnum / 10) % 10;
uint8_t c3 = (decnum / 100) % 10;
UARTPutChar(UARTx, '0'+c3);
UARTPutChar(UARTx, '0'+c2);
UARTPutChar(UARTx, '0'+c1);
}
/*********************************************************************//**
* @brief Puts a decimal number to UART port
* @param[in] UARTx Pointer to UART peripheral
* @param[in] decnum Decimal number (8-bit long)
* @return None
**********************************************************************/
void UARTPutDec16(LPC_UART_TypeDef *UARTx, uint16_t decnum) {
if (!debug_frmwrk_initialized) return;
uint8_t c1 = decnum%10;
uint8_t c2 = (decnum / 10) % 10;
uint8_t c3 = (decnum / 100) % 10;
uint8_t c4 = (decnum / 1000) % 10;
uint8_t c5 = (decnum / 10000) % 10;
UARTPutChar(UARTx, '0'+c5);
UARTPutChar(UARTx, '0'+c4);
UARTPutChar(UARTx, '0'+c3);
UARTPutChar(UARTx, '0'+c2);
UARTPutChar(UARTx, '0'+c1);
}
/*********************************************************************//**
* @brief Puts a decimal number to UART port
* @param[in] UARTx Pointer to UART peripheral
* @param[in] decnum Decimal number (8-bit long)
* @return None
**********************************************************************/
void UARTPutDec32(LPC_UART_TypeDef *UARTx, uint32_t decnum) {
if (!debug_frmwrk_initialized) return;
const uint8_t c1 = decnum % 10,
c2 = (decnum / 10) % 10,
c3 = (decnum / 100) % 10,
c4 = (decnum / 1000) % 10,
c5 = (decnum / 10000) % 10,
c6 = (decnum / 100000) % 10,
c7 = (decnum / 1000000) % 10,
c8 = (decnum / 10000000) % 10,
c9 = (decnum / 100000000) % 10,
c10 = (decnum / 1000000000) % 10;
UARTPutChar(UARTx, '0' + c10);
UARTPutChar(UARTx, '0' + c9);
UARTPutChar(UARTx, '0' + c8);
UARTPutChar(UARTx, '0' + c7);
UARTPutChar(UARTx, '0' + c6);
UARTPutChar(UARTx, '0' + c5);
UARTPutChar(UARTx, '0' + c4);
UARTPutChar(UARTx, '0' + c3);
UARTPutChar(UARTx, '0' + c2);
UARTPutChar(UARTx, '0' + c1);
}
/*********************************************************************//**
* @brief Puts a hex number to UART port
* @param[in] UARTx Pointer to UART peripheral
* @param[in] hexnum Hex number (8-bit long)
* @return None
**********************************************************************/
void UARTPutHex(LPC_UART_TypeDef *UARTx, uint8_t hexnum) {
if (!debug_frmwrk_initialized) return;
UARTPuts(UARTx, "0x");
uint8_t nibble, i = 1;
do {
nibble = (hexnum >> (4 * i)) & 0x0F;
UARTPutChar(UARTx, (nibble > 9) ? ('A' + nibble - 10) : ('0' + nibble));
} while (i--);
}
/*********************************************************************//**
* @brief Puts a hex number to UART port
* @param[in] UARTx Pointer to UART peripheral
* @param[in] hexnum Hex number (16-bit long)
* @return None
**********************************************************************/
void UARTPutHex16(LPC_UART_TypeDef *UARTx, uint16_t hexnum) {
if (!debug_frmwrk_initialized) return;
UARTPuts(UARTx, "0x");
uint8_t nibble, i = 3;
do {
nibble = (hexnum >> (4 * i)) & 0x0F;
UARTPutChar(UARTx, (nibble > 9) ? ('A' + nibble - 10) : ('0' + nibble));
} while (i--);
}
/*********************************************************************//**
* @brief Puts a hex number to UART port
* @param[in] UARTx Pointer to UART peripheral
* @param[in] hexnum Hex number (32-bit long)
* @return None
**********************************************************************/
void UARTPutHex32(LPC_UART_TypeDef *UARTx, uint32_t hexnum) {
if (!debug_frmwrk_initialized) return;
UARTPuts(UARTx, "0x");
uint8_t nibble, i = 7;
do {
nibble = (hexnum >> (4 * i)) & 0x0F;
UARTPutChar(UARTx, (nibble > 9) ? ('A' + nibble - 10) : ('0' + nibble));
} while (i--);
}
/*********************************************************************//**
* @brief print function that supports format as same as printf()
* function of <stdio.h> library
* @param[in] None
* @return None
**********************************************************************/
//void _printf (const char *format, ...) {
// static char buffer[512 + 1];
// va_list vArgs;
// char *tmp;
// va_start(vArgs, format);
// vsprintf((char *)buffer, (char const *)format, vArgs);
// va_end(vArgs);
//
// _DBG(buffer);
//}
/*********************************************************************//**
* @brief Initialize Debug frame work through initializing UART port
* @param[in] None
* @return None
**********************************************************************/
void debug_frmwrk_init(void) {
UART_CFG_Type UARTConfigStruct;
PINSEL_CFG_Type PinCfg;
#if (USED_UART_DEBUG_PORT==0)
/*
* Initialize UART0 pin connect
*/
PinCfg.Funcnum = 1;
PinCfg.OpenDrain = 0;
PinCfg.Pinmode = 0;
PinCfg.Pinnum = 2;
PinCfg.Portnum = 0;
PINSEL_ConfigPin(&PinCfg);
PinCfg.Pinnum = 3;
PINSEL_ConfigPin(&PinCfg);
#elif (USED_UART_DEBUG_PORT==1)
/*
* Initialize UART1 pin connect
*/
PinCfg.Funcnum = 1;
PinCfg.OpenDrain = 0;
PinCfg.Pinmode = 0;
PinCfg.Pinnum = 15;
PinCfg.Portnum = 0;
PINSEL_ConfigPin(&PinCfg);
PinCfg.Pinnum = 16;
PINSEL_ConfigPin(&PinCfg);
#endif
/* Initialize UART Configuration parameter structure to default state:
* Baudrate = 9600bps
* 8 data bit
* 1 Stop bit
* None parity
*/
UART_ConfigStructInit(&UARTConfigStruct);
// Re-configure baudrate to 115200bps
UARTConfigStruct.Baud_rate = 115200;
// Initialize DEBUG_UART_PORT peripheral with given to corresponding parameter
UART_Init((LPC_UART_TypeDef *)DEBUG_UART_PORT, &UARTConfigStruct);
// Enable UART Transmit
UART_TxCmd((LPC_UART_TypeDef *)DEBUG_UART_PORT, ENABLE);
debug_frmwrk_initialized = TRUE;
}
#endif // _DBGFWK

View file

@ -1,358 +0,0 @@
/**********************************************************************
* $Id$ lpc17xx_adc.c 2010-06-18
*//**
* @file lpc17xx_adc.c
* @brief Contains all functions support for ADC firmware library on LPC17xx
* @version 3.1
* @date 26. July. 2011
* @author NXP MCU SW Application Team
*
* Copyright(C) 2011, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
/* Peripheral group ----------------------------------------------------------- */
/** @addtogroup ADC
* @{
*/
/* Includes ------------------------------------------------------------------- */
#include "lpc17xx_adc.h"
#include "lpc17xx_clkpwr.h"
/* If this source file built with example, the LPC17xx FW library configuration
* file in each example directory ("lpc17xx_libcfg.h") must be included,
* otherwise the default FW library configuration file must be included instead
*/
#ifdef __BUILD_WITH_EXAMPLE__
#include "lpc17xx_libcfg.h"
#else
#include "lpc17xx_libcfg_default.h"
#endif /* __BUILD_WITH_EXAMPLE__ */
#ifdef _ADC
/* Public Functions ----------------------------------------------------------- */
/** @addtogroup ADC_Public_Functions
* @{
*/
/*********************************************************************//**
* @brief Initial for ADC
* + Set bit PCADC
* + Set clock for ADC
* + Set Clock Frequency
* @param[in] ADCx pointer to LPC_ADC_TypeDef, should be: LPC_ADC
* @param[in] rate ADC conversion rate, should be <=200KHz
* @return None
**********************************************************************/
void ADC_Init(LPC_ADC_TypeDef *ADCx, uint32_t rate)
{
uint32_t ADCPClk, temp, tmp;
CHECK_PARAM(PARAM_ADCx(ADCx));
CHECK_PARAM(PARAM_ADC_RATE(rate));
// Turn on power and clock
CLKPWR_ConfigPPWR (CLKPWR_PCONP_PCAD, ENABLE);
ADCx->ADCR = 0;
//Enable PDN bit
tmp = ADC_CR_PDN;
// Set clock frequency
ADCPClk = CLKPWR_GetPCLK(CLKPWR_PCLKSEL_ADC);
/* The APB clock (PCLK_ADC0) is divided by (CLKDIV+1) to produce the clock for
* A/D converter, which should be less than or equal to 13MHz.
* A fully conversion requires 65 of these clocks.
* ADC clock = PCLK_ADC0 / (CLKDIV + 1);
* ADC rate = ADC clock / 65;
*/
temp = rate * 65;
temp = (ADCPClk * 2 + temp)/(2 * temp) - 1; //get the round value by fomular: (2*A + B)/(2*B)
tmp |= ADC_CR_CLKDIV(temp);
ADCx->ADCR = tmp;
}
/*********************************************************************//**
* @brief Close ADC
* @param[in] ADCx pointer to LPC_ADC_TypeDef, should be: LPC_ADC
* @return None
**********************************************************************/
void ADC_DeInit(LPC_ADC_TypeDef *ADCx)
{
CHECK_PARAM(PARAM_ADCx(ADCx));
if (ADCx->ADCR & ADC_CR_START_MASK) //need to stop START bits before DeInit
ADCx->ADCR &= ~ADC_CR_START_MASK;
// Clear SEL bits
ADCx->ADCR &= ~0xFF;
// Clear PDN bit
ADCx->ADCR &= ~ADC_CR_PDN;
// Turn on power and clock
CLKPWR_ConfigPPWR (CLKPWR_PCONP_PCAD, DISABLE);
}
/*********************************************************************//**
* @brief Get Result conversion from A/D data register
* @param[in] channel number which want to read back the result
* @return Result of conversion
*********************************************************************/
uint32_t ADC_GetData(uint32_t channel)
{
uint32_t adc_value;
CHECK_PARAM(PARAM_ADC_CHANNEL_SELECTION(channel));
adc_value = *(uint32_t *)((&LPC_ADC->ADDR0) + channel);
return ADC_GDR_RESULT(adc_value);
}
/*********************************************************************//**
* @brief Set start mode for ADC
* @param[in] ADCx pointer to LPC_ADC_TypeDef, should be: LPC_ADC
* @param[in] start_mode Start mode choose one of modes in
* 'ADC_START_OPT' enumeration type definition, should be:
* - ADC_START_CONTINUOUS
* - ADC_START_NOW
* - ADC_START_ON_EINT0
* - ADC_START_ON_CAP01
* - ADC_START_ON_MAT01
* - ADC_START_ON_MAT03
* - ADC_START_ON_MAT10
* - ADC_START_ON_MAT11
* @return None
*********************************************************************/
void ADC_StartCmd(LPC_ADC_TypeDef *ADCx, uint8_t start_mode)
{
CHECK_PARAM(PARAM_ADCx(ADCx));
CHECK_PARAM(PARAM_ADC_START_OPT(start_mode));
ADCx->ADCR &= ~ADC_CR_START_MASK;
ADCx->ADCR |=ADC_CR_START_MODE_SEL((uint32_t)start_mode);
}
/*********************************************************************//**
* @brief ADC Burst mode setting
* @param[in] ADCx pointer to LPC_ADC_TypeDef, should be: LPC_ADC
* @param[in] NewState
* - 1: Set Burst mode
* - 0: reset Burst mode
* @return None
**********************************************************************/
void ADC_BurstCmd(LPC_ADC_TypeDef *ADCx, FunctionalState NewState)
{
CHECK_PARAM(PARAM_ADCx(ADCx));
ADCx->ADCR &= ~ADC_CR_BURST;
if (NewState){
ADCx->ADCR |= ADC_CR_BURST;
}
}
/*********************************************************************//**
* @brief Set AD conversion in power mode
* @param[in] ADCx pointer to LPC_ADC_TypeDef, should be: LPC_ADC
* @param[in] NewState
* - 1: AD converter is optional
* - 0: AD Converter is in power down mode
* @return None
**********************************************************************/
void ADC_PowerdownCmd(LPC_ADC_TypeDef *ADCx, FunctionalState NewState)
{
CHECK_PARAM(PARAM_ADCx(ADCx));
ADCx->ADCR &= ~ADC_CR_PDN;
if (NewState){
ADCx->ADCR |= ADC_CR_PDN;
}
}
/*********************************************************************//**
* @brief Set Edge start configuration
* @param[in] ADCx pointer to LPC_ADC_TypeDef, should be: LPC_ADC
* @param[in] EdgeOption is ADC_START_ON_RISING and ADC_START_ON_FALLING
* 0:ADC_START_ON_RISING
* 1:ADC_START_ON_FALLING
* @return None
**********************************************************************/
void ADC_EdgeStartConfig(LPC_ADC_TypeDef *ADCx, uint8_t EdgeOption)
{
CHECK_PARAM(PARAM_ADCx(ADCx));
CHECK_PARAM(PARAM_ADC_START_ON_EDGE_OPT(EdgeOption));
ADCx->ADCR &= ~ADC_CR_EDGE;
if (EdgeOption){
ADCx->ADCR |= ADC_CR_EDGE;
}
}
/*********************************************************************//**
* @brief ADC interrupt configuration
* @param[in] ADCx pointer to LPC_ADC_TypeDef, should be: LPC_ADC
* @param[in] IntType: type of interrupt, should be:
* - ADC_ADINTEN0: Interrupt channel 0
* - ADC_ADINTEN1: Interrupt channel 1
* ...
* - ADC_ADINTEN7: Interrupt channel 7
* - ADC_ADGINTEN: Individual channel/global flag done generate an interrupt
* @param[in] NewState:
* - SET : enable ADC interrupt
* - RESET: disable ADC interrupt
* @return None
**********************************************************************/
void ADC_IntConfig (LPC_ADC_TypeDef *ADCx, ADC_TYPE_INT_OPT IntType, FunctionalState NewState)
{
CHECK_PARAM(PARAM_ADCx(ADCx));
CHECK_PARAM(PARAM_ADC_TYPE_INT_OPT(IntType));
ADCx->ADINTEN &= ~ADC_INTEN_CH(IntType);
if (NewState){
ADCx->ADINTEN |= ADC_INTEN_CH(IntType);
}
}
/*********************************************************************//**
* @brief Enable/Disable ADC channel number
* @param[in] ADCx pointer to LPC_ADC_TypeDef, should be: LPC_ADC
* @param[in] Channel channel number
* @param[in] NewState Enable or Disable
*
* @return None
**********************************************************************/
void ADC_ChannelCmd (LPC_ADC_TypeDef *ADCx, uint8_t Channel, FunctionalState NewState)
{
CHECK_PARAM(PARAM_ADCx(ADCx));
CHECK_PARAM(PARAM_ADC_CHANNEL_SELECTION(Channel));
if (NewState == ENABLE) {
ADCx->ADCR |= ADC_CR_CH_SEL(Channel);
} else {
if (ADCx->ADCR & ADC_CR_START_MASK) //need to stop START bits before disable channel
ADCx->ADCR &= ~ADC_CR_START_MASK;
ADCx->ADCR &= ~ADC_CR_CH_SEL(Channel);
}
}
/*********************************************************************//**
* @brief Get ADC result
* @param[in] ADCx pointer to LPC_ADC_TypeDef, should be: LPC_ADC
* @param[in] channel: channel number, should be 0...7
* @return Data conversion
**********************************************************************/
uint16_t ADC_ChannelGetData(LPC_ADC_TypeDef *ADCx, uint8_t channel)
{
uint32_t adc_value;
CHECK_PARAM(PARAM_ADCx(ADCx));
CHECK_PARAM(PARAM_ADC_CHANNEL_SELECTION(channel));
adc_value = *(uint32_t *) ((&ADCx->ADDR0) + channel);
return ADC_DR_RESULT(adc_value);
}
/*********************************************************************//**
* @brief Get ADC Chanel status from ADC data register
* @param[in] ADCx pointer to LPC_ADC_TypeDef, should be: LPC_ADC
* @param[in] channel: channel number, should be 0..7
* @param[in] StatusType
* 0:Burst status
* 1:Done status
* @return SET / RESET
**********************************************************************/
FlagStatus ADC_ChannelGetStatus(LPC_ADC_TypeDef *ADCx, uint8_t channel, uint32_t StatusType)
{
uint32_t temp;
CHECK_PARAM(PARAM_ADCx(ADCx));
CHECK_PARAM(PARAM_ADC_CHANNEL_SELECTION(channel));
CHECK_PARAM(PARAM_ADC_DATA_STATUS(StatusType));
temp = *(uint32_t *) ((&ADCx->ADDR0) + channel);
if (StatusType) {
temp &= ADC_DR_DONE_FLAG;
}else{
temp &= ADC_DR_OVERRUN_FLAG;
}
if (temp) {
return SET;
} else {
return RESET;
}
}
/*********************************************************************//**
* @brief Get ADC Data from AD Global register
* @param[in] ADCx pointer to LPC_ADC_TypeDef, should be: LPC_ADC
* @return Result of conversion
**********************************************************************/
uint32_t ADC_GlobalGetData(LPC_ADC_TypeDef *ADCx)
{
CHECK_PARAM(PARAM_ADCx(ADCx));
return ((uint32_t)(ADCx->ADGDR));
}
/*********************************************************************//**
* @brief Get ADC Chanel status from AD global data register
* @param[in] ADCx pointer to LPC_ADC_TypeDef, should be: LPC_ADC
* @param[in] StatusType
* 0:Burst status
* 1:Done status
* @return SET / RESET
**********************************************************************/
FlagStatus ADC_GlobalGetStatus(LPC_ADC_TypeDef *ADCx, uint32_t StatusType)
{
uint32_t temp;
CHECK_PARAM(PARAM_ADCx(ADCx));
CHECK_PARAM(PARAM_ADC_DATA_STATUS(StatusType));
temp = ADCx->ADGDR;
if (StatusType){
temp &= ADC_DR_DONE_FLAG;
}else{
temp &= ADC_DR_OVERRUN_FLAG;
}
if (temp){
return SET;
}else{
return RESET;
}
}
/**
* @}
*/
#endif /* _ADC */
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */

File diff suppressed because it is too large Load diff

View file

@ -1,350 +0,0 @@
/**********************************************************************
* $Id$ lpc17xx_clkpwr.c 2010-06-18
*//**
* @file lpc17xx_clkpwr.c
* @brief Contains all functions support for Clock and Power Control
* firmware library on LPC17xx
* @version 3.0
* @date 18. June. 2010
* @author NXP MCU SW Application Team
*
* Copyright(C) 2010, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
/* Peripheral group ----------------------------------------------------------- */
/** @addtogroup CLKPWR
* @{
*/
/* Includes ------------------------------------------------------------------- */
#include "lpc17xx_clkpwr.h"
/* Public Functions ----------------------------------------------------------- */
/** @addtogroup CLKPWR_Public_Functions
* @{
*/
/*********************************************************************//**
* @brief Set value of each Peripheral Clock Selection
* @param[in] ClkType Peripheral Clock Selection of each type,
* should be one of the following:
* - CLKPWR_PCLKSEL_WDT : WDT
- CLKPWR_PCLKSEL_TIMER0 : Timer 0
- CLKPWR_PCLKSEL_TIMER1 : Timer 1
- CLKPWR_PCLKSEL_UART0 : UART 0
- CLKPWR_PCLKSEL_UART1 : UART 1
- CLKPWR_PCLKSEL_PWM1 : PWM 1
- CLKPWR_PCLKSEL_I2C0 : I2C 0
- CLKPWR_PCLKSEL_SPI : SPI
- CLKPWR_PCLKSEL_SSP1 : SSP 1
- CLKPWR_PCLKSEL_DAC : DAC
- CLKPWR_PCLKSEL_ADC : ADC
- CLKPWR_PCLKSEL_CAN1 : CAN 1
- CLKPWR_PCLKSEL_CAN2 : CAN 2
- CLKPWR_PCLKSEL_ACF : ACF
- CLKPWR_PCLKSEL_QEI : QEI
- CLKPWR_PCLKSEL_PCB : PCB
- CLKPWR_PCLKSEL_I2C1 : I2C 1
- CLKPWR_PCLKSEL_SSP0 : SSP 0
- CLKPWR_PCLKSEL_TIMER2 : Timer 2
- CLKPWR_PCLKSEL_TIMER3 : Timer 3
- CLKPWR_PCLKSEL_UART2 : UART 2
- CLKPWR_PCLKSEL_UART3 : UART 3
- CLKPWR_PCLKSEL_I2C2 : I2C 2
- CLKPWR_PCLKSEL_I2S : I2S
- CLKPWR_PCLKSEL_RIT : RIT
- CLKPWR_PCLKSEL_SYSCON : SYSCON
- CLKPWR_PCLKSEL_MC : MC
* @param[in] DivVal Value of divider, should be:
* - CLKPWR_PCLKSEL_CCLK_DIV_4 : PCLK_peripheral = CCLK/4
* - CLKPWR_PCLKSEL_CCLK_DIV_1 : PCLK_peripheral = CCLK/1
* - CLKPWR_PCLKSEL_CCLK_DIV_2 : PCLK_peripheral = CCLK/2
*
* @return none
**********************************************************************/
void CLKPWR_SetPCLKDiv (uint32_t ClkType, uint32_t DivVal)
{
uint32_t bitpos;
bitpos = (ClkType < 32) ? (ClkType) : (ClkType - 32);
/* PCLKSEL0 selected */
if (ClkType < 32)
{
/* Clear two bit at bit position */
LPC_SC->PCLKSEL0 &= (~(CLKPWR_PCLKSEL_BITMASK(bitpos)));
/* Set two selected bit */
LPC_SC->PCLKSEL0 |= (CLKPWR_PCLKSEL_SET(bitpos, DivVal));
}
/* PCLKSEL1 selected */
else
{
/* Clear two bit at bit position */
LPC_SC->PCLKSEL1 &= ~(CLKPWR_PCLKSEL_BITMASK(bitpos));
/* Set two selected bit */
LPC_SC->PCLKSEL1 |= (CLKPWR_PCLKSEL_SET(bitpos, DivVal));
}
}
/*********************************************************************//**
* @brief Get current value of each Peripheral Clock Selection
* @param[in] ClkType Peripheral Clock Selection of each type,
* should be one of the following:
* - CLKPWR_PCLKSEL_WDT : WDT
- CLKPWR_PCLKSEL_TIMER0 : Timer 0
- CLKPWR_PCLKSEL_TIMER1 : Timer 1
- CLKPWR_PCLKSEL_UART0 : UART 0
- CLKPWR_PCLKSEL_UART1 : UART 1
- CLKPWR_PCLKSEL_PWM1 : PWM 1
- CLKPWR_PCLKSEL_I2C0 : I2C 0
- CLKPWR_PCLKSEL_SPI : SPI
- CLKPWR_PCLKSEL_SSP1 : SSP 1
- CLKPWR_PCLKSEL_DAC : DAC
- CLKPWR_PCLKSEL_ADC : ADC
- CLKPWR_PCLKSEL_CAN1 : CAN 1
- CLKPWR_PCLKSEL_CAN2 : CAN 2
- CLKPWR_PCLKSEL_ACF : ACF
- CLKPWR_PCLKSEL_QEI : QEI
- CLKPWR_PCLKSEL_PCB : PCB
- CLKPWR_PCLKSEL_I2C1 : I2C 1
- CLKPWR_PCLKSEL_SSP0 : SSP 0
- CLKPWR_PCLKSEL_TIMER2 : Timer 2
- CLKPWR_PCLKSEL_TIMER3 : Timer 3
- CLKPWR_PCLKSEL_UART2 : UART 2
- CLKPWR_PCLKSEL_UART3 : UART 3
- CLKPWR_PCLKSEL_I2C2 : I2C 2
- CLKPWR_PCLKSEL_I2S : I2S
- CLKPWR_PCLKSEL_RIT : RIT
- CLKPWR_PCLKSEL_SYSCON : SYSCON
- CLKPWR_PCLKSEL_MC : MC
* @return Value of Selected Peripheral Clock Selection
**********************************************************************/
uint32_t CLKPWR_GetPCLKSEL (uint32_t ClkType)
{
uint32_t bitpos, retval;
if (ClkType < 32)
{
bitpos = ClkType;
retval = LPC_SC->PCLKSEL0;
}
else
{
bitpos = ClkType - 32;
retval = LPC_SC->PCLKSEL1;
}
retval = CLKPWR_PCLKSEL_GET(bitpos, retval);
return retval;
}
/*********************************************************************//**
* @brief Get current value of each Peripheral Clock
* @param[in] ClkType Peripheral Clock Selection of each type,
* should be one of the following:
* - CLKPWR_PCLKSEL_WDT : WDT
- CLKPWR_PCLKSEL_TIMER0 : Timer 0
- CLKPWR_PCLKSEL_TIMER1 : Timer 1
- CLKPWR_PCLKSEL_UART0 : UART 0
- CLKPWR_PCLKSEL_UART1 : UART 1
- CLKPWR_PCLKSEL_PWM1 : PWM 1
- CLKPWR_PCLKSEL_I2C0 : I2C 0
- CLKPWR_PCLKSEL_SPI : SPI
- CLKPWR_PCLKSEL_SSP1 : SSP 1
- CLKPWR_PCLKSEL_DAC : DAC
- CLKPWR_PCLKSEL_ADC : ADC
- CLKPWR_PCLKSEL_CAN1 : CAN 1
- CLKPWR_PCLKSEL_CAN2 : CAN 2
- CLKPWR_PCLKSEL_ACF : ACF
- CLKPWR_PCLKSEL_QEI : QEI
- CLKPWR_PCLKSEL_PCB : PCB
- CLKPWR_PCLKSEL_I2C1 : I2C 1
- CLKPWR_PCLKSEL_SSP0 : SSP 0
- CLKPWR_PCLKSEL_TIMER2 : Timer 2
- CLKPWR_PCLKSEL_TIMER3 : Timer 3
- CLKPWR_PCLKSEL_UART2 : UART 2
- CLKPWR_PCLKSEL_UART3 : UART 3
- CLKPWR_PCLKSEL_I2C2 : I2C 2
- CLKPWR_PCLKSEL_I2S : I2S
- CLKPWR_PCLKSEL_RIT : RIT
- CLKPWR_PCLKSEL_SYSCON : SYSCON
- CLKPWR_PCLKSEL_MC : MC
* @return Value of Selected Peripheral Clock
**********************************************************************/
uint32_t CLKPWR_GetPCLK (uint32_t ClkType)
{
uint32_t retval, div;
retval = SystemCoreClock;
div = CLKPWR_GetPCLKSEL(ClkType);
switch (div)
{
case 0:
div = 4;
break;
case 1:
div = 1;
break;
case 2:
div = 2;
break;
case 3:
div = 8;
break;
}
retval /= div;
return retval;
}
/*********************************************************************//**
* @brief Configure power supply for each peripheral according to NewState
* @param[in] PPType Type of peripheral used to enable power,
* should be one of the following:
* - CLKPWR_PCONP_PCTIM0 : Timer 0
- CLKPWR_PCONP_PCTIM1 : Timer 1
- CLKPWR_PCONP_PCUART0 : UART 0
- CLKPWR_PCONP_PCUART1 : UART 1
- CLKPWR_PCONP_PCPWM1 : PWM 1
- CLKPWR_PCONP_PCI2C0 : I2C 0
- CLKPWR_PCONP_PCSPI : SPI
- CLKPWR_PCONP_PCRTC : RTC
- CLKPWR_PCONP_PCSSP1 : SSP 1
- CLKPWR_PCONP_PCAD : ADC
- CLKPWR_PCONP_PCAN1 : CAN 1
- CLKPWR_PCONP_PCAN2 : CAN 2
- CLKPWR_PCONP_PCGPIO : GPIO
- CLKPWR_PCONP_PCRIT : RIT
- CLKPWR_PCONP_PCMC : MC
- CLKPWR_PCONP_PCQEI : QEI
- CLKPWR_PCONP_PCI2C1 : I2C 1
- CLKPWR_PCONP_PCSSP0 : SSP 0
- CLKPWR_PCONP_PCTIM2 : Timer 2
- CLKPWR_PCONP_PCTIM3 : Timer 3
- CLKPWR_PCONP_PCUART2 : UART 2
- CLKPWR_PCONP_PCUART3 : UART 3
- CLKPWR_PCONP_PCI2C2 : I2C 2
- CLKPWR_PCONP_PCI2S : I2S
- CLKPWR_PCONP_PCGPDMA : GPDMA
- CLKPWR_PCONP_PCENET : Ethernet
- CLKPWR_PCONP_PCUSB : USB
*
* @param[in] NewState New state of Peripheral Power, should be:
* - ENABLE : Enable power for this peripheral
* - DISABLE : Disable power for this peripheral
*
* @return none
**********************************************************************/
void CLKPWR_ConfigPPWR (uint32_t PPType, FunctionalState NewState)
{
if (NewState == ENABLE)
{
LPC_SC->PCONP |= PPType & CLKPWR_PCONP_BITMASK;
}
else if (NewState == DISABLE)
{
LPC_SC->PCONP &= (~PPType) & CLKPWR_PCONP_BITMASK;
}
}
/*********************************************************************//**
* @brief Enter Sleep mode with co-operated instruction by the Cortex-M3.
* @param[in] None
* @return None
**********************************************************************/
void CLKPWR_Sleep(void)
{
LPC_SC->PCON = 0x00;
/* Sleep Mode*/
__WFI();
}
/*********************************************************************//**
* @brief Enter Deep Sleep mode with co-operated instruction by the Cortex-M3.
* @param[in] None
* @return None
**********************************************************************/
void CLKPWR_DeepSleep(void)
{
/* Deep-Sleep Mode, set SLEEPDEEP bit */
SCB->SCR = 0x4;
LPC_SC->PCON = 0x00;
/* Deep Sleep Mode*/
__WFI();
}
/*********************************************************************//**
* @brief Enter Power Down mode with co-operated instruction by the Cortex-M3.
* @param[in] None
* @return None
**********************************************************************/
void CLKPWR_PowerDown(void)
{
/* Deep-Sleep Mode, set SLEEPDEEP bit */
SCB->SCR = 0x4;
LPC_SC->PCON = 0x01;
/* Power Down Mode*/
__WFI();
}
/*********************************************************************//**
* @brief Enter Deep Power Down mode with co-operated instruction by the Cortex-M3.
* @param[in] None
* @return None
**********************************************************************/
void CLKPWR_DeepPowerDown(void)
{
/* Deep-Sleep Mode, set SLEEPDEEP bit */
SCB->SCR = 0x4;
LPC_SC->PCON = 0x03;
/* Deep Power Down Mode*/
__WFI();
}
/**
* @}
*/
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */

View file

@ -1,151 +0,0 @@
/**********************************************************************
* $Id$ lpc17xx_dac.c 2010-05-21
*//**
* @file lpc17xx_dac.c
* @brief Contains all functions support for DAC firmware library on LPC17xx
* @version 2.0
* @date 21. May. 2010
* @author NXP MCU SW Application Team
*
* Copyright(C) 2010, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
/* Peripheral group ----------------------------------------------------------- */
/** @addtogroup DAC
* @{
*/
/* Includes ------------------------------------------------------------------- */
#include "lpc17xx_dac.h"
#include "lpc17xx_clkpwr.h"
/* If this source file built with example, the LPC17xx FW library configuration
* file in each example directory ("lpc17xx_libcfg.h") must be included,
* otherwise the default FW library configuration file must be included instead
*/
#ifdef __BUILD_WITH_EXAMPLE__
#include "lpc17xx_libcfg.h"
#else
#include "lpc17xx_libcfg_default.h"
#endif /* __BUILD_WITH_EXAMPLE__ */
#ifdef _DAC
/* Public Functions ----------------------------------------------------------- */
/** @addtogroup DAC_Public_Functions
* @{
*/
/*********************************************************************//**
* @brief Initial ADC configuration
* - Maximum current is 700 uA
* - Value to AOUT is 0
* @param[in] DACx pointer to LPC_DAC_TypeDef, should be: LPC_DAC
* @return None
***********************************************************************/
void DAC_Init(LPC_DAC_TypeDef *DACx)
{
CHECK_PARAM(PARAM_DACx(DACx));
/* Set default clock divider for DAC */
// CLKPWR_SetPCLKDiv (CLKPWR_PCLKSEL_DAC, CLKPWR_PCLKSEL_CCLK_DIV_4);
//Set maximum current output
DAC_SetBias(LPC_DAC,DAC_MAX_CURRENT_700uA);
}
/*********************************************************************//**
* @brief Update value to DAC
* @param[in] DACx pointer to LPC_DAC_TypeDef, should be: LPC_DAC
* @param[in] dac_value : value 10 bit to be converted to output
* @return None
***********************************************************************/
void DAC_UpdateValue (LPC_DAC_TypeDef *DACx,uint32_t dac_value)
{
uint32_t tmp;
CHECK_PARAM(PARAM_DACx(DACx));
tmp = DACx->DACR & DAC_BIAS_EN;
tmp |= DAC_VALUE(dac_value);
// Update value
DACx->DACR = tmp;
}
/*********************************************************************//**
* @brief Set Maximum current for DAC
* @param[in] DACx pointer to LPC_DAC_TypeDef, should be: LPC_DAC
* @param[in] bias : 0 is 700 uA
* 1 350 uA
* @return None
***********************************************************************/
void DAC_SetBias (LPC_DAC_TypeDef *DACx,uint32_t bias)
{
CHECK_PARAM(PARAM_DAC_CURRENT_OPT(bias));
DACx->DACR &=~DAC_BIAS_EN;
if (bias == DAC_MAX_CURRENT_350uA)
{
DACx->DACR |= DAC_BIAS_EN;
}
}
/*********************************************************************//**
* @brief To enable the DMA operation and control DMA timer
* @param[in] DACx pointer to LPC_DAC_TypeDef, should be: LPC_DAC
* @param[in] DAC_ConverterConfigStruct pointer to DAC_CONVERTER_CFG_Type
* - DBLBUF_ENA : enable/disable DACR double buffering feature
* - CNT_ENA : enable/disable timer out counter
* - DMA_ENA : enable/disable DMA access
* @return None
***********************************************************************/
void DAC_ConfigDAConverterControl (LPC_DAC_TypeDef *DACx,DAC_CONVERTER_CFG_Type *DAC_ConverterConfigStruct)
{
CHECK_PARAM(PARAM_DACx(DACx));
DACx->DACCTRL &= ~DAC_DACCTRL_MASK;
if (DAC_ConverterConfigStruct->DBLBUF_ENA)
DACx->DACCTRL |= DAC_DBLBUF_ENA;
if (DAC_ConverterConfigStruct->CNT_ENA)
DACx->DACCTRL |= DAC_CNT_ENA;
if (DAC_ConverterConfigStruct->DMA_ENA)
DACx->DACCTRL |= DAC_DMA_ENA;
}
/*********************************************************************//**
* @brief Set reload value for interrupt/DMA counter
* @param[in] DACx pointer to LPC_DAC_TypeDef, should be: LPC_DAC
* @param[in] time_out time out to reload for interrupt/DMA counter
* @return None
***********************************************************************/
void DAC_SetDMATimeOut(LPC_DAC_TypeDef *DACx, uint32_t time_out)
{
CHECK_PARAM(PARAM_DACx(DACx));
DACx->DACCNTVAL = DAC_CCNT_VALUE(time_out);
}
/**
* @}
*/
#endif /* _DAC */
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */

View file

@ -1,963 +0,0 @@
/**********************************************************************
* $Id$ lpc17xx_emac.c 2010-05-21
*//**
* @file lpc17xx_emac.c
* @brief Contains all functions support for Ethernet MAC firmware
* library on LPC17xx
* @version 2.0
* @date 21. May. 2010
* @author NXP MCU SW Application Team
*
* Copyright(C) 2010, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
/* Peripheral group ----------------------------------------------------------- */
/** @addtogroup EMAC
* @{
*/
/* Includes ------------------------------------------------------------------- */
#include "lpc17xx_emac.h"
#include "lpc17xx_clkpwr.h"
/* If this source file built with example, the LPC17xx FW library configuration
* file in each example directory ("lpc17xx_libcfg.h") must be included,
* otherwise the default FW library configuration file must be included instead
*/
#ifdef __BUILD_WITH_EXAMPLE__
#include "lpc17xx_libcfg.h"
#else
#include "lpc17xx_libcfg_default.h"
#endif /* __BUILD_WITH_EXAMPLE__ */
#ifdef _EMAC
/* Private Variables ---------------------------------------------------------- */
/** @defgroup EMAC_Private_Variables EMAC Private Variables
* @{
*/
/* MII Mgmt Configuration register - Clock divider setting */
const uint8_t EMAC_clkdiv[] = { 4, 6, 8, 10, 14, 20, 28, 36, 40, 44, 48, 52, 56, 60, 64};
/* EMAC local DMA Descriptors */
/** Rx Descriptor data array */
static RX_Desc Rx_Desc[EMAC_NUM_RX_FRAG];
/** Rx Status data array - Must be 8-Byte aligned */
#if defined ( __CC_ARM )
static __align(8) RX_Stat Rx_Stat[EMAC_NUM_RX_FRAG];
#elif defined ( __ICCARM__ )
#pragma data_alignment=8
static RX_Stat Rx_Stat[EMAC_NUM_RX_FRAG];
#elif defined ( __GNUC__ )
static __attribute__ ((aligned (8))) RX_Stat Rx_Stat[EMAC_NUM_RX_FRAG];
#endif
/** Tx Descriptor data array */
static TX_Desc Tx_Desc[EMAC_NUM_TX_FRAG];
/** Tx Status data array */
static TX_Stat Tx_Stat[EMAC_NUM_TX_FRAG];
/* EMAC local DMA buffers */
/** Rx buffer data */
static uint32_t rx_buf[EMAC_NUM_RX_FRAG][EMAC_ETH_MAX_FLEN>>2];
/** Tx buffer data */
static uint32_t tx_buf[EMAC_NUM_TX_FRAG][EMAC_ETH_MAX_FLEN>>2];
/**
* @}
*/
/* Private Functions ---------------------------------------------------------- */
static void rx_descr_init (void);
static void tx_descr_init (void);
static int32_t write_PHY (uint32_t PhyReg, uint16_t Value);
static int32_t read_PHY (uint32_t PhyReg);
static void setEmacAddr(uint8_t abStationAddr[]);
static int32_t emac_CRCCalc(uint8_t frame_no_fcs[], int32_t frame_len);
/*--------------------------- rx_descr_init ---------------------------------*/
/*********************************************************************//**
* @brief Initializes RX Descriptor
* @param[in] None
* @return None
***********************************************************************/
static void rx_descr_init (void)
{
/* Initialize Receive Descriptor and Status array. */
uint32_t i;
for (i = 0; i < EMAC_NUM_RX_FRAG; i++) {
Rx_Desc[i].Packet = (uint32_t)&rx_buf[i];
Rx_Desc[i].Ctrl = EMAC_RCTRL_INT | (EMAC_ETH_MAX_FLEN - 1);
Rx_Stat[i].Info = 0;
Rx_Stat[i].HashCRC = 0;
}
/* Set EMAC Receive Descriptor Registers. */
LPC_EMAC->RxDescriptor = (uint32_t)&Rx_Desc[0];
LPC_EMAC->RxStatus = (uint32_t)&Rx_Stat[0];
LPC_EMAC->RxDescriptorNumber = EMAC_NUM_RX_FRAG - 1;
/* Rx Descriptors Point to 0 */
LPC_EMAC->RxConsumeIndex = 0;
}
/*--------------------------- tx_descr_init ---- ----------------------------*/
/*********************************************************************//**
* @brief Initializes TX Descriptor
* @param[in] None
* @return None
***********************************************************************/
static void tx_descr_init (void) {
/* Initialize Transmit Descriptor and Status array. */
uint32_t i;
for (i = 0; i < EMAC_NUM_TX_FRAG; i++) {
Tx_Desc[i].Packet = (uint32_t)&tx_buf[i];
Tx_Desc[i].Ctrl = 0;
Tx_Stat[i].Info = 0;
}
/* Set EMAC Transmit Descriptor Registers. */
LPC_EMAC->TxDescriptor = (uint32_t)&Tx_Desc[0];
LPC_EMAC->TxStatus = (uint32_t)&Tx_Stat[0];
LPC_EMAC->TxDescriptorNumber = EMAC_NUM_TX_FRAG - 1;
/* Tx Descriptors Point to 0 */
LPC_EMAC->TxProduceIndex = 0;
}
/*--------------------------- write_PHY -------------------------------------*/
/*********************************************************************//**
* @brief Write value to PHY device
* @param[in] PhyReg: PHY Register address
* @param[in] Value: Value to write
* @return 0 - if success
* 1 - if fail
***********************************************************************/
static int32_t write_PHY (uint32_t PhyReg, uint16_t Value)
{
/* Write a data 'Value' to PHY register 'PhyReg'. */
uint32_t tout;
LPC_EMAC->MADR = EMAC_DEF_ADR | PhyReg;
LPC_EMAC->MWTD = Value;
/* Wait until operation completed */
tout = 0;
for (tout = 0; tout < EMAC_MII_WR_TOUT; tout++) {
if ((LPC_EMAC->MIND & EMAC_MIND_BUSY) == 0) {
return (0);
}
}
// Time out!
return (-1);
}
/*--------------------------- read_PHY --------------------------------------*/
/*********************************************************************//**
* @brief Read value from PHY device
* @param[in] PhyReg: PHY Register address
* @return 0 - if success
* 1 - if fail
***********************************************************************/
static int32_t read_PHY (uint32_t PhyReg)
{
/* Read a PHY register 'PhyReg'. */
uint32_t tout;
LPC_EMAC->MADR = EMAC_DEF_ADR | PhyReg;
LPC_EMAC->MCMD = EMAC_MCMD_READ;
/* Wait until operation completed */
tout = 0;
for (tout = 0; tout < EMAC_MII_RD_TOUT; tout++) {
if ((LPC_EMAC->MIND & EMAC_MIND_BUSY) == 0) {
LPC_EMAC->MCMD = 0;
return (LPC_EMAC->MRDD);
}
}
// Time out!
return (-1);
}
/*********************************************************************//**
* @brief Set Station MAC address for EMAC module
* @param[in] abStationAddr Pointer to Station address that contains 6-bytes
* of MAC address (should be in order from MAC Address 1 to MAC Address 6)
* @return None
**********************************************************************/
static void setEmacAddr(uint8_t abStationAddr[])
{
/* Set the Ethernet MAC Address registers */
LPC_EMAC->SA0 = ((uint32_t)abStationAddr[5] << 8) | (uint32_t)abStationAddr[4];
LPC_EMAC->SA1 = ((uint32_t)abStationAddr[3] << 8) | (uint32_t)abStationAddr[2];
LPC_EMAC->SA2 = ((uint32_t)abStationAddr[1] << 8) | (uint32_t)abStationAddr[0];
}
/*********************************************************************//**
* @brief Calculates CRC code for number of bytes in the frame
* @param[in] frame_no_fcs Pointer to the first byte of the frame
* @param[in] frame_len length of the frame without the FCS
* @return the CRC as a 32 bit integer
**********************************************************************/
static int32_t emac_CRCCalc(uint8_t frame_no_fcs[], int32_t frame_len)
{
int i; // iterator
int j; // another iterator
char byte; // current byte
int crc; // CRC result
int q0, q1, q2, q3; // temporary variables
crc = 0xFFFFFFFF;
for (i = 0; i < frame_len; i++) {
byte = *frame_no_fcs++;
for (j = 0; j < 2; j++) {
if (((crc >> 28) ^ (byte >> 3)) & 0x00000001) {
q3 = 0x04C11DB7;
} else {
q3 = 0x00000000;
}
if (((crc >> 29) ^ (byte >> 2)) & 0x00000001) {
q2 = 0x09823B6E;
} else {
q2 = 0x00000000;
}
if (((crc >> 30) ^ (byte >> 1)) & 0x00000001) {
q1 = 0x130476DC;
} else {
q1 = 0x00000000;
}
if (((crc >> 31) ^ (byte >> 0)) & 0x00000001) {
q0 = 0x2608EDB8;
} else {
q0 = 0x00000000;
}
crc = (crc << 4) ^ q3 ^ q2 ^ q1 ^ q0;
byte >>= 4;
}
}
return crc;
}
/* End of Private Functions --------------------------------------------------- */
/* Public Functions ----------------------------------------------------------- */
/** @addtogroup EMAC_Public_Functions
* @{
*/
/*********************************************************************//**
* @brief Initializes the EMAC peripheral according to the specified
* parameters in the EMAC_ConfigStruct.
* @param[in] EMAC_ConfigStruct Pointer to a EMAC_CFG_Type structure
* that contains the configuration information for the
* specified EMAC peripheral.
* @return None
*
* Note: This function will initialize EMAC module according to procedure below:
* - Remove the soft reset condition from the MAC
* - Configure the PHY via the MIIM interface of the MAC
* - Select RMII mode
* - Configure the transmit and receive DMA engines, including the descriptor arrays
* - Configure the host registers (MAC1,MAC2 etc.) in the MAC
* - Enable the receive and transmit data paths
* In default state after initializing, only Rx Done and Tx Done interrupt are enabled,
* all remain interrupts are disabled
* (Ref. from LPC17xx UM)
**********************************************************************/
Status EMAC_Init(EMAC_CFG_Type *EMAC_ConfigStruct)
{
/* Initialize the EMAC Ethernet controller. */
int32_t regv,tout, tmp;
/* Set up clock and power for Ethernet module */
CLKPWR_ConfigPPWR (CLKPWR_PCONP_PCENET, ENABLE);
/* Reset all EMAC internal modules */
LPC_EMAC->MAC1 = EMAC_MAC1_RES_TX | EMAC_MAC1_RES_MCS_TX | EMAC_MAC1_RES_RX |
EMAC_MAC1_RES_MCS_RX | EMAC_MAC1_SIM_RES | EMAC_MAC1_SOFT_RES;
LPC_EMAC->Command = EMAC_CR_REG_RES | EMAC_CR_TX_RES | EMAC_CR_RX_RES | EMAC_CR_PASS_RUNT_FRM;
/* A short delay after reset. */
for (tout = 100; tout; tout--);
/* Initialize MAC control registers. */
LPC_EMAC->MAC1 = EMAC_MAC1_PASS_ALL;
LPC_EMAC->MAC2 = EMAC_MAC2_CRC_EN | EMAC_MAC2_PAD_EN;
LPC_EMAC->MAXF = EMAC_ETH_MAX_FLEN;
/*
* Find the clock that close to desired target clock
*/
tmp = SystemCoreClock / EMAC_MCFG_MII_MAXCLK;
for (tout = 0; tout < sizeof (EMAC_clkdiv); tout++){
if (EMAC_clkdiv[tout] >= tmp) break;
}
tout++;
// Write to MAC configuration register and reset
LPC_EMAC->MCFG = EMAC_MCFG_CLK_SEL(tout) | EMAC_MCFG_RES_MII;
// release reset
LPC_EMAC->MCFG &= ~(EMAC_MCFG_RES_MII);
LPC_EMAC->CLRT = EMAC_CLRT_DEF;
LPC_EMAC->IPGR = EMAC_IPGR_P2_DEF;
/* Enable Reduced MII interface. */
LPC_EMAC->Command = EMAC_CR_RMII | EMAC_CR_PASS_RUNT_FRM;
/* Reset Reduced MII Logic. */
// LPC_EMAC->SUPP = EMAC_SUPP_RES_RMII;
for (tout = 100; tout; tout--);
LPC_EMAC->SUPP = 0;
/* Put the DP83848C in reset mode */
write_PHY (EMAC_PHY_REG_BMCR, EMAC_PHY_BMCR_RESET);
/* Wait for hardware reset to end. */
for (tout = EMAC_PHY_RESP_TOUT; tout>=0; tout--) {
regv = read_PHY (EMAC_PHY_REG_BMCR);
if (!(regv & (EMAC_PHY_BMCR_RESET | EMAC_PHY_BMCR_POWERDOWN))) {
/* Reset complete, device not Power Down. */
break;
}
if (tout == 0){
// Time out, return ERROR
return (ERROR);
}
}
// Set PHY mode
if (EMAC_SetPHYMode(EMAC_ConfigStruct->Mode) < 0){
return (ERROR);
}
// Set EMAC address
setEmacAddr(EMAC_ConfigStruct->pbEMAC_Addr);
/* Initialize Tx and Rx DMA Descriptors */
rx_descr_init ();
tx_descr_init ();
// Set Receive Filter register: enable broadcast and multicast
LPC_EMAC->RxFilterCtrl = EMAC_RFC_MCAST_EN | EMAC_RFC_BCAST_EN | EMAC_RFC_PERFECT_EN;
/* Enable Rx Done and Tx Done interrupt for EMAC */
LPC_EMAC->IntEnable = EMAC_INT_RX_DONE | EMAC_INT_TX_DONE;
/* Reset all interrupts */
LPC_EMAC->IntClear = 0xFFFF;
/* Enable receive and transmit mode of MAC Ethernet core */
LPC_EMAC->Command |= (EMAC_CR_RX_EN | EMAC_CR_TX_EN);
LPC_EMAC->MAC1 |= EMAC_MAC1_REC_EN;
return SUCCESS;
}
/*********************************************************************//**
* @brief De-initializes the EMAC peripheral registers to their
* default reset values.
* @param[in] None
* @return None
**********************************************************************/
void EMAC_DeInit(void)
{
// Disable all interrupt
LPC_EMAC->IntEnable = 0x00;
// Clear all pending interrupt
LPC_EMAC->IntClear = (0xFF) | (EMAC_INT_SOFT_INT | EMAC_INT_WAKEUP);
/* TurnOff clock and power for Ethernet module */
CLKPWR_ConfigPPWR (CLKPWR_PCONP_PCENET, DISABLE);
}
/*********************************************************************//**
* @brief Check specified PHY status in EMAC peripheral
* @param[in] ulPHYState Specified PHY Status Type, should be:
* - EMAC_PHY_STAT_LINK: Link Status
* - EMAC_PHY_STAT_SPEED: Speed Status
* - EMAC_PHY_STAT_DUP: Duplex Status
* @return Status of specified PHY status (0 or 1).
* (-1) if error.
*
* Note:
* For EMAC_PHY_STAT_LINK, return value:
* - 0: Link Down
* - 1: Link Up
* For EMAC_PHY_STAT_SPEED, return value:
* - 0: 10Mbps
* - 1: 100Mbps
* For EMAC_PHY_STAT_DUP, return value:
* - 0: Half-Duplex
* - 1: Full-Duplex
**********************************************************************/
int32_t EMAC_CheckPHYStatus(uint32_t ulPHYState)
{
int32_t regv, tmp;
#ifdef MCB_LPC_1768
regv = read_PHY (EMAC_PHY_REG_STS);
switch(ulPHYState){
case EMAC_PHY_STAT_LINK:
tmp = (regv & EMAC_PHY_SR_LINK) ? 1 : 0;
break;
case EMAC_PHY_STAT_SPEED:
tmp = (regv & EMAC_PHY_SR_SPEED) ? 0 : 1;
break;
case EMAC_PHY_STAT_DUP:
tmp = (regv & EMAC_PHY_SR_FULL_DUP) ? 1 : 0;
break;
#elif defined(IAR_LPC_1768)
/* Use IAR_LPC_1768 board:
* FSZ8721BL doesn't have Status Register
* so we read Basic Mode Status Register (0x01h) instead
*/
regv = read_PHY (EMAC_PHY_REG_BMSR);
switch(ulPHYState){
case EMAC_PHY_STAT_LINK:
tmp = (regv & EMAC_PHY_BMSR_LINK_STATUS) ? 1 : 0;
break;
case EMAC_PHY_STAT_SPEED:
tmp = (regv & EMAC_PHY_SR_100_SPEED) ? 1 : 0;
break;
case EMAC_PHY_STAT_DUP:
tmp = (regv & EMAC_PHY_SR_FULL_DUP) ? 1 : 0;
break;
#endif
default:
tmp = -1;
break;
}
return (tmp);
}
/*********************************************************************//**
* @brief Set specified PHY mode in EMAC peripheral
* @param[in] ulPHYMode Specified PHY mode, should be:
* - EMAC_MODE_AUTO
* - EMAC_MODE_10M_FULL
* - EMAC_MODE_10M_HALF
* - EMAC_MODE_100M_FULL
* - EMAC_MODE_100M_HALF
* @return Return (0) if no error, otherwise return (-1)
**********************************************************************/
int32_t EMAC_SetPHYMode(uint32_t ulPHYMode)
{
int32_t id1, id2, tout;
/* Check if this is a DP83848C PHY. */
id1 = read_PHY (EMAC_PHY_REG_IDR1);
id2 = read_PHY (EMAC_PHY_REG_IDR2);
#ifdef MCB_LPC_1768
if (((id1 << 16) | (id2 & 0xFFF0)) == EMAC_DP83848C_ID) {
switch(ulPHYMode){
case EMAC_MODE_AUTO:
write_PHY (EMAC_PHY_REG_BMCR, EMAC_PHY_AUTO_NEG);
#elif defined(IAR_LPC_1768) /* Use IAR LPC1768 KickStart board */
if (((id1 << 16) | id2) == EMAC_KSZ8721BL_ID) {
/* Configure the PHY device */
switch(ulPHYMode){
case EMAC_MODE_AUTO:
/* Use auto-negotiation about the link speed. */
write_PHY (EMAC_PHY_REG_BMCR, EMAC_PHY_AUTO_NEG);
// write_PHY (EMAC_PHY_REG_BMCR, EMAC_PHY_BMCR_AN);
#endif
/* Wait to complete Auto_Negotiation */
for (tout = EMAC_PHY_RESP_TOUT; tout>=0; tout--) {
}
break;
case EMAC_MODE_10M_FULL:
/* Connect at 10MBit full-duplex */
write_PHY (EMAC_PHY_REG_BMCR, EMAC_PHY_FULLD_10M);
break;
case EMAC_MODE_10M_HALF:
/* Connect at 10MBit half-duplex */
write_PHY (EMAC_PHY_REG_BMCR, EMAC_PHY_HALFD_10M);
break;
case EMAC_MODE_100M_FULL:
/* Connect at 100MBit full-duplex */
write_PHY (EMAC_PHY_REG_BMCR, EMAC_PHY_FULLD_100M);
break;
case EMAC_MODE_100M_HALF:
/* Connect at 100MBit half-duplex */
write_PHY (EMAC_PHY_REG_BMCR, EMAC_PHY_HALFD_100M);
break;
default:
// un-supported
return (-1);
}
}
// It's not correct module ID
else {
return (-1);
}
// Update EMAC configuration with current PHY status
if (EMAC_UpdatePHYStatus() < 0){
return (-1);
}
// Complete
return (0);
}
/*********************************************************************//**
* @brief Auto-Configures value for the EMAC configuration register to
* match with current PHY mode
* @param[in] None
* @return Return (0) if no error, otherwise return (-1)
*
* Note: The EMAC configuration will be auto-configured:
* - Speed mode.
* - Half/Full duplex mode
**********************************************************************/
int32_t EMAC_UpdatePHYStatus(void)
{
int32_t regv, tout;
/* Check the link status. */
#ifdef MCB_LPC_1768
for (tout = EMAC_PHY_RESP_TOUT; tout>=0; tout--) {
regv = read_PHY (EMAC_PHY_REG_STS);
if (regv & EMAC_PHY_SR_LINK) {
/* Link is on. */
break;
}
if (tout == 0){
// time out
return (-1);
}
}
/* Configure Full/Half Duplex mode. */
if (regv & EMAC_PHY_SR_DUP) {
/* Full duplex is enabled. */
LPC_EMAC->MAC2 |= EMAC_MAC2_FULL_DUP;
LPC_EMAC->Command |= EMAC_CR_FULL_DUP;
LPC_EMAC->IPGT = EMAC_IPGT_FULL_DUP;
} else {
/* Half duplex mode. */
LPC_EMAC->IPGT = EMAC_IPGT_HALF_DUP;
}
if (regv & EMAC_PHY_SR_SPEED) {
/* 10MBit mode. */
LPC_EMAC->SUPP = 0;
} else {
/* 100MBit mode. */
LPC_EMAC->SUPP = EMAC_SUPP_SPEED;
}
#elif defined(IAR_LPC_1768)
for (tout = EMAC_PHY_RESP_TOUT; tout>=0; tout--) {
regv = read_PHY (EMAC_PHY_REG_BMSR);
if (regv & EMAC_PHY_BMSR_LINK_STATUS) {
/* Link is on. */
break;
}
if (tout == 0){
// time out
return (-1);
}
}
/* Configure Full/Half Duplex mode. */
if (regv & EMAC_PHY_SR_FULL_DUP) {
/* Full duplex is enabled. */
LPC_EMAC->MAC2 |= EMAC_MAC2_FULL_DUP;
LPC_EMAC->Command |= EMAC_CR_FULL_DUP;
LPC_EMAC->IPGT = EMAC_IPGT_FULL_DUP;
} else {
/* Half duplex mode. */
LPC_EMAC->IPGT = EMAC_IPGT_HALF_DUP;
}
/* Configure 100MBit/10MBit mode. */
if (!(regv & EMAC_PHY_SR_100_SPEED)) {
/* 10MBit mode. */
LPC_EMAC->SUPP = 0;
} else {
/* 100MBit mode. */
LPC_EMAC->SUPP = EMAC_SUPP_SPEED;
}
#endif
// Complete
return (0);
}
/*********************************************************************//**
* @brief Enable/Disable hash filter functionality for specified destination
* MAC address in EMAC module
* @param[in] dstMAC_addr Pointer to the first MAC destination address, should
* be 6-bytes length, in order LSB to the MSB
* @param[in] NewState New State of this command, should be:
* - ENABLE.
* - DISABLE.
* @return None
*
* Note:
* The standard Ethernet cyclic redundancy check (CRC) function is calculated from
* the 6 byte destination address in the Ethernet frame (this CRC is calculated
* anyway as part of calculating the CRC of the whole frame), then bits [28:23] out of
* the 32 bits CRC result are taken to form the hash. The 6 bit hash is used to access
* the hash table: it is used as an index in the 64 bit HashFilter register that has been
* programmed with accept values. If the selected accept value is 1, the frame is
* accepted.
**********************************************************************/
void EMAC_SetHashFilter(uint8_t dstMAC_addr[], FunctionalState NewState)
{
uint32_t *pReg;
uint32_t tmp;
int32_t crc;
// Calculate the CRC from the destination MAC address
crc = emac_CRCCalc(dstMAC_addr, 6);
// Extract the value from CRC to get index value for hash filter table
crc = (crc >> 23) & 0x3F;
pReg = (crc > 31) ? ((uint32_t *)&LPC_EMAC->HashFilterH) \
: ((uint32_t *)&LPC_EMAC->HashFilterL);
tmp = (crc > 31) ? (crc - 32) : crc;
if (NewState == ENABLE) {
(*pReg) |= (1UL << tmp);
} else {
(*pReg) &= ~(1UL << tmp);
}
// Enable Rx Filter
LPC_EMAC->Command &= ~EMAC_CR_PASS_RX_FILT;
}
/*********************************************************************//**
* @brief Enable/Disable Filter mode for each specified type EMAC peripheral
* @param[in] ulFilterMode Filter mode, should be:
* - EMAC_RFC_UCAST_EN: all frames of unicast types
* will be accepted
* - EMAC_RFC_BCAST_EN: broadcast frame will be
* accepted
* - EMAC_RFC_MCAST_EN: all frames of multicast
* types will be accepted
* - EMAC_RFC_UCAST_HASH_EN: The imperfect hash
* filter will be applied to unicast addresses
* - EMAC_RFC_MCAST_HASH_EN: The imperfect hash
* filter will be applied to multicast addresses
* - EMAC_RFC_PERFECT_EN: the destination address
* will be compared with the 6 byte station address
* programmed in the station address by the filter
* - EMAC_RFC_MAGP_WOL_EN: the result of the magic
* packet filter will generate a WoL interrupt when
* there is a match
* - EMAC_RFC_PFILT_WOL_EN: the result of the perfect address
* matching filter and the imperfect hash filter will
* generate a WoL interrupt when there is a match
* @param[in] NewState New State of this command, should be:
* - ENABLE
* - DISABLE
* @return None
**********************************************************************/
void EMAC_SetFilterMode(uint32_t ulFilterMode, FunctionalState NewState)
{
if (NewState == ENABLE){
LPC_EMAC->RxFilterCtrl |= ulFilterMode;
} else {
LPC_EMAC->RxFilterCtrl &= ~ulFilterMode;
}
}
/*********************************************************************//**
* @brief Get status of Wake On LAN Filter for each specified
* type in EMAC peripheral, clear this status if it is set
* @param[in] ulWoLMode WoL Filter mode, should be:
* - EMAC_WOL_UCAST: unicast frames caused WoL
* - EMAC_WOL_UCAST: broadcast frame caused WoL
* - EMAC_WOL_MCAST: multicast frame caused WoL
* - EMAC_WOL_UCAST_HASH: unicast frame that passes the
* imperfect hash filter caused WoL
* - EMAC_WOL_MCAST_HASH: multicast frame that passes the
* imperfect hash filter caused WoL
* - EMAC_WOL_PERFECT:perfect address matching filter
* caused WoL
* - EMAC_WOL_RX_FILTER: the receive filter caused WoL
* - EMAC_WOL_MAG_PACKET: the magic packet filter caused WoL
* @return SET/RESET
**********************************************************************/
FlagStatus EMAC_GetWoLStatus(uint32_t ulWoLMode)
{
if (LPC_EMAC->RxFilterWoLStatus & ulWoLMode) {
LPC_EMAC->RxFilterWoLClear = ulWoLMode;
return SET;
} else {
return RESET;
}
}
/*********************************************************************//**
* @brief Write data to Tx packet data buffer at current index due to
* TxProduceIndex
* @param[in] pDataStruct Pointer to a EMAC_PACKETBUF_Type structure
* data that contain specified information about
* Packet data buffer.
* @return None
**********************************************************************/
void EMAC_WritePacketBuffer(EMAC_PACKETBUF_Type *pDataStruct)
{
uint32_t idx,len;
uint32_t *sp,*dp;
idx = LPC_EMAC->TxProduceIndex;
sp = (uint32_t *)pDataStruct->pbDataBuf;
dp = (uint32_t *)Tx_Desc[idx].Packet;
/* Copy frame data to EMAC packet buffers. */
for (len = (pDataStruct->ulDataLen + 3) >> 2; len; len--) {
*dp++ = *sp++;
}
Tx_Desc[idx].Ctrl = (pDataStruct->ulDataLen - 1) | (EMAC_TCTRL_INT | EMAC_TCTRL_LAST);
}
/*********************************************************************//**
* @brief Read data from Rx packet data buffer at current index due
* to RxConsumeIndex
* @param[in] pDataStruct Pointer to a EMAC_PACKETBUF_Type structure
* data that contain specified information about
* Packet data buffer.
* @return None
**********************************************************************/
void EMAC_ReadPacketBuffer(EMAC_PACKETBUF_Type *pDataStruct)
{
uint32_t idx, len;
uint32_t *dp, *sp;
idx = LPC_EMAC->RxConsumeIndex;
dp = (uint32_t *)pDataStruct->pbDataBuf;
sp = (uint32_t *)Rx_Desc[idx].Packet;
if (pDataStruct->pbDataBuf != NULL) {
for (len = (pDataStruct->ulDataLen + 3) >> 2; len; len--) {
*dp++ = *sp++;
}
}
}
/*********************************************************************//**
* @brief Enable/Disable interrupt for each type in EMAC
* @param[in] ulIntType Interrupt Type, should be:
* - EMAC_INT_RX_OVERRUN: Receive Overrun
* - EMAC_INT_RX_ERR: Receive Error
* - EMAC_INT_RX_FIN: Receive Descriptor Finish
* - EMAC_INT_RX_DONE: Receive Done
* - EMAC_INT_TX_UNDERRUN: Transmit Under-run
* - EMAC_INT_TX_ERR: Transmit Error
* - EMAC_INT_TX_FIN: Transmit descriptor finish
* - EMAC_INT_TX_DONE: Transmit Done
* - EMAC_INT_SOFT_INT: Software interrupt
* - EMAC_INT_WAKEUP: Wakeup interrupt
* @param[in] NewState New State of this function, should be:
* - ENABLE.
* - DISABLE.
* @return None
**********************************************************************/
void EMAC_IntCmd(uint32_t ulIntType, FunctionalState NewState)
{
if (NewState == ENABLE) {
LPC_EMAC->IntEnable |= ulIntType;
} else {
LPC_EMAC->IntEnable &= ~(ulIntType);
}
}
/*********************************************************************//**
* @brief Check whether if specified interrupt flag is set or not
* for each interrupt type in EMAC and clear interrupt pending
* if it is set.
* @param[in] ulIntType Interrupt Type, should be:
* - EMAC_INT_RX_OVERRUN: Receive Overrun
* - EMAC_INT_RX_ERR: Receive Error
* - EMAC_INT_RX_FIN: Receive Descriptor Finish
* - EMAC_INT_RX_DONE: Receive Done
* - EMAC_INT_TX_UNDERRUN: Transmit Under-run
* - EMAC_INT_TX_ERR: Transmit Error
* - EMAC_INT_TX_FIN: Transmit descriptor finish
* - EMAC_INT_TX_DONE: Transmit Done
* - EMAC_INT_SOFT_INT: Software interrupt
* - EMAC_INT_WAKEUP: Wakeup interrupt
* @return New state of specified interrupt (SET or RESET)
**********************************************************************/
IntStatus EMAC_IntGetStatus(uint32_t ulIntType)
{
if (LPC_EMAC->IntStatus & ulIntType) {
LPC_EMAC->IntClear = ulIntType;
return SET;
} else {
return RESET;
}
}
/*********************************************************************//**
* @brief Check whether if the current RxConsumeIndex is not equal to the
* current RxProduceIndex.
* @param[in] None
* @return TRUE if they're not equal, otherwise return FALSE
*
* Note: In case the RxConsumeIndex is not equal to the RxProduceIndex,
* it means there're available data has been received. They should be read
* out and released the Receive Data Buffer by updating the RxConsumeIndex value.
**********************************************************************/
Bool EMAC_CheckReceiveIndex(void)
{
if (LPC_EMAC->RxConsumeIndex != LPC_EMAC->RxProduceIndex) {
return TRUE;
} else {
return FALSE;
}
}
/*********************************************************************//**
* @brief Check whether if the current TxProduceIndex is not equal to the
* current RxProduceIndex - 1.
* @param[in] None
* @return TRUE if they're not equal, otherwise return FALSE
*
* Note: In case the RxConsumeIndex is equal to the RxProduceIndex - 1,
* it means the transmit buffer is available and data can be written to transmit
* buffer to be sent.
**********************************************************************/
Bool EMAC_CheckTransmitIndex(void)
{
uint32_t tmp = LPC_EMAC->TxConsumeIndex;
if (LPC_EMAC->TxProduceIndex == ( tmp - 1 ))
{
return FALSE;
}
else if( ( tmp == 0 ) && ( LPC_EMAC->TxProduceIndex == ( EMAC_NUM_TX_FRAG - 1 ) ) )
{
return FALSE;
}
else
{
return TRUE;
}
}
/*********************************************************************//**
* @brief Get current status value of receive data (due to RxConsumeIndex)
* @param[in] ulRxStatType Received Status type, should be one of following:
* - EMAC_RINFO_CTRL_FRAME: Control Frame
* - EMAC_RINFO_VLAN: VLAN Frame
* - EMAC_RINFO_FAIL_FILT: RX Filter Failed
* - EMAC_RINFO_MCAST: Multicast Frame
* - EMAC_RINFO_BCAST: Broadcast Frame
* - EMAC_RINFO_CRC_ERR: CRC Error in Frame
* - EMAC_RINFO_SYM_ERR: Symbol Error from PHY
* - EMAC_RINFO_LEN_ERR: Length Error
* - EMAC_RINFO_RANGE_ERR: Range error(exceeded max size)
* - EMAC_RINFO_ALIGN_ERR: Alignment error
* - EMAC_RINFO_OVERRUN: Receive overrun
* - EMAC_RINFO_NO_DESCR: No new Descriptor available
* - EMAC_RINFO_LAST_FLAG: last Fragment in Frame
* - EMAC_RINFO_ERR: Error Occurred (OR of all error)
* @return Current value of receive data (due to RxConsumeIndex)
**********************************************************************/
FlagStatus EMAC_CheckReceiveDataStatus(uint32_t ulRxStatType)
{
uint32_t idx;
idx = LPC_EMAC->RxConsumeIndex;
return (((Rx_Stat[idx].Info) & ulRxStatType) ? SET : RESET);
}
/*********************************************************************//**
* @brief Get size of current Received data in received buffer (due to
* RxConsumeIndex)
* @param[in] None
* @return Size of received data
**********************************************************************/
uint32_t EMAC_GetReceiveDataSize(void)
{
uint32_t idx;
idx =LPC_EMAC->RxConsumeIndex;
return ((Rx_Stat[idx].Info) & EMAC_RINFO_SIZE);
}
/*********************************************************************//**
* @brief Increase the RxConsumeIndex (after reading the Receive buffer
* to release the Receive buffer) and wrap-around the index if
* it reaches the maximum Receive Number
* @param[in] None
* @return None
**********************************************************************/
void EMAC_UpdateRxConsumeIndex(void)
{
// Get current Rx consume index
uint32_t idx = LPC_EMAC->RxConsumeIndex;
/* Release frame from EMAC buffer */
if (++idx == EMAC_NUM_RX_FRAG) idx = 0;
LPC_EMAC->RxConsumeIndex = idx;
}
/*********************************************************************//**
* @brief Increase the TxProduceIndex (after writting to the Transmit buffer
* to enable the Transmit buffer) and wrap-around the index if
* it reaches the maximum Transmit Number
* @param[in] None
* @return None
**********************************************************************/
void EMAC_UpdateTxProduceIndex(void)
{
// Get current Tx produce index
uint32_t idx = LPC_EMAC->TxProduceIndex;
/* Start frame transmission */
if (++idx == EMAC_NUM_TX_FRAG) idx = 0;
LPC_EMAC->TxProduceIndex = idx;
}
/**
* @}
*/
#endif /* _EMAC */
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */

View file

@ -1,171 +0,0 @@
/**********************************************************************
* $Id$ lpc17xx_exti.c 2010-06-18
*//**
* @file lpc17xx_exti.c
* @brief Contains all functions support for External interrupt firmware
* library on LPC17xx
* @version 3.0
* @date 18. June. 2010
* @author NXP MCU SW Application Team
*
* Copyright(C) 2010, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
/* Peripheral group ----------------------------------------------------------- */
/** @addtogroup EXTI
* @{
*/
/* Includes ------------------------------------------------------------------- */
#include "lpc17xx_exti.h"
/* If this source file built with example, the LPC17xx FW library configuration
* file in each example directory ("lpc17xx_libcfg.h") must be included,
* otherwise the default FW library configuration file must be included instead
*/
#ifdef __BUILD_WITH_EXAMPLE__
#include "lpc17xx_libcfg.h"
#else
#include "lpc17xx_libcfg_default.h"
#endif /* __BUILD_WITH_EXAMPLE__ */
#ifdef _EXTI
/* Public Functions ----------------------------------------------------------- */
/** @addtogroup EXTI_Public_Functions
* @{
*/
/*********************************************************************//**
* @brief Initial for EXT
* - Set EXTINT, EXTMODE, EXTPOLAR registers to default value
* @param[in] None
* @return None
**********************************************************************/
void EXTI_Init(void)
{
LPC_SC->EXTINT = 0xF;
LPC_SC->EXTMODE = 0x0;
LPC_SC->EXTPOLAR = 0x0;
}
/*********************************************************************//**
* @brief Close EXT
* @param[in] None
* @return None
**********************************************************************/
void EXTI_DeInit(void)
{
;
}
/*********************************************************************//**
* @brief Configuration for EXT
* - Set EXTINT, EXTMODE, EXTPOLAR register
* @param[in] EXTICfg Pointer to a EXTI_InitTypeDef structure
* that contains the configuration information for the
* specified external interrupt
* @return None
**********************************************************************/
void EXTI_Config(EXTI_InitTypeDef *EXTICfg)
{
LPC_SC->EXTINT = 0x0;
EXTI_SetMode(EXTICfg->EXTI_Line, EXTICfg->EXTI_Mode);
EXTI_SetPolarity(EXTICfg->EXTI_Line, EXTICfg->EXTI_polarity);
}
/*********************************************************************//**
* @brief Set mode for EXTI pin
* @param[in] EXTILine external interrupt line, should be:
* - EXTI_EINT0: external interrupt line 0
* - EXTI_EINT1: external interrupt line 1
* - EXTI_EINT2: external interrupt line 2
* - EXTI_EINT3: external interrupt line 3
* @param[in] mode external mode, should be:
* - EXTI_MODE_LEVEL_SENSITIVE
* - EXTI_MODE_EDGE_SENSITIVE
* @return None
*********************************************************************/
void EXTI_SetMode(EXTI_LINE_ENUM EXTILine, EXTI_MODE_ENUM mode)
{
if(mode == EXTI_MODE_EDGE_SENSITIVE)
{
LPC_SC->EXTMODE |= (1 << EXTILine);
}
else if(mode == EXTI_MODE_LEVEL_SENSITIVE)
{
LPC_SC->EXTMODE &= ~(1 << EXTILine);
}
}
/*********************************************************************//**
* @brief Set polarity for EXTI pin
* @param[in] EXTILine external interrupt line, should be:
* - EXTI_EINT0: external interrupt line 0
* - EXTI_EINT1: external interrupt line 1
* - EXTI_EINT2: external interrupt line 2
* - EXTI_EINT3: external interrupt line 3
* @param[in] polarity external polarity value, should be:
* - EXTI_POLARITY_LOW_ACTIVE_OR_FALLING_EDGE
* - EXTI_POLARITY_LOW_ACTIVE_OR_FALLING_EDGE
* @return None
*********************************************************************/
void EXTI_SetPolarity(EXTI_LINE_ENUM EXTILine, EXTI_POLARITY_ENUM polarity)
{
if(polarity == EXTI_POLARITY_HIGH_ACTIVE_OR_RISING_EDGE)
{
LPC_SC->EXTPOLAR |= (1 << EXTILine);
}
else if(polarity == EXTI_POLARITY_LOW_ACTIVE_OR_FALLING_EDGE)
{
LPC_SC->EXTPOLAR &= ~(1 << EXTILine);
}
}
/*********************************************************************//**
* @brief Clear External interrupt flag
* @param[in] EXTILine external interrupt line, should be:
* - EXTI_EINT0: external interrupt line 0
* - EXTI_EINT1: external interrupt line 1
* - EXTI_EINT2: external interrupt line 2
* - EXTI_EINT3: external interrupt line 3
* @return None
*********************************************************************/
void EXTI_ClearEXTIFlag(EXTI_LINE_ENUM EXTILine)
{
LPC_SC->EXTINT = (1 << EXTILine);
}
/**
* @}
*/
#endif /* _EXTI */
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */

View file

@ -1,463 +0,0 @@
/**********************************************************************
* $Id$ lpc17xx_gpdma.c 2010-03-21
*//**
* @file lpc17xx_gpdma.c
* @brief Contains all functions support for GPDMA firmware
* library on LPC17xx
* @version 2.1
* @date 25. July. 2011
* @author NXP MCU SW Application Team
*
* Copyright(C) 2010, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
/* Peripheral group ----------------------------------------------------------- */
/** @addtogroup GPDMA
* @{
*/
/* Includes ------------------------------------------------------------------- */
#include "lpc17xx_gpdma.h"
#include "lpc17xx_clkpwr.h"
/* If this source file built with example, the LPC17xx FW library configuration
* file in each example directory ("lpc17xx_libcfg.h") must be included,
* otherwise the default FW library configuration file must be included instead
*/
#ifdef __BUILD_WITH_EXAMPLE__
#include "lpc17xx_libcfg.h"
#else
#include "lpc17xx_libcfg_default.h"
#endif /* __BUILD_WITH_EXAMPLE__ */
#ifdef _GPDMA
/* Private Variables ---------------------------------------------------------- */
/** @defgroup GPDMA_Private_Variables GPDMA Private Variables
* @{
*/
/**
* @brief Lookup Table of Connection Type matched with
* Peripheral Data (FIFO) register base address
*/
//#ifdef __IAR_SYSTEMS_ICC__
volatile const void *GPDMA_LUTPerAddr[] = {
(&LPC_SSP0->DR), // SSP0 Tx
(&LPC_SSP0->DR), // SSP0 Rx
(&LPC_SSP1->DR), // SSP1 Tx
(&LPC_SSP1->DR), // SSP1 Rx
(&LPC_ADC->ADGDR), // ADC
(&LPC_I2S->I2STXFIFO), // I2S Tx
(&LPC_I2S->I2SRXFIFO), // I2S Rx
(&LPC_DAC->DACR), // DAC
(&LPC_UART0->/*RBTHDLR.*/THR), // UART0 Tx
(&LPC_UART0->/*RBTHDLR.*/RBR), // UART0 Rx
(&LPC_UART1->/*RBTHDLR.*/THR), // UART1 Tx
(&LPC_UART1->/*RBTHDLR.*/RBR), // UART1 Rx
(&LPC_UART2->/*RBTHDLR.*/THR), // UART2 Tx
(&LPC_UART2->/*RBTHDLR.*/RBR), // UART2 Rx
(&LPC_UART3->/*RBTHDLR.*/THR), // UART3 Tx
(&LPC_UART3->/*RBTHDLR.*/RBR), // UART3 Rx
(&LPC_TIM0->MR0), // MAT0.0
(&LPC_TIM0->MR1), // MAT0.1
(&LPC_TIM1->MR0), // MAT1.0
(&LPC_TIM1->MR1), // MAT1.1
(&LPC_TIM2->MR0), // MAT2.0
(&LPC_TIM2->MR1), // MAT2.1
(&LPC_TIM3->MR0), // MAT3.0
(&LPC_TIM3->MR1) // MAT3.1
};
//#else
//const uint32_t GPDMA_LUTPerAddr[] = {
// ((uint32_t)&LPC_SSP0->DR), // SSP0 Tx
// ((uint32_t)&LPC_SSP0->DR), // SSP0 Rx
// ((uint32_t)&LPC_SSP1->DR), // SSP1 Tx
// ((uint32_t)&LPC_SSP1->DR), // SSP1 Rx
// ((uint32_t)&LPC_ADC->ADGDR), // ADC
// ((uint32_t)&LPC_I2S->I2STXFIFO), // I2S Tx
// ((uint32_t)&LPC_I2S->I2SRXFIFO), // I2S Rx
// ((uint32_t)&LPC_DAC->DACR), // DAC
// ((uint32_t)&LPC_UART0->/*RBTHDLR.*/THR), // UART0 Tx
// ((uint32_t)&LPC_UART0->/*RBTHDLR.*/RBR), // UART0 Rx
// ((uint32_t)&LPC_UART1->/*RBTHDLR.*/THR), // UART1 Tx
// ((uint32_t)&LPC_UART1->/*RBTHDLR.*/RBR), // UART1 Rx
// ((uint32_t)&LPC_UART2->/*RBTHDLR.*/THR), // UART2 Tx
// ((uint32_t)&LPC_UART2->/*RBTHDLR.*/RBR), // UART2 Rx
// ((uint32_t)&LPC_UART3->/*RBTHDLR.*/THR), // UART3 Tx
// ((uint32_t)&LPC_UART3->/*RBTHDLR.*/RBR), // UART3 Rx
// ((uint32_t)&LPC_TIM0->MR0), // MAT0.0
// ((uint32_t)&LPC_TIM0->MR1), // MAT0.1
// ((uint32_t)&LPC_TIM1->MR0), // MAT1.0
// ((uint32_t)&LPC_TIM1->MR1), // MAT1.1
// ((uint32_t)&LPC_TIM2->MR0), // MAT2.0
// ((uint32_t)&LPC_TIM2->MR1), // MAT2.1
// ((uint32_t)&LPC_TIM3->MR0), // MAT3.0
// ((uint32_t)&LPC_TIM3->MR1) // MAT3.1
//};
//#endif
/**
* @brief Lookup Table of GPDMA Channel Number matched with
* GPDMA channel pointer
*/
const LPC_GPDMACH_TypeDef *pGPDMACh[8] = {
LPC_GPDMACH0, // GPDMA Channel 0
LPC_GPDMACH1, // GPDMA Channel 1
LPC_GPDMACH2, // GPDMA Channel 2
LPC_GPDMACH3, // GPDMA Channel 3
LPC_GPDMACH4, // GPDMA Channel 4
LPC_GPDMACH5, // GPDMA Channel 5
LPC_GPDMACH6, // GPDMA Channel 6
LPC_GPDMACH7 // GPDMA Channel 7
};
/**
* @brief Optimized Peripheral Source and Destination burst size
*/
const uint8_t GPDMA_LUTPerBurst[] = {
GPDMA_BSIZE_4, // SSP0 Tx
GPDMA_BSIZE_4, // SSP0 Rx
GPDMA_BSIZE_4, // SSP1 Tx
GPDMA_BSIZE_4, // SSP1 Rx
GPDMA_BSIZE_1, // ADC
GPDMA_BSIZE_32, // I2S channel 0
GPDMA_BSIZE_32, // I2S channel 1
GPDMA_BSIZE_1, // DAC
GPDMA_BSIZE_1, // UART0 Tx
GPDMA_BSIZE_1, // UART0 Rx
GPDMA_BSIZE_1, // UART1 Tx
GPDMA_BSIZE_1, // UART1 Rx
GPDMA_BSIZE_1, // UART2 Tx
GPDMA_BSIZE_1, // UART2 Rx
GPDMA_BSIZE_1, // UART3 Tx
GPDMA_BSIZE_1, // UART3 Rx
GPDMA_BSIZE_1, // MAT0.0
GPDMA_BSIZE_1, // MAT0.1
GPDMA_BSIZE_1, // MAT1.0
GPDMA_BSIZE_1, // MAT1.1
GPDMA_BSIZE_1, // MAT2.0
GPDMA_BSIZE_1, // MAT2.1
GPDMA_BSIZE_1, // MAT3.0
GPDMA_BSIZE_1 // MAT3.1
};
/**
* @brief Optimized Peripheral Source and Destination transfer width
*/
const uint8_t GPDMA_LUTPerWid[] = {
GPDMA_WIDTH_BYTE, // SSP0 Tx
GPDMA_WIDTH_BYTE, // SSP0 Rx
GPDMA_WIDTH_BYTE, // SSP1 Tx
GPDMA_WIDTH_BYTE, // SSP1 Rx
GPDMA_WIDTH_WORD, // ADC
GPDMA_WIDTH_WORD, // I2S channel 0
GPDMA_WIDTH_WORD, // I2S channel 1
GPDMA_WIDTH_BYTE, // DAC
GPDMA_WIDTH_BYTE, // UART0 Tx
GPDMA_WIDTH_BYTE, // UART0 Rx
GPDMA_WIDTH_BYTE, // UART1 Tx
GPDMA_WIDTH_BYTE, // UART1 Rx
GPDMA_WIDTH_BYTE, // UART2 Tx
GPDMA_WIDTH_BYTE, // UART2 Rx
GPDMA_WIDTH_BYTE, // UART3 Tx
GPDMA_WIDTH_BYTE, // UART3 Rx
GPDMA_WIDTH_WORD, // MAT0.0
GPDMA_WIDTH_WORD, // MAT0.1
GPDMA_WIDTH_WORD, // MAT1.0
GPDMA_WIDTH_WORD, // MAT1.1
GPDMA_WIDTH_WORD, // MAT2.0
GPDMA_WIDTH_WORD, // MAT2.1
GPDMA_WIDTH_WORD, // MAT3.0
GPDMA_WIDTH_WORD // MAT3.1
};
/**
* @}
*/
/* Public Functions ----------------------------------------------------------- */
/** @addtogroup GPDMA_Public_Functions
* @{
*/
/********************************************************************//**
* @brief Initialize GPDMA controller
* @param None
* @return None
*********************************************************************/
void GPDMA_Init(void)
{
/* Enable GPDMA clock */
CLKPWR_ConfigPPWR (CLKPWR_PCONP_PCGPDMA, ENABLE);
// Reset all channel configuration register
LPC_GPDMACH0->DMACCConfig = 0;
LPC_GPDMACH1->DMACCConfig = 0;
LPC_GPDMACH2->DMACCConfig = 0;
LPC_GPDMACH3->DMACCConfig = 0;
LPC_GPDMACH4->DMACCConfig = 0;
LPC_GPDMACH5->DMACCConfig = 0;
LPC_GPDMACH6->DMACCConfig = 0;
LPC_GPDMACH7->DMACCConfig = 0;
/* Clear all DMA interrupt and error flag */
LPC_GPDMA->DMACIntTCClear = 0xFF;
LPC_GPDMA->DMACIntErrClr = 0xFF;
}
/********************************************************************//**
* @brief Setup GPDMA channel peripheral according to the specified
* parameters in the GPDMAChannelConfig.
* @param[in] GPDMAChannelConfig Pointer to a GPDMA_CH_CFG_Type
* structure that contains the configuration
* information for the specified GPDMA channel peripheral.
* @return ERROR if selected channel is enabled before
* or SUCCESS if channel is configured successfully
*********************************************************************/
Status GPDMA_Setup(GPDMA_Channel_CFG_Type *GPDMAChannelConfig)
{
LPC_GPDMACH_TypeDef *pDMAch;
uint32_t tmp1, tmp2;
if (LPC_GPDMA->DMACEnbldChns & (GPDMA_DMACEnbldChns_Ch(GPDMAChannelConfig->ChannelNum))) {
// This channel is enabled, return ERROR, need to release this channel first
return ERROR;
}
// Get Channel pointer
pDMAch = (LPC_GPDMACH_TypeDef *) pGPDMACh[GPDMAChannelConfig->ChannelNum];
// Reset the Interrupt status
LPC_GPDMA->DMACIntTCClear = GPDMA_DMACIntTCClear_Ch(GPDMAChannelConfig->ChannelNum);
LPC_GPDMA->DMACIntErrClr = GPDMA_DMACIntErrClr_Ch(GPDMAChannelConfig->ChannelNum);
// Clear DMA configure
pDMAch->DMACCControl = 0x00;
pDMAch->DMACCConfig = 0x00;
/* Assign Linker List Item value */
pDMAch->DMACCLLI = GPDMAChannelConfig->DMALLI;
/* Set value to Channel Control Registers */
switch (GPDMAChannelConfig->TransferType)
{
// Memory to memory
case GPDMA_TRANSFERTYPE_M2M:
// Assign physical source and destination address
pDMAch->DMACCSrcAddr = GPDMAChannelConfig->SrcMemAddr;
pDMAch->DMACCDestAddr = GPDMAChannelConfig->DstMemAddr;
pDMAch->DMACCControl
= GPDMA_DMACCxControl_TransferSize(GPDMAChannelConfig->TransferSize) \
| GPDMA_DMACCxControl_SBSize(GPDMA_BSIZE_32) \
| GPDMA_DMACCxControl_DBSize(GPDMA_BSIZE_32) \
| GPDMA_DMACCxControl_SWidth(GPDMAChannelConfig->TransferWidth) \
| GPDMA_DMACCxControl_DWidth(GPDMAChannelConfig->TransferWidth) \
| GPDMA_DMACCxControl_SI \
| GPDMA_DMACCxControl_DI \
| GPDMA_DMACCxControl_I;
break;
// Memory to peripheral
case GPDMA_TRANSFERTYPE_M2P:
// Assign physical source
pDMAch->DMACCSrcAddr = GPDMAChannelConfig->SrcMemAddr;
// Assign peripheral destination address
pDMAch->DMACCDestAddr = (uint32_t)GPDMA_LUTPerAddr[GPDMAChannelConfig->DstConn];
pDMAch->DMACCControl
= GPDMA_DMACCxControl_TransferSize((uint32_t)GPDMAChannelConfig->TransferSize) \
| GPDMA_DMACCxControl_SBSize((uint32_t)GPDMA_LUTPerBurst[GPDMAChannelConfig->DstConn]) \
| GPDMA_DMACCxControl_DBSize((uint32_t)GPDMA_LUTPerBurst[GPDMAChannelConfig->DstConn]) \
| GPDMA_DMACCxControl_SWidth((uint32_t)GPDMA_LUTPerWid[GPDMAChannelConfig->DstConn]) \
| GPDMA_DMACCxControl_DWidth((uint32_t)GPDMA_LUTPerWid[GPDMAChannelConfig->DstConn]) \
| GPDMA_DMACCxControl_SI \
| GPDMA_DMACCxControl_I;
break;
// Peripheral to memory
case GPDMA_TRANSFERTYPE_P2M:
// Assign peripheral source address
pDMAch->DMACCSrcAddr = (uint32_t)GPDMA_LUTPerAddr[GPDMAChannelConfig->SrcConn];
// Assign memory destination address
pDMAch->DMACCDestAddr = GPDMAChannelConfig->DstMemAddr;
pDMAch->DMACCControl
= GPDMA_DMACCxControl_TransferSize((uint32_t)GPDMAChannelConfig->TransferSize) \
| GPDMA_DMACCxControl_SBSize((uint32_t)GPDMA_LUTPerBurst[GPDMAChannelConfig->SrcConn]) \
| GPDMA_DMACCxControl_DBSize((uint32_t)GPDMA_LUTPerBurst[GPDMAChannelConfig->SrcConn]) \
| GPDMA_DMACCxControl_SWidth((uint32_t)GPDMA_LUTPerWid[GPDMAChannelConfig->SrcConn]) \
| GPDMA_DMACCxControl_DWidth((uint32_t)GPDMA_LUTPerWid[GPDMAChannelConfig->SrcConn]) \
| GPDMA_DMACCxControl_DI \
| GPDMA_DMACCxControl_I;
break;
// Peripheral to peripheral
case GPDMA_TRANSFERTYPE_P2P:
// Assign peripheral source address
pDMAch->DMACCSrcAddr = (uint32_t)GPDMA_LUTPerAddr[GPDMAChannelConfig->SrcConn];
// Assign peripheral destination address
pDMAch->DMACCDestAddr = (uint32_t)GPDMA_LUTPerAddr[GPDMAChannelConfig->DstConn];
pDMAch->DMACCControl
= GPDMA_DMACCxControl_TransferSize((uint32_t)GPDMAChannelConfig->TransferSize) \
| GPDMA_DMACCxControl_SBSize((uint32_t)GPDMA_LUTPerBurst[GPDMAChannelConfig->SrcConn]) \
| GPDMA_DMACCxControl_DBSize((uint32_t)GPDMA_LUTPerBurst[GPDMAChannelConfig->DstConn]) \
| GPDMA_DMACCxControl_SWidth((uint32_t)GPDMA_LUTPerWid[GPDMAChannelConfig->SrcConn]) \
| GPDMA_DMACCxControl_DWidth((uint32_t)GPDMA_LUTPerWid[GPDMAChannelConfig->DstConn]) \
| GPDMA_DMACCxControl_I;
break;
// Do not support any more transfer type, return ERROR
default:
return ERROR;
}
/* Re-Configure DMA Request Select for source peripheral */
if (GPDMAChannelConfig->SrcConn > 15)
{
LPC_SC->DMAREQSEL |= (1<<(GPDMAChannelConfig->SrcConn - 16));
} else {
LPC_SC->DMAREQSEL &= ~(1<<(GPDMAChannelConfig->SrcConn - 8));
}
/* Re-Configure DMA Request Select for Destination peripheral */
if (GPDMAChannelConfig->DstConn > 15)
{
LPC_SC->DMAREQSEL |= (1<<(GPDMAChannelConfig->DstConn - 16));
} else {
LPC_SC->DMAREQSEL &= ~(1<<(GPDMAChannelConfig->DstConn - 8));
}
/* Enable DMA channels, little endian */
LPC_GPDMA->DMACConfig = GPDMA_DMACConfig_E;
while (!(LPC_GPDMA->DMACConfig & GPDMA_DMACConfig_E));
// Calculate absolute value for Connection number
tmp1 = GPDMAChannelConfig->SrcConn;
tmp1 = ((tmp1 > 15) ? (tmp1 - 8) : tmp1);
tmp2 = GPDMAChannelConfig->DstConn;
tmp2 = ((tmp2 > 15) ? (tmp2 - 8) : tmp2);
// Configure DMA Channel, enable Error Counter and Terminate counter
pDMAch->DMACCConfig = GPDMA_DMACCxConfig_IE | GPDMA_DMACCxConfig_ITC /*| GPDMA_DMACCxConfig_E*/ \
| GPDMA_DMACCxConfig_TransferType((uint32_t)GPDMAChannelConfig->TransferType) \
| GPDMA_DMACCxConfig_SrcPeripheral(tmp1) \
| GPDMA_DMACCxConfig_DestPeripheral(tmp2);
return SUCCESS;
}
/*********************************************************************//**
* @brief Enable/Disable DMA channel
* @param[in] channelNum GPDMA channel, should be in range from 0 to 7
* @param[in] NewState New State of this command, should be:
* - ENABLE.
* - DISABLE.
* @return None
**********************************************************************/
void GPDMA_ChannelCmd(uint8_t channelNum, FunctionalState NewState)
{
LPC_GPDMACH_TypeDef *pDMAch;
// Get Channel pointer
pDMAch = (LPC_GPDMACH_TypeDef *) pGPDMACh[channelNum];
if (NewState == ENABLE) {
pDMAch->DMACCConfig |= GPDMA_DMACCxConfig_E;
} else {
pDMAch->DMACCConfig &= ~GPDMA_DMACCxConfig_E;
}
}
/*********************************************************************//**
* @brief Check if corresponding channel does have an active interrupt
* request or not
* @param[in] type type of status, should be:
* - GPDMA_STAT_INT: GPDMA Interrupt Status
* - GPDMA_STAT_INTTC: GPDMA Interrupt Terminal Count Request Status
* - GPDMA_STAT_INTERR: GPDMA Interrupt Error Status
* - GPDMA_STAT_RAWINTTC: GPDMA Raw Interrupt Terminal Count Status
* - GPDMA_STAT_RAWINTERR: GPDMA Raw Error Interrupt Status
* - GPDMA_STAT_ENABLED_CH:GPDMA Enabled Channel Status
* @param[in] channel GPDMA channel, should be in range from 0 to 7
* @return IntStatus status of DMA channel interrupt after masking
* Should be:
* - SET: the corresponding channel has no active interrupt request
* - RESET: the corresponding channel does have an active interrupt request
**********************************************************************/
IntStatus GPDMA_IntGetStatus(GPDMA_Status_Type type, uint8_t channel)
{
CHECK_PARAM(PARAM_GPDMA_STAT(type));
CHECK_PARAM(PARAM_GPDMA_CHANNEL(channel));
switch (type)
{
case GPDMA_STAT_INT: //check status of DMA channel interrupts
if (LPC_GPDMA->DMACIntStat & (GPDMA_DMACIntStat_Ch(channel)))
return SET;
return RESET;
case GPDMA_STAT_INTTC: // check terminal count interrupt request status for DMA
if (LPC_GPDMA->DMACIntTCStat & GPDMA_DMACIntTCStat_Ch(channel))
return SET;
return RESET;
case GPDMA_STAT_INTERR: //check interrupt status for DMA channels
if (LPC_GPDMA->DMACIntErrStat & GPDMA_DMACIntTCClear_Ch(channel))
return SET;
return RESET;
case GPDMA_STAT_RAWINTTC: //check status of the terminal count interrupt for DMA channels
if (LPC_GPDMA->DMACRawIntErrStat & GPDMA_DMACRawIntTCStat_Ch(channel))
return SET;
return RESET;
case GPDMA_STAT_RAWINTERR: //check status of the error interrupt for DMA channels
if (LPC_GPDMA->DMACRawIntTCStat & GPDMA_DMACRawIntErrStat_Ch(channel))
return SET;
return RESET;
default: //check enable status for DMA channels
if (LPC_GPDMA->DMACEnbldChns & GPDMA_DMACEnbldChns_Ch(channel))
return SET;
return RESET;
}
}
/*********************************************************************//**
* @brief Clear one or more interrupt requests on DMA channels
* @param[in] type type of interrupt request, should be:
* - GPDMA_STATCLR_INTTC: GPDMA Interrupt Terminal Count Request Clear
* - GPDMA_STATCLR_INTERR: GPDMA Interrupt Error Clear
* @param[in] channel GPDMA channel, should be in range from 0 to 7
* @return None
**********************************************************************/
void GPDMA_ClearIntPending(GPDMA_StateClear_Type type, uint8_t channel)
{
CHECK_PARAM(PARAM_GPDMA_STATCLR(type));
CHECK_PARAM(PARAM_GPDMA_CHANNEL(channel));
if (type == GPDMA_STATCLR_INTTC) // clears the terminal count interrupt request on DMA channel
LPC_GPDMA->DMACIntTCClear = GPDMA_DMACIntTCClear_Ch(channel);
else // clear the error interrupt request
LPC_GPDMA->DMACIntErrClr = GPDMA_DMACIntErrClr_Ch(channel);
}
/**
* @}
*/
#endif /* _GPDMA */
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */

View file

@ -1,762 +0,0 @@
/**********************************************************************
* $Id$ lpc17xx_gpio.c 2010-05-21
*//**
* @file lpc17xx_gpio.c
* @brief Contains all functions support for GPIO firmware
* library on LPC17xx
* @version 2.0
* @date 21. May. 2010
* @author NXP MCU SW Application Team
*
* Copyright(C) 2010, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
/* Peripheral group ----------------------------------------------------------- */
/** @addtogroup GPIO
* @{
*/
/* Includes ------------------------------------------------------------------- */
#include "lpc17xx_gpio.h"
/* If this source file built with example, the LPC17xx FW library configuration
* file in each example directory ("lpc17xx_libcfg.h") must be included,
* otherwise the default FW library configuration file must be included instead
*/
#ifdef __BUILD_WITH_EXAMPLE__
#include "lpc17xx_libcfg.h"
#else
#include "lpc17xx_libcfg_default.h"
#endif /* __BUILD_WITH_EXAMPLE__ */
#ifdef _GPIO
/* Private Functions ---------------------------------------------------------- */
static LPC_GPIO_TypeDef *GPIO_GetPointer(uint8_t portNum);
static GPIO_HalfWord_TypeDef *FIO_HalfWordGetPointer(uint8_t portNum);
static GPIO_Byte_TypeDef *FIO_ByteGetPointer(uint8_t portNum);
/*********************************************************************//**
* @brief Get pointer to GPIO peripheral due to GPIO port
* @param[in] portNum Port Number value, should be in range from 0 to 4.
* @return Pointer to GPIO peripheral
**********************************************************************/
static LPC_GPIO_TypeDef *GPIO_GetPointer(uint8_t portNum)
{
LPC_GPIO_TypeDef *pGPIO = NULL;
switch (portNum) {
case 0:
pGPIO = LPC_GPIO0;
break;
case 1:
pGPIO = LPC_GPIO1;
break;
case 2:
pGPIO = LPC_GPIO2;
break;
case 3:
pGPIO = LPC_GPIO3;
break;
case 4:
pGPIO = LPC_GPIO4;
break;
default:
break;
}
return pGPIO;
}
/*********************************************************************//**
* @brief Get pointer to FIO peripheral in halfword accessible style
* due to FIO port
* @param[in] portNum Port Number value, should be in range from 0 to 4.
* @return Pointer to FIO peripheral
**********************************************************************/
static GPIO_HalfWord_TypeDef *FIO_HalfWordGetPointer(uint8_t portNum)
{
GPIO_HalfWord_TypeDef *pFIO = NULL;
switch (portNum) {
case 0:
pFIO = GPIO0_HalfWord;
break;
case 1:
pFIO = GPIO1_HalfWord;
break;
case 2:
pFIO = GPIO2_HalfWord;
break;
case 3:
pFIO = GPIO3_HalfWord;
break;
case 4:
pFIO = GPIO4_HalfWord;
break;
default:
break;
}
return pFIO;
}
/*********************************************************************//**
* @brief Get pointer to FIO peripheral in byte accessible style
* due to FIO port
* @param[in] portNum Port Number value, should be in range from 0 to 4.
* @return Pointer to FIO peripheral
**********************************************************************/
static GPIO_Byte_TypeDef *FIO_ByteGetPointer(uint8_t portNum)
{
GPIO_Byte_TypeDef *pFIO = NULL;
switch (portNum) {
case 0:
pFIO = GPIO0_Byte;
break;
case 1:
pFIO = GPIO1_Byte;
break;
case 2:
pFIO = GPIO2_Byte;
break;
case 3:
pFIO = GPIO3_Byte;
break;
case 4:
pFIO = GPIO4_Byte;
break;
default:
break;
}
return pFIO;
}
/* End of Private Functions --------------------------------------------------- */
/* Public Functions ----------------------------------------------------------- */
/** @addtogroup GPIO_Public_Functions
* @{
*/
/* GPIO ------------------------------------------------------------------------------ */
/*********************************************************************//**
* @brief Set Direction for GPIO port.
* @param[in] portNum Port Number value, should be in range from 0 to 4
* @param[in] bitValue Value that contains all bits to set direction,
* in range from 0 to 0xFFFFFFFF.
* example: value 0x5 to set direction for bit 0 and bit 1.
* @param[in] dir Direction value, should be:
* - 0: Input.
* - 1: Output.
* @return None
*
* Note: All remaining bits that are not activated in bitValue (value '0')
* will not be effected by this function.
**********************************************************************/
void GPIO_SetDir(uint8_t portNum, uint32_t bitValue, uint8_t dir)
{
LPC_GPIO_TypeDef *pGPIO = GPIO_GetPointer(portNum);
if (pGPIO != NULL) {
// Enable Output
if (dir) {
pGPIO->FIODIR |= bitValue;
}
// Enable Input
else {
pGPIO->FIODIR &= ~bitValue;
}
}
}
/*********************************************************************//**
* @brief Set Value for bits that have output direction on GPIO port.
* @param[in] portNum Port number value, should be in range from 0 to 4
* @param[in] bitValue Value that contains all bits on GPIO to set,
* in range from 0 to 0xFFFFFFFF.
* example: value 0x5 to set bit 0 and bit 1.
* @return None
*
* Note:
* - For all bits that has been set as input direction, this function will
* not effect.
* - For all remaining bits that are not activated in bitValue (value '0')
* will not be effected by this function.
**********************************************************************/
void GPIO_SetValue(uint8_t portNum, uint32_t bitValue)
{
LPC_GPIO_TypeDef *pGPIO = GPIO_GetPointer(portNum);
if (pGPIO != NULL) {
pGPIO->FIOSET = bitValue;
}
}
/*********************************************************************//**
* @brief Clear Value for bits that have output direction on GPIO port.
* @param[in] portNum Port number value, should be in range from 0 to 4
* @param[in] bitValue Value that contains all bits on GPIO to clear,
* in range from 0 to 0xFFFFFFFF.
* example: value 0x5 to clear bit 0 and bit 1.
* @return None
*
* Note:
* - For all bits that has been set as input direction, this function will
* not effect.
* - For all remaining bits that are not activated in bitValue (value '0')
* will not be effected by this function.
**********************************************************************/
void GPIO_ClearValue(uint8_t portNum, uint32_t bitValue)
{
LPC_GPIO_TypeDef *pGPIO = GPIO_GetPointer(portNum);
if (pGPIO != NULL) {
pGPIO->FIOCLR = bitValue;
}
}
/*********************************************************************//**
* @brief Read Current state on port pin that have input direction of GPIO
* @param[in] portNum Port number to read value, in range from 0 to 4
* @return Current value of GPIO port.
*
* Note: Return value contain state of each port pin (bit) on that GPIO regardless
* its direction is input or output.
**********************************************************************/
uint32_t GPIO_ReadValue(uint8_t portNum)
{
LPC_GPIO_TypeDef *pGPIO = GPIO_GetPointer(portNum);
if (pGPIO != NULL) {
return pGPIO->FIOPIN;
}
return (0);
}
/*********************************************************************//**
* @brief Enable GPIO interrupt (just used for P0.0-P0.30, P2.0-P2.13)
* @param[in] portNum Port number to read value, should be: 0 or 2
* @param[in] bitValue Value that contains all bits on GPIO to enable,
* in range from 0 to 0xFFFFFFFF.
* @param[in] edgeState state of edge, should be:
* - 0: Rising edge
* - 1: Falling edge
* @return None
**********************************************************************/
void GPIO_IntCmd(uint8_t portNum, uint32_t bitValue, uint8_t edgeState)
{
if((portNum == 0)&&(edgeState == 0))
LPC_GPIOINT->IO0IntEnR = bitValue;
else if ((portNum == 2)&&(edgeState == 0))
LPC_GPIOINT->IO2IntEnR = bitValue;
else if ((portNum == 0)&&(edgeState == 1))
LPC_GPIOINT->IO0IntEnF = bitValue;
else if ((portNum == 2)&&(edgeState == 1))
LPC_GPIOINT->IO2IntEnF = bitValue;
else
//Error
while(1);
}
/*********************************************************************//**
* @brief Get GPIO Interrupt Status (just used for P0.0-P0.30, P2.0-P2.13)
* @param[in] portNum Port number to read value, should be: 0 or 2
* @param[in] pinNum Pin number, should be: 0..30(with port 0) and 0..13
* (with port 2)
* @param[in] edgeState state of edge, should be:
* - 0: Rising edge
* - 1: Falling edge
* @return Bool could be:
* - ENABLE: Interrupt has been generated due to a rising
* edge on P0.0
* - DISABLE: A rising edge has not been detected on P0.0
**********************************************************************/
FunctionalState GPIO_GetIntStatus(uint8_t portNum, uint32_t pinNum, uint8_t edgeState)
{
if((portNum == 0) && (edgeState == 0))//Rising Edge
return ((FunctionalState)(((LPC_GPIOINT->IO0IntStatR)>>pinNum)& 0x1));
else if ((portNum == 2) && (edgeState == 0))
return ((FunctionalState)(((LPC_GPIOINT->IO2IntStatR)>>pinNum)& 0x1));
else if ((portNum == 0) && (edgeState == 1))//Falling Edge
return ((FunctionalState)(((LPC_GPIOINT->IO0IntStatF)>>pinNum)& 0x1));
else if ((portNum == 2) && (edgeState == 1))
return ((FunctionalState)(((LPC_GPIOINT->IO2IntStatF)>>pinNum)& 0x1));
else
//Error
while(1);
}
/*********************************************************************//**
* @brief Clear GPIO interrupt (just used for P0.0-P0.30, P2.0-P2.13)
* @param[in] portNum Port number to read value, should be: 0 or 2
* @param[in] bitValue Value that contains all bits on GPIO to enable,
* in range from 0 to 0xFFFFFFFF.
* @return None
**********************************************************************/
void GPIO_ClearInt(uint8_t portNum, uint32_t bitValue)
{
if(portNum == 0)
LPC_GPIOINT->IO0IntClr = bitValue;
else if (portNum == 2)
LPC_GPIOINT->IO2IntClr = bitValue;
else
//Invalid portNum
while(1);
}
/* FIO word accessible ----------------------------------------------------------------- */
/* Stub function for FIO (word-accessible) style */
/**
* @brief The same with GPIO_SetDir()
*/
void FIO_SetDir(uint8_t portNum, uint32_t bitValue, uint8_t dir)
{
GPIO_SetDir(portNum, bitValue, dir);
}
/**
* @brief The same with GPIO_SetValue()
*/
void FIO_SetValue(uint8_t portNum, uint32_t bitValue)
{
GPIO_SetValue(portNum, bitValue);
}
/**
* @brief The same with GPIO_ClearValue()
*/
void FIO_ClearValue(uint8_t portNum, uint32_t bitValue)
{
GPIO_ClearValue(portNum, bitValue);
}
/**
* @brief The same with GPIO_ReadValue()
*/
uint32_t FIO_ReadValue(uint8_t portNum)
{
return (GPIO_ReadValue(portNum));
}
/**
* @brief The same with GPIO_IntCmd()
*/
void FIO_IntCmd(uint8_t portNum, uint32_t bitValue, uint8_t edgeState)
{
GPIO_IntCmd(portNum, bitValue, edgeState);
}
/**
* @brief The same with GPIO_GetIntStatus()
*/
FunctionalState FIO_GetIntStatus(uint8_t portNum, uint32_t pinNum, uint8_t edgeState)
{
return (GPIO_GetIntStatus(portNum, pinNum, edgeState));
}
/**
* @brief The same with GPIO_ClearInt()
*/
void FIO_ClearInt(uint8_t portNum, uint32_t bitValue)
{
GPIO_ClearInt(portNum, bitValue);
}
/*********************************************************************//**
* @brief Set mask value for bits in FIO port
* @param[in] portNum Port number, in range from 0 to 4
* @param[in] bitValue Value that contains all bits in to set,
* in range from 0 to 0xFFFFFFFF.
* @param[in] maskValue Mask value contains state value for each bit:
* - 0: not mask.
* - 1: mask.
* @return None
*
* Note:
* - All remaining bits that are not activated in bitValue (value '0')
* will not be effected by this function.
* - After executing this function, in mask register, value '0' on each bit
* enables an access to the corresponding physical pin via a read or write access,
* while value '1' on bit (masked) that corresponding pin will not be changed
* with write access and if read, will not be reflected in the updated pin.
**********************************************************************/
void FIO_SetMask(uint8_t portNum, uint32_t bitValue, uint8_t maskValue)
{
LPC_GPIO_TypeDef *pFIO = GPIO_GetPointer(portNum);
if(pFIO != NULL) {
// Mask
if (maskValue){
pFIO->FIOMASK |= bitValue;
}
// Un-mask
else {
pFIO->FIOMASK &= ~bitValue;
}
}
}
/* FIO halfword accessible ------------------------------------------------------------- */
/*********************************************************************//**
* @brief Set direction for FIO port in halfword accessible style
* @param[in] portNum Port number, in range from 0 to 4
* @param[in] halfwordNum HalfWord part number, should be 0 (lower) or 1(upper)
* @param[in] bitValue Value that contains all bits in to set direction,
* in range from 0 to 0xFFFF.
* @param[in] dir Direction value, should be:
* - 0: Input.
* - 1: Output.
* @return None
*
* Note: All remaining bits that are not activated in bitValue (value '0')
* will not be effected by this function.
**********************************************************************/
void FIO_HalfWordSetDir(uint8_t portNum, uint8_t halfwordNum, uint16_t bitValue, uint8_t dir)
{
GPIO_HalfWord_TypeDef *pFIO = FIO_HalfWordGetPointer(portNum);
if(pFIO != NULL) {
// Output direction
if (dir) {
// Upper
if(halfwordNum) {
pFIO->FIODIRU |= bitValue;
}
// lower
else {
pFIO->FIODIRL |= bitValue;
}
}
// Input direction
else {
// Upper
if(halfwordNum) {
pFIO->FIODIRU &= ~bitValue;
}
// lower
else {
pFIO->FIODIRL &= ~bitValue;
}
}
}
}
/*********************************************************************//**
* @brief Set mask value for bits in FIO port in halfword accessible style
* @param[in] portNum Port number, in range from 0 to 4
* @param[in] halfwordNum HalfWord part number, should be 0 (lower) or 1(upper)
* @param[in] bitValue Value that contains all bits in to set,
* in range from 0 to 0xFFFF.
* @param[in] maskValue Mask value contains state value for each bit:
* - 0: not mask.
* - 1: mask.
* @return None
*
* Note:
* - All remaining bits that are not activated in bitValue (value '0')
* will not be effected by this function.
* - After executing this function, in mask register, value '0' on each bit
* enables an access to the corresponding physical pin via a read or write access,
* while value '1' on bit (masked) that corresponding pin will not be changed
* with write access and if read, will not be reflected in the updated pin.
**********************************************************************/
void FIO_HalfWordSetMask(uint8_t portNum, uint8_t halfwordNum, uint16_t bitValue, uint8_t maskValue)
{
GPIO_HalfWord_TypeDef *pFIO = FIO_HalfWordGetPointer(portNum);
if(pFIO != NULL) {
// Mask
if (maskValue){
// Upper
if(halfwordNum) {
pFIO->FIOMASKU |= bitValue;
}
// lower
else {
pFIO->FIOMASKL |= bitValue;
}
}
// Un-mask
else {
// Upper
if(halfwordNum) {
pFIO->FIOMASKU &= ~bitValue;
}
// lower
else {
pFIO->FIOMASKL &= ~bitValue;
}
}
}
}
/*********************************************************************//**
* @brief Set bits for FIO port in halfword accessible style
* @param[in] portNum Port number, in range from 0 to 4
* @param[in] halfwordNum HalfWord part number, should be 0 (lower) or 1(upper)
* @param[in] bitValue Value that contains all bits in to set,
* in range from 0 to 0xFFFF.
* @return None
*
* Note:
* - For all bits that has been set as input direction, this function will
* not effect.
* - For all remaining bits that are not activated in bitValue (value '0')
* will not be effected by this function.
**********************************************************************/
void FIO_HalfWordSetValue(uint8_t portNum, uint8_t halfwordNum, uint16_t bitValue)
{
GPIO_HalfWord_TypeDef *pFIO = FIO_HalfWordGetPointer(portNum);
if(pFIO != NULL) {
// Upper
if(halfwordNum) {
pFIO->FIOSETU = bitValue;
}
// lower
else {
pFIO->FIOSETL = bitValue;
}
}
}
/*********************************************************************//**
* @brief Clear bits for FIO port in halfword accessible style
* @param[in] portNum Port number, in range from 0 to 4
* @param[in] halfwordNum HalfWord part number, should be 0 (lower) or 1(upper)
* @param[in] bitValue Value that contains all bits in to clear,
* in range from 0 to 0xFFFF.
* @return None
*
* Note:
* - For all bits that has been set as input direction, this function will
* not effect.
* - For all remaining bits that are not activated in bitValue (value '0')
* will not be effected by this function.
**********************************************************************/
void FIO_HalfWordClearValue(uint8_t portNum, uint8_t halfwordNum, uint16_t bitValue)
{
GPIO_HalfWord_TypeDef *pFIO = FIO_HalfWordGetPointer(portNum);
if(pFIO != NULL) {
// Upper
if(halfwordNum) {
pFIO->FIOCLRU = bitValue;
}
// lower
else {
pFIO->FIOCLRL = bitValue;
}
}
}
/*********************************************************************//**
* @brief Read Current state on port pin that have input direction of GPIO
* in halfword accessible style.
* @param[in] portNum Port number, in range from 0 to 4
* @param[in] halfwordNum HalfWord part number, should be 0 (lower) or 1(upper)
* @return Current value of FIO port pin of specified halfword.
* Note: Return value contain state of each port pin (bit) on that FIO regardless
* its direction is input or output.
**********************************************************************/
uint16_t FIO_HalfWordReadValue(uint8_t portNum, uint8_t halfwordNum)
{
GPIO_HalfWord_TypeDef *pFIO = FIO_HalfWordGetPointer(portNum);
if(pFIO != NULL) {
// Upper
if(halfwordNum) {
return (pFIO->FIOPINU);
}
// lower
else {
return (pFIO->FIOPINL);
}
}
return (0);
}
/* FIO Byte accessible ------------------------------------------------------------ */
/*********************************************************************//**
* @brief Set direction for FIO port in byte accessible style
* @param[in] portNum Port number, in range from 0 to 4
* @param[in] byteNum Byte part number, should be in range from 0 to 3
* @param[in] bitValue Value that contains all bits in to set direction,
* in range from 0 to 0xFF.
* @param[in] dir Direction value, should be:
* - 0: Input.
* - 1: Output.
* @return None
*
* Note: All remaining bits that are not activated in bitValue (value '0')
* will not be effected by this function.
**********************************************************************/
void FIO_ByteSetDir(uint8_t portNum, uint8_t byteNum, uint8_t bitValue, uint8_t dir)
{
GPIO_Byte_TypeDef *pFIO = FIO_ByteGetPointer(portNum);
if(pFIO != NULL) {
// Output direction
if (dir) {
if (byteNum <= 3) {
pFIO->FIODIR[byteNum] |= bitValue;
}
}
// Input direction
else {
if (byteNum <= 3) {
pFIO->FIODIR[byteNum] &= ~bitValue;
}
}
}
}
/*********************************************************************//**
* @brief Set mask value for bits in FIO port in byte accessible style
* @param[in] portNum Port number, in range from 0 to 4
* @param[in] byteNum Byte part number, should be in range from 0 to 3
* @param[in] bitValue Value that contains all bits in to set mask,
* in range from 0 to 0xFF.
* @param[in] maskValue Mask value contains state value for each bit:
* - 0: not mask.
* - 1: mask.
* @return None
*
* Note:
* - All remaining bits that are not activated in bitValue (value '0')
* will not be effected by this function.
* - After executing this function, in mask register, value '0' on each bit
* enables an access to the corresponding physical pin via a read or write access,
* while value '1' on bit (masked) that corresponding pin will not be changed
* with write access and if read, will not be reflected in the updated pin.
**********************************************************************/
void FIO_ByteSetMask(uint8_t portNum, uint8_t byteNum, uint8_t bitValue, uint8_t maskValue)
{
GPIO_Byte_TypeDef *pFIO = FIO_ByteGetPointer(portNum);
if(pFIO != NULL) {
// Mask
if (maskValue) {
if (byteNum <= 3) {
pFIO->FIOMASK[byteNum] |= bitValue;
}
}
// Un-mask
else {
if (byteNum <= 3) {
pFIO->FIOMASK[byteNum] &= ~bitValue;
}
}
}
}
/*********************************************************************//**
* @brief Set bits for FIO port in byte accessible style
* @param[in] portNum Port number, in range from 0 to 4
* @param[in] byteNum Byte part number, should be in range from 0 to 3
* @param[in] bitValue Value that contains all bits in to set,
* in range from 0 to 0xFF.
* @return None
*
* Note:
* - For all bits that has been set as input direction, this function will
* not effect.
* - For all remaining bits that are not activated in bitValue (value '0')
* will not be effected by this function.
**********************************************************************/
void FIO_ByteSetValue(uint8_t portNum, uint8_t byteNum, uint8_t bitValue)
{
GPIO_Byte_TypeDef *pFIO = FIO_ByteGetPointer(portNum);
if (pFIO != NULL) {
if (byteNum <= 3){
pFIO->FIOSET[byteNum] = bitValue;
}
}
}
/*********************************************************************//**
* @brief Clear bits for FIO port in byte accessible style
* @param[in] portNum Port number, in range from 0 to 4
* @param[in] byteNum Byte part number, should be in range from 0 to 3
* @param[in] bitValue Value that contains all bits in to clear,
* in range from 0 to 0xFF.
* @return None
*
* Note:
* - For all bits that has been set as input direction, this function will
* not effect.
* - For all remaining bits that are not activated in bitValue (value '0')
* will not be effected by this function.
**********************************************************************/
void FIO_ByteClearValue(uint8_t portNum, uint8_t byteNum, uint8_t bitValue)
{
GPIO_Byte_TypeDef *pFIO = FIO_ByteGetPointer(portNum);
if (pFIO != NULL) {
if (byteNum <= 3){
pFIO->FIOCLR[byteNum] = bitValue;
}
}
}
/*********************************************************************//**
* @brief Read Current state on port pin that have input direction of GPIO
* in byte accessible style.
* @param[in] portNum Port number, in range from 0 to 4
* @param[in] byteNum Byte part number, should be in range from 0 to 3
* @return Current value of FIO port pin of specified byte part.
* Note: Return value contain state of each port pin (bit) on that FIO regardless
* its direction is input or output.
**********************************************************************/
uint8_t FIO_ByteReadValue(uint8_t portNum, uint8_t byteNum)
{
GPIO_Byte_TypeDef *pFIO = FIO_ByteGetPointer(portNum);
if (pFIO != NULL) {
if (byteNum <= 3){
return (pFIO->FIOPIN[byteNum]);
}
}
return (0);
}
/**
* @}
*/
#endif /* _GPIO */
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */

File diff suppressed because it is too large Load diff

View file

@ -1,663 +0,0 @@
/**********************************************************************
* $Id$ lpc17xx_i2s.c 2010-09-23
*//**
* @file lpc17xx_i2s.c
* @brief Contains all functions support for I2S firmware
* library on LPC17xx
* @version 3.1
* @date 23. Sep. 2010
* @author NXP MCU SW Application Team
*
* Copyright(C) 2010, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
/* Peripheral group ----------------------------------------------------------- */
/** @addtogroup I2S
* @{
*/
/* Includes ------------------------------------------------------------------- */
#include "lpc17xx_i2s.h"
#include "lpc17xx_clkpwr.h"
/* If this source file built with example, the LPC17xx FW library configuration
* file in each example directory ("lpc17xx_libcfg.h") must be included,
* otherwise the default FW library configuration file must be included instead
*/
#ifdef __BUILD_WITH_EXAMPLE__
#include "lpc17xx_libcfg.h"
#else
#include "lpc17xx_libcfg_default.h"
#endif /* __BUILD_WITH_EXAMPLE__ */
#ifdef _I2S
/* Private Functions ---------------------------------------------------------- */
static uint8_t i2s_GetWordWidth(LPC_I2S_TypeDef *I2Sx, uint8_t TRMode);
static uint8_t i2s_GetChannel(LPC_I2S_TypeDef *I2Sx, uint8_t TRMode);
/********************************************************************//**
* @brief Get I2S wordwidth value
* @param[in] I2Sx I2S peripheral selected, should be: LPC_I2S
* @param[in] TRMode is the I2S mode, should be:
* - I2S_TX_MODE = 0: transmit mode
* - I2S_RX_MODE = 1: receive mode
* @return The wordwidth value, should be: 8,16 or 32
*********************************************************************/
static uint8_t i2s_GetWordWidth(LPC_I2S_TypeDef *I2Sx, uint8_t TRMode) {
uint8_t value;
CHECK_PARAM(PARAM_I2Sx(I2Sx));
CHECK_PARAM(PARAM_I2S_TRX(TRMode));
if (TRMode == I2S_TX_MODE) {
value = (I2Sx->I2SDAO) & 0x03; /* get wordwidth bit */
} else {
value = (I2Sx->I2SDAI) & 0x03; /* get wordwidth bit */
}
switch (value) {
case I2S_WORDWIDTH_8:
return 8;
case I2S_WORDWIDTH_16:
return 16;
default:
return 32;
}
}
/********************************************************************//**
* @brief Get I2S channel value
* @param[in] I2Sx I2S peripheral selected, should be: LPC_I2S
* @param[in] TRMode is the I2S mode, should be:
* - I2S_TX_MODE = 0: transmit mode
* - I2S_RX_MODE = 1: receive mode
* @return The channel value, should be: 1(mono) or 2(stereo)
*********************************************************************/
static uint8_t i2s_GetChannel(LPC_I2S_TypeDef *I2Sx, uint8_t TRMode) {
uint8_t value;
CHECK_PARAM(PARAM_I2Sx(I2Sx));
CHECK_PARAM(PARAM_I2S_TRX(TRMode));
if (TRMode == I2S_TX_MODE) {
value = ((I2Sx->I2SDAO) & 0x04)>>2; /* get bit[2] */
} else {
value = ((I2Sx->I2SDAI) & 0x04)>>2; /* get bit[2] */
}
if(value == I2S_MONO) return 1;
return 2;
}
/* End of Private Functions --------------------------------------------------- */
/* Public Functions ----------------------------------------------------------- */
/** @addtogroup I2S_Public_Functions
* @{
*/
/********************************************************************//**
* @brief Initialize I2S
* - Turn on power and clock
* @param[in] I2Sx I2S peripheral selected, should be: LPC_I2S
* @return none
*********************************************************************/
void I2S_Init(LPC_I2S_TypeDef *I2Sx) {
CHECK_PARAM(PARAM_I2Sx(I2Sx));
// Turn on power and clock
CLKPWR_ConfigPPWR(CLKPWR_PCONP_PCI2S, ENABLE);
LPC_I2S->I2SDAI = LPC_I2S->I2SDAO = 0x00;
}
/********************************************************************//**
* @brief Configuration I2S, setting:
* - master/slave mode
* - wordwidth value
* - channel mode
* @param[in] I2Sx I2S peripheral selected, should be: LPC_I2S
* @param[in] TRMode transmit/receive mode, should be:
* - I2S_TX_MODE = 0: transmit mode
* - I2S_RX_MODE = 1: receive mode
* @param[in] ConfigStruct pointer to I2S_CFG_Type structure
* which will be initialized.
* @return none
*********************************************************************/
void I2S_Config(LPC_I2S_TypeDef *I2Sx, uint8_t TRMode, I2S_CFG_Type* ConfigStruct)
{
uint32_t bps, config;
CHECK_PARAM(PARAM_I2Sx(I2Sx));
CHECK_PARAM(PARAM_I2S_WORDWIDTH(ConfigStruct->wordwidth));
CHECK_PARAM(PARAM_I2S_CHANNEL(ConfigStruct->mono));
CHECK_PARAM(PARAM_I2S_STOP(ConfigStruct->stop));
CHECK_PARAM(PARAM_I2S_RESET(ConfigStruct->reset));
CHECK_PARAM(PARAM_I2S_WS_SEL(ConfigStruct->ws_sel));
CHECK_PARAM(PARAM_I2S_MUTE(ConfigStruct->mute));
/* Setup clock */
bps = (ConfigStruct->wordwidth +1)*8;
/* Calculate audio config */
config = (bps - 1)<<6 | (ConfigStruct->ws_sel)<<5 | (ConfigStruct->reset)<<4 |
(ConfigStruct->stop)<<3 | (ConfigStruct->mono)<<2 | (ConfigStruct->wordwidth);
if(TRMode == I2S_RX_MODE){
LPC_I2S->I2SDAI = config;
}else{
LPC_I2S->I2SDAO = config;
}
}
/********************************************************************//**
* @brief DeInitial both I2S transmit or receive
* @param[in] I2Sx I2S peripheral selected, should be: LPC_I2S
* @return none
*********************************************************************/
void I2S_DeInit(LPC_I2S_TypeDef *I2Sx) {
CHECK_PARAM(PARAM_I2Sx(I2Sx));
// Turn off power and clock
CLKPWR_ConfigPPWR(CLKPWR_PCONP_PCI2S, DISABLE);
}
/********************************************************************//**
* @brief Get I2S Buffer Level
* @param[in] I2Sx I2S peripheral selected, should be: LPC_I2S
* @param[in] TRMode Transmit/receive mode, should be:
* - I2S_TX_MODE = 0: transmit mode
* - I2S_RX_MODE = 1: receive mode
* @return current level of Transmit/Receive Buffer
*********************************************************************/
uint8_t I2S_GetLevel(LPC_I2S_TypeDef *I2Sx, uint8_t TRMode)
{
CHECK_PARAM(PARAM_I2Sx(I2Sx));
CHECK_PARAM(PARAM_I2S_TRX(TRMode));
if(TRMode == I2S_TX_MODE)
{
return ((I2Sx->I2SSTATE >> 16) & 0xFF);
}
else
{
return ((I2Sx->I2SSTATE >> 8) & 0xFF);
}
}
/********************************************************************//**
* @brief I2S Start: clear all STOP,RESET and MUTE bit, ready to operate
* @param[in] I2Sx I2S peripheral selected, should be: LPC_I2S
* @return none
*********************************************************************/
void I2S_Start(LPC_I2S_TypeDef *I2Sx)
{
//Clear STOP,RESET and MUTE bit
I2Sx->I2SDAO &= ~I2S_DAI_RESET;
I2Sx->I2SDAI &= ~I2S_DAI_RESET;
I2Sx->I2SDAO &= ~I2S_DAI_STOP;
I2Sx->I2SDAI &= ~I2S_DAI_STOP;
I2Sx->I2SDAO &= ~I2S_DAI_MUTE;
}
/********************************************************************//**
* @brief I2S Send data
* @param[in] I2Sx I2S peripheral selected, should be: LPC_I2S
* @param[in] BufferData pointer to uint32_t is the data will be send
* @return none
*********************************************************************/
void I2S_Send(LPC_I2S_TypeDef *I2Sx, uint32_t BufferData) {
CHECK_PARAM(PARAM_I2Sx(I2Sx));
I2Sx->I2STXFIFO = BufferData;
}
/********************************************************************//**
* @brief I2S Receive Data
* @param[in] I2Sx pointer to LPC_I2S_TypeDef
* @return received value
*********************************************************************/
uint32_t I2S_Receive(LPC_I2S_TypeDef* I2Sx) {
CHECK_PARAM(PARAM_I2Sx(I2Sx));
return (I2Sx->I2SRXFIFO);
}
/********************************************************************//**
* @brief I2S Pause
* @param[in] I2Sx I2S peripheral selected, should be: LPC_I2S
* @param[in] TRMode is transmit/receive mode, should be:
* - I2S_TX_MODE = 0: transmit mode
* - I2S_RX_MODE = 1: receive mode
* @return none
*********************************************************************/
void I2S_Pause(LPC_I2S_TypeDef *I2Sx, uint8_t TRMode) {
CHECK_PARAM(PARAM_I2Sx(I2Sx));
CHECK_PARAM(PARAM_I2S_TRX(TRMode));
if (TRMode == I2S_TX_MODE) //Transmit mode
{
I2Sx->I2SDAO |= I2S_DAO_STOP;
} else //Receive mode
{
I2Sx->I2SDAI |= I2S_DAI_STOP;
}
}
/********************************************************************//**
* @brief I2S Mute
* @param[in] I2Sx I2S peripheral selected, should be: LPC_I2S
* @param[in] TRMode is transmit/receive mode, should be:
* - I2S_TX_MODE = 0: transmit mode
* - I2S_RX_MODE = 1: receive mode
* @return none
*********************************************************************/
void I2S_Mute(LPC_I2S_TypeDef *I2Sx, uint8_t TRMode) {
CHECK_PARAM(PARAM_I2Sx(I2Sx));
CHECK_PARAM(PARAM_I2S_TRX(TRMode));
if (TRMode == I2S_TX_MODE) //Transmit mode
{
I2Sx->I2SDAO |= I2S_DAO_MUTE;
} else //Receive mode
{
I2Sx->I2SDAI |= I2S_DAI_MUTE;
}
}
/********************************************************************//**
* @brief I2S Stop
* @param[in] I2Sx I2S peripheral selected, should be: LPC_I2S
* @param[in] TRMode is transmit/receive mode, should be:
* - I2S_TX_MODE = 0: transmit mode
* - I2S_RX_MODE = 1: receive mode
* @return none
*********************************************************************/
void I2S_Stop(LPC_I2S_TypeDef *I2Sx, uint8_t TRMode) {
CHECK_PARAM(PARAM_I2Sx(I2Sx));
CHECK_PARAM(PARAM_I2S_TRX(TRMode));
if (TRMode == I2S_TX_MODE) //Transmit mode
{
I2Sx->I2SDAO &= ~I2S_DAO_MUTE;
I2Sx->I2SDAO |= I2S_DAO_STOP;
I2Sx->I2SDAO |= I2S_DAO_RESET;
} else //Receive mode
{
I2Sx->I2SDAI |= I2S_DAI_STOP;
I2Sx->I2SDAI |= I2S_DAI_RESET;
}
}
/********************************************************************//**
* @brief Set frequency for I2S
* @param[in] I2Sx I2S peripheral selected, should be: LPC_I2S
* @param[in] Freq is the frequency for I2S will be set. It can range
* from 16-96 kHz(16, 22.05, 32, 44.1, 48, 96kHz)
* @param[in] TRMode is transmit/receive mode, should be:
* - I2S_TX_MODE = 0: transmit mode
* - I2S_RX_MODE = 1: receive mode
* @return Status: ERROR or SUCCESS
*********************************************************************/
Status I2S_FreqConfig(LPC_I2S_TypeDef *I2Sx, uint32_t Freq, uint8_t TRMode) {
uint32_t i2s_clk;
uint8_t channel, wordwidth;
uint32_t x, y;
uint64_t divider;
uint16_t dif;
uint16_t x_divide, y_divide;
uint16_t err, ErrorOptimal = 0xFFFF;
uint32_t N;
CHECK_PARAM(PARAM_I2Sx(I2Sx));
CHECK_PARAM(PRAM_I2S_FREQ(Freq));
CHECK_PARAM(PARAM_I2S_TRX(TRMode));
//Get the frequency of PCLK_I2S
i2s_clk = CLKPWR_GetPCLK(CLKPWR_PCLKSEL_I2S);
if(TRMode == I2S_TX_MODE)
{
channel = i2s_GetChannel(I2Sx,I2S_TX_MODE);
wordwidth = i2s_GetWordWidth(I2Sx,I2S_TX_MODE);
}
else
{
channel = i2s_GetChannel(I2Sx,I2S_RX_MODE);
wordwidth = i2s_GetWordWidth(I2Sx,I2S_RX_MODE);
}
/* Calculate X and Y divider
* The MCLK rate for the I2S transmitter is determined by the value
* in the I2STXRATE/I2SRXRATE register. The required I2STXRATE/I2SRXRATE
* setting depends on the desired audio sample rate desired, the format
* (stereo/mono) used, and the data size.
* The formula is:
* I2S_MCLK = PCLK_I2S * (X/Y) / 2
* In that, Y must be greater than or equal to X. X should divides evenly
* into Y.
* We have:
* I2S_MCLK = Freq * channel*wordwidth * (I2STXBITRATE+1);
* So: (X/Y) = (Freq * channel*wordwidth * (I2STXBITRATE+1))*2/PCLK_I2S
* We use a loop function to chose the most suitable X,Y value
*/
/* divider is a fixed point number with 16 fractional bits */
divider = (((uint64_t)Freq *channel*wordwidth * 2)<<16) / i2s_clk;
/* find N that make x/y <= 1 -> divider <= 2^16 */
for(N=64;N>0;N--){
if((divider*N) < (1<<16)) break;
}
if(N == 0) return ERROR;
divider *= N;
for (y = 255; y > 0; y--) {
x = y * divider;
if(x & (0xFF000000)) continue;
dif = x & 0xFFFF;
if(dif>0x8000) err = 0x10000-dif;
else err = dif;
if (err == 0)
{
y_divide = y;
break;
}
else if (err < ErrorOptimal)
{
ErrorOptimal = err;
y_divide = y;
}
}
x_divide = ((uint64_t)y_divide * Freq *(channel*wordwidth)* N * 2)/i2s_clk;
if(x_divide >= 256) x_divide = 0xFF;
if(x_divide == 0) x_divide = 1;
if (TRMode == I2S_TX_MODE)// Transmitter
{
I2Sx->I2STXBITRATE = N-1;
I2Sx->I2STXRATE = y_divide | (x_divide << 8);
} else //Receiver
{
I2Sx->I2SRXBITRATE = N-1;
I2Sx->I2STXRATE = y_divide | (x_divide << 8);
}
return SUCCESS;
}
/********************************************************************//**
* @brief I2S set bitrate
* @param[in] I2Sx I2S peripheral selected, should be: LPC_I2S
* @param[in] bitrate value will be set
* bitrate value should be in range: 0 .. 63
* @param[in] TRMode is transmit/receive mode, should be:
* - I2S_TX_MODE = 0: transmit mode
* - I2S_RX_MODE = 1: receive mode
* @return none
*********************************************************************/
void I2S_SetBitRate(LPC_I2S_TypeDef *I2Sx, uint8_t bitrate, uint8_t TRMode)
{
CHECK_PARAM(PARAM_I2Sx(I2Sx));
CHECK_PARAM(PARAM_I2S_BITRATE(bitrate));
CHECK_PARAM(PARAM_I2S_TRX(TRMode));
if(TRMode == I2S_TX_MODE)
{
I2Sx->I2STXBITRATE = bitrate;
}
else
{
I2Sx->I2SRXBITRATE = bitrate;
}
}
/********************************************************************//**
* @brief Configuration operating mode for I2S
* @param[in] I2Sx I2S peripheral selected, should be: LPC_I2S
* @param[in] ModeConfig pointer to I2S_MODEConf_Type will be used to
* configure
* @param[in] TRMode is transmit/receive mode, should be:
* - I2S_TX_MODE = 0: transmit mode
* - I2S_RX_MODE = 1: receive mode
* @return none
*********************************************************************/
void I2S_ModeConfig(LPC_I2S_TypeDef *I2Sx, I2S_MODEConf_Type* ModeConfig,
uint8_t TRMode)
{
CHECK_PARAM(PARAM_I2Sx(I2Sx));
CHECK_PARAM(PARAM_I2S_CLKSEL(ModeConfig->clksel));
CHECK_PARAM(PARAM_I2S_4PIN(ModeConfig->fpin));
CHECK_PARAM(PARAM_I2S_MCLK(ModeConfig->mcena));
CHECK_PARAM(PARAM_I2S_TRX(TRMode));
if (TRMode == I2S_TX_MODE) {
I2Sx->I2STXMODE &= ~0x0F; //clear bit 3:0 in I2STXMODE register
if (ModeConfig->clksel == I2S_CLKSEL_MCLK) {
I2Sx->I2STXMODE |= 0x02;
}
if (ModeConfig->fpin == I2S_4PIN_ENABLE) {
I2Sx->I2STXMODE |= (1 << 2);
}
if (ModeConfig->mcena == I2S_MCLK_ENABLE) {
I2Sx->I2STXMODE |= (1 << 3);
}
} else {
I2Sx->I2SRXMODE &= ~0x0F; //clear bit 3:0 in I2STXMODE register
if (ModeConfig->clksel == I2S_CLKSEL_MCLK) {
I2Sx->I2SRXMODE |= 0x02;
}
if (ModeConfig->fpin == I2S_4PIN_ENABLE) {
I2Sx->I2SRXMODE |= (1 << 2);
}
if (ModeConfig->mcena == I2S_MCLK_ENABLE) {
I2Sx->I2SRXMODE |= (1 << 3);
}
}
}
/********************************************************************//**
* @brief Configure DMA operation for I2S
* @param[in] I2Sx I2S peripheral selected, should be: LPC_I2S
* @param[in] DMAConfig pointer to I2S_DMAConf_Type will be used to configure
* @param[in] TRMode is transmit/receive mode, should be:
* - I2S_TX_MODE = 0: transmit mode
* - I2S_RX_MODE = 1: receive mode
* @return none
*********************************************************************/
void I2S_DMAConfig(LPC_I2S_TypeDef *I2Sx, I2S_DMAConf_Type* DMAConfig,
uint8_t TRMode)
{
CHECK_PARAM(PARAM_I2Sx(I2Sx));
CHECK_PARAM(PARAM_I2S_DMA(DMAConfig->DMAIndex));
CHECK_PARAM(PARAM_I2S_DMA_DEPTH(DMAConfig->depth));
CHECK_PARAM(PARAM_I2S_TRX(TRMode));
if (TRMode == I2S_RX_MODE) {
if (DMAConfig->DMAIndex == I2S_DMA_1) {
LPC_I2S->I2SDMA1 = (DMAConfig->depth) << 8;
} else {
LPC_I2S->I2SDMA2 = (DMAConfig->depth) << 8;
}
} else {
if (DMAConfig->DMAIndex == I2S_DMA_1) {
LPC_I2S->I2SDMA1 = (DMAConfig->depth) << 16;
} else {
LPC_I2S->I2SDMA2 = (DMAConfig->depth) << 16;
}
}
}
/********************************************************************//**
* @brief Enable/Disable DMA operation for I2S
* @param[in] I2Sx: I2S peripheral selected, should be: LPC_I2S
* @param[in] DMAIndex chose what DMA is used, should be:
* - I2S_DMA_1 = 0: DMA1
* - I2S_DMA_2 = 1: DMA2
* @param[in] TRMode is transmit/receive mode, should be:
* - I2S_TX_MODE = 0: transmit mode
* - I2S_RX_MODE = 1: receive mode
* @param[in] NewState is new state of DMA operation, should be:
* - ENABLE
* - DISABLE
* @return none
*********************************************************************/
void I2S_DMACmd(LPC_I2S_TypeDef *I2Sx, uint8_t DMAIndex, uint8_t TRMode,
FunctionalState NewState)
{
CHECK_PARAM(PARAM_I2Sx(I2Sx));
CHECK_PARAM(PARAM_FUNCTIONALSTATE(NewState));
CHECK_PARAM(PARAM_I2S_DMA(DMAIndex));
CHECK_PARAM(PARAM_I2S_TRX(TRMode));
if (TRMode == I2S_RX_MODE) {
if (DMAIndex == I2S_DMA_1) {
if (NewState == ENABLE)
I2Sx->I2SDMA1 |= 0x01;
else
I2Sx->I2SDMA1 &= ~0x01;
} else {
if (NewState == ENABLE)
I2Sx->I2SDMA2 |= 0x01;
else
I2Sx->I2SDMA2 &= ~0x01;
}
} else {
if (DMAIndex == I2S_DMA_1) {
if (NewState == ENABLE)
I2Sx->I2SDMA1 |= 0x02;
else
I2Sx->I2SDMA1 &= ~0x02;
} else {
if (NewState == ENABLE)
I2Sx->I2SDMA2 |= 0x02;
else
I2Sx->I2SDMA2 &= ~0x02;
}
}
}
/********************************************************************//**
* @brief Configure IRQ for I2S
* @param[in] I2Sx I2S peripheral selected, should be: LPC_I2S
* @param[in] TRMode is transmit/receive mode, should be:
* - I2S_TX_MODE = 0: transmit mode
* - I2S_RX_MODE = 1: receive mode
* @param[in] level is the FIFO level that triggers IRQ request
* @return none
*********************************************************************/
void I2S_IRQConfig(LPC_I2S_TypeDef *I2Sx, uint8_t TRMode, uint8_t level) {
CHECK_PARAM(PARAM_I2Sx(I2Sx));
CHECK_PARAM(PARAM_I2S_TRX(TRMode));
CHECK_PARAM(PARAM_I2S_IRQ_LEVEL(level));
if (TRMode == I2S_RX_MODE) {
I2Sx->I2SIRQ |= (level << 8);
} else {
I2Sx->I2SIRQ |= (level << 16);
}
}
/********************************************************************//**
* @brief Enable/Disable IRQ for I2S
* @param[in] I2Sx I2S peripheral selected, should be: LPC_I2S
* @param[in] TRMode is transmit/receive mode, should be:
* - I2S_TX_MODE = 0: transmit mode
* - I2S_RX_MODE = 1: receive mode
* @param[in] NewState is new state of DMA operation, should be:
* - ENABLE
* - DISABLE
* @return none
*********************************************************************/
void I2S_IRQCmd(LPC_I2S_TypeDef *I2Sx, uint8_t TRMode, FunctionalState NewState) {
CHECK_PARAM(PARAM_I2Sx(I2Sx));
CHECK_PARAM(PARAM_FUNCTIONALSTATE(NewState));
if (TRMode == I2S_RX_MODE) {
if (NewState == ENABLE)
I2Sx->I2SIRQ |= 0x01;
else
I2Sx->I2SIRQ &= ~0x01;
//Enable DMA
} else {
if (NewState == ENABLE)
I2Sx->I2SIRQ |= 0x02;
else
I2Sx->I2SIRQ &= ~0x02;
}
}
/********************************************************************//**
* @brief Get I2S interrupt status
* @param[in] I2Sx I2S peripheral selected, should be: LPC_I2S
* @param[in] TRMode is transmit/receive mode, should be:
* - I2S_TX_MODE = 0: transmit mode
* - I2S_RX_MODE = 1: receive mode
* @return FunctionState should be:
* - ENABLE: interrupt is enable
* - DISABLE: interrupt is disable
*********************************************************************/
FunctionalState I2S_GetIRQStatus(LPC_I2S_TypeDef *I2Sx,uint8_t TRMode)
{
CHECK_PARAM(PARAM_I2Sx(I2Sx));
if(TRMode == I2S_TX_MODE)
return ((FunctionalState)((I2Sx->I2SIRQ >> 1)&0x01));
else
return ((FunctionalState)((I2Sx->I2SIRQ)&0x01));
}
/********************************************************************//**
* @brief Get I2S interrupt depth
* @param[in] I2Sx I2S peripheral selected, should be: LPC_I2S
* @param[in] TRMode is transmit/receive mode, should be:
* - I2S_TX_MODE = 0: transmit mode
* - I2S_RX_MODE = 1: receive mode
* @return depth of FIFO level on which to create an irq request
*********************************************************************/
uint8_t I2S_GetIRQDepth(LPC_I2S_TypeDef *I2Sx,uint8_t TRMode)
{
CHECK_PARAM(PARAM_I2Sx(I2Sx));
if(TRMode == I2S_TX_MODE)
return (((I2Sx->I2SIRQ)>>16)&0xFF);
else
return (((I2Sx->I2SIRQ)>>8)&0xFF);
}
/**
* @}
*/
#endif /* _I2S */
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */

View file

@ -1,308 +0,0 @@
/**********************************************************************
* $Id$ lpc17xx_iap.c 2012-04-18
*//**
* @file lpc17xx_iap.c
* @brief Contains all functions support for IAP on lpc17xx
* @version 1.0
* @date 18. April. 2012
* @author NXP MCU SW Application Team
*
* Copyright(C) 2011, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
#include "lpc17xx_iap.h"
#include "system_LPC17xx.h"
// IAP Command
typedef void (*IAP)(uint32_t *cmd,uint32_t *result);
IAP iap_entry = (IAP) IAP_LOCATION;
#define IAP_Call iap_entry
/** @addtogroup IAP_Public_Functions IAP Public Function
* @ingroup IAP
* @{
*/
/*********************************************************************//**
* @brief Get Sector Number
*
* @param[in] adr Sector Address
*
* @return Sector Number.
*
**********************************************************************/
uint32_t GetSecNum (uint32_t adr)
{
uint32_t n;
n = adr >> 12; // 4kB Sector
if (n >= 0x10) {
n = 0x0E + (n >> 3); // 32kB Sector
}
return (n); // Sector Number
}
/*********************************************************************//**
* @brief Prepare sector(s) for write operation
*
* @param[in] start_sec The number of start sector
* @param[in] end_sec The number of end sector
*
* @return CMD_SUCCESS/BUSY/INVALID_SECTOR.
*
**********************************************************************/
IAP_STATUS_CODE PrepareSector(uint32_t start_sec, uint32_t end_sec)
{
IAP_COMMAND_Type command;
command.cmd = IAP_PREPARE; // Prepare Sector for Write
command.param[0] = start_sec; // Start Sector
command.param[1] = end_sec; // End Sector
IAP_Call (&command.cmd, &command.status); // Call IAP Command
return (IAP_STATUS_CODE)command.status;
}
/*********************************************************************//**
* @brief Copy RAM to Flash
*
* @param[in] dest destination buffer (in Flash memory).
* @param[in] source source buffer (in RAM).
* @param[in] size the write size.
*
* @return CMD_SUCCESS.
* SRC_ADDR_ERROR/DST_ADDR_ERROR
* SRC_ADDR_NOT_MAPPED/DST_ADDR_NOT_MAPPED
* COUNT_ERROR/SECTOR_NOT_PREPARED_FOR_WRITE_OPERATION
* BUSY
*
**********************************************************************/
IAP_STATUS_CODE CopyRAM2Flash(uint8_t * dest, uint8_t* source, IAP_WRITE_SIZE size)
{
uint32_t sec;
IAP_STATUS_CODE status;
IAP_COMMAND_Type command;
// Prepare sectors
sec = GetSecNum((uint32_t)dest);
status = PrepareSector(sec, sec);
if(status != CMD_SUCCESS)
return status;
// write
command.cmd = IAP_COPY_RAM2FLASH; // Copy RAM to Flash
command.param[0] = (uint32_t)dest; // Destination Flash Address
command.param[1] = (uint32_t)source; // Source RAM Address
command.param[2] = size; // Number of bytes
command.param[3] = SystemCoreClock / 1000; // CCLK in kHz
IAP_Call (&command.cmd, &command.status); // Call IAP Command
return (IAP_STATUS_CODE)command.status; // Finished without Errors
}
/*********************************************************************//**
* @brief Erase sector(s)
*
* @param[in] start_sec The number of start sector
* @param[in] end_sec The number of end sector
*
* @return CMD_SUCCESS.
* INVALID_SECTOR
* SECTOR_NOT_PREPARED_FOR_WRITE_OPERATION
* BUSY
*
**********************************************************************/
IAP_STATUS_CODE EraseSector(uint32_t start_sec, uint32_t end_sec)
{
IAP_COMMAND_Type command;
IAP_STATUS_CODE status;
// Prepare sectors
status = PrepareSector(start_sec, end_sec);
if(status != CMD_SUCCESS)
return status;
// Erase sectors
command.cmd = IAP_ERASE; // Prepare Sector for Write
command.param[0] = start_sec; // Start Sector
command.param[1] = end_sec; // End Sector
command.param[2] = SystemCoreClock / 1000; // CCLK in kHz
IAP_Call (&command.cmd, &command.status); // Call IAP Command
return (IAP_STATUS_CODE)command.status;
}
/*********************************************************************//**
* @brief Blank check sector(s)
*
* @param[in] start_sec The number of start sector
* @param[in] end_sec The number of end sector
* @param[out] first_nblank_loc The offset of the first non-blank word
* @param[out] first_nblank_val The value of the first non-blank word
*
* @return CMD_SUCCESS.
* INVALID_SECTOR
* SECTOR_NOT_BLANK
* BUSY
*
**********************************************************************/
IAP_STATUS_CODE BlankCheckSector(uint32_t start_sec, uint32_t end_sec,
uint32_t *first_nblank_loc,
uint32_t *first_nblank_val)
{
IAP_COMMAND_Type command;
command.cmd = IAP_BLANK_CHECK; // Prepare Sector for Write
command.param[0] = start_sec; // Start Sector
command.param[1] = end_sec; // End Sector
IAP_Call (&command.cmd, &command.status); // Call IAP Command
if(command.status == SECTOR_NOT_BLANK)
{
// Update out value
if(first_nblank_loc != NULL)
*first_nblank_loc = command.result[0];
if(first_nblank_val != NULL)
*first_nblank_val = command.result[1];
}
return (IAP_STATUS_CODE)command.status;
}
/*********************************************************************//**
* @brief Read part identification number
*
* @param[out] partID Part ID
*
* @return CMD_SUCCESS
*
**********************************************************************/
IAP_STATUS_CODE ReadPartID(uint32_t *partID)
{
IAP_COMMAND_Type command;
command.cmd = IAP_READ_PART_ID;
IAP_Call (&command.cmd, &command.status); // Call IAP Command
if(command.status == CMD_SUCCESS)
{
if(partID != NULL)
*partID = command.result[0];
}
return (IAP_STATUS_CODE)command.status;
}
/*********************************************************************//**
* @brief Read boot code version. The version is interpreted as <major>.<minor>.
*
* @param[out] major The major
* @param[out] minor The minor
*
* @return CMD_SUCCESS
*
**********************************************************************/
IAP_STATUS_CODE ReadBootCodeVer(uint8_t *major, uint8_t* minor)
{
IAP_COMMAND_Type command;
command.cmd = IAP_READ_BOOT_VER;
IAP_Call (&command.cmd, &command.status); // Call IAP Command
if(command.status == CMD_SUCCESS)
{
if(major != NULL)
*major = (command.result[0] >> 8) & 0xFF;
if(minor != NULL)
*minor = (command.result[0]) & 0xFF;
}
return (IAP_STATUS_CODE)command.status;
}
/*********************************************************************//**
* @brief Read Device serial number.
*
* @param[out] uid Serial number.
*
* @return CMD_SUCCESS
*
**********************************************************************/
IAP_STATUS_CODE ReadDeviceSerialNum(uint32_t *uid)
{
IAP_COMMAND_Type command;
command.cmd = IAP_READ_SERIAL_NUMBER;
IAP_Call (&command.cmd, &command.status); // Call IAP Command
if(command.status == CMD_SUCCESS)
{
if(uid != NULL)
{
uint32_t i = 0;
for(i = 0; i < 4; i++)
uid[i] = command.result[i];
}
}
return (IAP_STATUS_CODE)command.status;
}
/*********************************************************************//**
* @brief compare the memory contents at two locations.
*
* @param[in] addr1 The address of the 1st buffer (in RAM/Flash).
* @param[in] addr2 The address of the 2nd buffer (in RAM/Flash).
* @param[in] size Number of bytes to be compared; should be a multiple of 4.
*
* @return CMD_SUCCESS
* COMPARE_ERROR
* COUNT_ERROR (Byte count is not a multiple of 4)
* ADDR_ERROR
* ADDR_NOT_MAPPED
*
**********************************************************************/
IAP_STATUS_CODE Compare(uint8_t *addr1, uint8_t *addr2, uint32_t size)
{
IAP_COMMAND_Type command;
command.cmd = IAP_COMPARE;
command.param[0] = (uint32_t)addr1;
command.param[1] = (uint32_t)addr2;
command.param[2] = size;
IAP_Call (&command.cmd, &command.status); // Call IAP Command
return (IAP_STATUS_CODE)command.status;
}
/*********************************************************************//**
* @brief Re-invoke ISP.
*
* @param[in] None.
*
* @return None.
*
**********************************************************************/
void InvokeISP(void)
{
IAP_COMMAND_Type command;
command.cmd = IAP_REINVOKE_ISP;
IAP_Call (&command.cmd, &command.status); // Call IAP Command
}
/**
* @}
*/

View file

@ -1,76 +0,0 @@
/**********************************************************************
* $Id$ lpc17xx_libcfg_default.c 2010-05-21
*//**
* @file lpc17xx_libcfg_default.c
* @brief Library configuration source file (default), used to build
* library without examples
* @version 2.0
* @date 21. May. 2010
* @author NXP MCU SW Application Team
*
* Copyright(C) 2010, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
/* Library group ----------------------------------------------------------- */
/** @addtogroup LIBCFG_DEFAULT
* @{
*/
/* Includes ------------------------------------------------------------------- */
#include "lpc17xx_libcfg_default.h"
/* Public Functions ----------------------------------------------------------- */
/** @addtogroup LIBCFG_DEFAULT_Public_Functions
* @{
*/
#ifndef __BUILD_WITH_EXAMPLE__
#ifdef DEBUG
/*******************************************************************************
* @brief Reports the name of the source file and the source line number
* where the CHECK_PARAM error has occurred.
* @param[in] file Pointer to the source file name
* @param[in] line assert_param error line source number
* @return None
*******************************************************************************/
void check_failed(uint8_t *file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while(1);
}
#endif /* DEBUG */
#endif /* __BUILD_WITH_EXAMPLE__ */
/**
* @}
*/
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */

View file

@ -1,509 +0,0 @@
/**********************************************************************
* $Id$ lpc17xx_mcpwm.c 2010-05-21
*//**
* @file lpc17xx_mcpwm.c
* @brief Contains all functions support for Motor Control PWM firmware
* library on LPC17xx
* @version 2.0
* @date 21. May. 2010
* @author NXP MCU SW Application Team
*
* Copyright(C) 2010, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
/* Peripheral group ----------------------------------------------------------- */
/** @addtogroup MCPWM
* @{
*/
/* Includes ------------------------------------------------------------------- */
#include "lpc17xx_mcpwm.h"
#include "lpc17xx_clkpwr.h"
/* If this source file built with example, the LPC17xx FW library configuration
* file in each example directory ("lpc17xx_libcfg.h") must be included,
* otherwise the default FW library configuration file must be included instead
*/
#ifdef __BUILD_WITH_EXAMPLE__
#include "lpc17xx_libcfg.h"
#else
#include "lpc17xx_libcfg_default.h"
#endif /* __BUILD_WITH_EXAMPLE__ */
#ifdef _MCPWM
/* Public Functions ----------------------------------------------------------- */
/** @addtogroup MCPWM_Public_Functions
* @{
*/
/*********************************************************************//**
* @brief Initializes the MCPWM peripheral
* @param[in] MCPWMx Motor Control PWM peripheral selected,
* Should be: LPC_MCPWM
* @return None
**********************************************************************/
void MCPWM_Init(LPC_MCPWM_TypeDef *MCPWMx)
{
/* Turn On MCPWM PCLK */
CLKPWR_ConfigPPWR (CLKPWR_PCONP_PCMC, ENABLE);
/* As default, peripheral clock for MCPWM module
* is set to FCCLK / 2 */
// CLKPWR_SetPCLKDiv(CLKPWR_PCLKSEL_MC, CLKPWR_PCLKSEL_CCLK_DIV_2);
MCPWMx->MCCAP_CLR = MCPWM_CAPCLR_CAP(0) | MCPWM_CAPCLR_CAP(1) | MCPWM_CAPCLR_CAP(2);
MCPWMx->MCINTFLAG_CLR = MCPWM_INT_ILIM(0) | MCPWM_INT_ILIM(1) | MCPWM_INT_ILIM(2) \
| MCPWM_INT_IMAT(0) | MCPWM_INT_IMAT(1) | MCPWM_INT_IMAT(2) \
| MCPWM_INT_ICAP(0) | MCPWM_INT_ICAP(1) | MCPWM_INT_ICAP(2);
MCPWMx->MCINTEN_CLR = MCPWM_INT_ILIM(0) | MCPWM_INT_ILIM(1) | MCPWM_INT_ILIM(2) \
| MCPWM_INT_IMAT(0) | MCPWM_INT_IMAT(1) | MCPWM_INT_IMAT(2) \
| MCPWM_INT_ICAP(0) | MCPWM_INT_ICAP(1) | MCPWM_INT_ICAP(2);
}
/*********************************************************************//**
* @brief Configures each channel in MCPWM peripheral according to the
* specified parameters in the MCPWM_CHANNEL_CFG_Type.
* @param[in] MCPWMx Motor Control PWM peripheral selected
* should be: LPC_MCPWM
* @param[in] channelNum Channel number, should be: 0..2.
* @param[in] channelSetup Pointer to a MCPWM_CHANNEL_CFG_Type structure
* that contains the configuration information for the
* specified MCPWM channel.
* @return None
**********************************************************************/
void MCPWM_ConfigChannel(LPC_MCPWM_TypeDef *MCPWMx, uint32_t channelNum,
MCPWM_CHANNEL_CFG_Type * channelSetup)
{
if (channelNum <= 2) {
if (channelNum == 0) {
MCPWMx->MCTIM0 = channelSetup->channelTimercounterValue;
MCPWMx->MCPER0 = channelSetup->channelPeriodValue;
MCPWMx->MCPW0 = channelSetup->channelPulsewidthValue;
} else if (channelNum == 1) {
MCPWMx->MCTIM1 = channelSetup->channelTimercounterValue;
MCPWMx->MCPER1 = channelSetup->channelPeriodValue;
MCPWMx->MCPW1 = channelSetup->channelPulsewidthValue;
} else if (channelNum == 2) {
MCPWMx->MCTIM2 = channelSetup->channelTimercounterValue;
MCPWMx->MCPER2 = channelSetup->channelPeriodValue;
MCPWMx->MCPW2 = channelSetup->channelPulsewidthValue;
} else {
return;
}
if (channelSetup->channelType /* == MCPWM_CHANNEL_CENTER_MODE */){
MCPWMx->MCCON_SET = MCPWM_CON_CENTER(channelNum);
} else {
MCPWMx->MCCON_CLR = MCPWM_CON_CENTER(channelNum);
}
if (channelSetup->channelPolarity /* == MCPWM_CHANNEL_PASSIVE_HI */){
MCPWMx->MCCON_SET = MCPWM_CON_POLAR(channelNum);
} else {
MCPWMx->MCCON_CLR = MCPWM_CON_POLAR(channelNum);
}
if (channelSetup->channelDeadtimeEnable /* == ENABLE */){
MCPWMx->MCCON_SET = MCPWM_CON_DTE(channelNum);
MCPWMx->MCDEADTIME &= ~(MCPWM_DT(channelNum, 0x3FF));
MCPWMx->MCDEADTIME |= MCPWM_DT(channelNum, channelSetup->channelDeadtimeValue);
} else {
MCPWMx->MCCON_CLR = MCPWM_CON_DTE(channelNum);
}
if (channelSetup->channelUpdateEnable /* == ENABLE */){
MCPWMx->MCCON_CLR = MCPWM_CON_DISUP(channelNum);
} else {
MCPWMx->MCCON_SET = MCPWM_CON_DISUP(channelNum);
}
}
}
/*********************************************************************//**
* @brief Write to MCPWM shadow registers - Update the value for period
* and pulse width in MCPWM peripheral.
* @param[in] MCPWMx Motor Control PWM peripheral selected
* Should be: LPC_MCPWM
* @param[in] channelNum Channel Number, should be: 0..2.
* @param[in] channelSetup Pointer to a MCPWM_CHANNEL_CFG_Type structure
* that contains the configuration information for the
* specified MCPWM channel.
* @return None
**********************************************************************/
void MCPWM_WriteToShadow(LPC_MCPWM_TypeDef *MCPWMx, uint32_t channelNum,
MCPWM_CHANNEL_CFG_Type *channelSetup)
{
if (channelNum == 0){
MCPWMx->MCPER0 = channelSetup->channelPeriodValue;
MCPWMx->MCPW0 = channelSetup->channelPulsewidthValue;
} else if (channelNum == 1) {
MCPWMx->MCPER1 = channelSetup->channelPeriodValue;
MCPWMx->MCPW1 = channelSetup->channelPulsewidthValue;
} else if (channelNum == 2) {
MCPWMx->MCPER2 = channelSetup->channelPeriodValue;
MCPWMx->MCPW2 = channelSetup->channelPulsewidthValue;
}
}
/*********************************************************************//**
* @brief Configures capture function in MCPWM peripheral
* @param[in] MCPWMx Motor Control PWM peripheral selected
* Should be: LPC_MCPWM
* @param[in] channelNum MCI (Motor Control Input pin) number
* Should be: 0..2
* @param[in] captureConfig Pointer to a MCPWM_CAPTURE_CFG_Type structure
* that contains the configuration information for the
* specified MCPWM capture.
* @return
**********************************************************************/
void MCPWM_ConfigCapture(LPC_MCPWM_TypeDef *MCPWMx, uint32_t channelNum,
MCPWM_CAPTURE_CFG_Type *captureConfig)
{
if (channelNum <= 2) {
if (captureConfig->captureFalling /* == ENABLE */) {
MCPWMx->MCCAPCON_SET = MCPWM_CAPCON_CAPMCI_FE(captureConfig->captureChannel, channelNum);
} else {
MCPWMx->MCCAPCON_CLR = MCPWM_CAPCON_CAPMCI_FE(captureConfig->captureChannel, channelNum);
}
if (captureConfig->captureRising /* == ENABLE */) {
MCPWMx->MCCAPCON_SET = MCPWM_CAPCON_CAPMCI_RE(captureConfig->captureChannel, channelNum);
} else {
MCPWMx->MCCAPCON_CLR = MCPWM_CAPCON_CAPMCI_RE(captureConfig->captureChannel, channelNum);
}
if (captureConfig->timerReset /* == ENABLE */){
MCPWMx->MCCAPCON_SET = MCPWM_CAPCON_RT(captureConfig->captureChannel);
} else {
MCPWMx->MCCAPCON_CLR = MCPWM_CAPCON_RT(captureConfig->captureChannel);
}
if (captureConfig->hnfEnable /* == ENABLE */){
MCPWMx->MCCAPCON_SET = MCPWM_CAPCON_HNFCAP(channelNum);
} else {
MCPWMx->MCCAPCON_CLR = MCPWM_CAPCON_HNFCAP(channelNum);
}
}
}
/*********************************************************************//**
* @brief Clears current captured value in specified capture channel
* @param[in] MCPWMx Motor Control PWM peripheral selected
* Should be: LPC_MCPWM
* @param[in] captureChannel Capture channel number, should be: 0..2
* @return None
**********************************************************************/
void MCPWM_ClearCapture(LPC_MCPWM_TypeDef *MCPWMx, uint32_t captureChannel)
{
MCPWMx->MCCAP_CLR = MCPWM_CAPCLR_CAP(captureChannel);
}
/*********************************************************************//**
* @brief Get current captured value in specified capture channel
* @param[in] MCPWMx Motor Control PWM peripheral selected,
* Should be: LPC_MCPWM
* @param[in] captureChannel Capture channel number, should be: 0..2
* @return None
**********************************************************************/
uint32_t MCPWM_GetCapture(LPC_MCPWM_TypeDef *MCPWMx, uint32_t captureChannel)
{
if (captureChannel == 0){
return (MCPWMx->MCCR0);
} else if (captureChannel == 1) {
return (MCPWMx->MCCR1);
} else if (captureChannel == 2) {
return (MCPWMx->MCCR2);
}
return (0);
}
/*********************************************************************//**
* @brief Configures Count control in MCPWM peripheral
* @param[in] MCPWMx Motor Control PWM peripheral selected
* Should be: LPC_MCPWM
* @param[in] channelNum Channel number, should be: 0..2
* @param[in] countMode Count mode, should be:
* - ENABLE: Enables count mode.
* - DISABLE: Disable count mode, the channel is in timer mode.
* @param[in] countConfig Pointer to a MCPWM_COUNT_CFG_Type structure
* that contains the configuration information for the
* specified MCPWM count control.
* @return None
**********************************************************************/
void MCPWM_CountConfig(LPC_MCPWM_TypeDef *MCPWMx, uint32_t channelNum,
uint32_t countMode, MCPWM_COUNT_CFG_Type *countConfig)
{
if (channelNum <= 2) {
if (countMode /* == ENABLE */){
MCPWMx->MCCNTCON_SET = MCPWM_CNTCON_CNTR(channelNum);
if (countConfig->countFalling /* == ENABLE */) {
MCPWMx->MCCNTCON_SET = MCPWM_CNTCON_TCMCI_FE(countConfig->counterChannel,channelNum);
} else {
MCPWMx->MCCNTCON_CLR = MCPWM_CNTCON_TCMCI_FE(countConfig->counterChannel,channelNum);
}
if (countConfig->countRising /* == ENABLE */) {
MCPWMx->MCCNTCON_SET = MCPWM_CNTCON_TCMCI_RE(countConfig->counterChannel,channelNum);
} else {
MCPWMx->MCCNTCON_CLR = MCPWM_CNTCON_TCMCI_RE(countConfig->counterChannel,channelNum);
}
} else {
MCPWMx->MCCNTCON_CLR = MCPWM_CNTCON_CNTR(channelNum);
}
}
}
/*********************************************************************//**
* @brief Start MCPWM activity for each MCPWM channel
* @param[in] MCPWMx Motor Control PWM peripheral selected
* Should be: LPC_MCPWM
* @param[in] channel0 State of this command on channel 0:
* - ENABLE: 'Start' command will effect on channel 0
* - DISABLE: 'Start' command will not effect on channel 0
* @param[in] channel1 State of this command on channel 1:
* - ENABLE: 'Start' command will effect on channel 1
* - DISABLE: 'Start' command will not effect on channel 1
* @param[in] channel2 State of this command on channel 2:
* - ENABLE: 'Start' command will effect on channel 2
* - DISABLE: 'Start' command will not effect on channel 2
* @return None
**********************************************************************/
void MCPWM_Start(LPC_MCPWM_TypeDef *MCPWMx, uint32_t channel0,
uint32_t channel1, uint32_t channel2)
{
uint32_t regVal = 0;
regVal = (channel0 ? MCPWM_CON_RUN(0) : 0) | (channel1 ? MCPWM_CON_RUN(1) : 0) \
| (channel2 ? MCPWM_CON_RUN(2) : 0);
MCPWMx->MCCON_SET = regVal;
}
/*********************************************************************//**
* @brief Stop MCPWM activity for each MCPWM channel
* @param[in] MCPWMx Motor Control PWM peripheral selected
* Should be: LPC_MCPWM
* @param[in] channel0 State of this command on channel 0:
* - ENABLE: 'Stop' command will effect on channel 0
* - DISABLE: 'Stop' command will not effect on channel 0
* @param[in] channel1 State of this command on channel 1:
* - ENABLE: 'Stop' command will effect on channel 1
* - DISABLE: 'Stop' command will not effect on channel 1
* @param[in] channel2 State of this command on channel 2:
* - ENABLE: 'Stop' command will effect on channel 2
* - DISABLE: 'Stop' command will not effect on channel 2
* @return None
**********************************************************************/
void MCPWM_Stop(LPC_MCPWM_TypeDef *MCPWMx, uint32_t channel0,
uint32_t channel1, uint32_t channel2)
{
uint32_t regVal = 0;
regVal = (channel0 ? MCPWM_CON_RUN(0) : 0) | (channel1 ? MCPWM_CON_RUN(1) : 0) \
| (channel2 ? MCPWM_CON_RUN(2) : 0);
MCPWMx->MCCON_CLR = regVal;
}
/*********************************************************************//**
* @brief Enables/Disables 3-phase AC motor mode on MCPWM peripheral
* @param[in] MCPWMx Motor Control PWM peripheral selected
* Should be: LPC_MCPWM
* @param[in] acMode State of this command, should be:
* - ENABLE.
* - DISABLE.
* @return None
**********************************************************************/
void MCPWM_ACMode(LPC_MCPWM_TypeDef *MCPWMx, uint32_t acMode)
{
if (acMode){
MCPWMx->MCCON_SET = MCPWM_CON_ACMODE;
} else {
MCPWMx->MCCON_CLR = MCPWM_CON_ACMODE;
}
}
/*********************************************************************//**
* @brief Enables/Disables 3-phase DC motor mode on MCPWM peripheral
* @param[in] MCPWMx Motor Control PWM peripheral selected
* Should be: LPC_MCPWM
* @param[in] dcMode State of this command, should be:
* - ENABLE.
* - DISABLE.
* @param[in] outputInvered Polarity of the MCOB outputs for all 3 channels,
* should be:
* - ENABLE: The MCOB outputs have opposite polarity
* from the MCOA outputs.
* - DISABLE: The MCOB outputs have the same basic
* polarity as the MCOA outputs.
* @param[in] outputPattern A value contains bits that enables/disables the specified
* output pins route to the internal MCOA0 signal, should be:
- MCPWM_PATENT_A0: MCOA0 tracks internal MCOA0
- MCPWM_PATENT_B0: MCOB0 tracks internal MCOA0
- MCPWM_PATENT_A1: MCOA1 tracks internal MCOA0
- MCPWM_PATENT_B1: MCOB1 tracks internal MCOA0
- MCPWM_PATENT_A2: MCOA2 tracks internal MCOA0
- MCPWM_PATENT_B2: MCOB2 tracks internal MCOA0
* @return None
*
* Note: all these outputPatent values above can be ORed together for using as input parameter.
**********************************************************************/
void MCPWM_DCMode(LPC_MCPWM_TypeDef *MCPWMx, uint32_t dcMode,
uint32_t outputInvered, uint32_t outputPattern)
{
if (dcMode){
MCPWMx->MCCON_SET = MCPWM_CON_DCMODE;
} else {
MCPWMx->MCCON_CLR = MCPWM_CON_DCMODE;
}
if (outputInvered) {
MCPWMx->MCCON_SET = MCPWM_CON_INVBDC;
} else {
MCPWMx->MCCON_CLR = MCPWM_CON_INVBDC;
}
MCPWMx->MCCCP = outputPattern;
}
/*********************************************************************//**
* @brief Configures the specified interrupt in MCPWM peripheral
* @param[in] MCPWMx Motor Control PWM peripheral selected
* Should be: LPC_MCPWM
* @param[in] ulIntType Interrupt type, should be:
* - MCPWM_INTFLAG_LIM0: Limit interrupt for channel (0)
* - MCPWM_INTFLAG_MAT0: Match interrupt for channel (0)
* - MCPWM_INTFLAG_CAP0: Capture interrupt for channel (0)
* - MCPWM_INTFLAG_LIM1: Limit interrupt for channel (1)
* - MCPWM_INTFLAG_MAT1: Match interrupt for channel (1)
* - MCPWM_INTFLAG_CAP1: Capture interrupt for channel (1)
* - MCPWM_INTFLAG_LIM2: Limit interrupt for channel (2)
* - MCPWM_INTFLAG_MAT2: Match interrupt for channel (2)
* - MCPWM_INTFLAG_CAP2: Capture interrupt for channel (2)
* - MCPWM_INTFLAG_ABORT: Fast abort interrupt
* @param[in] NewState New State of this command, should be:
* - ENABLE.
* - DISABLE.
* @return None
*
* Note: all these ulIntType values above can be ORed together for using as input parameter.
**********************************************************************/
void MCPWM_IntConfig(LPC_MCPWM_TypeDef *MCPWMx, uint32_t ulIntType, FunctionalState NewState)
{
if (NewState) {
MCPWMx->MCINTEN_SET = ulIntType;
} else {
MCPWMx->MCINTEN_CLR = ulIntType;
}
}
/*********************************************************************//**
* @brief Sets/Forces the specified interrupt for MCPWM peripheral
* @param[in] MCPWMx Motor Control PWM peripheral selected
* Should be LPC_MCPWM
* @param[in] ulIntType Interrupt type, should be:
* - MCPWM_INTFLAG_LIM0: Limit interrupt for channel (0)
* - MCPWM_INTFLAG_MAT0: Match interrupt for channel (0)
* - MCPWM_INTFLAG_CAP0: Capture interrupt for channel (0)
* - MCPWM_INTFLAG_LIM1: Limit interrupt for channel (1)
* - MCPWM_INTFLAG_MAT1: Match interrupt for channel (1)
* - MCPWM_INTFLAG_CAP1: Capture interrupt for channel (1)
* - MCPWM_INTFLAG_LIM2: Limit interrupt for channel (2)
* - MCPWM_INTFLAG_MAT2: Match interrupt for channel (2)
* - MCPWM_INTFLAG_CAP2: Capture interrupt for channel (2)
* - MCPWM_INTFLAG_ABORT: Fast abort interrupt
* @return None
* Note: all these ulIntType values above can be ORed together for using as input parameter.
**********************************************************************/
void MCPWM_IntSet(LPC_MCPWM_TypeDef *MCPWMx, uint32_t ulIntType)
{
MCPWMx->MCINTFLAG_SET = ulIntType;
}
/*********************************************************************//**
* @brief Clear the specified interrupt pending for MCPWM peripheral
* @param[in] MCPWMx Motor Control PWM peripheral selected,
* should be: LPC_MCPWM
* @param[in] ulIntType Interrupt type, should be:
* - MCPWM_INTFLAG_LIM0: Limit interrupt for channel (0)
* - MCPWM_INTFLAG_MAT0: Match interrupt for channel (0)
* - MCPWM_INTFLAG_CAP0: Capture interrupt for channel (0)
* - MCPWM_INTFLAG_LIM1: Limit interrupt for channel (1)
* - MCPWM_INTFLAG_MAT1: Match interrupt for channel (1)
* - MCPWM_INTFLAG_CAP1: Capture interrupt for channel (1)
* - MCPWM_INTFLAG_LIM2: Limit interrupt for channel (2)
* - MCPWM_INTFLAG_MAT2: Match interrupt for channel (2)
* - MCPWM_INTFLAG_CAP2: Capture interrupt for channel (2)
* - MCPWM_INTFLAG_ABORT: Fast abort interrupt
* @return None
* Note: all these ulIntType values above can be ORed together for using as input parameter.
**********************************************************************/
void MCPWM_IntClear(LPC_MCPWM_TypeDef *MCPWMx, uint32_t ulIntType)
{
MCPWMx->MCINTFLAG_CLR = ulIntType;
}
/*********************************************************************//**
* @brief Check whether if the specified interrupt in MCPWM is set or not
* @param[in] MCPWMx Motor Control PWM peripheral selected,
* should be: LPC_MCPWM
* @param[in] ulIntType Interrupt type, should be:
* - MCPWM_INTFLAG_LIM0: Limit interrupt for channel (0)
* - MCPWM_INTFLAG_MAT0: Match interrupt for channel (0)
* - MCPWM_INTFLAG_CAP0: Capture interrupt for channel (0)
* - MCPWM_INTFLAG_LIM1: Limit interrupt for channel (1)
* - MCPWM_INTFLAG_MAT1: Match interrupt for channel (1)
* - MCPWM_INTFLAG_CAP1: Capture interrupt for channel (1)
* - MCPWM_INTFLAG_LIM2: Limit interrupt for channel (2)
* - MCPWM_INTFLAG_MAT2: Match interrupt for channel (2)
* - MCPWM_INTFLAG_CAP2: Capture interrupt for channel (2)
* - MCPWM_INTFLAG_ABORT: Fast abort interrupt
* @return None
**********************************************************************/
FlagStatus MCPWM_GetIntStatus(LPC_MCPWM_TypeDef *MCPWMx, uint32_t ulIntType)
{
return ((MCPWMx->MCINTFLAG & ulIntType) ? SET : RESET);
}
/**
* @}
*/
#endif /* _MCPWM */
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */

View file

@ -1,148 +0,0 @@
/**********************************************************************
* $Id$ lpc17xx_nvic.c 2010-05-21
*//**
* @file lpc17xx_nvic.c
* @brief Contains all expansion functions support for
* NVIC firmware library on LPC17xx. The main
* NVIC functions are defined in core_cm3.h
* @version 2.0
* @date 21. May. 2010
* @author NXP MCU SW Application Team
*
* Copyright(C) 2010, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
/* Peripheral group ----------------------------------------------------------- */
/** @addtogroup NVIC
* @{
*/
/* Includes ------------------------------------------------------------------- */
#include "lpc17xx_nvic.h"
/* Private Macros ------------------------------------------------------------- */
/** @addtogroup NVIC_Private_Macros
* @{
*/
/* Vector table offset bit mask */
#define NVIC_VTOR_MASK 0x3FFFFF80
/**
* @}
*/
/* Public Functions ----------------------------------------------------------- */
/** @addtogroup NVIC_Public_Functions
* @{
*/
/*****************************************************************************//**
* @brief De-initializes the NVIC peripheral registers to their default
* reset values.
* @param None
* @return None
*
* These following NVIC peripheral registers will be de-initialized:
* - Disable Interrupt (32 IRQ interrupt sources that matched with LPC17xx)
* - Clear all Pending Interrupts (32 IRQ interrupt source that matched with LPC17xx)
* - Clear all Interrupt Priorities (32 IRQ interrupt source that matched with LPC17xx)
*******************************************************************************/
void NVIC_DeInit(void)
{
uint8_t tmp;
/* Disable all interrupts */
NVIC->ICER[0] = 0xFFFFFFFF;
NVIC->ICER[1] = 0x00000001;
/* Clear all pending interrupts */
NVIC->ICPR[0] = 0xFFFFFFFF;
NVIC->ICPR[1] = 0x00000001;
/* Clear all interrupt priority */
for (tmp = 0; tmp < 32; tmp++) {
NVIC->IP[tmp] = 0x00;
}
}
/*****************************************************************************//**
* @brief De-initializes the SCB peripheral registers to their default
* reset values.
* @param none
* @return none
*
* These following SCB NVIC peripheral registers will be de-initialized:
* - Interrupt Control State register
* - Interrupt Vector Table Offset register
* - Application Interrupt/Reset Control register
* - System Control register
* - Configuration Control register
* - System Handlers Priority Registers
* - System Handler Control and State Register
* - Configurable Fault Status Register
* - Hard Fault Status Register
* - Debug Fault Status Register
*******************************************************************************/
void NVIC_SCBDeInit(void)
{
uint8_t tmp;
SCB->ICSR = 0x0A000000;
SCB->VTOR = 0x00000000;
SCB->AIRCR = 0x05FA0000;
SCB->SCR = 0x00000000;
SCB->CCR = 0x00000000;
for (tmp = 0; tmp < (sizeof(SCB->SHP) / sizeof(SCB->SHP[0])); tmp++) {
SCB->SHP[tmp] = 0x00;
}
SCB->SHCSR = 0x00000000;
SCB->CFSR = 0xFFFFFFFF;
SCB->HFSR = 0xFFFFFFFF;
SCB->DFSR = 0xFFFFFFFF;
}
/*****************************************************************************//**
* @brief Set Vector Table Offset value
* @param offset Offset value
* @return None
*******************************************************************************/
void NVIC_SetVTOR(uint32_t offset)
{
// SCB->VTOR = (offset & NVIC_VTOR_MASK);
SCB->VTOR = offset;
}
/**
* @}
*/
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */

View file

@ -1,318 +0,0 @@
/**********************************************************************
* $Id$ lpc17xx_pinsel.c 2010-05-21
*//**
* @file lpc17xx_pinsel.c
* @brief Contains all functions support for Pin connect block firmware
* library on LPC17xx
* @version 2.0
* @date 21. May. 2010
* @author NXP MCU SW Application Team
*
* Copyright(C) 2010, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
/* Peripheral group ----------------------------------------------------------- */
/** @addtogroup PINSEL
* @{
*/
/* Includes ------------------------------------------------------------------- */
#include "lpc17xx_pinsel.h"
/* Public Functions ----------------------------------------------------------- */
static void set_PinFunc ( uint8_t portnum, uint8_t pinnum, uint8_t funcnum);
static void set_ResistorMode ( uint8_t portnum, uint8_t pinnum, uint8_t modenum);
static void set_OpenDrainMode( uint8_t portnum, uint8_t pinnum, uint8_t modenum);
/*********************************************************************//**
* @brief Setup the pin selection function
* @param[in] portnum PORT number,
* should be one of the following:
* - PINSEL_PORT_0 : Port 0
* - PINSEL_PORT_1 : Port 1
* - PINSEL_PORT_2 : Port 2
* - PINSEL_PORT_3 : Port 3
*
* @param[in] pinnum Pin number,
* should be one of the following:
- PINSEL_PIN_0 : Pin 0
- PINSEL_PIN_1 : Pin 1
- PINSEL_PIN_2 : Pin 2
- PINSEL_PIN_3 : Pin 3
- PINSEL_PIN_4 : Pin 4
- PINSEL_PIN_5 : Pin 5
- PINSEL_PIN_6 : Pin 6
- PINSEL_PIN_7 : Pin 7
- PINSEL_PIN_8 : Pin 8
- PINSEL_PIN_9 : Pin 9
- PINSEL_PIN_10 : Pin 10
- PINSEL_PIN_11 : Pin 11
- PINSEL_PIN_12 : Pin 12
- PINSEL_PIN_13 : Pin 13
- PINSEL_PIN_14 : Pin 14
- PINSEL_PIN_15 : Pin 15
- PINSEL_PIN_16 : Pin 16
- PINSEL_PIN_17 : Pin 17
- PINSEL_PIN_18 : Pin 18
- PINSEL_PIN_19 : Pin 19
- PINSEL_PIN_20 : Pin 20
- PINSEL_PIN_21 : Pin 21
- PINSEL_PIN_22 : Pin 22
- PINSEL_PIN_23 : Pin 23
- PINSEL_PIN_24 : Pin 24
- PINSEL_PIN_25 : Pin 25
- PINSEL_PIN_26 : Pin 26
- PINSEL_PIN_27 : Pin 27
- PINSEL_PIN_28 : Pin 28
- PINSEL_PIN_29 : Pin 29
- PINSEL_PIN_30 : Pin 30
- PINSEL_PIN_31 : Pin 31
* @param[in] funcnum Function number,
* should be one of the following:
* - PINSEL_FUNC_0 : default function
* - PINSEL_FUNC_1 : first alternate function
* - PINSEL_FUNC_2 : second alternate function
* - PINSEL_FUNC_3 : third alternate function
*
* @return None
**********************************************************************/
static void set_PinFunc ( uint8_t portnum, uint8_t pinnum, uint8_t funcnum)
{
uint32_t pinnum_t = pinnum;
uint32_t pinselreg_idx = 2 * portnum;
uint32_t *pPinCon = (uint32_t *)&LPC_PINCON->PINSEL0;
if (pinnum_t >= 16) {
pinnum_t -= 16;
pinselreg_idx++;
}
*(uint32_t *)(pPinCon + pinselreg_idx) &= ~(0x03UL << (pinnum_t * 2));
*(uint32_t *)(pPinCon + pinselreg_idx) |= ((uint32_t)funcnum) << (pinnum_t * 2);
}
/*********************************************************************//**
* @brief Setup resistor mode for each pin
* @param[in] portnum PORT number,
* should be one of the following:
* - PINSEL_PORT_0 : Port 0
* - PINSEL_PORT_1 : Port 1
* - PINSEL_PORT_2 : Port 2
* - PINSEL_PORT_3 : Port 3
* @param[in] pinnum Pin number,
* should be one of the following:
- PINSEL_PIN_0 : Pin 0
- PINSEL_PIN_1 : Pin 1
- PINSEL_PIN_2 : Pin 2
- PINSEL_PIN_3 : Pin 3
- PINSEL_PIN_4 : Pin 4
- PINSEL_PIN_5 : Pin 5
- PINSEL_PIN_6 : Pin 6
- PINSEL_PIN_7 : Pin 7
- PINSEL_PIN_8 : Pin 8
- PINSEL_PIN_9 : Pin 9
- PINSEL_PIN_10 : Pin 10
- PINSEL_PIN_11 : Pin 11
- PINSEL_PIN_12 : Pin 12
- PINSEL_PIN_13 : Pin 13
- PINSEL_PIN_14 : Pin 14
- PINSEL_PIN_15 : Pin 15
- PINSEL_PIN_16 : Pin 16
- PINSEL_PIN_17 : Pin 17
- PINSEL_PIN_18 : Pin 18
- PINSEL_PIN_19 : Pin 19
- PINSEL_PIN_20 : Pin 20
- PINSEL_PIN_21 : Pin 21
- PINSEL_PIN_22 : Pin 22
- PINSEL_PIN_23 : Pin 23
- PINSEL_PIN_24 : Pin 24
- PINSEL_PIN_25 : Pin 25
- PINSEL_PIN_26 : Pin 26
- PINSEL_PIN_27 : Pin 27
- PINSEL_PIN_28 : Pin 28
- PINSEL_PIN_29 : Pin 29
- PINSEL_PIN_30 : Pin 30
- PINSEL_PIN_31 : Pin 31
* @param[in] modenum: Mode number,
* should be one of the following:
- PINSEL_PINMODE_PULLUP : Internal pull-up resistor
- PINSEL_PINMODE_TRISTATE : Tri-state
- PINSEL_PINMODE_PULLDOWN : Internal pull-down resistor
* @return None
**********************************************************************/
void set_ResistorMode ( uint8_t portnum, uint8_t pinnum, uint8_t modenum)
{
uint32_t pinnum_t = pinnum;
uint32_t pinmodereg_idx = 2 * portnum;
uint32_t *pPinCon = (uint32_t *)&LPC_PINCON->PINMODE0;
if (pinnum_t >= 16) {
pinnum_t -= 16;
pinmodereg_idx++ ;
}
*(uint32_t *)(pPinCon + pinmodereg_idx) &= ~(0x03UL << (pinnum_t * 2));
*(uint32_t *)(pPinCon + pinmodereg_idx) |= ((uint32_t)modenum) << (pinnum_t * 2);
}
/*********************************************************************//**
* @brief Setup Open drain mode for each pin
* @param[in] portnum PORT number,
* should be one of the following:
* - PINSEL_PORT_0 : Port 0
* - PINSEL_PORT_1 : Port 1
* - PINSEL_PORT_2 : Port 2
* - PINSEL_PORT_3 : Port 3
*
* @param[in] pinnum Pin number,
* should be one of the following:
- PINSEL_PIN_0 : Pin 0
- PINSEL_PIN_1 : Pin 1
- PINSEL_PIN_2 : Pin 2
- PINSEL_PIN_3 : Pin 3
- PINSEL_PIN_4 : Pin 4
- PINSEL_PIN_5 : Pin 5
- PINSEL_PIN_6 : Pin 6
- PINSEL_PIN_7 : Pin 7
- PINSEL_PIN_8 : Pin 8
- PINSEL_PIN_9 : Pin 9
- PINSEL_PIN_10 : Pin 10
- PINSEL_PIN_11 : Pin 11
- PINSEL_PIN_12 : Pin 12
- PINSEL_PIN_13 : Pin 13
- PINSEL_PIN_14 : Pin 14
- PINSEL_PIN_15 : Pin 15
- PINSEL_PIN_16 : Pin 16
- PINSEL_PIN_17 : Pin 17
- PINSEL_PIN_18 : Pin 18
- PINSEL_PIN_19 : Pin 19
- PINSEL_PIN_20 : Pin 20
- PINSEL_PIN_21 : Pin 21
- PINSEL_PIN_22 : Pin 22
- PINSEL_PIN_23 : Pin 23
- PINSEL_PIN_24 : Pin 24
- PINSEL_PIN_25 : Pin 25
- PINSEL_PIN_26 : Pin 26
- PINSEL_PIN_27 : Pin 27
- PINSEL_PIN_28 : Pin 28
- PINSEL_PIN_29 : Pin 29
- PINSEL_PIN_30 : Pin 30
- PINSEL_PIN_31 : Pin 31
* @param[in] modenum Open drain mode number,
* should be one of the following:
* - PINSEL_PINMODE_NORMAL : Pin is in the normal (not open drain) mode
* - PINSEL_PINMODE_OPENDRAIN : Pin is in the open drain mode
*
* @return None
**********************************************************************/
void set_OpenDrainMode( uint8_t portnum, uint8_t pinnum, uint8_t modenum)
{
uint32_t *pPinCon = (uint32_t *)&LPC_PINCON->PINMODE_OD0;
if (modenum == PINSEL_PINMODE_OPENDRAIN){
*(uint32_t *)(pPinCon + portnum) |= (0x01UL << pinnum);
} else {
*(uint32_t *)(pPinCon + portnum) &= ~(0x01UL << pinnum);
}
}
/* End of Public Functions ---------------------------------------------------- */
/* Public Functions ----------------------------------------------------------- */
/** @addtogroup PINSEL_Public_Functions
* @{
*/
/*********************************************************************//**
* @brief Configure trace function
* @param[in] NewState State of the Trace function configuration,
* should be one of the following:
* - ENABLE : Enable Trace Function
* - DISABLE : Disable Trace Function
*
* @return None
**********************************************************************/
void PINSEL_ConfigTraceFunc(FunctionalState NewState)
{
if (NewState == ENABLE) {
LPC_PINCON->PINSEL10 |= (0x01UL << 3);
} else if (NewState == DISABLE) {
LPC_PINCON->PINSEL10 &= ~(0x01UL << 3);
}
}
/*********************************************************************//**
* @brief Setup I2C0 pins
* @param[in] i2cPinMode I2C pin mode,
* should be one of the following:
* - PINSEL_I2C_Normal_Mode : The standard drive mode
* - PINSEL_I2C_Fast_Mode : Fast Mode Plus drive mode
*
* @param[in] filterSlewRateEnable should be:
* - ENABLE: Enable filter and slew rate.
* - DISABLE: Disable filter and slew rate.
*
* @return None
**********************************************************************/
void PINSEL_SetI2C0Pins(uint8_t i2cPinMode, FunctionalState filterSlewRateEnable)
{
uint32_t regVal;
if (i2cPinMode == PINSEL_I2C_Fast_Mode){
regVal = PINSEL_I2CPADCFG_SCLDRV0 | PINSEL_I2CPADCFG_SDADRV0;
}
if (filterSlewRateEnable == DISABLE){
regVal = PINSEL_I2CPADCFG_SCLI2C0 | PINSEL_I2CPADCFG_SDAI2C0;
}
LPC_PINCON->I2CPADCFG = regVal;
}
/*********************************************************************//**
* @brief Configure Pin corresponding to specified parameters passed
* in the PinCfg
* @param[in] PinCfg Pointer to a PINSEL_CFG_Type structure
* that contains the configuration information for the
* specified pin.
* @return None
**********************************************************************/
void PINSEL_ConfigPin(PINSEL_CFG_Type *PinCfg)
{
set_PinFunc(PinCfg->Portnum, PinCfg->Pinnum, PinCfg->Funcnum);
set_ResistorMode(PinCfg->Portnum, PinCfg->Pinnum, PinCfg->Pinmode);
set_OpenDrainMode(PinCfg->Portnum, PinCfg->Pinnum, PinCfg->OpenDrain);
}
/**
* @}
*/
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */

View file

@ -1,588 +0,0 @@
/**********************************************************************
* $Id$ lpc17xx_pwm.c 2011-03-31
*//**
* @file lpc17xx_pwm.c
* @brief Contains all functions support for PWM firmware library on LPC17xx
* @version 2.1
* @date 31. Mar. 2011
* @author NXP MCU SW Application Team
*
* Copyright(C) 2011, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
/* Peripheral group ----------------------------------------------------------- */
/** @addtogroup PWM
* @{
*/
/* Includes ------------------------------------------------------------------- */
#include "lpc17xx_pwm.h"
#include "lpc17xx_clkpwr.h"
/* If this source file built with example, the LPC17xx FW library configuration
* file in each example directory ("lpc17xx_libcfg.h") must be included,
* otherwise the default FW library configuration file must be included instead
*/
#ifdef __BUILD_WITH_EXAMPLE__
#include "lpc17xx_libcfg.h"
#else
#include "lpc17xx_libcfg_default.h"
#endif /* __BUILD_WITH_EXAMPLE__ */
#ifdef _PWM
/* Public Functions ----------------------------------------------------------- */
/** @addtogroup PWM_Public_Functions
* @{
*/
/*********************************************************************//**
* @brief Check whether specified interrupt flag in PWM is set or not
* @param[in] PWMx: PWM peripheral, should be LPC_PWM1
* @param[in] IntFlag: PWM interrupt flag, should be:
* - PWM_INTSTAT_MR0: Interrupt flag for PWM match channel 0
* - PWM_INTSTAT_MR1: Interrupt flag for PWM match channel 1
* - PWM_INTSTAT_MR2: Interrupt flag for PWM match channel 2
* - PWM_INTSTAT_MR3: Interrupt flag for PWM match channel 3
* - PWM_INTSTAT_MR4: Interrupt flag for PWM match channel 4
* - PWM_INTSTAT_MR5: Interrupt flag for PWM match channel 5
* - PWM_INTSTAT_MR6: Interrupt flag for PWM match channel 6
* - PWM_INTSTAT_CAP0: Interrupt flag for capture input 0
* - PWM_INTSTAT_CAP1: Interrupt flag for capture input 1
* @return New State of PWM interrupt flag (SET or RESET)
**********************************************************************/
IntStatus PWM_GetIntStatus(LPC_PWM_TypeDef *PWMx, uint32_t IntFlag)
{
CHECK_PARAM(PARAM_PWMx(PWMx));
CHECK_PARAM(PARAM_PWM_INTSTAT(IntFlag));
return ((PWMx->IR & IntFlag) ? SET : RESET);
}
/*********************************************************************//**
* @brief Clear specified PWM Interrupt pending
* @param[in] PWMx: PWM peripheral, should be LPC_PWM1
* @param[in] IntFlag: PWM interrupt flag, should be:
* - PWM_INTSTAT_MR0: Interrupt flag for PWM match channel 0
* - PWM_INTSTAT_MR1: Interrupt flag for PWM match channel 1
* - PWM_INTSTAT_MR2: Interrupt flag for PWM match channel 2
* - PWM_INTSTAT_MR3: Interrupt flag for PWM match channel 3
* - PWM_INTSTAT_MR4: Interrupt flag for PWM match channel 4
* - PWM_INTSTAT_MR5: Interrupt flag for PWM match channel 5
* - PWM_INTSTAT_MR6: Interrupt flag for PWM match channel 6
* - PWM_INTSTAT_CAP0: Interrupt flag for capture input 0
* - PWM_INTSTAT_CAP1: Interrupt flag for capture input 1
* @return None
**********************************************************************/
void PWM_ClearIntPending(LPC_PWM_TypeDef *PWMx, uint32_t IntFlag)
{
CHECK_PARAM(PARAM_PWMx(PWMx));
CHECK_PARAM(PARAM_PWM_INTSTAT(IntFlag));
PWMx->IR = IntFlag;
}
/*****************************************************************************//**
* @brief Fills each PWM_InitStruct member with its default value:
* - If PWMCounterMode = PWM_MODE_TIMER:
* + PrescaleOption = PWM_TIMER_PRESCALE_USVAL
* + PrescaleValue = 1
* - If PWMCounterMode = PWM_MODE_COUNTER:
* + CountInputSelect = PWM_COUNTER_PCAP1_0
* + CounterOption = PWM_COUNTER_RISING
* @param[in] PWMTimerCounterMode Timer or Counter mode, should be:
* - PWM_MODE_TIMER: Counter of PWM peripheral is in Timer mode
* - PWM_MODE_COUNTER: Counter of PWM peripheral is in Counter mode
* @param[in] PWM_InitStruct Pointer to structure (PWM_TIMERCFG_Type or
* PWM_COUNTERCFG_Type) which will be initialized.
* @return None
* Note: PWM_InitStruct pointer will be assigned to corresponding structure
* (PWM_TIMERCFG_Type or PWM_COUNTERCFG_Type) due to PWMTimerCounterMode.
*******************************************************************************/
void PWM_ConfigStructInit(uint8_t PWMTimerCounterMode, void *PWM_InitStruct)
{
PWM_TIMERCFG_Type *pTimeCfg;
PWM_COUNTERCFG_Type *pCounterCfg;
CHECK_PARAM(PARAM_PWM_TC_MODE(PWMTimerCounterMode));
pTimeCfg = (PWM_TIMERCFG_Type *) PWM_InitStruct;
pCounterCfg = (PWM_COUNTERCFG_Type *) PWM_InitStruct;
if (PWMTimerCounterMode == PWM_MODE_TIMER )
{
pTimeCfg->PrescaleOption = PWM_TIMER_PRESCALE_USVAL;
pTimeCfg->PrescaleValue = 1;
}
else if (PWMTimerCounterMode == PWM_MODE_COUNTER)
{
pCounterCfg->CountInputSelect = PWM_COUNTER_PCAP1_0;
pCounterCfg->CounterOption = PWM_COUNTER_RISING;
}
}
/*********************************************************************//**
* @brief Initializes the PWMx peripheral corresponding to the specified
* parameters in the PWM_ConfigStruct.
* @param[in] PWMx PWM peripheral, should be LPC_PWM1
* @param[in] PWMTimerCounterMode Timer or Counter mode, should be:
* - PWM_MODE_TIMER: Counter of PWM peripheral is in Timer mode
* - PWM_MODE_COUNTER: Counter of PWM peripheral is in Counter mode
* @param[in] PWM_ConfigStruct Pointer to structure (PWM_TIMERCFG_Type or
* PWM_COUNTERCFG_Type) which will be initialized.
* @return None
* Note: PWM_ConfigStruct pointer will be assigned to corresponding structure
* (PWM_TIMERCFG_Type or PWM_COUNTERCFG_Type) due to PWMTimerCounterMode.
**********************************************************************/
void PWM_Init(LPC_PWM_TypeDef *PWMx, uint32_t PWMTimerCounterMode, void *PWM_ConfigStruct)
{
PWM_TIMERCFG_Type *pTimeCfg;
PWM_COUNTERCFG_Type *pCounterCfg;
uint64_t clkdlycnt;
CHECK_PARAM(PARAM_PWMx(PWMx));
CHECK_PARAM(PARAM_PWM_TC_MODE(PWMTimerCounterMode));
pTimeCfg = (PWM_TIMERCFG_Type *)PWM_ConfigStruct;
pCounterCfg = (PWM_COUNTERCFG_Type *)PWM_ConfigStruct;
CLKPWR_ConfigPPWR (CLKPWR_PCONP_PCPWM1, ENABLE);
CLKPWR_SetPCLKDiv (CLKPWR_PCLKSEL_PWM1, CLKPWR_PCLKSEL_CCLK_DIV_4);
// Get peripheral clock of PWM1
clkdlycnt = (uint64_t) CLKPWR_GetPCLK (CLKPWR_PCLKSEL_PWM1);
// Clear all interrupts pending
PWMx->IR = 0xFF & PWM_IR_BITMASK;
PWMx->TCR = 0x00;
PWMx->CTCR = 0x00;
PWMx->MCR = 0x00;
PWMx->CCR = 0x00;
PWMx->PCR = 0x00;
PWMx->LER = 0x00;
if (PWMTimerCounterMode == PWM_MODE_TIMER)
{
CHECK_PARAM(PARAM_PWM_TIMER_PRESCALE(pTimeCfg->PrescaleOption));
/* Absolute prescale value */
if (pTimeCfg->PrescaleOption == PWM_TIMER_PRESCALE_TICKVAL)
{
PWMx->PR = pTimeCfg->PrescaleValue - 1;
}
/* uSecond prescale value */
else
{
clkdlycnt = (clkdlycnt * pTimeCfg->PrescaleValue) / 1000000;
PWMx->PR = ((uint32_t) clkdlycnt) - 1;
}
}
else if (PWMTimerCounterMode == PWM_MODE_COUNTER)
{
CHECK_PARAM(PARAM_PWM_COUNTER_INPUTSEL(pCounterCfg->CountInputSelect));
CHECK_PARAM(PARAM_PWM_COUNTER_EDGE(pCounterCfg->CounterOption));
PWMx->CTCR |= (PWM_CTCR_MODE((uint32_t)pCounterCfg->CounterOption)) \
| (PWM_CTCR_SELECT_INPUT((uint32_t)pCounterCfg->CountInputSelect));
}
}
/*********************************************************************//**
* @brief De-initializes the PWM peripheral registers to their
* default reset values.
* @param[in] PWMx PWM peripheral selected, should be LPC_PWM1
* @return None
**********************************************************************/
void PWM_DeInit (LPC_PWM_TypeDef *PWMx)
{
CHECK_PARAM(PARAM_PWMx(PWMx));
// Disable PWM control (timer, counter and PWM)
PWMx->TCR = 0x00;
CLKPWR_ConfigPPWR (CLKPWR_PCONP_PCPWM1, DISABLE);
}
/*********************************************************************//**
* @brief Enable/Disable PWM peripheral
* @param[in] PWMx PWM peripheral selected, should be LPC_PWM1
* @param[in] NewState New State of this function, should be:
* - ENABLE: Enable PWM peripheral
* - DISABLE: Disable PWM peripheral
* @return None
**********************************************************************/
void PWM_Cmd(LPC_PWM_TypeDef *PWMx, FunctionalState NewState)
{
CHECK_PARAM(PARAM_PWMx(PWMx));
CHECK_PARAM(PARAM_FUNCTIONALSTATE(NewState));
if (NewState == ENABLE)
{
PWMx->TCR |= PWM_TCR_PWM_ENABLE;
}
else
{
PWMx->TCR &= (~PWM_TCR_PWM_ENABLE) & PWM_TCR_BITMASK;
}
}
/*********************************************************************//**
* @brief Enable/Disable Counter in PWM peripheral
* @param[in] PWMx PWM peripheral selected, should be LPC_PWM1
* @param[in] NewState New State of this function, should be:
* - ENABLE: Enable Counter in PWM peripheral
* - DISABLE: Disable Counter in PWM peripheral
* @return None
**********************************************************************/
void PWM_CounterCmd(LPC_PWM_TypeDef *PWMx, FunctionalState NewState)
{
CHECK_PARAM(PARAM_PWMx(PWMx));
CHECK_PARAM(PARAM_FUNCTIONALSTATE(NewState));
if (NewState == ENABLE)
{
PWMx->TCR |= PWM_TCR_COUNTER_ENABLE;
}
else
{
PWMx->TCR &= (~PWM_TCR_COUNTER_ENABLE) & PWM_TCR_BITMASK;
}
}
/*********************************************************************//**
* @brief Reset Counter in PWM peripheral
* @param[in] PWMx PWM peripheral selected, should be LPC_PWM1
* @return None
**********************************************************************/
void PWM_ResetCounter(LPC_PWM_TypeDef *PWMx)
{
CHECK_PARAM(PARAM_PWMx(PWMx));
PWMx->TCR |= PWM_TCR_COUNTER_RESET;
PWMx->TCR &= (~PWM_TCR_COUNTER_RESET) & PWM_TCR_BITMASK;
}
/*********************************************************************//**
* @brief Configures match for PWM peripheral
* @param[in] PWMx PWM peripheral selected, should be LPC_PWM1
* @param[in] PWM_MatchConfigStruct Pointer to a PWM_MATCHCFG_Type structure
* that contains the configuration information for the
* specified PWM match function.
* @return None
**********************************************************************/
void PWM_ConfigMatch(LPC_PWM_TypeDef *PWMx, PWM_MATCHCFG_Type *PWM_MatchConfigStruct)
{
CHECK_PARAM(PARAM_PWMx(PWMx));
CHECK_PARAM(PARAM_PWM1_MATCH_CHANNEL(PWM_MatchConfigStruct->MatchChannel));
CHECK_PARAM(PARAM_FUNCTIONALSTATE(PWM_MatchConfigStruct->IntOnMatch));
CHECK_PARAM(PARAM_FUNCTIONALSTATE(PWM_MatchConfigStruct->ResetOnMatch));
CHECK_PARAM(PARAM_FUNCTIONALSTATE(PWM_MatchConfigStruct->StopOnMatch));
//interrupt on MRn
if (PWM_MatchConfigStruct->IntOnMatch == ENABLE)
{
PWMx->MCR |= PWM_MCR_INT_ON_MATCH(PWM_MatchConfigStruct->MatchChannel);
}
else
{
PWMx->MCR &= (~PWM_MCR_INT_ON_MATCH(PWM_MatchConfigStruct->MatchChannel)) \
& PWM_MCR_BITMASK;
}
//reset on MRn
if (PWM_MatchConfigStruct->ResetOnMatch == ENABLE)
{
PWMx->MCR |= PWM_MCR_RESET_ON_MATCH(PWM_MatchConfigStruct->MatchChannel);
}
else
{
PWMx->MCR &= (~PWM_MCR_RESET_ON_MATCH(PWM_MatchConfigStruct->MatchChannel)) \
& PWM_MCR_BITMASK;
}
//stop on MRn
if (PWM_MatchConfigStruct->StopOnMatch == ENABLE)
{
PWMx->MCR |= PWM_MCR_STOP_ON_MATCH(PWM_MatchConfigStruct->MatchChannel);
}
else
{
PWMx->MCR &= (~PWM_MCR_STOP_ON_MATCH(PWM_MatchConfigStruct->MatchChannel)) \
& PWM_MCR_BITMASK;
}
}
/*********************************************************************//**
* @brief Configures capture input for PWM peripheral
* @param[in] PWMx PWM peripheral selected, should be LPC_PWM1
* @param[in] PWM_CaptureConfigStruct Pointer to a PWM_CAPTURECFG_Type structure
* that contains the configuration information for the
* specified PWM capture input function.
* @return None
**********************************************************************/
void PWM_ConfigCapture(LPC_PWM_TypeDef *PWMx, PWM_CAPTURECFG_Type *PWM_CaptureConfigStruct)
{
CHECK_PARAM(PARAM_PWMx(PWMx));
CHECK_PARAM(PARAM_PWM1_CAPTURE_CHANNEL(PWM_CaptureConfigStruct->CaptureChannel));
CHECK_PARAM(PARAM_FUNCTIONALSTATE(PWM_CaptureConfigStruct->FallingEdge));
CHECK_PARAM(PARAM_FUNCTIONALSTATE(PWM_CaptureConfigStruct->IntOnCaption));
CHECK_PARAM(PARAM_FUNCTIONALSTATE(PWM_CaptureConfigStruct->RisingEdge));
if (PWM_CaptureConfigStruct->RisingEdge == ENABLE)
{
PWMx->CCR |= PWM_CCR_CAP_RISING(PWM_CaptureConfigStruct->CaptureChannel);
}
else
{
PWMx->CCR &= (~PWM_CCR_CAP_RISING(PWM_CaptureConfigStruct->CaptureChannel)) \
& PWM_CCR_BITMASK;
}
if (PWM_CaptureConfigStruct->FallingEdge == ENABLE)
{
PWMx->CCR |= PWM_CCR_CAP_FALLING(PWM_CaptureConfigStruct->CaptureChannel);
}
else
{
PWMx->CCR &= (~PWM_CCR_CAP_FALLING(PWM_CaptureConfigStruct->CaptureChannel)) \
& PWM_CCR_BITMASK;
}
if (PWM_CaptureConfigStruct->IntOnCaption == ENABLE)
{
PWMx->CCR |= PWM_CCR_INT_ON_CAP(PWM_CaptureConfigStruct->CaptureChannel);
}
else
{
PWMx->CCR &= (~PWM_CCR_INT_ON_CAP(PWM_CaptureConfigStruct->CaptureChannel)) \
& PWM_CCR_BITMASK;
}
}
/*********************************************************************//**
* @brief Read value of capture register PWM peripheral
* @param[in] PWMx PWM peripheral selected, should be LPC_PWM1
* @param[in] CaptureChannel: capture channel number, should be in
* range 0 to 1
* @return Value of capture register
**********************************************************************/
uint32_t PWM_GetCaptureValue(LPC_PWM_TypeDef *PWMx, uint8_t CaptureChannel)
{
CHECK_PARAM(PARAM_PWMx(PWMx));
CHECK_PARAM(PARAM_PWM1_CAPTURE_CHANNEL(CaptureChannel));
switch (CaptureChannel)
{
case 0:
return PWMx->CR0;
case 1:
return PWMx->CR1;
default:
return (0);
}
}
/********************************************************************//**
* @brief Update value for each PWM channel with update type option
* @param[in] PWMx PWM peripheral selected, should be LPC_PWM1
* @param[in] MatchChannel Match channel
* @param[in] MatchValue Match value
* @param[in] UpdateType Type of Update, should be:
* - PWM_MATCH_UPDATE_NOW: The update value will be updated for
* this channel immediately
* - PWM_MATCH_UPDATE_NEXT_RST: The update value will be updated for
* this channel on next reset by a PWM Match event.
* @return None
*********************************************************************/
void PWM_MatchUpdate(LPC_PWM_TypeDef *PWMx, uint8_t MatchChannel, \
uint32_t MatchValue, uint8_t UpdateType)
{
CHECK_PARAM(PARAM_PWMx(PWMx));
CHECK_PARAM(PARAM_PWM1_MATCH_CHANNEL(MatchChannel));
CHECK_PARAM(PARAM_PWM_MATCH_UPDATE(UpdateType));
switch (MatchChannel)
{
case 0:
PWMx->MR0 = MatchValue;
break;
case 1:
PWMx->MR1 = MatchValue;
break;
case 2:
PWMx->MR2 = MatchValue;
break;
case 3:
PWMx->MR3 = MatchValue;
break;
case 4:
PWMx->MR4 = MatchValue;
break;
case 5:
PWMx->MR5 = MatchValue;
break;
case 6:
PWMx->MR6 = MatchValue;
break;
}
// Write Latch register
PWMx->LER |= PWM_LER_EN_MATCHn_LATCH(MatchChannel);
// In case of update now
if (UpdateType == PWM_MATCH_UPDATE_NOW)
{
PWMx->TCR |= PWM_TCR_COUNTER_RESET;
PWMx->TCR &= (~PWM_TCR_COUNTER_RESET) & PWM_TCR_BITMASK;
}
}
/********************************************************************//**
* @brief Update value for multi PWM channel with update type option
* at the same time
* @param[in] PWMx PWM peripheral selected, should be LPC_PWM1
* @param[in] MatchStruct Structure that contents match value of 7 pwm channels
* @param[in] UpdateType Type of Update, should be:
* - PWM_MATCH_UPDATE_NOW: The update value will be updated for
* this channel immediately
* - PWM_MATCH_UPDATE_NEXT_RST: The update value will be updated for
* this channel on next reset by a PWM Match event.
* @return None
*********************************************************************/
void PWM_MultiMatchUpdate(LPC_PWM_TypeDef *PWMx, PWM_Match_T *MatchStruct , uint8_t UpdateType)
{
uint8_t LatchValue = 0;
uint8_t i;
CHECK_PARAM(PARAM_PWMx(PWMx));
CHECK_PARAM(PARAM_PWM_MATCH_UPDATE(UpdateType));
//Update match value
for(i=0;i<7;i++)
{
if(MatchStruct[i].Status == SET)
{
if(i<4)
*((volatile unsigned int *)(&(PWMx->MR0) + i)) = MatchStruct[i].Matchvalue;
else
{
*((volatile unsigned int *)(&(PWMx->MR4) + (i-4))) = MatchStruct[i].Matchvalue;
}
LatchValue |=(1<<i);
}
}
//set update for multi-channel at the same time
PWMx->LER = LatchValue;
// In case of update now
if (UpdateType == PWM_MATCH_UPDATE_NOW)
{
PWMx->TCR |= PWM_TCR_COUNTER_RESET;
PWMx->TCR &= (~PWM_TCR_COUNTER_RESET) & PWM_TCR_BITMASK;
}
}
/********************************************************************//**
* @brief Configure Edge mode for each PWM channel
* @param[in] PWMx PWM peripheral selected, should be LPC_PWM1
* @param[in] PWMChannel PWM channel, should be in range from 2 to 6
* @param[in] ModeOption PWM mode option, should be:
* - PWM_CHANNEL_SINGLE_EDGE: Single Edge mode
* - PWM_CHANNEL_DUAL_EDGE: Dual Edge mode
* @return None
* Note: PWM Channel 1 can not be selected for mode option
*********************************************************************/
void PWM_ChannelConfig(LPC_PWM_TypeDef *PWMx, uint8_t PWMChannel, uint8_t ModeOption)
{
CHECK_PARAM(PARAM_PWMx(PWMx));
CHECK_PARAM(PARAM_PWM1_EDGE_MODE_CHANNEL(PWMChannel));
CHECK_PARAM(PARAM_PWM_CHANNEL_EDGE(ModeOption));
// Single edge mode
if (ModeOption == PWM_CHANNEL_SINGLE_EDGE)
{
PWMx->PCR &= (~PWM_PCR_PWMSELn(PWMChannel)) & PWM_PCR_BITMASK;
}
// Double edge mode
else if (PWM_CHANNEL_DUAL_EDGE)
{
PWMx->PCR |= PWM_PCR_PWMSELn(PWMChannel);
}
}
/********************************************************************//**
* @brief Enable/Disable PWM channel output
* @param[in] PWMx PWM peripheral selected, should be LPC_PWM1
* @param[in] PWMChannel PWM channel, should be in range from 1 to 6
* @param[in] NewState New State of this function, should be:
* - ENABLE: Enable this PWM channel output
* - DISABLE: Disable this PWM channel output
* @return None
*********************************************************************/
void PWM_ChannelCmd(LPC_PWM_TypeDef *PWMx, uint8_t PWMChannel, FunctionalState NewState)
{
CHECK_PARAM(PARAM_PWMx(PWMx));
CHECK_PARAM(PARAM_PWM1_CHANNEL(PWMChannel));
if (NewState == ENABLE)
{
PWMx->PCR |= PWM_PCR_PWMENAn(PWMChannel);
}
else
{
PWMx->PCR &= (~PWM_PCR_PWMENAn(PWMChannel)) & PWM_PCR_BITMASK;
}
}
/**
* @}
*/
#endif /* _PWM */
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */

View file

@ -1,514 +0,0 @@
/**********************************************************************
* $Id$ lpc17xx_qei.c 2010-05-21
*//**
* @file lpc17xx_qei.c
* @brief Contains all functions support for QEI firmware library on LPC17xx
* @version 2.0
* @date 21. May. 2010
* @author NXP MCU SW Application Team
*
* Copyright(C) 2010, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
/* Peripheral group ----------------------------------------------------------- */
/** @addtogroup QEI
* @{
*/
/* Includes ------------------------------------------------------------------- */
#include "lpc17xx_qei.h"
#include "lpc17xx_clkpwr.h"
/* If this source file built with example, the LPC17xx FW library configuration
* file in each example directory ("lpc17xx_libcfg.h") must be included,
* otherwise the default FW library configuration file must be included instead
*/
#ifdef __BUILD_WITH_EXAMPLE__
#include "lpc17xx_libcfg.h"
#else
#include "lpc17xx_libcfg_default.h"
#endif /* __BUILD_WITH_EXAMPLE__ */
#ifdef _QEI
/* Private Types -------------------------------------------------------------- */
/** @defgroup QEI_Private_Types QEI Private Types
* @{
*/
/**
* @brief QEI configuration union type definition
*/
typedef union {
QEI_CFG_Type bmQEIConfig;
uint32_t ulQEIConfig;
} QEI_CFGOPT_Type;
/**
* @}
*/
/* Public Functions ----------------------------------------------------------- */
/** @addtogroup QEI_Public_Functions
* @{
*/
/*********************************************************************//**
* @brief Resets value for each type of QEI value, such as velocity,
* counter, position, etc..
* @param[in] QEIx QEI peripheral, should be LPC_QEI
* @param[in] ulResetType QEI Reset Type, should be one of the following:
* - QEI_RESET_POS: Reset Position Counter
* - QEI_RESET_POSOnIDX: Reset Position Counter on Index signal
* - QEI_RESET_VEL: Reset Velocity
* - QEI_RESET_IDX: Reset Index Counter
* @return None
**********************************************************************/
void QEI_Reset(LPC_QEI_TypeDef *QEIx, uint32_t ulResetType)
{
CHECK_PARAM(PARAM_QEIx(QEIx));
CHECK_PARAM(PARAM_QEI_RESET(ulResetType));
QEIx->QEICON = ulResetType;
}
/*********************************************************************//**
* @brief Initializes the QEI peripheral according to the specified
* parameters in the QEI_ConfigStruct.
* @param[in] QEIx QEI peripheral, should be LPC_QEI
* @param[in] QEI_ConfigStruct Pointer to a QEI_CFG_Type structure
* that contains the configuration information for the
* specified QEI peripheral
* @return None
**********************************************************************/
void QEI_Init(LPC_QEI_TypeDef *QEIx, QEI_CFG_Type *QEI_ConfigStruct)
{
CHECK_PARAM(PARAM_QEIx(QEIx));
CHECK_PARAM(PARAM_QEI_DIRINV(QEI_ConfigStruct->DirectionInvert));
CHECK_PARAM(PARAM_QEI_SIGNALMODE(QEI_ConfigStruct->SignalMode));
CHECK_PARAM(PARAM_QEI_CAPMODE(QEI_ConfigStruct->CaptureMode));
CHECK_PARAM(PARAM_QEI_INVINX(QEI_ConfigStruct->InvertIndex));
/* Set up clock and power for QEI module */
CLKPWR_ConfigPPWR (CLKPWR_PCONP_PCQEI, ENABLE);
/* As default, peripheral clock for QEI module
* is set to FCCLK / 2 */
CLKPWR_SetPCLKDiv(CLKPWR_PCLKSEL_QEI, CLKPWR_PCLKSEL_CCLK_DIV_1);
// Reset all remaining value in QEI peripheral
QEIx->QEICON = QEI_CON_RESP | QEI_CON_RESV | QEI_CON_RESI;
QEIx->QEIMAXPOS = 0x00;
QEIx->CMPOS0 = 0x00;
QEIx->CMPOS1 = 0x00;
QEIx->CMPOS2 = 0x00;
QEIx->INXCMP = 0x00;
QEIx->QEILOAD = 0x00;
QEIx->VELCOMP = 0x00;
QEIx->FILTER = 0x00;
// Disable all Interrupt
QEIx->QEIIEC = QEI_IECLR_BITMASK;
// Clear all Interrupt pending
QEIx->QEICLR = QEI_INTCLR_BITMASK;
// Set QEI configuration value corresponding to its setting up value
QEIx->QEICONF = ((QEI_CFGOPT_Type *)QEI_ConfigStruct)->ulQEIConfig;
}
/*********************************************************************//**
* @brief De-initializes the QEI peripheral registers to their
* default reset values.
* @param[in] QEIx QEI peripheral, should be LPC_QEI
* @return None
**********************************************************************/
void QEI_DeInit(LPC_QEI_TypeDef *QEIx)
{
CHECK_PARAM(PARAM_QEIx(QEIx));
/* Turn off clock and power for QEI module */
CLKPWR_ConfigPPWR (CLKPWR_PCONP_PCQEI, DISABLE);
}
/*****************************************************************************//**
* @brief Fills each QIE_InitStruct member with its default value:
* - DirectionInvert = QEI_DIRINV_NONE
* - SignalMode = QEI_SIGNALMODE_QUAD
* - CaptureMode = QEI_CAPMODE_4X
* - InvertIndex = QEI_INVINX_NONE
* @param[in] QIE_InitStruct Pointer to a QEI_CFG_Type structure
* which will be initialized.
* @return None
*******************************************************************************/
void QEI_ConfigStructInit(QEI_CFG_Type *QIE_InitStruct)
{
QIE_InitStruct->CaptureMode = QEI_CAPMODE_4X;
QIE_InitStruct->DirectionInvert = QEI_DIRINV_NONE;
QIE_InitStruct->InvertIndex = QEI_INVINX_NONE;
QIE_InitStruct->SignalMode = QEI_SIGNALMODE_QUAD;
}
/*********************************************************************//**
* @brief Check whether if specified flag status is set or not
* @param[in] QEIx QEI peripheral, should be LPC_QEI
* @param[in] ulFlagType Status Flag Type, should be one of the following:
* - QEI_STATUS_DIR: Direction Status
* @return New Status of this status flag (SET or RESET)
**********************************************************************/
FlagStatus QEI_GetStatus(LPC_QEI_TypeDef *QEIx, uint32_t ulFlagType)
{
CHECK_PARAM(PARAM_QEIx(QEIx));
CHECK_PARAM(PARAM_QEI_STATUS(ulFlagType));
return ((QEIx->QEISTAT & ulFlagType) ? SET : RESET);
}
/*********************************************************************//**
* @brief Get current position value in QEI peripheral
* @param[in] QEIx QEI peripheral, should be LPC_QEI
* @return Current position value of QEI peripheral
**********************************************************************/
uint32_t QEI_GetPosition(LPC_QEI_TypeDef *QEIx)
{
CHECK_PARAM(PARAM_QEIx(QEIx));
return (QEIx->QEIPOS);
}
/*********************************************************************//**
* @brief Set max position value for QEI peripheral
* @param[in] QEIx QEI peripheral, should be LPC_QEI
* @param[in] ulMaxPos Max position value to set
* @return None
**********************************************************************/
void QEI_SetMaxPosition(LPC_QEI_TypeDef *QEIx, uint32_t ulMaxPos)
{
CHECK_PARAM(PARAM_QEIx(QEIx));
QEIx->QEIMAXPOS = ulMaxPos;
}
/*********************************************************************//**
* @brief Set position compare value for QEI peripheral
* @param[in] QEIx QEI peripheral, should be LPC_QEI
* @param[in] bPosCompCh Compare Position channel, should be:
* - QEI_COMPPOS_CH_0: QEI compare position channel 0
* - QEI_COMPPOS_CH_1: QEI compare position channel 1
* - QEI_COMPPOS_CH_2: QEI compare position channel 2
* @param[in] ulPosComp Compare Position value to set
* @return None
**********************************************************************/
void QEI_SetPositionComp(LPC_QEI_TypeDef *QEIx, uint8_t bPosCompCh, uint32_t ulPosComp)
{
uint32_t *tmp;
CHECK_PARAM(PARAM_QEIx(QEIx));
CHECK_PARAM(PARAM_QEI_COMPPOS_CH(bPosCompCh));
tmp = (uint32_t *) (&(QEIx->CMPOS0) + bPosCompCh * 4);
*tmp = ulPosComp;
}
/*********************************************************************//**
* @brief Get current index counter of QEI peripheral
* @param[in] QEIx QEI peripheral, should be LPC_QEI
* @return Current value of QEI index counter
**********************************************************************/
uint32_t QEI_GetIndex(LPC_QEI_TypeDef *QEIx)
{
CHECK_PARAM(PARAM_QEIx(QEIx));
return (QEIx->INXCNT);
}
/*********************************************************************//**
* @brief Set value for index compare in QEI peripheral
* @param[in] QEIx QEI peripheral, should be LPC_QEI
* @param[in] ulIndexComp Compare Index Value to set
* @return None
**********************************************************************/
void QEI_SetIndexComp(LPC_QEI_TypeDef *QEIx, uint32_t ulIndexComp)
{
CHECK_PARAM(PARAM_QEIx(QEIx));
QEIx->INXCMP = ulIndexComp;
}
/*********************************************************************//**
* @brief Set timer reload value for QEI peripheral. When the velocity timer is
* over-flow, the value that set for Timer Reload register will be loaded
* into the velocity timer for next period. The calculated velocity in RPM
* therefore will be affect by this value.
* @param[in] QEIx QEI peripheral, should be LPC_QEI
* @param[in] QEIReloadStruct QEI reload structure
* @return None
**********************************************************************/
void QEI_SetTimerReload(LPC_QEI_TypeDef *QEIx, QEI_RELOADCFG_Type *QEIReloadStruct)
{
uint64_t pclk;
CHECK_PARAM(PARAM_QEIx(QEIx));
CHECK_PARAM(PARAM_QEI_TIMERRELOAD(QEIReloadStruct->ReloadOption));
if (QEIReloadStruct->ReloadOption == QEI_TIMERRELOAD_TICKVAL) {
QEIx->QEILOAD = QEIReloadStruct->ReloadValue - 1;
} else {
pclk = (uint64_t)CLKPWR_GetPCLK(CLKPWR_PCLKSEL_QEI);
pclk = (pclk /(1000000/QEIReloadStruct->ReloadValue)) - 1;
QEIx->QEILOAD = (uint32_t)pclk;
}
}
/*********************************************************************//**
* @brief Get current timer counter in QEI peripheral
* @param[in] QEIx QEI peripheral, should be LPC_QEI
* @return Current timer counter in QEI peripheral
**********************************************************************/
uint32_t QEI_GetTimer(LPC_QEI_TypeDef *QEIx)
{
CHECK_PARAM(PARAM_QEIx(QEIx));
return (QEIx->QEITIME);
}
/*********************************************************************//**
* @brief Get current velocity pulse counter in current time period
* @param[in] QEIx QEI peripheral, should be LPC_QEI
* @return Current velocity pulse counter value
**********************************************************************/
uint32_t QEI_GetVelocity(LPC_QEI_TypeDef *QEIx)
{
CHECK_PARAM(PARAM_QEIx(QEIx));
return (QEIx->QEIVEL);
}
/*********************************************************************//**
* @brief Get the most recently measured velocity of the QEI. When
* the Velocity timer in QEI is over-flow, the current velocity
* value will be loaded into Velocity Capture register.
* @param[in] QEIx QEI peripheral, should be LPC_QEI
* @return The most recently measured velocity value
**********************************************************************/
uint32_t QEI_GetVelocityCap(LPC_QEI_TypeDef *QEIx)
{
CHECK_PARAM(PARAM_QEIx(QEIx));
return (QEIx->QEICAP);
}
/*********************************************************************//**
* @brief Set Velocity Compare value for QEI peripheral
* @param[in] QEIx QEI peripheral, should be LPC_QEI
* @param[in] ulVelComp Compare Velocity value to set
* @return None
**********************************************************************/
void QEI_SetVelocityComp(LPC_QEI_TypeDef *QEIx, uint32_t ulVelComp)
{
CHECK_PARAM(PARAM_QEIx(QEIx));
QEIx->VELCOMP = ulVelComp;
}
/*********************************************************************//**
* @brief Set value of sampling count for the digital filter in
* QEI peripheral
* @param[in] QEIx QEI peripheral, should be LPC_QEI
* @param[in] ulSamplingPulse Value of sampling count to set
* @return None
**********************************************************************/
void QEI_SetDigiFilter(LPC_QEI_TypeDef *QEIx, uint32_t ulSamplingPulse)
{
CHECK_PARAM(PARAM_QEIx(QEIx));
QEIx->FILTER = ulSamplingPulse;
}
/*********************************************************************//**
* @brief Check whether if specified interrupt flag status in QEI
* peripheral is set or not
* @param[in] QEIx QEI peripheral, should be LPC_QEI
* @param[in] ulIntType Interrupt Flag Status type, should be:
- QEI_INTFLAG_INX_Int: index pulse was detected interrupt
- QEI_INTFLAG_TIM_Int: Velocity timer over flow interrupt
- QEI_INTFLAG_VELC_Int: Capture velocity is less than compare interrupt
- QEI_INTFLAG_DIR_Int: Change of direction interrupt
- QEI_INTFLAG_ERR_Int: An encoder phase error interrupt
- QEI_INTFLAG_ENCLK_Int: An encoder clock pulse was detected interrupt
- QEI_INTFLAG_POS0_Int: position 0 compare value is equal to the
current position interrupt
- QEI_INTFLAG_POS1_Int: position 1 compare value is equal to the
current position interrupt
- QEI_INTFLAG_POS2_Int: position 2 compare value is equal to the
current position interrupt
- QEI_INTFLAG_REV_Int: Index compare value is equal to the current
index count interrupt
- QEI_INTFLAG_POS0REV_Int: Combined position 0 and revolution count interrupt
- QEI_INTFLAG_POS1REV_Int: Combined position 1 and revolution count interrupt
- QEI_INTFLAG_POS2REV_Int: Combined position 2 and revolution count interrupt
* @return New State of specified interrupt flag status (SET or RESET)
**********************************************************************/
FlagStatus QEI_GetIntStatus(LPC_QEI_TypeDef *QEIx, uint32_t ulIntType)
{
CHECK_PARAM(PARAM_QEIx(QEIx));
CHECK_PARAM(PARAM_QEI_INTFLAG(ulIntType));
return((QEIx->QEIINTSTAT & ulIntType) ? SET : RESET);
}
/*********************************************************************//**
* @brief Enable/Disable specified interrupt in QEI peripheral
* @param[in] QEIx QEI peripheral, should be LPC_QEI
* @param[in] ulIntType Interrupt Flag Status type, should be:
* - QEI_INTFLAG_INX_Int: index pulse was detected interrupt
* - QEI_INTFLAG_TIM_Int: Velocity timer over flow interrupt
* - QEI_INTFLAG_VELC_Int: Capture velocity is less than compare interrupt
* - QEI_INTFLAG_DIR_Int: Change of direction interrupt
* - QEI_INTFLAG_ERR_Int: An encoder phase error interrupt
* - QEI_INTFLAG_ENCLK_Int: An encoder clock pulse was detected interrupt
* - QEI_INTFLAG_POS0_Int: position 0 compare value is equal to the
* current position interrupt
* - QEI_INTFLAG_POS1_Int: position 1 compare value is equal to the
* current position interrupt
* - QEI_INTFLAG_POS2_Int: position 2 compare value is equal to the
* current position interrupt
* - QEI_INTFLAG_REV_Int: Index compare value is equal to the current
* index count interrupt
* - QEI_INTFLAG_POS0REV_Int: Combined position 0 and revolution count interrupt
* - QEI_INTFLAG_POS1REV_Int: Combined position 1 and revolution count interrupt
* - QEI_INTFLAG_POS2REV_Int: Combined position 2 and revolution count interrupt
* @param[in] NewState New function state, should be:
* - DISABLE
* - ENABLE
* @return None
**********************************************************************/
void QEI_IntCmd(LPC_QEI_TypeDef *QEIx, uint32_t ulIntType, FunctionalState NewState)
{
CHECK_PARAM(PARAM_QEIx(QEIx));
CHECK_PARAM(PARAM_QEI_INTFLAG(ulIntType));
CHECK_PARAM(PARAM_FUNCTIONALSTATE(NewState));
if (NewState == ENABLE) {
QEIx->QEIIES = ulIntType;
} else {
QEIx->QEIIEC = ulIntType;
}
}
/*********************************************************************//**
* @brief Sets (forces) specified interrupt in QEI peripheral
* @param[in] QEIx QEI peripheral, should be LPC_QEI
* @param[in] ulIntType Interrupt Flag Status type, should be:
- QEI_INTFLAG_INX_Int: index pulse was detected interrupt
- QEI_INTFLAG_TIM_Int: Velocity timer over flow interrupt
- QEI_INTFLAG_VELC_Int: Capture velocity is less than compare interrupt
- QEI_INTFLAG_DIR_Int: Change of direction interrupt
- QEI_INTFLAG_ERR_Int: An encoder phase error interrupt
- QEI_INTFLAG_ENCLK_Int: An encoder clock pulse was detected interrupt
- QEI_INTFLAG_POS0_Int: position 0 compare value is equal to the
current position interrupt
- QEI_INTFLAG_POS1_Int: position 1 compare value is equal to the
current position interrupt
- QEI_INTFLAG_POS2_Int: position 2 compare value is equal to the
current position interrupt
- QEI_INTFLAG_REV_Int: Index compare value is equal to the current
index count interrupt
- QEI_INTFLAG_POS0REV_Int: Combined position 0 and revolution count interrupt
- QEI_INTFLAG_POS1REV_Int: Combined position 1 and revolution count interrupt
- QEI_INTFLAG_POS2REV_Int: Combined position 2 and revolution count interrupt
* @return None
**********************************************************************/
void QEI_IntSet(LPC_QEI_TypeDef *QEIx, uint32_t ulIntType)
{
CHECK_PARAM(PARAM_QEIx(QEIx));
CHECK_PARAM(PARAM_QEI_INTFLAG(ulIntType));
QEIx->QEISET = ulIntType;
}
/*********************************************************************//**
* @brief Clear (force) specified interrupt (pending) in QEI peripheral
* @param[in] QEIx QEI peripheral, should be LPC_QEI
* @param[in] ulIntType Interrupt Flag Status type, should be:
- QEI_INTFLAG_INX_Int: index pulse was detected interrupt
- QEI_INTFLAG_TIM_Int: Velocity timer over flow interrupt
- QEI_INTFLAG_VELC_Int: Capture velocity is less than compare interrupt
- QEI_INTFLAG_DIR_Int: Change of direction interrupt
- QEI_INTFLAG_ERR_Int: An encoder phase error interrupt
- QEI_INTFLAG_ENCLK_Int: An encoder clock pulse was detected interrupt
- QEI_INTFLAG_POS0_Int: position 0 compare value is equal to the
current position interrupt
- QEI_INTFLAG_POS1_Int: position 1 compare value is equal to the
current position interrupt
- QEI_INTFLAG_POS2_Int: position 2 compare value is equal to the
current position interrupt
- QEI_INTFLAG_REV_Int: Index compare value is equal to the current
index count interrupt
- QEI_INTFLAG_POS0REV_Int: Combined position 0 and revolution count interrupt
- QEI_INTFLAG_POS1REV_Int: Combined position 1 and revolution count interrupt
- QEI_INTFLAG_POS2REV_Int: Combined position 2 and revolution count interrupt
* @return None
**********************************************************************/
void QEI_IntClear(LPC_QEI_TypeDef *QEIx, uint32_t ulIntType)
{
CHECK_PARAM(PARAM_QEIx(QEIx));
CHECK_PARAM(PARAM_QEI_INTFLAG(ulIntType));
QEIx->QEICLR = ulIntType;
}
/*********************************************************************//**
* @brief Calculates the actual velocity in RPM passed via velocity
* capture value and Pulse Per Round (of the encoder) value
* parameter input.
* @param[in] QEIx QEI peripheral, should be LPC_QEI
* @param[in] ulVelCapValue Velocity capture input value that can
* be got from QEI_GetVelocityCap() function
* @param[in] ulPPR Pulse per round of encoder
* @return The actual value of velocity in RPM (Round per minute)
**********************************************************************/
uint32_t QEI_CalculateRPM(LPC_QEI_TypeDef *QEIx, uint32_t ulVelCapValue, uint32_t ulPPR)
{
uint64_t rpm, clock, Load, edges;
// Get current Clock rate for timer input
clock = (uint64_t)CLKPWR_GetPCLK(CLKPWR_PCLKSEL_QEI);
// Get Timer load value (velocity capture period)
Load = (uint64_t)(QEIx->QEILOAD + 1);
// Get Edge
edges = (uint64_t)((QEIx->QEICONF & QEI_CONF_CAPMODE) ? 4 : 2);
// Calculate RPM
rpm = ((clock * ulVelCapValue * 60) / (Load * ulPPR * edges));
return (uint32_t)(rpm);
}
/**
* @}
*/
#endif /* _QEI */
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */

View file

@ -1,199 +0,0 @@
/**********************************************************************
* $Id$ lpc17xx_rit.c 2010-05-21
*//**
* @file lpc17xx_rit.c
* @brief Contains all functions support for RIT firmware library on LPC17xx
* @version 2.0
* @date 21. May. 2010
* @author NXP MCU SW Application Team
*
* Copyright(C) 2010, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
/* Peripheral group ----------------------------------------------------------- */
/** @addtogroup RIT
* @{
*/
/* Includes ------------------------------------------------------------------- */
#include "lpc17xx_rit.h"
#include "lpc17xx_clkpwr.h"
/* If this source file built with example, the LPC17xx FW library configuration
* file in each example directory ("lpc17xx_libcfg.h") must be included,
* otherwise the default FW library configuration file must be included instead
*/
#ifdef __BUILD_WITH_EXAMPLE__
#include "lpc17xx_libcfg.h"
#else
#include "lpc17xx_libcfg_default.h"
#endif /* __BUILD_WITH_EXAMPLE__ */
#ifdef _RIT
/* Public Functions ----------------------------------------------------------- */
/** @addtogroup RIT_Public_Functions
* @{
*/
/******************************************************************************//*
* @brief Initial for RIT
* - Turn on power and clock
* - Setup default register values
* @param[in] RITx is RIT peripheral selected, should be: LPC_RIT
* @return None
*******************************************************************************/
void RIT_Init(LPC_RIT_TypeDef *RITx)
{
CHECK_PARAM(PARAM_RITx(RITx));
CLKPWR_ConfigPPWR (CLKPWR_PCONP_PCRIT, ENABLE);
//Set up default register values
RITx->RICOMPVAL = 0xFFFFFFFF;
RITx->RIMASK = 0x00000000;
RITx->RICTRL = 0x0C;
RITx->RICOUNTER = 0x00000000;
// Turn on power and clock
}
/******************************************************************************//*
* @brief DeInitial for RIT
* - Turn off power and clock
* - ReSetup default register values
* @param[in] RITx is RIT peripheral selected, should be: LPC_RIT
* @return None
*******************************************************************************/
void RIT_DeInit(LPC_RIT_TypeDef *RITx)
{
CHECK_PARAM(PARAM_RITx(RITx));
// Turn off power and clock
CLKPWR_ConfigPPWR (CLKPWR_PCONP_PCRIT, DISABLE);
//ReSetup default register values
RITx->RICOMPVAL = 0xFFFFFFFF;
RITx->RIMASK = 0x00000000;
RITx->RICTRL = 0x0C;
RITx->RICOUNTER = 0x00000000;
}
/******************************************************************************//*
* @brief Set compare value, mask value and time counter value
* @param[in] RITx is RIT peripheral selected, should be: LPC_RIT
* @param[in] time_interval: timer interval value (ms)
* @return None
*******************************************************************************/
void RIT_TimerConfig(LPC_RIT_TypeDef *RITx, uint32_t time_interval)
{
uint32_t clock_rate, cmp_value;
CHECK_PARAM(PARAM_RITx(RITx));
// Get PCLK value of RIT
clock_rate = CLKPWR_GetPCLK(CLKPWR_PCLKSEL_RIT);
/* calculate compare value for RIT to generate interrupt at
* specified time interval
* COMPVAL = (RIT_PCLK * time_interval)/1000
* (with time_interval unit is millisecond)
*/
cmp_value = (clock_rate /1000) * time_interval;
RITx->RICOMPVAL = cmp_value;
/* Set timer enable clear bit to clear timer to 0 whenever
* counter value equals the contents of RICOMPVAL
*/
RITx->RICTRL |= (1<<1);
}
/******************************************************************************//*
* @brief Enable/Disable Timer
* @param[in] RITx is RIT peripheral selected, should be: LPC_RIT
* @param[in] NewState New State of this function
* -ENABLE: Enable Timer
* -DISABLE: Disable Timer
* @return None
*******************************************************************************/
void RIT_Cmd(LPC_RIT_TypeDef *RITx, FunctionalState NewState)
{
CHECK_PARAM(PARAM_RITx(RITx));
CHECK_PARAM(PARAM_FUNCTIONALSTATE(NewState));
//Enable or Disable Timer
if(NewState==ENABLE)
{
RITx->RICTRL |= RIT_CTRL_TEN;
}
else
{
RITx->RICTRL &= ~RIT_CTRL_TEN;
}
}
/******************************************************************************//*
* @brief Timer Enable/Disable on debug
* @param[in] RITx is RIT peripheral selected, should be: LPC_RIT
* @param[in] NewState New State of this function
* -ENABLE: The timer is halted whenever a hardware break condition occurs
* -DISABLE: Hardware break has no effect on the timer operation
* @return None
*******************************************************************************/
void RIT_TimerDebugCmd(LPC_RIT_TypeDef *RITx, FunctionalState NewState)
{
CHECK_PARAM(PARAM_RITx(RITx));
CHECK_PARAM(PARAM_FUNCTIONALSTATE(NewState));
//Timer Enable/Disable on break
if(NewState==ENABLE)
{
RITx->RICTRL |= RIT_CTRL_ENBR;
}
else
{
RITx->RICTRL &= ~RIT_CTRL_ENBR;
}
}
/******************************************************************************//*
* @brief Check whether interrupt flag is set or not
* @param[in] RITx is RIT peripheral selected, should be: LPC_RIT
* @return Current interrupt status, could be: SET/RESET
*******************************************************************************/
IntStatus RIT_GetIntStatus(LPC_RIT_TypeDef *RITx)
{
IntStatus result;
CHECK_PARAM(PARAM_RITx(RITx));
if((RITx->RICTRL&RIT_CTRL_INTEN)==1) result= SET;
else return RESET;
//clear interrupt flag
RITx->RICTRL |= RIT_CTRL_INTEN;
return result;
}
/**
* @}
*/
#endif /* _RIT */
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */

View file

@ -1,783 +0,0 @@
/**********************************************************************
* $Id$ lpc17xx_rtc.c 2011-06-06
*//**
* @file lpc17xx_rtc.c
* @brief Contains all functions support for RTC firmware library on LPC17xx
* @version 3.1
* @date 6. June. 2011
* @author NXP MCU SW Application Team
*
* Copyright(C) 2011, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
/* Peripheral group ----------------------------------------------------------- */
/** @addtogroup RTC
* @{
*/
/* Includes ------------------------------------------------------------------- */
#include "lpc17xx_rtc.h"
#include "lpc17xx_clkpwr.h"
/* If this source file built with example, the LPC17xx FW library configuration
* file in each example directory ("lpc17xx_libcfg.h") must be included,
* otherwise the default FW library configuration file must be included instead
*/
#ifdef __BUILD_WITH_EXAMPLE__
#include "lpc17xx_libcfg.h"
#else
#include "lpc17xx_libcfg_default.h"
#endif /* __BUILD_WITH_EXAMPLE__ */
#ifdef _RTC
/* Public Functions ----------------------------------------------------------- */
/** @addtogroup RTC_Public_Functions
* @{
*/
/********************************************************************//**
* @brief Initializes the RTC peripheral.
* @param[in] RTCx RTC peripheral selected, should be LPC_RTC
* @return None
*********************************************************************/
void RTC_Init (LPC_RTC_TypeDef *RTCx)
{
CHECK_PARAM(PARAM_RTCx(RTCx));
/* Set up clock and power for RTC module */
CLKPWR_ConfigPPWR (CLKPWR_PCONP_PCRTC, ENABLE);
// Clear all register to be default
RTCx->ILR = 0x00;
RTCx->CCR = 0x00;
RTCx->CIIR = 0x00;
RTCx->AMR = 0xFF;
RTCx->CALIBRATION = 0x00;
}
/*********************************************************************//**
* @brief De-initializes the RTC peripheral registers to their
* default reset values.
* @param[in] RTCx RTC peripheral selected, should be LPC_RTC
* @return None
**********************************************************************/
void RTC_DeInit(LPC_RTC_TypeDef *RTCx)
{
CHECK_PARAM(PARAM_RTCx(RTCx));
RTCx->CCR = 0x00;
// Disable power and clock for RTC module
CLKPWR_ConfigPPWR (CLKPWR_PCONP_PCRTC, DISABLE);
}
/*********************************************************************//**
* @brief Reset clock tick counter in RTC peripheral
* @param[in] RTCx RTC peripheral selected, should be LPC_RTC
* @return None
**********************************************************************/
void RTC_ResetClockTickCounter(LPC_RTC_TypeDef *RTCx)
{
CHECK_PARAM(PARAM_RTCx(RTCx));
RTCx->CCR |= RTC_CCR_CTCRST;
RTCx->CCR &= (~RTC_CCR_CTCRST) & RTC_CCR_BITMASK;
}
/*********************************************************************//**
* @brief Start/Stop RTC peripheral
* @param[in] RTCx RTC peripheral selected, should be LPC_RTC
* @param[in] NewState New State of this function, should be:
* - ENABLE: The time counters are enabled
* - DISABLE: The time counters are disabled
* @return None
**********************************************************************/
void RTC_Cmd (LPC_RTC_TypeDef *RTCx, FunctionalState NewState)
{
CHECK_PARAM(PARAM_RTCx(RTCx));
CHECK_PARAM(PARAM_FUNCTIONALSTATE(NewState));
if (NewState == ENABLE)
{
RTCx->CCR |= RTC_CCR_CLKEN;
}
else
{
RTCx->CCR &= (~RTC_CCR_CLKEN) & RTC_CCR_BITMASK;
}
}
/*********************************************************************//**
* @brief Enable/Disable Counter increment interrupt for each time type
* in RTC peripheral
* @param[in] RTCx RTC peripheral selected, should be LPC_RTC
* @param[in] CntIncrIntType: Counter Increment Interrupt type,
* an increment of this type value below will generates
* an interrupt, should be:
* - RTC_TIMETYPE_SECOND
* - RTC_TIMETYPE_MINUTE
* - RTC_TIMETYPE_HOUR
* - RTC_TIMETYPE_DAYOFWEEK
* - RTC_TIMETYPE_DAYOFMONTH
* - RTC_TIMETYPE_DAYOFYEAR
* - RTC_TIMETYPE_MONTH
* - RTC_TIMETYPE_YEAR
* @param[in] NewState New State of this function, should be:
* - ENABLE: Counter Increment interrupt for this
* time type are enabled
* - DISABLE: Counter Increment interrupt for this
* time type are disabled
* @return None
**********************************************************************/
void RTC_CntIncrIntConfig (LPC_RTC_TypeDef *RTCx, uint32_t CntIncrIntType, \
FunctionalState NewState)
{
CHECK_PARAM(PARAM_RTCx(RTCx));
CHECK_PARAM(PARAM_FUNCTIONALSTATE(NewState));
CHECK_PARAM(PARAM_RTC_TIMETYPE(CntIncrIntType));
if (NewState == ENABLE)
{
switch (CntIncrIntType)
{
case RTC_TIMETYPE_SECOND:
RTCx->CIIR |= RTC_CIIR_IMSEC;
break;
case RTC_TIMETYPE_MINUTE:
RTCx->CIIR |= RTC_CIIR_IMMIN;
break;
case RTC_TIMETYPE_HOUR:
RTCx->CIIR |= RTC_CIIR_IMHOUR;
break;
case RTC_TIMETYPE_DAYOFWEEK:
RTCx->CIIR |= RTC_CIIR_IMDOW;
break;
case RTC_TIMETYPE_DAYOFMONTH:
RTCx->CIIR |= RTC_CIIR_IMDOM;
break;
case RTC_TIMETYPE_DAYOFYEAR:
RTCx->CIIR |= RTC_CIIR_IMDOY;
break;
case RTC_TIMETYPE_MONTH:
RTCx->CIIR |= RTC_CIIR_IMMON;
break;
case RTC_TIMETYPE_YEAR:
RTCx->CIIR |= RTC_CIIR_IMYEAR;
break;
}
}
else
{
switch (CntIncrIntType)
{
case RTC_TIMETYPE_SECOND:
RTCx->CIIR &= (~RTC_CIIR_IMSEC) & RTC_CIIR_BITMASK;
break;
case RTC_TIMETYPE_MINUTE:
RTCx->CIIR &= (~RTC_CIIR_IMMIN) & RTC_CIIR_BITMASK;
break;
case RTC_TIMETYPE_HOUR:
RTCx->CIIR &= (~RTC_CIIR_IMHOUR) & RTC_CIIR_BITMASK;
break;
case RTC_TIMETYPE_DAYOFWEEK:
RTCx->CIIR &= (~RTC_CIIR_IMDOW) & RTC_CIIR_BITMASK;
break;
case RTC_TIMETYPE_DAYOFMONTH:
RTCx->CIIR &= (~RTC_CIIR_IMDOM) & RTC_CIIR_BITMASK;
break;
case RTC_TIMETYPE_DAYOFYEAR:
RTCx->CIIR &= (~RTC_CIIR_IMDOY) & RTC_CIIR_BITMASK;
break;
case RTC_TIMETYPE_MONTH:
RTCx->CIIR &= (~RTC_CIIR_IMMON) & RTC_CIIR_BITMASK;
break;
case RTC_TIMETYPE_YEAR:
RTCx->CIIR &= (~RTC_CIIR_IMYEAR) & RTC_CIIR_BITMASK;
break;
}
}
}
/*********************************************************************//**
* @brief Enable/Disable Alarm interrupt for each time type
* in RTC peripheral
* @param[in] RTCx RTC peripheral selected, should be LPC_RTC
* @param[in] AlarmTimeType: Alarm Time Interrupt type,
* an matching of this type value below with current time
* in RTC will generates an interrupt, should be:
* - RTC_TIMETYPE_SECOND
* - RTC_TIMETYPE_MINUTE
* - RTC_TIMETYPE_HOUR
* - RTC_TIMETYPE_DAYOFWEEK
* - RTC_TIMETYPE_DAYOFMONTH
* - RTC_TIMETYPE_DAYOFYEAR
* - RTC_TIMETYPE_MONTH
* - RTC_TIMETYPE_YEAR
* @param[in] NewState New State of this function, should be:
* - ENABLE: Alarm interrupt for this
* time type are enabled
* - DISABLE: Alarm interrupt for this
* time type are disabled
* @return None
**********************************************************************/
void RTC_AlarmIntConfig (LPC_RTC_TypeDef *RTCx, uint32_t AlarmTimeType, \
FunctionalState NewState)
{
CHECK_PARAM(PARAM_RTCx(RTCx));
CHECK_PARAM(PARAM_FUNCTIONALSTATE(NewState));
CHECK_PARAM(PARAM_RTC_TIMETYPE(AlarmTimeType));
if (NewState == ENABLE)
{
switch (AlarmTimeType)
{
case RTC_TIMETYPE_SECOND:
RTCx->AMR &= (~RTC_AMR_AMRSEC) & RTC_AMR_BITMASK;
break;
case RTC_TIMETYPE_MINUTE:
RTCx->AMR &= (~RTC_AMR_AMRMIN) & RTC_AMR_BITMASK;
break;
case RTC_TIMETYPE_HOUR:
RTCx->AMR &= (~RTC_AMR_AMRHOUR) & RTC_AMR_BITMASK;
break;
case RTC_TIMETYPE_DAYOFWEEK:
RTCx->AMR &= (~RTC_AMR_AMRDOW) & RTC_AMR_BITMASK;
break;
case RTC_TIMETYPE_DAYOFMONTH:
RTCx->AMR &= (~RTC_AMR_AMRDOM) & RTC_AMR_BITMASK;
break;
case RTC_TIMETYPE_DAYOFYEAR:
RTCx->AMR &= (~RTC_AMR_AMRDOY) & RTC_AMR_BITMASK;
break;
case RTC_TIMETYPE_MONTH:
RTCx->AMR &= (~RTC_AMR_AMRMON) & RTC_AMR_BITMASK;
break;
case RTC_TIMETYPE_YEAR:
RTCx->AMR &= (~RTC_AMR_AMRYEAR) & RTC_AMR_BITMASK;
break;
}
}
else
{
switch (AlarmTimeType)
{
case RTC_TIMETYPE_SECOND:
RTCx->AMR |= (RTC_AMR_AMRSEC);
break;
case RTC_TIMETYPE_MINUTE:
RTCx->AMR |= (RTC_AMR_AMRMIN);
break;
case RTC_TIMETYPE_HOUR:
RTCx->AMR |= (RTC_AMR_AMRHOUR);
break;
case RTC_TIMETYPE_DAYOFWEEK:
RTCx->AMR |= (RTC_AMR_AMRDOW);
break;
case RTC_TIMETYPE_DAYOFMONTH:
RTCx->AMR |= (RTC_AMR_AMRDOM);
break;
case RTC_TIMETYPE_DAYOFYEAR:
RTCx->AMR |= (RTC_AMR_AMRDOY);
break;
case RTC_TIMETYPE_MONTH:
RTCx->AMR |= (RTC_AMR_AMRMON);
break;
case RTC_TIMETYPE_YEAR:
RTCx->AMR |= (RTC_AMR_AMRYEAR);
break;
}
}
}
/*********************************************************************//**
* @brief Set current time value for each time type in RTC peripheral
* @param[in] RTCx RTC peripheral selected, should be LPC_RTC
* @param[in] Timetype: Time Type, should be:
* - RTC_TIMETYPE_SECOND
* - RTC_TIMETYPE_MINUTE
* - RTC_TIMETYPE_HOUR
* - RTC_TIMETYPE_DAYOFWEEK
* - RTC_TIMETYPE_DAYOFMONTH
* - RTC_TIMETYPE_DAYOFYEAR
* - RTC_TIMETYPE_MONTH
* - RTC_TIMETYPE_YEAR
* @param[in] TimeValue Time value to set
* @return None
**********************************************************************/
void RTC_SetTime (LPC_RTC_TypeDef *RTCx, uint32_t Timetype, uint32_t TimeValue)
{
CHECK_PARAM(PARAM_RTCx(RTCx));
CHECK_PARAM(PARAM_RTC_TIMETYPE(Timetype));
switch ( Timetype)
{
case RTC_TIMETYPE_SECOND:
CHECK_PARAM(TimeValue <= RTC_SECOND_MAX);
RTCx->SEC = TimeValue & RTC_SEC_MASK;
break;
case RTC_TIMETYPE_MINUTE:
CHECK_PARAM(TimeValue <= RTC_MINUTE_MAX);
RTCx->MIN = TimeValue & RTC_MIN_MASK;
break;
case RTC_TIMETYPE_HOUR:
CHECK_PARAM(TimeValue <= RTC_HOUR_MAX);
RTCx->HOUR = TimeValue & RTC_HOUR_MASK;
break;
case RTC_TIMETYPE_DAYOFWEEK:
CHECK_PARAM(TimeValue <= RTC_DAYOFWEEK_MAX);
RTCx->DOW = TimeValue & RTC_DOW_MASK;
break;
case RTC_TIMETYPE_DAYOFMONTH:
CHECK_PARAM((TimeValue <= RTC_DAYOFMONTH_MAX) \
&& (TimeValue >= RTC_DAYOFMONTH_MIN));
RTCx->DOM = TimeValue & RTC_DOM_MASK;
break;
case RTC_TIMETYPE_DAYOFYEAR:
CHECK_PARAM((TimeValue >= RTC_DAYOFYEAR_MIN) \
&& (TimeValue <= RTC_DAYOFYEAR_MAX));
RTCx->DOY = TimeValue & RTC_DOY_MASK;
break;
case RTC_TIMETYPE_MONTH:
CHECK_PARAM((TimeValue >= RTC_MONTH_MIN) \
&& (TimeValue <= RTC_MONTH_MAX));
RTCx->MONTH = TimeValue & RTC_MONTH_MASK;
break;
case RTC_TIMETYPE_YEAR:
CHECK_PARAM(TimeValue <= RTC_YEAR_MAX);
RTCx->YEAR = TimeValue & RTC_YEAR_MASK;
break;
}
}
/*********************************************************************//**
* @brief Get current time value for each type time type
* @param[in] RTCx RTC peripheral selected, should be LPC_RTC
* @param[in] Timetype: Time Type, should be:
* - RTC_TIMETYPE_SECOND
* - RTC_TIMETYPE_MINUTE
* - RTC_TIMETYPE_HOUR
* - RTC_TIMETYPE_DAYOFWEEK
* - RTC_TIMETYPE_DAYOFMONTH
* - RTC_TIMETYPE_DAYOFYEAR
* - RTC_TIMETYPE_MONTH
* - RTC_TIMETYPE_YEAR
* @return Value of time according to specified time type
**********************************************************************/
uint32_t RTC_GetTime(LPC_RTC_TypeDef *RTCx, uint32_t Timetype)
{
CHECK_PARAM(PARAM_RTCx(RTCx));
CHECK_PARAM(PARAM_RTC_TIMETYPE(Timetype));
switch (Timetype)
{
case RTC_TIMETYPE_SECOND:
return (RTCx->SEC & RTC_SEC_MASK);
case RTC_TIMETYPE_MINUTE:
return (RTCx->MIN & RTC_MIN_MASK);
case RTC_TIMETYPE_HOUR:
return (RTCx->HOUR & RTC_HOUR_MASK);
case RTC_TIMETYPE_DAYOFWEEK:
return (RTCx->DOW & RTC_DOW_MASK);
case RTC_TIMETYPE_DAYOFMONTH:
return (RTCx->DOM & RTC_DOM_MASK);
case RTC_TIMETYPE_DAYOFYEAR:
return (RTCx->DOY & RTC_DOY_MASK);
case RTC_TIMETYPE_MONTH:
return (RTCx->MONTH & RTC_MONTH_MASK);
case RTC_TIMETYPE_YEAR:
return (RTCx->YEAR & RTC_YEAR_MASK);
default:
return (0);
}
}
/*********************************************************************//**
* @brief Set full of time in RTC peripheral
* @param[in] RTCx RTC peripheral selected, should be LPC_RTC
* @param[in] pFullTime Pointer to a RTC_TIME_Type structure that
* contains time value in full.
* @return None
**********************************************************************/
void RTC_SetFullTime (LPC_RTC_TypeDef *RTCx, RTC_TIME_Type *pFullTime)
{
CHECK_PARAM(PARAM_RTCx(RTCx));
RTCx->DOM = pFullTime->DOM & RTC_DOM_MASK;
RTCx->DOW = pFullTime->DOW & RTC_DOW_MASK;
RTCx->DOY = pFullTime->DOY & RTC_DOY_MASK;
RTCx->HOUR = pFullTime->HOUR & RTC_HOUR_MASK;
RTCx->MIN = pFullTime->MIN & RTC_MIN_MASK;
RTCx->SEC = pFullTime->SEC & RTC_SEC_MASK;
RTCx->MONTH = pFullTime->MONTH & RTC_MONTH_MASK;
RTCx->YEAR = pFullTime->YEAR & RTC_YEAR_MASK;
}
/*********************************************************************//**
* @brief Get full of time in RTC peripheral
* @param[in] RTCx RTC peripheral selected, should be LPC_RTC
* @param[in] pFullTime Pointer to a RTC_TIME_Type structure that
* will be stored time in full.
* @return None
**********************************************************************/
void RTC_GetFullTime (LPC_RTC_TypeDef *RTCx, RTC_TIME_Type *pFullTime)
{
CHECK_PARAM(PARAM_RTCx(RTCx));
pFullTime->DOM = RTCx->DOM & RTC_DOM_MASK;
pFullTime->DOW = RTCx->DOW & RTC_DOW_MASK;
pFullTime->DOY = RTCx->DOY & RTC_DOY_MASK;
pFullTime->HOUR = RTCx->HOUR & RTC_HOUR_MASK;
pFullTime->MIN = RTCx->MIN & RTC_MIN_MASK;
pFullTime->SEC = RTCx->SEC & RTC_SEC_MASK;
pFullTime->MONTH = RTCx->MONTH & RTC_MONTH_MASK;
pFullTime->YEAR = RTCx->YEAR & RTC_YEAR_MASK;
}
/*********************************************************************//**
* @brief Set alarm time value for each time type
* @param[in] RTCx RTC peripheral selected, should be LPC_RTC
* @param[in] Timetype: Time Type, should be:
* - RTC_TIMETYPE_SECOND
* - RTC_TIMETYPE_MINUTE
* - RTC_TIMETYPE_HOUR
* - RTC_TIMETYPE_DAYOFWEEK
* - RTC_TIMETYPE_DAYOFMONTH
* - RTC_TIMETYPE_DAYOFYEAR
* - RTC_TIMETYPE_MONTH
* - RTC_TIMETYPE_YEAR
* @param[in] ALValue Alarm time value to set
* @return None
**********************************************************************/
void RTC_SetAlarmTime (LPC_RTC_TypeDef *RTCx, uint32_t Timetype, uint32_t ALValue)
{
CHECK_PARAM(PARAM_RTCx(RTCx));
switch (Timetype)
{
case RTC_TIMETYPE_SECOND:
CHECK_PARAM(ALValue <= RTC_SECOND_MAX);
RTCx->ALSEC = ALValue & RTC_SEC_MASK;
break;
case RTC_TIMETYPE_MINUTE:
CHECK_PARAM(ALValue <= RTC_MINUTE_MAX);
RTCx->ALMIN = ALValue & RTC_MIN_MASK;
break;
case RTC_TIMETYPE_HOUR:
CHECK_PARAM(ALValue <= RTC_HOUR_MAX);
RTCx->ALHOUR = ALValue & RTC_HOUR_MASK;
break;
case RTC_TIMETYPE_DAYOFWEEK:
CHECK_PARAM(ALValue <= RTC_DAYOFWEEK_MAX);
RTCx->ALDOW = ALValue & RTC_DOW_MASK;
break;
case RTC_TIMETYPE_DAYOFMONTH:
CHECK_PARAM((ALValue <= RTC_DAYOFMONTH_MAX) \
&& (ALValue >= RTC_DAYOFMONTH_MIN));
RTCx->ALDOM = ALValue & RTC_DOM_MASK;
break;
case RTC_TIMETYPE_DAYOFYEAR:
CHECK_PARAM((ALValue >= RTC_DAYOFYEAR_MIN) \
&& (ALValue <= RTC_DAYOFYEAR_MAX));
RTCx->ALDOY = ALValue & RTC_DOY_MASK;
break;
case RTC_TIMETYPE_MONTH:
CHECK_PARAM((ALValue >= RTC_MONTH_MIN) \
&& (ALValue <= RTC_MONTH_MAX));
RTCx->ALMON = ALValue & RTC_MONTH_MASK;
break;
case RTC_TIMETYPE_YEAR:
CHECK_PARAM(ALValue <= RTC_YEAR_MAX);
RTCx->ALYEAR = ALValue & RTC_YEAR_MASK;
break;
}
}
/*********************************************************************//**
* @brief Get alarm time value for each time type
* @param[in] RTCx RTC peripheral selected, should be LPC_RTC
* @param[in] Timetype: Time Type, should be:
* - RTC_TIMETYPE_SECOND
* - RTC_TIMETYPE_MINUTE
* - RTC_TIMETYPE_HOUR
* - RTC_TIMETYPE_DAYOFWEEK
* - RTC_TIMETYPE_DAYOFMONTH
* - RTC_TIMETYPE_DAYOFYEAR
* - RTC_TIMETYPE_MONTH
* - RTC_TIMETYPE_YEAR
* @return Value of Alarm time according to specified time type
**********************************************************************/
uint32_t RTC_GetAlarmTime (LPC_RTC_TypeDef *RTCx, uint32_t Timetype)
{
switch (Timetype)
{
case RTC_TIMETYPE_SECOND:
return (RTCx->ALSEC & RTC_SEC_MASK);
case RTC_TIMETYPE_MINUTE:
return (RTCx->ALMIN & RTC_MIN_MASK);
case RTC_TIMETYPE_HOUR:
return (RTCx->ALHOUR & RTC_HOUR_MASK);
case RTC_TIMETYPE_DAYOFWEEK:
return (RTCx->ALDOW & RTC_DOW_MASK);
case RTC_TIMETYPE_DAYOFMONTH:
return (RTCx->ALDOM & RTC_DOM_MASK);
case RTC_TIMETYPE_DAYOFYEAR:
return (RTCx->ALDOY & RTC_DOY_MASK);
case RTC_TIMETYPE_MONTH:
return (RTCx->ALMON & RTC_MONTH_MASK);
case RTC_TIMETYPE_YEAR:
return (RTCx->ALYEAR & RTC_YEAR_MASK);
default:
return (0);
}
}
/*********************************************************************//**
* @brief Set full of alarm time in RTC peripheral
* @param[in] RTCx RTC peripheral selected, should be LPC_RTC
* @param[in] pFullTime Pointer to a RTC_TIME_Type structure that
* contains alarm time value in full.
* @return None
**********************************************************************/
void RTC_SetFullAlarmTime (LPC_RTC_TypeDef *RTCx, RTC_TIME_Type *pFullTime)
{
CHECK_PARAM(PARAM_RTCx(RTCx));
RTCx->ALDOM = pFullTime->DOM & RTC_DOM_MASK;
RTCx->ALDOW = pFullTime->DOW & RTC_DOW_MASK;
RTCx->ALDOY = pFullTime->DOY & RTC_DOY_MASK;
RTCx->ALHOUR = pFullTime->HOUR & RTC_HOUR_MASK;
RTCx->ALMIN = pFullTime->MIN & RTC_MIN_MASK;
RTCx->ALSEC = pFullTime->SEC & RTC_SEC_MASK;
RTCx->ALMON = pFullTime->MONTH & RTC_MONTH_MASK;
RTCx->ALYEAR = pFullTime->YEAR & RTC_YEAR_MASK;
}
/*********************************************************************//**
* @brief Get full of alarm time in RTC peripheral
* @param[in] RTCx RTC peripheral selected, should be LPC_RTC
* @param[in] pFullTime Pointer to a RTC_TIME_Type structure that
* will be stored alarm time in full.
* @return None
**********************************************************************/
void RTC_GetFullAlarmTime (LPC_RTC_TypeDef *RTCx, RTC_TIME_Type *pFullTime)
{
CHECK_PARAM(PARAM_RTCx(RTCx));
pFullTime->DOM = RTCx->ALDOM & RTC_DOM_MASK;
pFullTime->DOW = RTCx->ALDOW & RTC_DOW_MASK;
pFullTime->DOY = RTCx->ALDOY & RTC_DOY_MASK;
pFullTime->HOUR = RTCx->ALHOUR & RTC_HOUR_MASK;
pFullTime->MIN = RTCx->ALMIN & RTC_MIN_MASK;
pFullTime->SEC = RTCx->ALSEC & RTC_SEC_MASK;
pFullTime->MONTH = RTCx->ALMON & RTC_MONTH_MASK;
pFullTime->YEAR = RTCx->ALYEAR & RTC_YEAR_MASK;
}
/*********************************************************************//**
* @brief Check whether if specified Location interrupt in
* RTC peripheral is set or not
* @param[in] RTCx RTC peripheral selected, should be LPC_RTC
* @param[in] IntType Interrupt location type, should be:
* - RTC_INT_COUNTER_INCREASE: Counter Increment Interrupt
* block generated an interrupt.
* - RTC_INT_ALARM: Alarm generated an
* interrupt.
* @return New state of specified Location interrupt in RTC peripheral
* (SET or RESET)
**********************************************************************/
IntStatus RTC_GetIntPending (LPC_RTC_TypeDef *RTCx, uint32_t IntType)
{
CHECK_PARAM(PARAM_RTCx(RTCx));
CHECK_PARAM(PARAM_RTC_INT(IntType));
return ((RTCx->ILR & IntType) ? SET : RESET);
}
/*********************************************************************//**
* @brief Clear specified Location interrupt pending in
* RTC peripheral
* @param[in] RTCx RTC peripheral selected, should be LPC_RTC
* @param[in] IntType Interrupt location type, should be:
* - RTC_INT_COUNTER_INCREASE: Clear Counter Increment
* Interrupt pending.
* - RTC_INT_ALARM: Clear alarm interrupt pending
* @return None
**********************************************************************/
void RTC_ClearIntPending (LPC_RTC_TypeDef *RTCx, uint32_t IntType)
{
CHECK_PARAM(PARAM_RTCx(RTCx));
CHECK_PARAM(PARAM_RTC_INT(IntType));
RTCx->ILR |= IntType;
}
/*********************************************************************//**
* @brief Enable/Disable calibration counter in RTC peripheral
* @param[in] RTCx RTC peripheral selected, should be LPC_RTC
* @param[in] NewState New State of this function, should be:
* - ENABLE: The calibration counter is enabled and counting
* - DISABLE: The calibration counter is disabled and reset to zero
* @return None
**********************************************************************/
void RTC_CalibCounterCmd(LPC_RTC_TypeDef *RTCx, FunctionalState NewState)
{
CHECK_PARAM(PARAM_RTCx(RTCx));
CHECK_PARAM(PARAM_FUNCTIONALSTATE(NewState));
if (NewState == ENABLE)
{
RTCx->CCR &= (~RTC_CCR_CCALEN) & RTC_CCR_BITMASK;
}
else
{
RTCx->CCR |= RTC_CCR_CCALEN;
}
}
/*********************************************************************//**
* @brief Configures Calibration in RTC peripheral
* @param[in] RTCx RTC peripheral selected, should be LPC_RTC
* @param[in] CalibValue Calibration value, should be in range from
* 0 to 131,072
* @param[in] CalibDir Calibration Direction, should be:
* - RTC_CALIB_DIR_FORWARD: Forward calibration
* - RTC_CALIB_DIR_BACKWARD: Backward calibration
* @return None
**********************************************************************/
void RTC_CalibConfig(LPC_RTC_TypeDef *RTCx, uint32_t CalibValue, uint8_t CalibDir)
{
CHECK_PARAM(PARAM_RTCx(RTCx));
CHECK_PARAM(PARAM_RTC_CALIB_DIR(CalibDir));
CHECK_PARAM(CalibValue < RTC_CALIBRATION_MAX);
RTCx->CALIBRATION = ((CalibValue) & RTC_CALIBRATION_CALVAL_MASK) \
| ((CalibDir == RTC_CALIB_DIR_BACKWARD) ? RTC_CALIBRATION_LIBDIR : 0);
}
/*********************************************************************//**
* @brief Write value to General purpose registers
* @param[in] RTCx RTC peripheral selected, should be LPC_RTC
* @param[in] Channel General purpose registers Channel number,
* should be in range from 0 to 4.
* @param[in] Value Value to write
* @return None
* Note: These General purpose registers can be used to store important
* information when the main power supply is off. The value in these
* registers is not affected by chip reset.
**********************************************************************/
void RTC_WriteGPREG (LPC_RTC_TypeDef *RTCx, uint8_t Channel, uint32_t Value)
{
uint32_t *preg;
CHECK_PARAM(PARAM_RTCx(RTCx));
CHECK_PARAM(PARAM_RTC_GPREG_CH(Channel));
preg = (uint32_t *)&RTCx->GPREG0;
preg += Channel;
*preg = Value;
}
/*********************************************************************//**
* @brief Read value from General purpose registers
* @param[in] RTCx RTC peripheral selected, should be LPC_RTC
* @param[in] Channel General purpose registers Channel number,
* should be in range from 0 to 4.
* @return Read Value
* Note: These General purpose registers can be used to store important
* information when the main power supply is off. The value in these
* registers is not affected by chip reset.
**********************************************************************/
uint32_t RTC_ReadGPREG (LPC_RTC_TypeDef *RTCx, uint8_t Channel)
{
uint32_t *preg;
uint32_t value;
CHECK_PARAM(PARAM_RTCx(RTCx));
CHECK_PARAM(PARAM_RTC_GPREG_CH(Channel));
preg = (uint32_t *)&RTCx->GPREG0;
preg += Channel;
value = *preg;
return (value);
}
/**
* @}
*/
#endif /* _RTC */
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */

View file

@ -1,443 +0,0 @@
/**********************************************************************
* $Id$ lpc17xx_spi.c 2010-05-21
*//**
* @file lpc17xx_spi.c
* @brief Contains all functions support for SPI firmware library on LPC17xx
* @version 2.0
* @date 21. May. 2010
* @author NXP MCU SW Application Team
*
* Copyright(C) 2010, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
/* Peripheral group ----------------------------------------------------------- */
/** @addtogroup SPI
* @{
*/
/* Includes ------------------------------------------------------------------- */
#include "lpc17xx_spi.h"
#include "lpc17xx_clkpwr.h"
/* If this source file built with example, the LPC17xx FW library configuration
* file in each example directory ("lpc17xx_libcfg.h") must be included,
* otherwise the default FW library configuration file must be included instead
*/
#ifdef __BUILD_WITH_EXAMPLE__
#include "lpc17xx_libcfg.h"
#else
#include "lpc17xx_libcfg_default.h"
#endif /* __BUILD_WITH_EXAMPLE__ */
#ifdef _SPI
/* Public Functions ----------------------------------------------------------- */
/** @addtogroup SPI_Public_Functions
* @{
*/
/*********************************************************************//**
* @brief Setup clock rate for SPI device
* @param[in] SPIx SPI peripheral definition, should be LPC_SPI
* @param[in] target_clock : clock of SPI (Hz)
* @return None
***********************************************************************/
void SPI_SetClock (LPC_SPI_TypeDef *SPIx, uint32_t target_clock)
{
uint32_t spi_pclk;
uint32_t prescale, temp;
CHECK_PARAM(PARAM_SPIx(SPIx));
if (SPIx == LPC_SPI){
spi_pclk = CLKPWR_GetPCLK (CLKPWR_PCLKSEL_SPI);
} else {
return;
}
prescale = 8;
// Find closest clock to target clock
while (1){
temp = target_clock * prescale;
if (temp >= spi_pclk){
break;
}
prescale += 2;
if(prescale >= 254){
break;
}
}
// Write to register
SPIx->SPCCR = SPI_SPCCR_COUNTER(prescale);
}
/*********************************************************************//**
* @brief De-initializes the SPIx peripheral registers to their
* default reset values.
* @param[in] SPIx SPI peripheral selected, should be LPC_SPI
* @return None
**********************************************************************/
void SPI_DeInit(LPC_SPI_TypeDef *SPIx)
{
CHECK_PARAM(PARAM_SPIx(SPIx));
if (SPIx == LPC_SPI){
/* Set up clock and power for SPI module */
CLKPWR_ConfigPPWR (CLKPWR_PCONP_PCSPI, DISABLE);
}
}
/*********************************************************************//**
* @brief Get data bit size per transfer
* @param[in] SPIx SPI peripheral selected, should be LPC_SPI
* @return number of bit per transfer, could be 8-16
**********************************************************************/
uint8_t SPI_GetDataSize (LPC_SPI_TypeDef *SPIx)
{
CHECK_PARAM(PARAM_SPIx(SPIx));
return ((SPIx->SPCR)>>8 & 0xF);
}
/********************************************************************//**
* @brief Initializes the SPIx peripheral according to the specified
* parameters in the UART_ConfigStruct.
* @param[in] SPIx SPI peripheral selected, should be LPC_SPI
* @param[in] SPI_ConfigStruct Pointer to a SPI_CFG_Type structure
* that contains the configuration information for the
* specified SPI peripheral.
* @return None
*********************************************************************/
void SPI_Init(LPC_SPI_TypeDef *SPIx, SPI_CFG_Type *SPI_ConfigStruct)
{
uint32_t tmp;
CHECK_PARAM(PARAM_SPIx(SPIx));
if(SPIx == LPC_SPI){
/* Set up clock and power for UART module */
CLKPWR_ConfigPPWR (CLKPWR_PCONP_PCSPI, ENABLE);
} else {
return;
}
// Configure SPI, interrupt is disable as default
tmp = ((SPI_ConfigStruct->CPHA) | (SPI_ConfigStruct->CPOL) \
| (SPI_ConfigStruct->DataOrder) | (SPI_ConfigStruct->Databit) \
| (SPI_ConfigStruct->Mode) | SPI_SPCR_BIT_EN) & SPI_SPCR_BITMASK;
// write back to SPI control register
SPIx->SPCR = tmp;
// Set clock rate for SPI peripheral
SPI_SetClock(SPIx, SPI_ConfigStruct->ClockRate);
// If interrupt flag is set, Write '1' to Clear interrupt flag
if (SPIx->SPINT & SPI_SPINT_INTFLAG){
SPIx->SPINT = SPI_SPINT_INTFLAG;
}
}
/*****************************************************************************//**
* @brief Fills each SPI_InitStruct member with its default value:
* - CPHA = SPI_CPHA_FIRST
* - CPOL = SPI_CPOL_HI
* - ClockRate = 1000000
* - DataOrder = SPI_DATA_MSB_FIRST
* - Databit = SPI_DATABIT_8
* - Mode = SPI_MASTER_MODE
* @param[in] SPI_InitStruct Pointer to a SPI_CFG_Type structure
* which will be initialized.
* @return None
*******************************************************************************/
void SPI_ConfigStructInit(SPI_CFG_Type *SPI_InitStruct)
{
SPI_InitStruct->CPHA = SPI_CPHA_FIRST;
SPI_InitStruct->CPOL = SPI_CPOL_HI;
SPI_InitStruct->ClockRate = 1000000;
SPI_InitStruct->DataOrder = SPI_DATA_MSB_FIRST;
SPI_InitStruct->Databit = SPI_DATABIT_8;
SPI_InitStruct->Mode = SPI_MASTER_MODE;
}
/*********************************************************************//**
* @brief Transmit a single data through SPIx peripheral
* @param[in] SPIx SPI peripheral selected, should be LPC_SPI
* @param[in] Data Data to transmit (must be 16 or 8-bit long,
* this depend on SPI data bit number configured)
* @return none
**********************************************************************/
void SPI_SendData(LPC_SPI_TypeDef* SPIx, uint16_t Data)
{
CHECK_PARAM(PARAM_SPIx(SPIx));
SPIx->SPDR = Data & SPI_SPDR_BITMASK;
}
/*********************************************************************//**
* @brief Receive a single data from SPIx peripheral
* @param[in] SPIx SPI peripheral selected, should be LPC_SPI
* @return Data received (16-bit long)
**********************************************************************/
uint16_t SPI_ReceiveData(LPC_SPI_TypeDef* SPIx)
{
CHECK_PARAM(PARAM_SPIx(SPIx));
return ((uint16_t) (SPIx->SPDR & SPI_SPDR_BITMASK));
}
/*********************************************************************//**
* @brief SPI Read write data function
* @param[in] SPIx Pointer to SPI peripheral, should be LPC_SPI
* @param[in] dataCfg Pointer to a SPI_DATA_SETUP_Type structure that
* contains specified information about transmit
* data configuration.
* @param[in] xfType Transfer type, should be:
* - SPI_TRANSFER_POLLING: Polling mode
* - SPI_TRANSFER_INTERRUPT: Interrupt mode
* @return Actual Data length has been transferred in polling mode.
* In interrupt mode, always return (0)
* Return (-1) if error.
* Note: This function can be used in both master and slave mode.
***********************************************************************/
int32_t SPI_ReadWrite (LPC_SPI_TypeDef *SPIx, SPI_DATA_SETUP_Type *dataCfg, \
SPI_TRANSFER_Type xfType)
{
uint8_t *rdata8;
uint8_t *wdata8;
uint16_t *rdata16;
uint16_t *wdata16;
uint32_t stat;
uint32_t temp;
uint8_t dataword;
//read for empty buffer
temp = SPIx->SPDR;
//dummy to clear status
temp = SPIx->SPSR;
dataCfg->counter = 0;
dataCfg->status = 0;
if(SPI_GetDataSize (SPIx) == 8)
dataword = 0;
else dataword = 1;
if (xfType == SPI_TRANSFER_POLLING){
if (dataword == 0){
rdata8 = (uint8_t *)dataCfg->rx_data;
wdata8 = (uint8_t *)dataCfg->tx_data;
} else {
rdata16 = (uint16_t *)dataCfg->rx_data;
wdata16 = (uint16_t *)dataCfg->tx_data;
}
while(dataCfg->counter < dataCfg->length)
{
// Write data to buffer
if(dataCfg->tx_data == NULL){
if (dataword == 0){
SPI_SendData(SPIx, 0xFF);
} else {
SPI_SendData(SPIx, 0xFFFF);
}
} else {
if (dataword == 0){
SPI_SendData(SPIx, *wdata8);
wdata8++;
} else {
SPI_SendData(SPIx, *wdata16);
wdata16++;
}
}
// Wait for transfer complete
while (!((stat = SPIx->SPSR) & SPI_SPSR_SPIF));
// Check for error
if (stat & (SPI_SPSR_ABRT | SPI_SPSR_MODF | SPI_SPSR_ROVR | SPI_SPSR_WCOL)){
// save status
dataCfg->status = stat | SPI_STAT_ERROR;
return (dataCfg->counter);
}
// Read data from SPI dat
temp = (uint32_t) SPI_ReceiveData(SPIx);
// Store data to destination
if (dataCfg->rx_data != NULL)
{
if (dataword == 0){
*(rdata8) = (uint8_t) temp;
rdata8++;
} else {
*(rdata16) = (uint16_t) temp;
rdata16++;
}
}
// Increase counter
if (dataword == 0){
dataCfg->counter++;
} else {
dataCfg->counter += 2;
}
}
// Return length of actual data transferred
// save status
dataCfg->status = stat | SPI_STAT_DONE;
return (dataCfg->counter);
}
// Interrupt mode
else {
// Check if interrupt flag is already set
if(SPIx->SPINT & SPI_SPINT_INTFLAG){
SPIx->SPINT = SPI_SPINT_INTFLAG;
}
if (dataCfg->counter < dataCfg->length){
// Write data to buffer
if(dataCfg->tx_data == NULL){
if (dataword == 0){
SPI_SendData(SPIx, 0xFF);
} else {
SPI_SendData(SPIx, 0xFFFF);
}
} else {
if (dataword == 0){
SPI_SendData(SPIx, (*(uint8_t *)dataCfg->tx_data));
} else {
SPI_SendData(SPIx, (*(uint16_t *)dataCfg->tx_data));
}
}
SPI_IntCmd(SPIx, ENABLE);
} else {
// Save status
dataCfg->status = SPI_STAT_DONE;
}
return (0);
}
}
/********************************************************************//**
* @brief Enable or disable SPIx interrupt.
* @param[in] SPIx SPI peripheral selected, should be LPC_SPI
* @param[in] NewState New state of specified UART interrupt type,
* should be:
* - ENALBE: Enable this SPI interrupt.
* - DISALBE: Disable this SPI interrupt.
* @return None
*********************************************************************/
void SPI_IntCmd(LPC_SPI_TypeDef *SPIx, FunctionalState NewState)
{
CHECK_PARAM(PARAM_SPIx(SPIx));
CHECK_PARAM(PARAM_FUNCTIONALSTATE(NewState));
if (NewState == ENABLE)
{
SPIx->SPCR |= SPI_SPCR_SPIE;
}
else
{
SPIx->SPCR &= (~SPI_SPCR_SPIE) & SPI_SPCR_BITMASK;
}
}
/********************************************************************//**
* @brief Checks whether the SPI interrupt flag is set or not.
* @param[in] SPIx SPI peripheral selected, should be LPC_SPI
* @return The new state of SPI Interrupt Flag (SET or RESET)
*********************************************************************/
IntStatus SPI_GetIntStatus (LPC_SPI_TypeDef *SPIx)
{
CHECK_PARAM(PARAM_SPIx(SPIx));
return ((SPIx->SPINT & SPI_SPINT_INTFLAG) ? SET : RESET);
}
/********************************************************************//**
* @brief Clear SPI interrupt flag.
* @param[in] SPIx SPI peripheral selected, should be LPC_SPI
* @return None
*********************************************************************/
void SPI_ClearIntPending(LPC_SPI_TypeDef *SPIx)
{
CHECK_PARAM(PARAM_SPIx(SPIx));
SPIx->SPINT = SPI_SPINT_INTFLAG;
}
/********************************************************************//**
* @brief Get current value of SPI Status register in SPIx peripheral.
* @param[in] SPIx SPI peripheral selected, should be LPC_SPI
* @return Current value of SPI Status register in SPI peripheral.
* Note: The return value of this function must be used with
* SPI_CheckStatus() to determine current flag status
* corresponding to each SPI status type. Because some flags in
* SPI Status register will be cleared after reading, the next reading
* SPI Status register could not be correct. So this function used to
* read SPI status register in one time only, then the return value
* used to check all flags.
*********************************************************************/
uint32_t SPI_GetStatus(LPC_SPI_TypeDef* SPIx)
{
CHECK_PARAM(PARAM_SPIx(SPIx));
return (SPIx->SPSR & SPI_SPSR_BITMASK);
}
/********************************************************************//**
* @brief Checks whether the specified SPI Status flag is set or not
* via inputSPIStatus parameter.
* @param[in] inputSPIStatus Value to check status of each flag type.
* This value is the return value from SPI_GetStatus().
* @param[in] SPIStatus Specifies the SPI status flag to check,
* should be one of the following:
- SPI_STAT_ABRT: Slave abort.
- SPI_STAT_MODF: Mode fault.
- SPI_STAT_ROVR: Read overrun.
- SPI_STAT_WCOL: Write collision.
- SPI_STAT_SPIF: SPI transfer complete.
* @return The new state of SPIStatus (SET or RESET)
*********************************************************************/
FlagStatus SPI_CheckStatus (uint32_t inputSPIStatus, uint8_t SPIStatus)
{
CHECK_PARAM(PARAM_SPI_STAT(SPIStatus));
return ((inputSPIStatus & SPIStatus) ? SET : RESET);
}
/**
* @}
*/
#endif /* _SPI */
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */

View file

@ -1,694 +0,0 @@
/**********************************************************************
* $Id$ lpc17xx_ssp.c 2010-06-18
*//**
* @file lpc17xx_ssp.c
* @brief Contains all functions support for SSP firmware library on LPC17xx
* @version 3.0
* @date 18. June. 2010
* @author NXP MCU SW Application Team
*
* Copyright(C) 2010, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
/* Peripheral group ----------------------------------------------------------- */
/** @addtogroup SSP
* @{
*/
/* Includes ------------------------------------------------------------------- */
#include "lpc17xx_ssp.h"
#include "lpc17xx_clkpwr.h"
/* If this source file built with example, the LPC17xx FW library configuration
* file in each example directory ("lpc17xx_libcfg.h") must be included,
* otherwise the default FW library configuration file must be included instead
*/
#ifdef __BUILD_WITH_EXAMPLE__
#include "lpc17xx_libcfg.h"
#else
#include "lpc17xx_libcfg_default.h"
#endif /* __BUILD_WITH_EXAMPLE__ */
#ifdef _SSP
/* Public Functions ----------------------------------------------------------- */
/** @addtogroup SSP_Public_Functions
* @{
*/
static void setSSPclock (LPC_SSP_TypeDef *SSPx, uint32_t target_clock);
/*********************************************************************//**
* @brief Setup clock rate for SSP device
* @param[in] SSPx SSP peripheral definition, should be:
* - LPC_SSP0: SSP0 peripheral
* - LPC_SSP1: SSP1 peripheral
* @param[in] target_clock : clock of SSP (Hz)
* @return None
***********************************************************************/
static void setSSPclock (LPC_SSP_TypeDef *SSPx, uint32_t target_clock)
{
uint32_t prescale, cr0_div, cmp_clk, ssp_clk;
CHECK_PARAM(PARAM_SSPx(SSPx));
/* The SSP clock is derived from the (main system oscillator / 2),
so compute the best divider from that clock */
if (SSPx == LPC_SSP0){
ssp_clk = CLKPWR_GetPCLK (CLKPWR_PCLKSEL_SSP0);
} else if (SSPx == LPC_SSP1) {
ssp_clk = CLKPWR_GetPCLK (CLKPWR_PCLKSEL_SSP1);
} else {
return;
}
/* Find closest divider to get at or under the target frequency.
Use smallest prescale possible and rely on the divider to get
the closest target frequency */
cr0_div = 0;
cmp_clk = 0xFFFFFFFF;
prescale = 2;
while (cmp_clk > target_clock)
{
cmp_clk = ssp_clk / ((cr0_div + 1) * prescale);
if (cmp_clk > target_clock)
{
cr0_div++;
if (cr0_div > 0xFF)
{
cr0_div = 0;
prescale += 2;
}
}
}
/* Write computed prescaler and divider back to register */
SSPx->CR0 &= (~SSP_CR0_SCR(0xFF)) & SSP_CR0_BITMASK;
SSPx->CR0 |= (SSP_CR0_SCR(cr0_div)) & SSP_CR0_BITMASK;
SSPx->CPSR = prescale & SSP_CPSR_BITMASK;
}
/**
* @}
*/
/* Public Functions ----------------------------------------------------------- */
/** @addtogroup SSP_Public_Functions
* @{
*/
/********************************************************************//**
* @brief Initializes the SSPx peripheral according to the specified
* parameters in the SSP_ConfigStruct.
* @param[in] SSPx SSP peripheral selected, should be:
* - LPC_SSP0: SSP0 peripheral
* - LPC_SSP1: SSP1 peripheral
* @param[in] SSP_ConfigStruct Pointer to a SSP_CFG_Type structure
* that contains the configuration information for the
* specified SSP peripheral.
* @return None
*********************************************************************/
void SSP_Init(LPC_SSP_TypeDef *SSPx, SSP_CFG_Type *SSP_ConfigStruct)
{
uint32_t tmp;
CHECK_PARAM(PARAM_SSPx(SSPx));
if(SSPx == LPC_SSP0) {
/* Set up clock and power for SSP0 module */
CLKPWR_ConfigPPWR (CLKPWR_PCONP_PCSSP0, ENABLE);
} else if(SSPx == LPC_SSP1) {
/* Set up clock and power for SSP1 module */
CLKPWR_ConfigPPWR (CLKPWR_PCONP_PCSSP1, ENABLE);
} else {
return;
}
/* Configure SSP, interrupt is disable, LoopBack mode is disable,
* SSP is disable, Slave output is disable as default
*/
tmp = ((SSP_ConfigStruct->CPHA) | (SSP_ConfigStruct->CPOL) \
| (SSP_ConfigStruct->FrameFormat) | (SSP_ConfigStruct->Databit))
& SSP_CR0_BITMASK;
// write back to SSP control register
SSPx->CR0 = tmp;
tmp = SSP_ConfigStruct->Mode & SSP_CR1_BITMASK;
// Write back to CR1
SSPx->CR1 = tmp;
// Set clock rate for SSP peripheral
setSSPclock(SSPx, SSP_ConfigStruct->ClockRate);
}
/*********************************************************************//**
* @brief De-initializes the SSPx peripheral registers to their
* default reset values.
* @param[in] SSPx SSP peripheral selected, should be:
* - LPC_SSP0: SSP0 peripheral
* - LPC_SSP1: SSP1 peripheral
* @return None
**********************************************************************/
void SSP_DeInit(LPC_SSP_TypeDef* SSPx)
{
CHECK_PARAM(PARAM_SSPx(SSPx));
if (SSPx == LPC_SSP0){
/* Set up clock and power for SSP0 module */
CLKPWR_ConfigPPWR (CLKPWR_PCONP_PCSSP0, DISABLE);
} else if (SSPx == LPC_SSP1) {
/* Set up clock and power for SSP1 module */
CLKPWR_ConfigPPWR (CLKPWR_PCONP_PCSSP1, DISABLE);
}
}
/*****************************************************************************//**
* @brief Get data size bit selected
* @param[in] SSPx pointer to LPC_SSP_TypeDef structure, should be:
* - LPC_SSP0: SSP0 peripheral
* - LPC_SSP1: SSP1 peripheral
* @return Data size, could be:
* - SSP_DATABIT_4: 4 bit transfer
* - SSP_DATABIT_5: 5 bit transfer
* ...
* - SSP_DATABIT_16: 16 bit transfer
*******************************************************************************/
uint8_t SSP_GetDataSize(LPC_SSP_TypeDef* SSPx)
{
CHECK_PARAM(PARAM_SSPx(SSPx));
return (SSPx->CR0 & (0xF));
}
/*****************************************************************************//**
* @brief Fills each SSP_InitStruct member with its default value:
* - CPHA = SSP_CPHA_FIRST
* - CPOL = SSP_CPOL_HI
* - ClockRate = 1000000
* - Databit = SSP_DATABIT_8
* - Mode = SSP_MASTER_MODE
* - FrameFormat = SSP_FRAME_SSP
* @param[in] SSP_InitStruct Pointer to a SSP_CFG_Type structure
* which will be initialized.
* @return None
*******************************************************************************/
void SSP_ConfigStructInit(SSP_CFG_Type *SSP_InitStruct)
{
SSP_InitStruct->CPHA = SSP_CPHA_FIRST;
SSP_InitStruct->CPOL = SSP_CPOL_HI;
SSP_InitStruct->ClockRate = 1000000;
SSP_InitStruct->Databit = SSP_DATABIT_8;
SSP_InitStruct->Mode = SSP_MASTER_MODE;
SSP_InitStruct->FrameFormat = SSP_FRAME_SPI;
}
/*********************************************************************//**
* @brief Enable or disable SSP peripheral's operation
* @param[in] SSPx SSP peripheral, should be:
* - LPC_SSP0: SSP0 peripheral
* - LPC_SSP1: SSP1 peripheral
* @param[in] NewState New State of SSPx peripheral's operation
* @return none
**********************************************************************/
void SSP_Cmd(LPC_SSP_TypeDef* SSPx, FunctionalState NewState)
{
CHECK_PARAM(PARAM_SSPx(SSPx));
CHECK_PARAM(PARAM_FUNCTIONALSTATE(NewState));
if (NewState == ENABLE)
{
SSPx->CR1 |= SSP_CR1_SSP_EN;
}
else
{
SSPx->CR1 &= (~SSP_CR1_SSP_EN) & SSP_CR1_BITMASK;
}
}
/*********************************************************************//**
* @brief Enable or disable Loop Back mode function in SSP peripheral
* @param[in] SSPx SSP peripheral selected, should be:
* - LPC_SSP0: SSP0 peripheral
* - LPC_SSP1: SSP1 peripheral
* @param[in] NewState New State of Loop Back mode, should be:
* - ENABLE: Enable this function
* - DISABLE: Disable this function
* @return None
**********************************************************************/
void SSP_LoopBackCmd(LPC_SSP_TypeDef* SSPx, FunctionalState NewState)
{
CHECK_PARAM(PARAM_SSPx(SSPx));
CHECK_PARAM(PARAM_FUNCTIONALSTATE(NewState));
if (NewState == ENABLE)
{
SSPx->CR1 |= SSP_CR1_LBM_EN;
}
else
{
SSPx->CR1 &= (~SSP_CR1_LBM_EN) & SSP_CR1_BITMASK;
}
}
/*********************************************************************//**
* @brief Enable or disable Slave Output function in SSP peripheral
* @param[in] SSPx SSP peripheral selected, should be:
* - LPC_SSP0: SSP0 peripheral
* - LPC_SSP1: SSP1 peripheral
* @param[in] NewState New State of Slave Output function, should be:
* - ENABLE: Slave Output in normal operation
* - DISABLE: Slave Output is disabled. This blocks
* SSP controller from driving the transmit data
* line (MISO)
* Note: This function is available when SSP peripheral in Slave mode
* @return None
**********************************************************************/
void SSP_SlaveOutputCmd(LPC_SSP_TypeDef* SSPx, FunctionalState NewState)
{
CHECK_PARAM(PARAM_SSPx(SSPx));
CHECK_PARAM(PARAM_FUNCTIONALSTATE(NewState));
if (NewState == ENABLE)
{
SSPx->CR1 &= (~SSP_CR1_SO_DISABLE) & SSP_CR1_BITMASK;
}
else
{
SSPx->CR1 |= SSP_CR1_SO_DISABLE;
}
}
/*********************************************************************//**
* @brief Transmit a single data through SSPx peripheral
* @param[in] SSPx SSP peripheral selected, should be:
* - LPC_SSP0: SSP0 peripheral
* - LPC_SSP1: SSP1 peripheral
* @param[in] Data Data to transmit (must be 16 or 8-bit long,
* this depend on SSP data bit number configured)
* @return none
**********************************************************************/
void SSP_SendData(LPC_SSP_TypeDef* SSPx, uint16_t Data)
{
CHECK_PARAM(PARAM_SSPx(SSPx));
SSPx->DR = SSP_DR_BITMASK(Data);
}
/*********************************************************************//**
* @brief Receive a single data from SSPx peripheral
* @param[in] SSPx SSP peripheral selected, should be
* - LPC_SSP0: SSP0 peripheral
* - LPC_SSP1: SSP1 peripheral
* @return Data received (16-bit long)
**********************************************************************/
uint16_t SSP_ReceiveData(LPC_SSP_TypeDef* SSPx)
{
CHECK_PARAM(PARAM_SSPx(SSPx));
return ((uint16_t) (SSP_DR_BITMASK(SSPx->DR)));
}
/*********************************************************************//**
* @brief SSP Read write data function
* @param[in] SSPx Pointer to SSP peripheral, should be
* - LPC_SSP0: SSP0 peripheral
* - LPC_SSP1: SSP1 peripheral
* @param[in] dataCfg Pointer to a SSP_DATA_SETUP_Type structure that
* contains specified information about transmit
* data configuration.
* @param[in] xfType Transfer type, should be:
* - SSP_TRANSFER_POLLING: Polling mode
* - SSP_TRANSFER_INTERRUPT: Interrupt mode
* @return Actual Data length has been transferred in polling mode.
* In interrupt mode, always return (0)
* Return (-1) if error.
* Note: This function can be used in both master and slave mode.
***********************************************************************/
int32_t SSP_ReadWrite (LPC_SSP_TypeDef *SSPx, SSP_DATA_SETUP_Type *dataCfg, \
SSP_TRANSFER_Type xfType)
{
uint8_t *rdata8;
uint8_t *wdata8;
uint16_t *rdata16;
uint16_t *wdata16;
uint32_t stat;
uint32_t tmp;
int32_t dataword;
dataCfg->rx_cnt = 0;
dataCfg->tx_cnt = 0;
dataCfg->status = 0;
/* Clear all remaining data in RX FIFO */
while (SSPx->SR & SSP_SR_RNE){
tmp = (uint32_t) SSP_ReceiveData(SSPx);
}
// Clear status
SSPx->ICR = SSP_ICR_BITMASK;
if(SSP_GetDataSize(SSPx)>SSP_DATABIT_8)
dataword = 1;
else dataword = 0;
// Polling mode ----------------------------------------------------------------------
if (xfType == SSP_TRANSFER_POLLING){
if (dataword == 0){
rdata8 = (uint8_t *)dataCfg->rx_data;
wdata8 = (uint8_t *)dataCfg->tx_data;
} else {
rdata16 = (uint16_t *)dataCfg->rx_data;
wdata16 = (uint16_t *)dataCfg->tx_data;
}
while ((dataCfg->tx_cnt < dataCfg->length) || (dataCfg->rx_cnt < dataCfg->length)){
if ((SSPx->SR & SSP_SR_TNF) && (dataCfg->tx_cnt < dataCfg->length)){
// Write data to buffer
if(dataCfg->tx_data == NULL){
if (dataword == 0){
SSP_SendData(SSPx, 0xFF);
dataCfg->tx_cnt++;
} else {
SSP_SendData(SSPx, 0xFFFF);
dataCfg->tx_cnt += 2;
}
} else {
if (dataword == 0){
SSP_SendData(SSPx, *wdata8);
wdata8++;
dataCfg->tx_cnt++;
} else {
SSP_SendData(SSPx, *wdata16);
wdata16++;
dataCfg->tx_cnt += 2;
}
}
}
// Check overrun error
if ((stat = SSPx->RIS) & SSP_RIS_ROR){
// save status and return
dataCfg->status = stat | SSP_STAT_ERROR;
return (-1);
}
// Check for any data available in RX FIFO
while ((SSPx->SR & SSP_SR_RNE) && (dataCfg->rx_cnt < dataCfg->length)){
// Read data from SSP data
tmp = SSP_ReceiveData(SSPx);
// Store data to destination
if (dataCfg->rx_data != NULL)
{
if (dataword == 0){
*(rdata8) = (uint8_t) tmp;
rdata8++;
} else {
*(rdata16) = (uint16_t) tmp;
rdata16++;
}
}
// Increase counter
if (dataword == 0){
dataCfg->rx_cnt++;
} else {
dataCfg->rx_cnt += 2;
}
}
}
// save status
dataCfg->status = SSP_STAT_DONE;
if (dataCfg->tx_data != NULL){
return dataCfg->tx_cnt;
} else if (dataCfg->rx_data != NULL){
return dataCfg->rx_cnt;
} else {
return (0);
}
}
// Interrupt mode ----------------------------------------------------------------------
else if (xfType == SSP_TRANSFER_INTERRUPT){
while ((SSPx->SR & SSP_SR_TNF) && (dataCfg->tx_cnt < dataCfg->length)){
// Write data to buffer
if(dataCfg->tx_data == NULL){
if (dataword == 0){
SSP_SendData(SSPx, 0xFF);
dataCfg->tx_cnt++;
} else {
SSP_SendData(SSPx, 0xFFFF);
dataCfg->tx_cnt += 2;
}
} else {
if (dataword == 0){
SSP_SendData(SSPx, (*(uint8_t *)((uint32_t)dataCfg->tx_data + dataCfg->tx_cnt)));
dataCfg->tx_cnt++;
} else {
SSP_SendData(SSPx, (*(uint16_t *)((uint32_t)dataCfg->tx_data + dataCfg->tx_cnt)));
dataCfg->tx_cnt += 2;
}
}
// Check error
if ((stat = SSPx->RIS) & SSP_RIS_ROR){
// save status and return
dataCfg->status = stat | SSP_STAT_ERROR;
return (-1);
}
// Check for any data available in RX FIFO
while ((SSPx->SR & SSP_SR_RNE) && (dataCfg->rx_cnt < dataCfg->length)){
// Read data from SSP data
tmp = SSP_ReceiveData(SSPx);
// Store data to destination
if (dataCfg->rx_data != NULL)
{
if (dataword == 0){
*(uint8_t *)((uint32_t)dataCfg->rx_data + dataCfg->rx_cnt) = (uint8_t) tmp;
} else {
*(uint16_t *)((uint32_t)dataCfg->rx_data + dataCfg->rx_cnt) = (uint16_t) tmp;
}
}
// Increase counter
if (dataword == 0){
dataCfg->rx_cnt++;
} else {
dataCfg->rx_cnt += 2;
}
}
}
// If there more data to sent or receive
if ((dataCfg->rx_cnt < dataCfg->length) || (dataCfg->tx_cnt < dataCfg->length)){
// Enable all interrupt
SSPx->IMSC = SSP_IMSC_BITMASK;
} else {
// Save status
dataCfg->status = SSP_STAT_DONE;
}
return (0);
}
return (-1);
}
/*********************************************************************//**
* @brief Checks whether the specified SSP status flag is set or not
* @param[in] SSPx SSP peripheral selected, should be:
* - LPC_SSP0: SSP0 peripheral
* - LPC_SSP1: SSP1 peripheral
* @param[in] FlagType Type of flag to check status, should be one
* of following:
* - SSP_STAT_TXFIFO_EMPTY: TX FIFO is empty
* - SSP_STAT_TXFIFO_NOTFULL: TX FIFO is not full
* - SSP_STAT_RXFIFO_NOTEMPTY: RX FIFO is not empty
* - SSP_STAT_RXFIFO_FULL: RX FIFO is full
* - SSP_STAT_BUSY: SSP peripheral is busy
* @return New State of specified SSP status flag
**********************************************************************/
FlagStatus SSP_GetStatus(LPC_SSP_TypeDef* SSPx, uint32_t FlagType)
{
CHECK_PARAM(PARAM_SSPx(SSPx));
CHECK_PARAM(PARAM_SSP_STAT(FlagType));
return ((SSPx->SR & FlagType) ? SET : RESET);
}
/*********************************************************************//**
* @brief Enable or disable specified interrupt type in SSP peripheral
* @param[in] SSPx SSP peripheral selected, should be:
* - LPC_SSP0: SSP0 peripheral
* - LPC_SSP1: SSP1 peripheral
* @param[in] IntType Interrupt type in SSP peripheral, should be:
* - SSP_INTCFG_ROR: Receive Overrun interrupt
* - SSP_INTCFG_RT: Receive Time out interrupt
* - SSP_INTCFG_RX: RX FIFO is at least half full interrupt
* - SSP_INTCFG_TX: TX FIFO is at least half empty interrupt
* @param[in] NewState New State of specified interrupt type, should be:
* - ENABLE: Enable this interrupt type
* - DISABLE: Disable this interrupt type
* @return None
* Note: We can enable/disable multi-interrupt type by OR multi value
**********************************************************************/
void SSP_IntConfig(LPC_SSP_TypeDef *SSPx, uint32_t IntType, FunctionalState NewState)
{
CHECK_PARAM(PARAM_SSPx(SSPx));
if (NewState == ENABLE)
{
SSPx->IMSC |= IntType;
}
else
{
SSPx->IMSC &= (~IntType) & SSP_IMSC_BITMASK;
}
}
/*********************************************************************//**
* @brief Check whether the specified Raw interrupt status flag is
* set or not
* @param[in] SSPx SSP peripheral selected, should be:
* - LPC_SSP0: SSP0 peripheral
* - LPC_SSP1: SSP1 peripheral
* @param[in] RawIntType Raw Interrupt Type, should be:
* - SSP_INTSTAT_RAW_ROR: Receive Overrun interrupt
* - SSP_INTSTAT_RAW_RT: Receive Time out interrupt
* - SSP_INTSTAT_RAW_RX: RX FIFO is at least half full interrupt
* - SSP_INTSTAT_RAW_TX: TX FIFO is at least half empty interrupt
* @return New State of specified Raw interrupt status flag in SSP peripheral
* Note: Enabling/Disabling specified interrupt in SSP peripheral does not
* effect to Raw Interrupt Status flag.
**********************************************************************/
IntStatus SSP_GetRawIntStatus(LPC_SSP_TypeDef *SSPx, uint32_t RawIntType)
{
CHECK_PARAM(PARAM_SSPx(SSPx));
CHECK_PARAM(PARAM_SSP_INTSTAT_RAW(RawIntType));
return ((SSPx->RIS & RawIntType) ? SET : RESET);
}
/*********************************************************************//**
* @brief Get Raw Interrupt Status register
* @param[in] SSPx SSP peripheral selected, should be:
* - LPC_SSP0: SSP0 peripheral
* - LPC_SSP1: SSP1 peripheral
* @return Raw Interrupt Status (RIS) register value
**********************************************************************/
uint32_t SSP_GetRawIntStatusReg(LPC_SSP_TypeDef *SSPx)
{
CHECK_PARAM(PARAM_SSPx(SSPx));
return (SSPx->RIS);
}
/*********************************************************************//**
* @brief Check whether the specified interrupt status flag is
* set or not
* @param[in] SSPx SSP peripheral selected, should be:
* - LPC_SSP0: SSP0 peripheral
* - LPC_SSP1: SSP1 peripheral
* @param[in] IntType Raw Interrupt Type, should be:
* - SSP_INTSTAT_ROR: Receive Overrun interrupt
* - SSP_INTSTAT_RT: Receive Time out interrupt
* - SSP_INTSTAT_RX: RX FIFO is at least half full interrupt
* - SSP_INTSTAT_TX: TX FIFO is at least half empty interrupt
* @return New State of specified interrupt status flag in SSP peripheral
* Note: Enabling/Disabling specified interrupt in SSP peripheral effects
* to Interrupt Status flag.
**********************************************************************/
IntStatus SSP_GetIntStatus (LPC_SSP_TypeDef *SSPx, uint32_t IntType)
{
CHECK_PARAM(PARAM_SSPx(SSPx));
CHECK_PARAM(PARAM_SSP_INTSTAT(IntType));
return ((SSPx->MIS & IntType) ? SET :RESET);
}
/*********************************************************************//**
* @brief Clear specified interrupt pending in SSP peripheral
* @param[in] SSPx SSP peripheral selected, should be:
* - LPC_SSP0: SSP0 peripheral
* - LPC_SSP1: SSP1 peripheral
* @param[in] IntType Interrupt pending to clear, should be:
* - SSP_INTCLR_ROR: clears the "frame was received when
* RxFIFO was full" interrupt.
* - SSP_INTCLR_RT: clears the "Rx FIFO was not empty and
* has not been read for a timeout period" interrupt.
* @return None
**********************************************************************/
void SSP_ClearIntPending(LPC_SSP_TypeDef *SSPx, uint32_t IntType)
{
CHECK_PARAM(PARAM_SSPx(SSPx));
CHECK_PARAM(PARAM_SSP_INTCLR(IntType));
SSPx->ICR = IntType;
}
/*********************************************************************//**
* @brief Enable/Disable DMA function for SSP peripheral
* @param[in] SSPx SSP peripheral selected, should be:
* - LPC_SSP0: SSP0 peripheral
* - LPC_SSP1: SSP1 peripheral
* @param[in] DMAMode Type of DMA, should be:
* - SSP_DMA_TX: DMA for the transmit FIFO
* - SSP_DMA_RX: DMA for the Receive FIFO
* @param[in] NewState New State of DMA function on SSP peripheral,
* should be:
* - ENALBE: Enable this function
* - DISABLE: Disable this function
* @return None
**********************************************************************/
void SSP_DMACmd(LPC_SSP_TypeDef *SSPx, uint32_t DMAMode, FunctionalState NewState)
{
CHECK_PARAM(PARAM_SSPx(SSPx));
CHECK_PARAM(PARAM_SSP_DMA(DMAMode));
CHECK_PARAM(PARAM_FUNCTIONALSTATE(NewState));
if (NewState == ENABLE)
{
SSPx->DMACR |= DMAMode;
}
else
{
SSPx->DMACR &= (~DMAMode) & SSP_DMA_BITMASK;
}
}
/**
* @}
*/
#endif /* _SSP */
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */

View file

@ -1,193 +0,0 @@
/**********************************************************************
* $Id$ lpc17xx_systick.c 2010-05-21
*//**
* @file lpc17xx_systick.c
* @brief Contains all functions support for SYSTICK firmware library
* on LPC17xx
* @version 2.0
* @date 21. May. 2010
* @author NXP MCU SW Application Team
*
* Copyright(C) 2010, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
/* Peripheral group ----------------------------------------------------------- */
/** @addtogroup SYSTICK
* @{
*/
/* Includes ------------------------------------------------------------------- */
#include "lpc17xx_systick.h"
#include "lpc17xx_clkpwr.h"
/* If this source file built with example, the LPC17xx FW library configuration
* file in each example directory ("lpc17xx_libcfg.h") must be included,
* otherwise the default FW library configuration file must be included instead
*/
#ifdef __BUILD_WITH_EXAMPLE__
#include "lpc17xx_libcfg.h"
#else
#include "lpc17xx_libcfg_default.h"
#endif /* __BUILD_WITH_EXAMPLE__ */
#ifdef _SYSTICK
/* Public Functions ----------------------------------------------------------- */
/** @addtogroup SYSTICK_Public_Functions
* @{
*/
/*********************************************************************//**
* @brief Initial System Tick with using internal CPU clock source
* @param[in] time time interval(ms)
* @return None
**********************************************************************/
void SYSTICK_InternalInit(uint32_t time)
{
uint32_t cclk;
float maxtime;
cclk = SystemCoreClock;
/* With internal CPU clock frequency for LPC17xx is 'SystemCoreClock'
* And limit 24 bit for RELOAD value
* So the maximum time can be set:
* 1/SystemCoreClock * (2^24) * 1000 (ms)
*/
//check time value is available or not
maxtime = (1<<24)/(SystemCoreClock / 1000);
if(time > maxtime)
//Error loop
while(1);
else
{
//Select CPU clock is System Tick clock source
SysTick->CTRL |= ST_CTRL_CLKSOURCE;
/* Set RELOAD value
* RELOAD = (SystemCoreClock/1000) * time - 1
* with time base is millisecond
*/
SysTick->LOAD = (cclk/1000)*time - 1;
}
}
/*********************************************************************//**
* @brief Initial System Tick with using external clock source
* @param[in] freq external clock frequency(Hz)
* @param[in] time time interval(ms)
* @return None
**********************************************************************/
void SYSTICK_ExternalInit(uint32_t freq, uint32_t time)
{
float maxtime;
/* With external clock frequency for LPC17xx is 'freq'
* And limit 24 bit for RELOAD value
* So the maximum time can be set:
* 1/freq * (2^24) * 1000 (ms)
*/
//check time value is available or not
maxtime = (1<<24)/(freq / 1000);
if (time>maxtime)
//Error Loop
while(1);
else
{
//Select external clock is System Tick clock source
SysTick->CTRL &= ~ ST_CTRL_CLKSOURCE;
/* Set RELOAD value
* RELOAD = (freq/1000) * time - 1
* with time base is millisecond
*/
maxtime = (freq/1000)*time - 1;
SysTick->LOAD = (freq/1000)*time - 1;
}
}
/*********************************************************************//**
* @brief Enable/disable System Tick counter
* @param[in] NewState System Tick counter status, should be:
* - ENABLE
* - DISABLE
* @return None
**********************************************************************/
void SYSTICK_Cmd(FunctionalState NewState)
{
CHECK_PARAM(PARAM_FUNCTIONALSTATE(NewState));
if(NewState == ENABLE)
//Enable System Tick counter
SysTick->CTRL |= ST_CTRL_ENABLE;
else
//Disable System Tick counter
SysTick->CTRL &= ~ST_CTRL_ENABLE;
}
/*********************************************************************//**
* @brief Enable/disable System Tick interrupt
* @param[in] NewState System Tick interrupt status, should be:
* - ENABLE
* - DISABLE
* @return None
**********************************************************************/
void SYSTICK_IntCmd(FunctionalState NewState)
{
CHECK_PARAM(PARAM_FUNCTIONALSTATE(NewState));
if(NewState == ENABLE)
//Enable System Tick counter
SysTick->CTRL |= ST_CTRL_TICKINT;
else
//Disable System Tick counter
SysTick->CTRL &= ~ST_CTRL_TICKINT;
}
/*********************************************************************//**
* @brief Get current value of System Tick counter
* @param[in] None
* @return current value of System Tick counter
**********************************************************************/
uint32_t SYSTICK_GetCurrentValue(void)
{
return (SysTick->VAL);
}
/*********************************************************************//**
* @brief Clear Counter flag
* @param[in] None
* @return None
**********************************************************************/
void SYSTICK_ClearCounterFlag(void)
{
SysTick->CTRL &= ~ST_CTRL_COUNTFLAG;
}
/**
* @}
*/
#endif /* _SYSTICK */
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */

View file

@ -1,609 +0,0 @@
/**********************************************************************
* $Id$ lpc17xx_timer.c 2011-03-10
*//**
* @file lpc17xx_timer.c
* @brief Contains all functions support for Timer firmware library
* on LPC17xx
* @version 3.1
* @date 10. March. 2011
* @author NXP MCU SW Application Team
*
* Copyright(C) 2011, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
/* Peripheral group ----------------------------------------------------------- */
/** @addtogroup TIM
* @{
*/
/* Includes ------------------------------------------------------------------- */
#include "lpc17xx_timer.h"
#include "lpc17xx_clkpwr.h"
#include "lpc17xx_pinsel.h"
/* If this source file built with example, the LPC17xx FW library configuration
* file in each example directory ("lpc17xx_libcfg.h") must be included,
* otherwise the default FW library configuration file must be included instead
*/
#ifdef __BUILD_WITH_EXAMPLE__
#include "lpc17xx_libcfg.h"
#else
#include "lpc17xx_libcfg_default.h"
#endif /* __BUILD_WITH_EXAMPLE__ */
#ifdef _TIM
/* Private Functions ---------------------------------------------------------- */
static uint32_t getPClock (uint32_t timernum);
static uint32_t converUSecToVal (uint32_t timernum, uint32_t usec);
static uint32_t converPtrToTimeNum (LPC_TIM_TypeDef *TIMx);
/*********************************************************************//**
* @brief Get peripheral clock of each timer controller
* @param[in] timernum Timer number
* @return Peripheral clock of timer
**********************************************************************/
static uint32_t getPClock (uint32_t timernum)
{
uint32_t clkdlycnt;
switch (timernum)
{
case 0:
clkdlycnt = CLKPWR_GetPCLK (CLKPWR_PCLKSEL_TIMER0);
break;
case 1:
clkdlycnt = CLKPWR_GetPCLK (CLKPWR_PCLKSEL_TIMER1);
break;
case 2:
clkdlycnt = CLKPWR_GetPCLK (CLKPWR_PCLKSEL_TIMER2);
break;
case 3:
clkdlycnt = CLKPWR_GetPCLK (CLKPWR_PCLKSEL_TIMER3);
break;
}
return clkdlycnt;
}
/*********************************************************************//**
* @brief Convert a time to a timer count value
* @param[in] timernum Timer number
* @param[in] usec Time in microseconds
* @return The number of required clock ticks to give the time delay
**********************************************************************/
uint32_t converUSecToVal (uint32_t timernum, uint32_t usec)
{
uint64_t clkdlycnt;
// Get Pclock of timer
clkdlycnt = (uint64_t) getPClock(timernum);
clkdlycnt = (clkdlycnt * usec) / 1000000;
return (uint32_t) clkdlycnt;
}
/*********************************************************************//**
* @brief Convert a timer register pointer to a timer number
* @param[in] TIMx Pointer to LPC_TIM_TypeDef, should be:
* - LPC_TIM0: TIMER0 peripheral
* - LPC_TIM1: TIMER1 peripheral
* - LPC_TIM2: TIMER2 peripheral
* - LPC_TIM3: TIMER3 peripheral
* @return The timer number (0 to 3) or 0xFFFF FFFF if register pointer is bad
**********************************************************************/
uint32_t converPtrToTimeNum (LPC_TIM_TypeDef *TIMx)
{
uint32_t tnum = 0xFFFFFFFF;
if (TIMx == LPC_TIM0)
{
tnum = 0;
}
else if (TIMx == LPC_TIM1)
{
tnum = 1;
}
else if (TIMx == LPC_TIM2)
{
tnum = 2;
}
else if (TIMx == LPC_TIM3)
{
tnum = 3;
}
return tnum;
}
/* End of Private Functions ---------------------------------------------------- */
/* Public Functions ----------------------------------------------------------- */
/** @addtogroup TIM_Public_Functions
* @{
*/
/*********************************************************************//**
* @brief Get Interrupt Status
* @param[in] TIMx Timer selection, should be:
* - LPC_TIM0: TIMER0 peripheral
* - LPC_TIM1: TIMER1 peripheral
* - LPC_TIM2: TIMER2 peripheral
* - LPC_TIM3: TIMER3 peripheral
* @param[in] IntFlag: interrupt type, should be:
* - TIM_MR0_INT: Interrupt for Match channel 0
* - TIM_MR1_INT: Interrupt for Match channel 1
* - TIM_MR2_INT: Interrupt for Match channel 2
* - TIM_MR3_INT: Interrupt for Match channel 3
* - TIM_CR0_INT: Interrupt for Capture channel 0
* - TIM_CR1_INT: Interrupt for Capture channel 1
* @return FlagStatus
* - SET : interrupt
* - RESET : no interrupt
**********************************************************************/
FlagStatus TIM_GetIntStatus(LPC_TIM_TypeDef *TIMx, TIM_INT_TYPE IntFlag)
{
uint8_t temp;
CHECK_PARAM(PARAM_TIMx(TIMx));
CHECK_PARAM(PARAM_TIM_INT_TYPE(IntFlag));
temp = (TIMx->IR)& TIM_IR_CLR(IntFlag);
if (temp)
return SET;
return RESET;
}
/*********************************************************************//**
* @brief Get Capture Interrupt Status
* @param[in] TIMx Timer selection, should be:
* - LPC_TIM0: TIMER0 peripheral
* - LPC_TIM1: TIMER1 peripheral
* - LPC_TIM2: TIMER2 peripheral
* - LPC_TIM3: TIMER3 peripheral
* @param[in] IntFlag: interrupt type, should be:
* - TIM_MR0_INT: Interrupt for Match channel 0
* - TIM_MR1_INT: Interrupt for Match channel 1
* - TIM_MR2_INT: Interrupt for Match channel 2
* - TIM_MR3_INT: Interrupt for Match channel 3
* - TIM_CR0_INT: Interrupt for Capture channel 0
* - TIM_CR1_INT: Interrupt for Capture channel 1
* @return FlagStatus
* - SET : interrupt
* - RESET : no interrupt
**********************************************************************/
FlagStatus TIM_GetIntCaptureStatus(LPC_TIM_TypeDef *TIMx, TIM_INT_TYPE IntFlag)
{
uint8_t temp;
CHECK_PARAM(PARAM_TIMx(TIMx));
CHECK_PARAM(PARAM_TIM_INT_TYPE(IntFlag));
temp = (TIMx->IR) & (1<<(4+IntFlag));
if(temp)
return SET;
return RESET;
}
/*********************************************************************//**
* @brief Clear Interrupt pending
* @param[in] TIMx Timer selection, should be:
* - LPC_TIM0: TIMER0 peripheral
* - LPC_TIM1: TIMER1 peripheral
* - LPC_TIM2: TIMER2 peripheral
* - LPC_TIM3: TIMER3 peripheral
* @param[in] IntFlag: interrupt type, should be:
* - TIM_MR0_INT: Interrupt for Match channel 0
* - TIM_MR1_INT: Interrupt for Match channel 1
* - TIM_MR2_INT: Interrupt for Match channel 2
* - TIM_MR3_INT: Interrupt for Match channel 3
* - TIM_CR0_INT: Interrupt for Capture channel 0
* - TIM_CR1_INT: Interrupt for Capture channel 1
* @return None
**********************************************************************/
void TIM_ClearIntPending(LPC_TIM_TypeDef *TIMx, TIM_INT_TYPE IntFlag)
{
CHECK_PARAM(PARAM_TIMx(TIMx));
CHECK_PARAM(PARAM_TIM_INT_TYPE(IntFlag));
TIMx->IR = TIM_IR_CLR(IntFlag);
}
/*********************************************************************//**
* @brief Clear Capture Interrupt pending
* @param[in] TIMx Timer selection, should be
* - LPC_TIM0: TIMER0 peripheral
* - LPC_TIM1: TIMER1 peripheral
* - LPC_TIM2: TIMER2 peripheral
* - LPC_TIM3: TIMER3 peripheral
* @param[in] IntFlag interrupt type, should be:
* - TIM_MR0_INT: Interrupt for Match channel 0
* - TIM_MR1_INT: Interrupt for Match channel 1
* - TIM_MR2_INT: Interrupt for Match channel 2
* - TIM_MR3_INT: Interrupt for Match channel 3
* - TIM_CR0_INT: Interrupt for Capture channel 0
* - TIM_CR1_INT: Interrupt for Capture channel 1
* @return None
**********************************************************************/
void TIM_ClearIntCapturePending(LPC_TIM_TypeDef *TIMx, TIM_INT_TYPE IntFlag)
{
CHECK_PARAM(PARAM_TIMx(TIMx));
CHECK_PARAM(PARAM_TIM_INT_TYPE(IntFlag));
TIMx->IR = (1<<(4+IntFlag));
}
/*********************************************************************//**
* @brief Configuration for Timer at initial time
* @param[in] TimerCounterMode timer counter mode, should be:
* - TIM_TIMER_MODE: Timer mode
* - TIM_COUNTER_RISING_MODE: Counter rising mode
* - TIM_COUNTER_FALLING_MODE: Counter falling mode
* - TIM_COUNTER_ANY_MODE:Counter on both edges
* @param[in] TIM_ConfigStruct pointer to TIM_TIMERCFG_Type or
* TIM_COUNTERCFG_Type
* @return None
**********************************************************************/
void TIM_ConfigStructInit(TIM_MODE_OPT TimerCounterMode, void *TIM_ConfigStruct)
{
if (TimerCounterMode == TIM_TIMER_MODE )
{
TIM_TIMERCFG_Type * pTimeCfg = (TIM_TIMERCFG_Type *)TIM_ConfigStruct;
pTimeCfg->PrescaleOption = TIM_PRESCALE_USVAL;
pTimeCfg->PrescaleValue = 1;
}
else
{
TIM_COUNTERCFG_Type * pCounterCfg = (TIM_COUNTERCFG_Type *)TIM_ConfigStruct;
pCounterCfg->CountInputSelect = TIM_COUNTER_INCAP0;
}
}
/*********************************************************************//**
* @brief Initial Timer/Counter device
* Set Clock frequency for Timer
* Set initial configuration for Timer
* @param[in] TIMx Timer selection, should be:
* - LPC_TIM0: TIMER0 peripheral
* - LPC_TIM1: TIMER1 peripheral
* - LPC_TIM2: TIMER2 peripheral
* - LPC_TIM3: TIMER3 peripheral
* @param[in] TimerCounterMode Timer counter mode, should be:
* - TIM_TIMER_MODE: Timer mode
* - TIM_COUNTER_RISING_MODE: Counter rising mode
* - TIM_COUNTER_FALLING_MODE: Counter falling mode
* - TIM_COUNTER_ANY_MODE:Counter on both edges
* @param[in] TIM_ConfigStruct pointer to TIM_TIMERCFG_Type
* that contains the configuration information for the
* specified Timer peripheral.
* @return None
**********************************************************************/
void TIM_Init(LPC_TIM_TypeDef *TIMx, TIM_MODE_OPT TimerCounterMode, void *TIM_ConfigStruct)
{
TIM_TIMERCFG_Type *pTimeCfg;
TIM_COUNTERCFG_Type *pCounterCfg;
CHECK_PARAM(PARAM_TIMx(TIMx));
CHECK_PARAM(PARAM_TIM_MODE_OPT(TimerCounterMode));
//set power
if (TIMx== LPC_TIM0)
{
CLKPWR_ConfigPPWR (CLKPWR_PCONP_PCTIM0, ENABLE);
//PCLK_Timer0 = CCLK/4
CLKPWR_SetPCLKDiv (CLKPWR_PCLKSEL_TIMER0, CLKPWR_PCLKSEL_CCLK_DIV_4);
}
else if (TIMx== LPC_TIM1)
{
CLKPWR_ConfigPPWR (CLKPWR_PCONP_PCTIM1, ENABLE);
//PCLK_Timer1 = CCLK/4
CLKPWR_SetPCLKDiv (CLKPWR_PCLKSEL_TIMER1, CLKPWR_PCLKSEL_CCLK_DIV_4);
}
else if (TIMx== LPC_TIM2)
{
CLKPWR_ConfigPPWR (CLKPWR_PCONP_PCTIM2, ENABLE);
//PCLK_Timer2= CCLK/4
CLKPWR_SetPCLKDiv (CLKPWR_PCLKSEL_TIMER2, CLKPWR_PCLKSEL_CCLK_DIV_4);
}
else if (TIMx== LPC_TIM3)
{
CLKPWR_ConfigPPWR (CLKPWR_PCONP_PCTIM3, ENABLE);
//PCLK_Timer3= CCLK/4
CLKPWR_SetPCLKDiv (CLKPWR_PCLKSEL_TIMER3, CLKPWR_PCLKSEL_CCLK_DIV_4);
}
TIMx->CCR &= ~TIM_CTCR_MODE_MASK;
TIMx->CCR |= TIM_TIMER_MODE;
TIMx->TC =0;
TIMx->PC =0;
TIMx->PR =0;
TIMx->TCR |= (1<<1); //Reset Counter
TIMx->TCR &= ~(1<<1); //release reset
if (TimerCounterMode == TIM_TIMER_MODE )
{
pTimeCfg = (TIM_TIMERCFG_Type *)TIM_ConfigStruct;
if (pTimeCfg->PrescaleOption == TIM_PRESCALE_TICKVAL)
{
TIMx->PR = pTimeCfg->PrescaleValue -1 ;
}
else
{
TIMx->PR = converUSecToVal (converPtrToTimeNum(TIMx),pTimeCfg->PrescaleValue)-1;
}
}
else
{
pCounterCfg = (TIM_COUNTERCFG_Type *)TIM_ConfigStruct;
TIMx->CCR &= ~TIM_CTCR_INPUT_MASK;
if (pCounterCfg->CountInputSelect == TIM_COUNTER_INCAP1)
TIMx->CCR |= _BIT(2);
}
// Clear interrupt pending
TIMx->IR = 0xFFFFFFFF;
}
/*********************************************************************//**
* @brief Close Timer/Counter device
* @param[in] TIMx Pointer to timer device, should be:
* - LPC_TIM0: TIMER0 peripheral
* - LPC_TIM1: TIMER1 peripheral
* - LPC_TIM2: TIMER2 peripheral
* - LPC_TIM3: TIMER3 peripheral
* @return None
**********************************************************************/
void TIM_DeInit (LPC_TIM_TypeDef *TIMx)
{
CHECK_PARAM(PARAM_TIMx(TIMx));
// Disable timer/counter
TIMx->TCR = 0x00;
// Disable power
if (TIMx== LPC_TIM0)
CLKPWR_ConfigPPWR (CLKPWR_PCONP_PCTIM0, DISABLE);
else if (TIMx== LPC_TIM1)
CLKPWR_ConfigPPWR (CLKPWR_PCONP_PCTIM1, DISABLE);
else if (TIMx== LPC_TIM2)
CLKPWR_ConfigPPWR (CLKPWR_PCONP_PCTIM2, DISABLE);
else if (TIMx== LPC_TIM3)
CLKPWR_ConfigPPWR (CLKPWR_PCONP_PCTIM2, DISABLE);
}
/*********************************************************************//**
* @brief Start/Stop Timer/Counter device
* @param[in] TIMx Pointer to timer device, should be:
* - LPC_TIM0: TIMER0 peripheral
* - LPC_TIM1: TIMER1 peripheral
* - LPC_TIM2: TIMER2 peripheral
* - LPC_TIM3: TIMER3 peripheral
* @param[in] NewState
* - ENABLE : set timer enable
* - DISABLE : disable timer
* @return None
**********************************************************************/
void TIM_Cmd(LPC_TIM_TypeDef *TIMx, FunctionalState NewState)
{
CHECK_PARAM(PARAM_TIMx(TIMx));
if (NewState == ENABLE)
{
TIMx->TCR |= TIM_ENABLE;
}
else
{
TIMx->TCR &= ~TIM_ENABLE;
}
}
/*********************************************************************//**
* @brief Reset Timer/Counter device,
* Make TC and PC are synchronously reset on the next
* positive edge of PCLK
* @param[in] TIMx Pointer to timer device, should be:
* - LPC_TIM0: TIMER0 peripheral
* - LPC_TIM1: TIMER1 peripheral
* - LPC_TIM2: TIMER2 peripheral
* - LPC_TIM3: TIMER3 peripheral
* @return None
**********************************************************************/
void TIM_ResetCounter(LPC_TIM_TypeDef *TIMx)
{
CHECK_PARAM(PARAM_TIMx(TIMx));
TIMx->TCR |= TIM_RESET;
TIMx->TCR &= ~TIM_RESET;
}
/*********************************************************************//**
* @brief Configuration for Match register
* @param[in] TIMx Pointer to timer device, should be:
* - LPC_TIM0: TIMER0 peripheral
* - LPC_TIM1: TIMER1 peripheral
* - LPC_TIM2: TIMER2 peripheral
* - LPC_TIM3: TIMER3 peripheral
* @param[in] TIM_MatchConfigStruct Pointer to TIM_MATCHCFG_Type
* - MatchChannel : choose channel 0 or 1
* - IntOnMatch : if SET, interrupt will be generated when MRxx match
* the value in TC
* - StopOnMatch : if SET, TC and PC will be stopped whenM Rxx match
* the value in TC
* - ResetOnMatch : if SET, Reset on MR0 when MRxx match
* the value in TC
* -ExtMatchOutputType: Select output for external match
* + 0: Do nothing for external output pin if match
* + 1: Force external output pin to low if match
* + 2: Force external output pin to high if match
* + 3: Toggle external output pin if match
* MatchValue: Set the value to be compared with TC value
* @return None
**********************************************************************/
void TIM_ConfigMatch(LPC_TIM_TypeDef *TIMx, TIM_MATCHCFG_Type *TIM_MatchConfigStruct)
{
CHECK_PARAM(PARAM_TIMx(TIMx));
CHECK_PARAM(PARAM_TIM_EXTMATCH_OPT(TIM_MatchConfigStruct->ExtMatchOutputType));
switch(TIM_MatchConfigStruct->MatchChannel)
{
case 0:
TIMx->MR0 = TIM_MatchConfigStruct->MatchValue;
break;
case 1:
TIMx->MR1 = TIM_MatchConfigStruct->MatchValue;
break;
case 2:
TIMx->MR2 = TIM_MatchConfigStruct->MatchValue;
break;
case 3:
TIMx->MR3 = TIM_MatchConfigStruct->MatchValue;
break;
default:
//Error match value
//Error loop
while(1);
}
//interrupt on MRn
TIMx->MCR &=~TIM_MCR_CHANNEL_MASKBIT(TIM_MatchConfigStruct->MatchChannel);
if (TIM_MatchConfigStruct->IntOnMatch)
TIMx->MCR |= TIM_INT_ON_MATCH(TIM_MatchConfigStruct->MatchChannel);
//reset on MRn
if (TIM_MatchConfigStruct->ResetOnMatch)
TIMx->MCR |= TIM_RESET_ON_MATCH(TIM_MatchConfigStruct->MatchChannel);
//stop on MRn
if (TIM_MatchConfigStruct->StopOnMatch)
TIMx->MCR |= TIM_STOP_ON_MATCH(TIM_MatchConfigStruct->MatchChannel);
// match output type
TIMx->EMR &= ~TIM_EM_MASK(TIM_MatchConfigStruct->MatchChannel);
TIMx->EMR |= TIM_EM_SET(TIM_MatchConfigStruct->MatchChannel,TIM_MatchConfigStruct->ExtMatchOutputType);
}
/*********************************************************************//**
* @brief Update Match value
* @param[in] TIMx Pointer to timer device, should be:
* - LPC_TIM0: TIMER0 peripheral
* - LPC_TIM1: TIMER1 peripheral
* - LPC_TIM2: TIMER2 peripheral
* - LPC_TIM3: TIMER3 peripheral
* @param[in] MatchChannel Match channel, should be: 0..3
* @param[in] MatchValue updated match value
* @return None
**********************************************************************/
void TIM_UpdateMatchValue(LPC_TIM_TypeDef *TIMx,uint8_t MatchChannel, uint32_t MatchValue)
{
CHECK_PARAM(PARAM_TIMx(TIMx));
switch(MatchChannel)
{
case 0:
TIMx->MR0 = MatchValue;
break;
case 1:
TIMx->MR1 = MatchValue;
break;
case 2:
TIMx->MR2 = MatchValue;
break;
case 3:
TIMx->MR3 = MatchValue;
break;
default:
//Error Loop
while(1);
}
}
/*********************************************************************//**
* @brief Configuration for Capture register
* @param[in] TIMx Pointer to timer device, should be:
* - LPC_TIM0: TIMER0 peripheral
* - LPC_TIM1: TIMER1 peripheral
* - LPC_TIM2: TIMER2 peripheral
* - LPC_TIM3: TIMER3 peripheral
* - CaptureChannel: set the channel to capture data
* - RisingEdge : if SET, Capture at rising edge
* - FallingEdge : if SET, Capture at falling edge
* - IntOnCaption : if SET, Capture generate interrupt
* @param[in] TIM_CaptureConfigStruct Pointer to TIM_CAPTURECFG_Type
* @return None
**********************************************************************/
void TIM_ConfigCapture(LPC_TIM_TypeDef *TIMx, TIM_CAPTURECFG_Type *TIM_CaptureConfigStruct)
{
CHECK_PARAM(PARAM_TIMx(TIMx));
TIMx->CCR &= ~TIM_CCR_CHANNEL_MASKBIT(TIM_CaptureConfigStruct->CaptureChannel);
if (TIM_CaptureConfigStruct->RisingEdge)
TIMx->CCR |= TIM_CAP_RISING(TIM_CaptureConfigStruct->CaptureChannel);
if (TIM_CaptureConfigStruct->FallingEdge)
TIMx->CCR |= TIM_CAP_FALLING(TIM_CaptureConfigStruct->CaptureChannel);
if (TIM_CaptureConfigStruct->IntOnCaption)
TIMx->CCR |= TIM_INT_ON_CAP(TIM_CaptureConfigStruct->CaptureChannel);
}
/*********************************************************************//**
* @brief Read value of capture register in timer/counter device
* @param[in] TIMx Pointer to timer/counter device, should be:
* - LPC_TIM0: TIMER0 peripheral
* - LPC_TIM1: TIMER1 peripheral
* - LPC_TIM2: TIMER2 peripheral
* - LPC_TIM3: TIMER3 peripheral
* @param[in] CaptureChannel: capture channel number, should be:
* - TIM_COUNTER_INCAP0: CAPn.0 input pin for TIMERn
* - TIM_COUNTER_INCAP1: CAPn.1 input pin for TIMERn
* @return Value of capture register
**********************************************************************/
uint32_t TIM_GetCaptureValue(LPC_TIM_TypeDef *TIMx, TIM_COUNTER_INPUT_OPT CaptureChannel)
{
CHECK_PARAM(PARAM_TIMx(TIMx));
CHECK_PARAM(PARAM_TIM_COUNTER_INPUT_OPT(CaptureChannel));
if(CaptureChannel==0)
return TIMx->CR0;
else
return TIMx->CR1;
}
/**
* @}
*/
#endif /* _TIMER */
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */

File diff suppressed because it is too large Load diff

View file

@ -1,274 +0,0 @@
/**********************************************************************
* $Id$ lpc17xx_wdt.c 2010-05-21
*//**
* @file lpc17xx_wdt.c
* @brief Contains all functions support for WDT firmware library
* on LPC17xx
* @version 2.0
* @date 21. May. 2010
* @author NXP MCU SW Application Team
*
* Copyright(C) 2010, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
/* Peripheral group ----------------------------------------------------------- */
/** @addtogroup WDT
* @{
*/
/* Includes ------------------------------------------------------------------- */
#include "lpc17xx_wdt.h"
#include "lpc17xx_clkpwr.h"
#include "lpc17xx_pinsel.h"
/* If this source file built with example, the LPC17xx FW library configuration
* file in each example directory ("lpc17xx_libcfg.h") must be included,
* otherwise the default FW library configuration file must be included instead
*/
#ifdef __BUILD_WITH_EXAMPLE__
#include "lpc17xx_libcfg.h"
#else
#include "lpc17xx_libcfg_default.h"
#endif /* __BUILD_WITH_EXAMPLE__ */
#ifdef _WDT
/* Private Functions ---------------------------------------------------------- */
static uint8_t WDT_SetTimeOut (uint8_t clk_source, uint32_t timeout);
/********************************************************************//**
* @brief Set WDT time out value and WDT mode
* @param[in] clk_source select Clock source for WDT device
* @param[in] timeout value of time-out for WDT (us)
* @return None
*********************************************************************/
static uint8_t WDT_SetTimeOut (uint8_t clk_source, uint32_t timeout)
{
uint32_t pclk_wdt = 0;
uint32_t tempval = 0;
switch ((WDT_CLK_OPT) clk_source)
{
case WDT_CLKSRC_IRC:
pclk_wdt = 4000000;
// Calculate TC in WDT
tempval = ((((uint64_t)pclk_wdt * (uint64_t)timeout / 4) / (uint64_t)WDT_US_INDEX));
// Check if it valid
if (tempval >= WDT_TIMEOUT_MIN)
{
LPC_WDT->WDTC = tempval;
return SUCCESS;
}
break;
case WDT_CLKSRC_PCLK:
// Get WDT clock with CCLK divider = 4
pclk_wdt = SystemCoreClock / 4;
// Calculate TC in WDT
tempval = ((((uint64_t)pclk_wdt * (uint64_t)timeout / 4) / (uint64_t)WDT_US_INDEX));
if (tempval >= WDT_TIMEOUT_MIN)
{
CLKPWR_SetPCLKDiv (CLKPWR_PCLKSEL_WDT, CLKPWR_PCLKSEL_CCLK_DIV_4);
LPC_WDT->WDTC = (uint32_t) tempval;
return SUCCESS;
}
// Get WDT clock with CCLK divider = 2
pclk_wdt = SystemCoreClock / 2;
// Calculate TC in WDT
tempval = ((((uint64_t)pclk_wdt * (uint64_t)timeout / 4) / (uint64_t)WDT_US_INDEX));
if (tempval >= WDT_TIMEOUT_MIN)
{
CLKPWR_SetPCLKDiv (CLKPWR_PCLKSEL_WDT, CLKPWR_PCLKSEL_CCLK_DIV_2);
LPC_WDT->WDTC = (uint32_t) tempval;
return SUCCESS;
}
// Get WDT clock with CCLK divider = 1
pclk_wdt = SystemCoreClock;
// Calculate TC in WDT
tempval = ((((uint64_t)pclk_wdt * (uint64_t)timeout / 4) / (uint64_t)WDT_US_INDEX));
if (tempval >= WDT_TIMEOUT_MIN)
{
CLKPWR_SetPCLKDiv (CLKPWR_PCLKSEL_WDT, CLKPWR_PCLKSEL_CCLK_DIV_1);
LPC_WDT->WDTC = (uint32_t) tempval;
return SUCCESS;
}
break ;
case WDT_CLKSRC_RTC:
pclk_wdt = 32768;
// Calculate TC in WDT
tempval = ((((uint64_t)pclk_wdt * (uint64_t)timeout / 4) / (uint64_t)WDT_US_INDEX));
// Check if it valid
if (tempval >= WDT_TIMEOUT_MIN)
{
LPC_WDT->WDTC = (uint32_t) tempval;
return SUCCESS;
}
break;
// Error parameter
default:
break;
}
return ERROR;
}
/* End of Private Functions --------------------------------------------------- */
/* Public Functions ----------------------------------------------------------- */
/** @addtogroup WDT_Public_Functions
* @{
*/
/*********************************************************************//**
* @brief Initial for Watchdog function
* Clock source = RTC ,
* @param[in] ClkSrc Select clock source, should be:
* - WDT_CLKSRC_IRC: Clock source from Internal RC oscillator
* - WDT_CLKSRC_PCLK: Selects the APB peripheral clock (PCLK)
* - WDT_CLKSRC_RTC: Selects the RTC oscillator
* @param[in] WDTMode WDT mode, should be:
* - WDT_MODE_INT_ONLY: Use WDT to generate interrupt only
* - WDT_MODE_RESET: Use WDT to generate interrupt and reset MCU
* @return None
**********************************************************************/
void WDT_Init (WDT_CLK_OPT ClkSrc, WDT_MODE_OPT WDTMode)
{
CHECK_PARAM(PARAM_WDT_CLK_OPT(ClkSrc));
CHECK_PARAM(PARAM_WDT_MODE_OPT(WDTMode));
CLKPWR_SetPCLKDiv (CLKPWR_PCLKSEL_WDT, CLKPWR_PCLKSEL_CCLK_DIV_4);
//Set clock source
LPC_WDT->WDCLKSEL &= ~WDT_WDCLKSEL_MASK;
LPC_WDT->WDCLKSEL |= ClkSrc;
//Set WDT mode
if (WDTMode == WDT_MODE_RESET){
LPC_WDT->WDMOD |= WDT_WDMOD(WDTMode);
}
}
/*********************************************************************//**
* @brief Start WDT activity with given timeout value
* @param[in] TimeOut WDT reset after timeout if it is not feed
* @return None
**********************************************************************/
void WDT_Start(uint32_t TimeOut)
{
uint32_t ClkSrc;
ClkSrc = LPC_WDT->WDCLKSEL;
ClkSrc &=WDT_WDCLKSEL_MASK;
WDT_SetTimeOut(ClkSrc,TimeOut);
//enable watchdog
LPC_WDT->WDMOD |= WDT_WDMOD_WDEN;
WDT_Feed();
}
/********************************************************************//**
* @brief Read WDT Time out flag
* @param[in] None
* @return Time out flag status of WDT
*********************************************************************/
FlagStatus WDT_ReadTimeOutFlag (void)
{
return ((FlagStatus)((LPC_WDT->WDMOD & WDT_WDMOD_WDTOF) >>2));
}
/********************************************************************//**
* @brief Clear WDT Time out flag
* @param[in] None
* @return None
*********************************************************************/
void WDT_ClrTimeOutFlag (void)
{
LPC_WDT->WDMOD &=~WDT_WDMOD_WDTOF;
}
/********************************************************************//**
* @brief Update WDT timeout value and feed
* @param[in] TimeOut TimeOut value to be updated
* @return None
*********************************************************************/
void WDT_UpdateTimeOut ( uint32_t TimeOut)
{
uint32_t ClkSrc;
ClkSrc = LPC_WDT->WDCLKSEL;
ClkSrc &=WDT_WDCLKSEL_MASK;
WDT_SetTimeOut(ClkSrc,TimeOut);
WDT_Feed();
}
/********************************************************************//**
* @brief After set WDTEN, call this function to start Watchdog
* or reload the Watchdog timer
* @param[in] None
*
* @return None
*********************************************************************/
void WDT_Feed (void)
{
// Disable irq interrupt
__disable_irq();
LPC_WDT->WDFEED = 0xAA;
LPC_WDT->WDFEED = 0x55;
// Then enable irq interrupt
__enable_irq();
}
/********************************************************************//**
* @brief Get the current value of WDT
* @param[in] None
* @return current value of WDT
*********************************************************************/
uint32_t WDT_GetCurrentCount(void)
{
return LPC_WDT->WDTV;
}
/**
* @}
*/
#endif /* _WDT */
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */

File diff suppressed because it is too large Load diff

View file

@ -1,35 +0,0 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 11. November 2010
* $Revision: V1.0.2
*
* Project: CMSIS DSP Library
* Title: arm_common_tables.h
*
* Description: This file has extern declaration for common tables like Bitreverse, reciprocal etc which are used across different functions
*
* Target Processor: Cortex-M4/Cortex-M3
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#ifndef _ARM_COMMON_TABLES_H
#define _ARM_COMMON_TABLES_H
#include "arm_math.h"
extern uint16_t armBitRevTable[256];
extern q15_t armRecipTableQ15[64];
extern q31_t armRecipTableQ31[64];
extern const q31_t realCoefAQ31[1024];
extern const q31_t realCoefBQ31[1024];
#endif /* ARM_COMMON_TABLES_H */

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -1,609 +0,0 @@
/**************************************************************************//**
* @file core_cmFunc.h
* @brief CMSIS Cortex-M Core Function Access Header File
* @version V2.10
* @date 26. July 2011
*
* @note
* Copyright (C) 2009-2011 ARM Limited. All rights reserved.
*
* @par
* ARM Limited (ARM) is supplying this software for use with Cortex-M
* processor based microcontrollers. This file can be freely distributed
* within development tools that are supporting such ARM based processors.
*
* @par
* THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
* OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
* ARM SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR
* CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
*
******************************************************************************/
#ifndef __CORE_CMFUNC_H
#define __CORE_CMFUNC_H
/* ########################### Core Function Access ########################### */
/** \ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
@{
*/
#if defined ( __CC_ARM ) /*------------------RealView Compiler -----------------*/
/* ARM armcc specific functions */
#if (__ARMCC_VERSION < 400677)
#error "Please use ARM Compiler Toolchain V4.0.677 or later!"
#endif
/* intrinsic void __enable_irq(); */
/* intrinsic void __disable_irq(); */
/** \brief Get Control Register
This function returns the content of the Control Register.
\return Control Register value
*/
static __INLINE uint32_t __get_CONTROL(void)
{
register uint32_t __regControl __ASM("control");
return(__regControl);
}
/** \brief Set Control Register
This function writes the given value to the Control Register.
\param [in] control Control Register value to set
*/
static __INLINE void __set_CONTROL(uint32_t control)
{
register uint32_t __regControl __ASM("control");
__regControl = control;
}
/** \brief Get ISPR Register
This function returns the content of the ISPR Register.
\return ISPR Register value
*/
static __INLINE uint32_t __get_IPSR(void)
{
register uint32_t __regIPSR __ASM("ipsr");
return(__regIPSR);
}
/** \brief Get APSR Register
This function returns the content of the APSR Register.
\return APSR Register value
*/
static __INLINE uint32_t __get_APSR(void)
{
register uint32_t __regAPSR __ASM("apsr");
return(__regAPSR);
}
/** \brief Get xPSR Register
This function returns the content of the xPSR Register.
\return xPSR Register value
*/
static __INLINE uint32_t __get_xPSR(void)
{
register uint32_t __regXPSR __ASM("xpsr");
return(__regXPSR);
}
/** \brief Get Process Stack Pointer
This function returns the current value of the Process Stack Pointer (PSP).
\return PSP Register value
*/
static __INLINE uint32_t __get_PSP(void)
{
register uint32_t __regProcessStackPointer __ASM("psp");
return(__regProcessStackPointer);
}
/** \brief Set Process Stack Pointer
This function assigns the given value to the Process Stack Pointer (PSP).
\param [in] topOfProcStack Process Stack Pointer value to set
*/
static __INLINE void __set_PSP(uint32_t topOfProcStack)
{
register uint32_t __regProcessStackPointer __ASM("psp");
__regProcessStackPointer = topOfProcStack;
}
/** \brief Get Main Stack Pointer
This function returns the current value of the Main Stack Pointer (MSP).
\return MSP Register value
*/
static __INLINE uint32_t __get_MSP(void)
{
register uint32_t __regMainStackPointer __ASM("msp");
return(__regMainStackPointer);
}
/** \brief Set Main Stack Pointer
This function assigns the given value to the Main Stack Pointer (MSP).
\param [in] topOfMainStack Main Stack Pointer value to set
*/
static __INLINE void __set_MSP(uint32_t topOfMainStack)
{
register uint32_t __regMainStackPointer __ASM("msp");
__regMainStackPointer = topOfMainStack;
}
/** \brief Get Priority Mask
This function returns the current state of the priority mask bit from the Priority Mask Register.
\return Priority Mask value
*/
static __INLINE uint32_t __get_PRIMASK(void)
{
register uint32_t __regPriMask __ASM("primask");
return(__regPriMask);
}
/** \brief Set Priority Mask
This function assigns the given value to the Priority Mask Register.
\param [in] priMask Priority Mask
*/
static __INLINE void __set_PRIMASK(uint32_t priMask)
{
register uint32_t __regPriMask __ASM("primask");
__regPriMask = (priMask);
}
#if (__CORTEX_M >= 0x03)
/** \brief Enable FIQ
This function enables FIQ interrupts by clearing the F-bit in the CPSR.
Can only be executed in Privileged modes.
*/
#define __enable_fault_irq __enable_fiq
/** \brief Disable FIQ
This function disables FIQ interrupts by setting the F-bit in the CPSR.
Can only be executed in Privileged modes.
*/
#define __disable_fault_irq __disable_fiq
/** \brief Get Base Priority
This function returns the current value of the Base Priority register.
\return Base Priority register value
*/
static __INLINE uint32_t __get_BASEPRI(void)
{
register uint32_t __regBasePri __ASM("basepri");
return(__regBasePri);
}
/** \brief Set Base Priority
This function assigns the given value to the Base Priority register.
\param [in] basePri Base Priority value to set
*/
static __INLINE void __set_BASEPRI(uint32_t basePri)
{
register uint32_t __regBasePri __ASM("basepri");
__regBasePri = (basePri & 0xff);
}
/** \brief Get Fault Mask
This function returns the current value of the Fault Mask register.
\return Fault Mask register value
*/
static __INLINE uint32_t __get_FAULTMASK(void)
{
register uint32_t __regFaultMask __ASM("faultmask");
return(__regFaultMask);
}
/** \brief Set Fault Mask
This function assigns the given value to the Fault Mask register.
\param [in] faultMask Fault Mask value to set
*/
static __INLINE void __set_FAULTMASK(uint32_t faultMask)
{
register uint32_t __regFaultMask __ASM("faultmask");
__regFaultMask = (faultMask & (uint32_t)1);
}
#endif /* (__CORTEX_M >= 0x03) */
#if (__CORTEX_M == 0x04)
/** \brief Get FPSCR
This function returns the current value of the Floating Point Status/Control register.
\return Floating Point Status/Control register value
*/
static __INLINE uint32_t __get_FPSCR(void)
{
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
register uint32_t __regfpscr __ASM("fpscr");
return(__regfpscr);
#else
return(0);
#endif
}
/** \brief Set FPSCR
This function assigns the given value to the Floating Point Status/Control register.
\param [in] fpscr Floating Point Status/Control value to set
*/
static __INLINE void __set_FPSCR(uint32_t fpscr)
{
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
register uint32_t __regfpscr __ASM("fpscr");
__regfpscr = (fpscr);
#endif
}
#endif /* (__CORTEX_M == 0x04) */
#elif defined ( __ICCARM__ ) /*------------------ ICC Compiler -------------------*/
/* IAR iccarm specific functions */
#include <cmsis_iar.h>
#elif defined ( __GNUC__ ) /*------------------ GNU Compiler ---------------------*/
/* GNU gcc specific functions */
/** \brief Enable IRQ Interrupts
This function enables IRQ interrupts by clearing the I-bit in the CPSR.
Can only be executed in Privileged modes.
*/
__attribute__( ( always_inline ) ) static __INLINE void __enable_irq(void)
{
__ASM volatile ("cpsie i");
}
/** \brief Disable IRQ Interrupts
This function disables IRQ interrupts by setting the I-bit in the CPSR.
Can only be executed in Privileged modes.
*/
__attribute__( ( always_inline ) ) static __INLINE void __disable_irq(void)
{
__ASM volatile ("cpsid i");
}
/** \brief Get Control Register
This function returns the content of the Control Register.
\return Control Register value
*/
__attribute__( ( always_inline ) ) static __INLINE uint32_t __get_CONTROL(void)
{
uint32_t result;
__ASM volatile ("MRS %0, control" : "=r" (result) );
return(result);
}
/** \brief Set Control Register
This function writes the given value to the Control Register.
\param [in] control Control Register value to set
*/
__attribute__( ( always_inline ) ) static __INLINE void __set_CONTROL(uint32_t control)
{
__ASM volatile ("MSR control, %0" : : "r" (control) );
}
/** \brief Get ISPR Register
This function returns the content of the ISPR Register.
\return ISPR Register value
*/
__attribute__( ( always_inline ) ) static __INLINE uint32_t __get_IPSR(void)
{
uint32_t result;
__ASM volatile ("MRS %0, ipsr" : "=r" (result) );
return(result);
}
/** \brief Get APSR Register
This function returns the content of the APSR Register.
\return APSR Register value
*/
__attribute__( ( always_inline ) ) static __INLINE uint32_t __get_APSR(void)
{
uint32_t result;
__ASM volatile ("MRS %0, apsr" : "=r" (result) );
return(result);
}
/** \brief Get xPSR Register
This function returns the content of the xPSR Register.
\return xPSR Register value
*/
__attribute__( ( always_inline ) ) static __INLINE uint32_t __get_xPSR(void)
{
uint32_t result;
__ASM volatile ("MRS %0, xpsr" : "=r" (result) );
return(result);
}
/** \brief Get Process Stack Pointer
This function returns the current value of the Process Stack Pointer (PSP).
\return PSP Register value
*/
__attribute__( ( always_inline ) ) static __INLINE uint32_t __get_PSP(void)
{
register uint32_t result;
__ASM volatile ("MRS %0, psp\n" : "=r" (result) );
return(result);
}
/** \brief Set Process Stack Pointer
This function assigns the given value to the Process Stack Pointer (PSP).
\param [in] topOfProcStack Process Stack Pointer value to set
*/
__attribute__( ( always_inline ) ) static __INLINE void __set_PSP(uint32_t topOfProcStack)
{
__ASM volatile ("MSR psp, %0\n" : : "r" (topOfProcStack) );
}
/** \brief Get Main Stack Pointer
This function returns the current value of the Main Stack Pointer (MSP).
\return MSP Register value
*/
__attribute__( ( always_inline ) ) static __INLINE uint32_t __get_MSP(void)
{
register uint32_t result;
__ASM volatile ("MRS %0, msp\n" : "=r" (result) );
return(result);
}
/** \brief Set Main Stack Pointer
This function assigns the given value to the Main Stack Pointer (MSP).
\param [in] topOfMainStack Main Stack Pointer value to set
*/
__attribute__( ( always_inline ) ) static __INLINE void __set_MSP(uint32_t topOfMainStack)
{
__ASM volatile ("MSR msp, %0\n" : : "r" (topOfMainStack) );
}
/** \brief Get Priority Mask
This function returns the current state of the priority mask bit from the Priority Mask Register.
\return Priority Mask value
*/
__attribute__( ( always_inline ) ) static __INLINE uint32_t __get_PRIMASK(void)
{
uint32_t result;
__ASM volatile ("MRS %0, primask" : "=r" (result) );
return(result);
}
/** \brief Set Priority Mask
This function assigns the given value to the Priority Mask Register.
\param [in] priMask Priority Mask
*/
__attribute__( ( always_inline ) ) static __INLINE void __set_PRIMASK(uint32_t priMask)
{
__ASM volatile ("MSR primask, %0" : : "r" (priMask) );
}
#if (__CORTEX_M >= 0x03)
/** \brief Enable FIQ
This function enables FIQ interrupts by clearing the F-bit in the CPSR.
Can only be executed in Privileged modes.
*/
__attribute__( ( always_inline ) ) static __INLINE void __enable_fault_irq(void)
{
__ASM volatile ("cpsie f");
}
/** \brief Disable FIQ
This function disables FIQ interrupts by setting the F-bit in the CPSR.
Can only be executed in Privileged modes.
*/
__attribute__( ( always_inline ) ) static __INLINE void __disable_fault_irq(void)
{
__ASM volatile ("cpsid f");
}
/** \brief Get Base Priority
This function returns the current value of the Base Priority register.
\return Base Priority register value
*/
__attribute__( ( always_inline ) ) static __INLINE uint32_t __get_BASEPRI(void)
{
uint32_t result;
__ASM volatile ("MRS %0, basepri_max" : "=r" (result) );
return(result);
}
/** \brief Set Base Priority
This function assigns the given value to the Base Priority register.
\param [in] basePri Base Priority value to set
*/
__attribute__( ( always_inline ) ) static __INLINE void __set_BASEPRI(uint32_t value)
{
__ASM volatile ("MSR basepri, %0" : : "r" (value) );
}
/** \brief Get Fault Mask
This function returns the current value of the Fault Mask register.
\return Fault Mask register value
*/
__attribute__( ( always_inline ) ) static __INLINE uint32_t __get_FAULTMASK(void)
{
uint32_t result;
__ASM volatile ("MRS %0, faultmask" : "=r" (result) );
return(result);
}
/** \brief Set Fault Mask
This function assigns the given value to the Fault Mask register.
\param [in] faultMask Fault Mask value to set
*/
__attribute__( ( always_inline ) ) static __INLINE void __set_FAULTMASK(uint32_t faultMask)
{
__ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) );
}
#endif /* (__CORTEX_M >= 0x03) */
#if (__CORTEX_M == 0x04)
/** \brief Get FPSCR
This function returns the current value of the Floating Point Status/Control register.
\return Floating Point Status/Control register value
*/
__attribute__( ( always_inline ) ) static __INLINE uint32_t __get_FPSCR(void)
{
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
uint32_t result;
__ASM volatile ("VMRS %0, fpscr" : "=r" (result) );
return(result);
#else
return(0);
#endif
}
/** \brief Set FPSCR
This function assigns the given value to the Floating Point Status/Control register.
\param [in] fpscr Floating Point Status/Control value to set
*/
__attribute__( ( always_inline ) ) static __INLINE void __set_FPSCR(uint32_t fpscr)
{
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
__ASM volatile ("VMSR fpscr, %0" : : "r" (fpscr) );
#endif
}
#endif /* (__CORTEX_M == 0x04) */
#elif defined ( __TASKING__ ) /*------------------ TASKING Compiler --------------*/
/* TASKING carm specific functions */
/*
* The CMSIS functions have been implemented as intrinsics in the compiler.
* Please use "carm -?i" to get an up to date list of all instrinsics,
* Including the CMSIS ones.
*/
#endif
/*@} end of CMSIS_Core_RegAccFunctions */
#endif /* __CORE_CMFUNC_H */

View file

@ -1,586 +0,0 @@
/**************************************************************************//**
* @file core_cmInstr.h
* @brief CMSIS Cortex-M Core Instruction Access Header File
* @version V2.10
* @date 19. July 2011
*
* @note
* Copyright (C) 2009-2011 ARM Limited. All rights reserved.
*
* @par
* ARM Limited (ARM) is supplying this software for use with Cortex-M
* processor based microcontrollers. This file can be freely distributed
* within development tools that are supporting such ARM based processors.
*
* @par
* THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
* OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
* ARM SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR
* CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
*
******************************************************************************/
#ifndef __CORE_CMINSTR_H
#define __CORE_CMINSTR_H
/* ########################## Core Instruction Access ######################### */
/** \ingroup CMSIS_Core
\defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
Access to dedicated instructions
@{
*/
#if defined ( __CC_ARM ) /*------------------RealView Compiler -----------------*/
/* ARM armcc specific functions */
#if (__ARMCC_VERSION < 400677)
#error "Please use ARM Compiler Toolchain V4.0.677 or later!"
#endif
/** \brief No Operation
No Operation does nothing. This instruction can be used for code alignment purposes.
*/
#define __NOP __nop
/** \brief Wait For Interrupt
Wait For Interrupt is a hint instruction that suspends execution
until one of a number of events occurs.
*/
#define __WFI __wfi
/** \brief Wait For Event
Wait For Event is a hint instruction that permits the processor to enter
a low-power state until one of a number of events occurs.
*/
#define __WFE __wfe
/** \brief Send Event
Send Event is a hint instruction. It causes an event to be signaled to the CPU.
*/
#define __SEV __sev
/** \brief Instruction Synchronization Barrier
Instruction Synchronization Barrier flushes the pipeline in the processor,
so that all instructions following the ISB are fetched from cache or
memory, after the instruction has been completed.
*/
#define __ISB() __isb(0xF)
/** \brief Data Synchronization Barrier
This function acts as a special kind of Data Memory Barrier.
It completes when all explicit memory accesses before this instruction complete.
*/
#define __DSB() __dsb(0xF)
/** \brief Data Memory Barrier
This function ensures the apparent order of the explicit memory operations before
and after the instruction, without ensuring their completion.
*/
#define __DMB() __dmb(0xF)
/** \brief Reverse byte order (32 bit)
This function reverses the byte order in integer value.
\param [in] value Value to reverse
\return Reversed value
*/
#define __REV __rev
/** \brief Reverse byte order (16 bit)
This function reverses the byte order in two unsigned short values.
\param [in] value Value to reverse
\return Reversed value
*/
static __INLINE __ASM uint32_t __REV16(uint32_t value)
{
rev16 r0, r0
bx lr
}
/** \brief Reverse byte order in signed short value
This function reverses the byte order in a signed short value with sign extension to integer.
\param [in] value Value to reverse
\return Reversed value
*/
static __INLINE __ASM int32_t __REVSH(int32_t value)
{
revsh r0, r0
bx lr
}
#if (__CORTEX_M >= 0x03)
/** \brief Reverse bit order of value
This function reverses the bit order of the given value.
\param [in] value Value to reverse
\return Reversed value
*/
#define __RBIT __rbit
/** \brief LDR Exclusive (8 bit)
This function performs a exclusive LDR command for 8 bit value.
\param [in] ptr Pointer to data
\return value of type uint8_t at (*ptr)
*/
#define __LDREXB(ptr) ((uint8_t ) __ldrex(ptr))
/** \brief LDR Exclusive (16 bit)
This function performs a exclusive LDR command for 16 bit values.
\param [in] ptr Pointer to data
\return value of type uint16_t at (*ptr)
*/
#define __LDREXH(ptr) ((uint16_t) __ldrex(ptr))
/** \brief LDR Exclusive (32 bit)
This function performs a exclusive LDR command for 32 bit values.
\param [in] ptr Pointer to data
\return value of type uint32_t at (*ptr)
*/
#define __LDREXW(ptr) ((uint32_t ) __ldrex(ptr))
/** \brief STR Exclusive (8 bit)
This function performs a exclusive STR command for 8 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#define __STREXB(value, ptr) __strex(value, ptr)
/** \brief STR Exclusive (16 bit)
This function performs a exclusive STR command for 16 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#define __STREXH(value, ptr) __strex(value, ptr)
/** \brief STR Exclusive (32 bit)
This function performs a exclusive STR command for 32 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#define __STREXW(value, ptr) __strex(value, ptr)
/** \brief Remove the exclusive lock
This function removes the exclusive lock which is created by LDREX.
*/
#define __CLREX __clrex
/** \brief Signed Saturate
This function saturates a signed value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (1..32)
\return Saturated value
*/
#define __SSAT __ssat
/** \brief Unsigned Saturate
This function saturates an unsigned value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (0..31)
\return Saturated value
*/
#define __USAT __usat
/** \brief Count leading zeros
This function counts the number of leading zeros of a data value.
\param [in] value Value to count the leading zeros
\return number of leading zeros in value
*/
#define __CLZ __clz
#endif /* (__CORTEX_M >= 0x03) */
#elif defined ( __ICCARM__ ) /*------------------ ICC Compiler -------------------*/
/* IAR iccarm specific functions */
#include <cmsis_iar.h>
#elif defined ( __GNUC__ ) /*------------------ GNU Compiler ---------------------*/
/* GNU gcc specific functions */
/** \brief No Operation
No Operation does nothing. This instruction can be used for code alignment purposes.
*/
__attribute__( ( always_inline ) ) static __INLINE void __NOP(void)
{
__ASM volatile ("nop");
}
/** \brief Wait For Interrupt
Wait For Interrupt is a hint instruction that suspends execution
until one of a number of events occurs.
*/
__attribute__( ( always_inline ) ) static __INLINE void __WFI(void)
{
__ASM volatile ("wfi");
}
/** \brief Wait For Event
Wait For Event is a hint instruction that permits the processor to enter
a low-power state until one of a number of events occurs.
*/
__attribute__( ( always_inline ) ) static __INLINE void __WFE(void)
{
__ASM volatile ("wfe");
}
/** \brief Send Event
Send Event is a hint instruction. It causes an event to be signaled to the CPU.
*/
__attribute__( ( always_inline ) ) static __INLINE void __SEV(void)
{
__ASM volatile ("sev");
}
/** \brief Instruction Synchronization Barrier
Instruction Synchronization Barrier flushes the pipeline in the processor,
so that all instructions following the ISB are fetched from cache or
memory, after the instruction has been completed.
*/
__attribute__( ( always_inline ) ) static __INLINE void __ISB(void)
{
__ASM volatile ("isb");
}
/** \brief Data Synchronization Barrier
This function acts as a special kind of Data Memory Barrier.
It completes when all explicit memory accesses before this instruction complete.
*/
__attribute__( ( always_inline ) ) static __INLINE void __DSB(void)
{
__ASM volatile ("dsb");
}
/** \brief Data Memory Barrier
This function ensures the apparent order of the explicit memory operations before
and after the instruction, without ensuring their completion.
*/
__attribute__( ( always_inline ) ) static __INLINE void __DMB(void)
{
__ASM volatile ("dmb");
}
/** \brief Reverse byte order (32 bit)
This function reverses the byte order in integer value.
\param [in] value Value to reverse
\return Reversed value
*/
__attribute__( ( always_inline ) ) static __INLINE uint32_t __REV(uint32_t value)
{
uint32_t result;
__ASM volatile ("rev %0, %1" : "=r" (result) : "r" (value) );
return(result);
}
/** \brief Reverse byte order (16 bit)
This function reverses the byte order in two unsigned short values.
\param [in] value Value to reverse
\return Reversed value
*/
__attribute__( ( always_inline ) ) static __INLINE uint32_t __REV16(uint32_t value)
{
uint32_t result;
__ASM volatile ("rev16 %0, %1" : "=r" (result) : "r" (value) );
return(result);
}
/** \brief Reverse byte order in signed short value
This function reverses the byte order in a signed short value with sign extension to integer.
\param [in] value Value to reverse
\return Reversed value
*/
__attribute__( ( always_inline ) ) static __INLINE int32_t __REVSH(int32_t value)
{
uint32_t result;
__ASM volatile ("revsh %0, %1" : "=r" (result) : "r" (value) );
return(result);
}
#if (__CORTEX_M >= 0x03)
/** \brief Reverse bit order of value
This function reverses the bit order of the given value.
\param [in] value Value to reverse
\return Reversed value
*/
__attribute__( ( always_inline ) ) static __INLINE uint32_t __RBIT(uint32_t value)
{
uint32_t result;
__ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) );
return(result);
}
/** \brief LDR Exclusive (8 bit)
This function performs a exclusive LDR command for 8 bit value.
\param [in] ptr Pointer to data
\return value of type uint8_t at (*ptr)
*/
__attribute__( ( always_inline ) ) static __INLINE uint8_t __LDREXB(volatile uint8_t *addr)
{
uint8_t result;
__ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) );
return(result);
}
/** \brief LDR Exclusive (16 bit)
This function performs a exclusive LDR command for 16 bit values.
\param [in] ptr Pointer to data
\return value of type uint16_t at (*ptr)
*/
__attribute__( ( always_inline ) ) static __INLINE uint16_t __LDREXH(volatile uint16_t *addr)
{
uint16_t result;
__ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) );
return(result);
}
/** \brief LDR Exclusive (32 bit)
This function performs a exclusive LDR command for 32 bit values.
\param [in] ptr Pointer to data
\return value of type uint32_t at (*ptr)
*/
__attribute__( ( always_inline ) ) static __INLINE uint32_t __LDREXW(volatile uint32_t *addr)
{
uint32_t result;
__ASM volatile ("ldrex %0, [%1]" : "=r" (result) : "r" (addr) );
return(result);
}
/** \brief STR Exclusive (8 bit)
This function performs a exclusive STR command for 8 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
__attribute__( ( always_inline ) ) static __INLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr)
{
uint32_t result;
__ASM volatile ("strexb %0, %2, [%1]" : "=r" (result) : "r" (addr), "r" (value) );
return(result);
}
/** \brief STR Exclusive (16 bit)
This function performs a exclusive STR command for 16 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
__attribute__( ( always_inline ) ) static __INLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr)
{
uint32_t result;
__ASM volatile ("strexh %0, %2, [%1]" : "=r" (result) : "r" (addr), "r" (value) );
return(result);
}
/** \brief STR Exclusive (32 bit)
This function performs a exclusive STR command for 32 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
__attribute__( ( always_inline ) ) static __INLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr)
{
uint32_t result;
__ASM volatile ("strex %0, %2, [%1]" : "=r" (result) : "r" (addr), "r" (value) );
return(result);
}
/** \brief Remove the exclusive lock
This function removes the exclusive lock which is created by LDREX.
*/
__attribute__( ( always_inline ) ) static __INLINE void __CLREX(void)
{
__ASM volatile ("clrex");
}
/** \brief Signed Saturate
This function saturates a signed value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (1..32)
\return Saturated value
*/
#define __SSAT(ARG1,ARG2) \
({ \
uint32_t __RES, __ARG1 = (ARG1); \
__ASM ("ssat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
__RES; \
})
/** \brief Unsigned Saturate
This function saturates an unsigned value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (0..31)
\return Saturated value
*/
#define __USAT(ARG1,ARG2) \
({ \
uint32_t __RES, __ARG1 = (ARG1); \
__ASM ("usat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
__RES; \
})
/** \brief Count leading zeros
This function counts the number of leading zeros of a data value.
\param [in] value Value to count the leading zeros
\return number of leading zeros in value
*/
__attribute__( ( always_inline ) ) static __INLINE uint8_t __CLZ(uint32_t value)
{
uint8_t result;
__ASM volatile ("clz %0, %1" : "=r" (result) : "r" (value) );
return(result);
}
#endif /* (__CORTEX_M >= 0x03) */
#elif defined ( __TASKING__ ) /*------------------ TASKING Compiler --------------*/
/* TASKING carm specific functions */
/*
* The CMSIS functions have been implemented as intrinsics in the compiler.
* Please use "carm -?i" to get an up to date list of all intrinsics,
* Including the CMSIS ones.
*/
#endif
/*@}*/ /* end of group CMSIS_Core_InstructionInterface */
#endif /* __CORE_CMINSTR_H */

View file

@ -1,80 +0,0 @@
/**********************************************************************
* $Id$ debug_frmwrk.h 2010-05-21
*//**
* @file debug_frmwrk.h
* @brief Contains some utilities that used for debugging through UART
* @version 2.0
* @date 21. May. 2010
* @author NXP MCU SW Application Team
*
* Copyright(C) 2010, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
#ifndef DEBUG_FRMWRK_H_
#define DEBUG_FRMWRK_H_
//#include <stdarg.h>
#include "lpc17xx_uart.h"
#define USED_UART_DEBUG_PORT 0
#if (USED_UART_DEBUG_PORT==0)
#define DEBUG_UART_PORT LPC_UART0
#elif (USED_UART_DEBUG_PORT==1)
#define DEBUG_UART_PORT LPC_UART1
#endif
#define _DBG(x) _db_msg(DEBUG_UART_PORT, x)
#define _DBG_(x) _db_msg_(DEBUG_UART_PORT, x)
#define _DBC(x) _db_char(DEBUG_UART_PORT, x)
#define _DBD(x) _db_dec(DEBUG_UART_PORT, x)
#define _DBD16(x) _db_dec_16(DEBUG_UART_PORT, x)
#define _DBD32(x) _db_dec_32(DEBUG_UART_PORT, x)
#define _DBH(x) _db_hex(DEBUG_UART_PORT, x)
#define _DBH16(x) _db_hex_16(DEBUG_UART_PORT, x)
#define _DBH32(x) _db_hex_32(DEBUG_UART_PORT, x)
#define _DG _db_get_char(DEBUG_UART_PORT)
//void _printf (const char *format, ...);
extern void (*_db_msg)(LPC_UART_TypeDef *UARTx, const void *s);
extern void (*_db_msg_)(LPC_UART_TypeDef *UARTx, const void *s);
extern void (*_db_char)(LPC_UART_TypeDef *UARTx, uint8_t ch);
extern void (*_db_dec)(LPC_UART_TypeDef *UARTx, uint8_t decn);
extern void (*_db_dec_16)(LPC_UART_TypeDef *UARTx, uint16_t decn);
extern void (*_db_dec_32)(LPC_UART_TypeDef *UARTx, uint32_t decn);
extern void (*_db_hex)(LPC_UART_TypeDef *UARTx, uint8_t hexn);
extern void (*_db_hex_16)(LPC_UART_TypeDef *UARTx, uint16_t hexn);
extern void (*_db_hex_32)(LPC_UART_TypeDef *UARTx, uint32_t hexn);
extern uint8_t (*_db_get_char)(LPC_UART_TypeDef *UARTx);
void UARTPutChar (LPC_UART_TypeDef *UARTx, uint8_t ch);
void UARTPuts(LPC_UART_TypeDef *UARTx, const void *str);
void UARTPuts_(LPC_UART_TypeDef *UARTx, const void *str);
void UARTPutDec(LPC_UART_TypeDef *UARTx, uint8_t decnum);
void UARTPutDec16(LPC_UART_TypeDef *UARTx, uint16_t decnum);
void UARTPutDec32(LPC_UART_TypeDef *UARTx, uint32_t decnum);
void UARTPutHex (LPC_UART_TypeDef *UARTx, uint8_t hexnum);
void UARTPutHex16 (LPC_UART_TypeDef *UARTx, uint16_t hexnum);
void UARTPutHex32 (LPC_UART_TypeDef *UARTx, uint32_t hexnum);
uint8_t UARTGetChar (LPC_UART_TypeDef *UARTx);
void debug_frmwrk_init(void);
#endif /* DEBUG_FRMWRK_H_ */

View file

@ -1,302 +0,0 @@
/**********************************************************************
* $Id$ lpc17xx_adc.h 2008-07-27
*//**
* @file lpc17xx_adc.h
* @brief Contains the NXP ABL typedefs for C standard types.
* It is intended to be used in ISO C conforming development
* environments and checks for this insofar as it is possible
* to do so.
* @version 2.0
* @date 27 Jul. 2008
* @author NXP MCU SW Application Team
*
* Copyright(C) 2008, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
/* Peripheral group ----------------------------------------------------------- */
/** @defgroup ADC ADC (Analog-to-Digital Converter)
* @ingroup LPC1700CMSIS_FwLib_Drivers
* @{
*/
#ifndef LPC17XX_ADC_H_
#define LPC17XX_ADC_H_
/* Includes ------------------------------------------------------------------- */
#include "LPC17xx.h"
#include "lpc_types.h"
#ifdef __cplusplus
extern "C"
{
#endif
/* Private macros ------------------------------------------------------------- */
/** @defgroup ADC_Private_Macros ADC Private Macros
* @{
*/
/* -------------------------- BIT DEFINITIONS ----------------------------------- */
/*********************************************************************//**
* Macro defines for ADC control register
**********************************************************************/
/** Selects which of the AD0.0:7 pins is (are) to be sampled and converted */
#define ADC_CR_CH_SEL(n) ((1UL << n))
/** The APB clock (PCLK) is divided by (this value plus one)
* to produce the clock for the A/D */
#define ADC_CR_CLKDIV(n) ((n<<8))
/** Repeated conversions A/D enable bit */
#define ADC_CR_BURST ((1UL<<16))
/** ADC convert in power down mode */
#define ADC_CR_PDN ((1UL<<21))
/** Start mask bits */
#define ADC_CR_START_MASK ((7UL<<24))
/** Select Start Mode */
#define ADC_CR_START_MODE_SEL(SEL) ((SEL<<24))
/** Start conversion now */
#define ADC_CR_START_NOW ((1UL<<24))
/** Start conversion when the edge selected by bit 27 occurs on P2.10/EINT0 */
#define ADC_CR_START_EINT0 ((2UL<<24))
/** Start conversion when the edge selected by bit 27 occurs on P1.27/CAP0.1 */
#define ADC_CR_START_CAP01 ((3UL<<24))
/** Start conversion when the edge selected by bit 27 occurs on MAT0.1 */
#define ADC_CR_START_MAT01 ((4UL<<24))
/** Start conversion when the edge selected by bit 27 occurs on MAT0.3 */
#define ADC_CR_START_MAT03 ((5UL<<24))
/** Start conversion when the edge selected by bit 27 occurs on MAT1.0 */
#define ADC_CR_START_MAT10 ((6UL<<24))
/** Start conversion when the edge selected by bit 27 occurs on MAT1.1 */
#define ADC_CR_START_MAT11 ((7UL<<24))
/** Start conversion on a falling edge on the selected CAP/MAT signal */
#define ADC_CR_EDGE ((1UL<<27))
/*********************************************************************//**
* Macro defines for ADC Global Data register
**********************************************************************/
/** When DONE is 1, this field contains result value of ADC conversion */
#define ADC_GDR_RESULT(n) (((n>>4)&0xFFF))
/** These bits contain the channel from which the LS bits were converted */
#define ADC_GDR_CH(n) (((n>>24)&0x7))
/** This bit is 1 in burst mode if the results of one or
* more conversions was (were) lost */
#define ADC_GDR_OVERRUN_FLAG ((1UL<<30))
/** This bit is set to 1 when an A/D conversion completes */
#define ADC_GDR_DONE_FLAG ((1UL<<31))
/** This bits is used to mask for Channel */
#define ADC_GDR_CH_MASK ((7UL<<24))
/*********************************************************************//**
* Macro defines for ADC Interrupt register
**********************************************************************/
/** These bits allow control over which A/D channels generate
* interrupts for conversion completion */
#define ADC_INTEN_CH(n) ((1UL<<n))
/** When 1, enables the global DONE flag in ADDR to generate an interrupt */
#define ADC_INTEN_GLOBAL ((1UL<<8))
/*********************************************************************//**
* Macro defines for ADC Data register
**********************************************************************/
/** When DONE is 1, this field contains result value of ADC conversion */
#define ADC_DR_RESULT(n) (((n>>4)&0xFFF))
/** These bits mirror the OVERRRUN status flags that appear in the
* result register for each A/D channel */
#define ADC_DR_OVERRUN_FLAG ((1UL<<30))
/** This bit is set to 1 when an A/D conversion completes. It is cleared
* when this register is read */
#define ADC_DR_DONE_FLAG ((1UL<<31))
/*********************************************************************//**
* Macro defines for ADC Status register
**********************************************************************/
/** These bits mirror the DONE status flags that appear in the result
* register for each A/D channel */
#define ADC_STAT_CH_DONE_FLAG(n) ((n&0xFF))
/** These bits mirror the OVERRRUN status flags that appear in the
* result register for each A/D channel */
#define ADC_STAT_CH_OVERRUN_FLAG(n) (((n>>8)&0xFF))
/** This bit is the A/D interrupt flag */
#define ADC_STAT_INT_FLAG ((1UL<<16))
/*********************************************************************//**
* Macro defines for ADC Trim register
**********************************************************************/
/** Offset trim bits for ADC operation */
#define ADC_ADCOFFS(n) (((n&0xF)<<4))
/** Written to boot code*/
#define ADC_TRIM(n) (((n&0xF)<<8))
/* ------------------- CHECK PARAM DEFINITIONS ------------------------- */
/** Check ADC parameter */
#define PARAM_ADCx(n) (((uint32_t *)n)==((uint32_t *)LPC_ADC))
/** Check ADC state parameter */
#define PARAM_ADC_START_ON_EDGE_OPT(OPT) ((OPT == ADC_START_ON_RISING)||(OPT == ADC_START_ON_FALLING))
/** Check ADC state parameter */
#define PARAM_ADC_DATA_STATUS(OPT) ((OPT== ADC_DATA_BURST)||(OPT== ADC_DATA_DONE))
/** Check ADC rate parameter */
#define PARAM_ADC_RATE(rate) ((rate>0)&&(rate<=200000))
/** Check ADC channel selection parameter */
#define PARAM_ADC_CHANNEL_SELECTION(SEL) ((SEL == ADC_CHANNEL_0)||(ADC_CHANNEL_1)\
||(SEL == ADC_CHANNEL_2)|(ADC_CHANNEL_3)\
||(SEL == ADC_CHANNEL_4)||(ADC_CHANNEL_5)\
||(SEL == ADC_CHANNEL_6)||(ADC_CHANNEL_7))
/** Check ADC start option parameter */
#define PARAM_ADC_START_OPT(OPT) ((OPT == ADC_START_CONTINUOUS)||(OPT == ADC_START_NOW)\
||(OPT == ADC_START_ON_EINT0)||(OPT == ADC_START_ON_CAP01)\
||(OPT == ADC_START_ON_MAT01)||(OPT == ADC_START_ON_MAT03)\
||(OPT == ADC_START_ON_MAT10)||(OPT == ADC_START_ON_MAT11))
/** Check ADC interrupt type parameter */
#define PARAM_ADC_TYPE_INT_OPT(OPT) ((OPT == ADC_ADINTEN0)||(OPT == ADC_ADINTEN1)\
||(OPT == ADC_ADINTEN2)||(OPT == ADC_ADINTEN3)\
||(OPT == ADC_ADINTEN4)||(OPT == ADC_ADINTEN5)\
||(OPT == ADC_ADINTEN6)||(OPT == ADC_ADINTEN7)\
||(OPT == ADC_ADGINTEN))
/**
* @}
*/
/* Public Types --------------------------------------------------------------- */
/** @defgroup ADC_Public_Types ADC Public Types
* @{
*/
/*********************************************************************//**
* @brief ADC enumeration
**********************************************************************/
/** @brief Channel Selection */
typedef enum
{
ADC_CHANNEL_0 = 0, /*!< Channel 0 */
ADC_CHANNEL_1, /*!< Channel 1 */
ADC_CHANNEL_2, /*!< Channel 2 */
ADC_CHANNEL_3, /*!< Channel 3 */
ADC_CHANNEL_4, /*!< Channel 4 */
ADC_CHANNEL_5, /*!< Channel 5 */
ADC_CHANNEL_6, /*!< Channel 6 */
ADC_CHANNEL_7 /*!< Channel 7 */
}ADC_CHANNEL_SELECTION;
/** @brief Type of start option */
typedef enum
{
ADC_START_CONTINUOUS =0, /*!< Continuous mode */
ADC_START_NOW, /*!< Start conversion now */
ADC_START_ON_EINT0, /*!< Start conversion when the edge selected
* by bit 27 occurs on P2.10/EINT0 */
ADC_START_ON_CAP01, /*!< Start conversion when the edge selected
* by bit 27 occurs on P1.27/CAP0.1 */
ADC_START_ON_MAT01, /*!< Start conversion when the edge selected
* by bit 27 occurs on MAT0.1 */
ADC_START_ON_MAT03, /*!< Start conversion when the edge selected
* by bit 27 occurs on MAT0.3 */
ADC_START_ON_MAT10, /*!< Start conversion when the edge selected
* by bit 27 occurs on MAT1.0 */
ADC_START_ON_MAT11 /*!< Start conversion when the edge selected
* by bit 27 occurs on MAT1.1 */
} ADC_START_OPT;
/** @brief Type of edge when start conversion on the selected CAP/MAT signal */
typedef enum
{
ADC_START_ON_RISING = 0, /*!< Start conversion on a rising edge
*on the selected CAP/MAT signal */
ADC_START_ON_FALLING /*!< Start conversion on a falling edge
*on the selected CAP/MAT signal */
} ADC_START_ON_EDGE_OPT;
/** @brief* ADC type interrupt enum */
typedef enum
{
ADC_ADINTEN0 = 0, /*!< Interrupt channel 0 */
ADC_ADINTEN1, /*!< Interrupt channel 1 */
ADC_ADINTEN2, /*!< Interrupt channel 2 */
ADC_ADINTEN3, /*!< Interrupt channel 3 */
ADC_ADINTEN4, /*!< Interrupt channel 4 */
ADC_ADINTEN5, /*!< Interrupt channel 5 */
ADC_ADINTEN6, /*!< Interrupt channel 6 */
ADC_ADINTEN7, /*!< Interrupt channel 7 */
ADC_ADGINTEN /*!< Individual channel/global flag done generate an interrupt */
}ADC_TYPE_INT_OPT;
/** @brief ADC Data status */
typedef enum
{
ADC_DATA_BURST = 0, /*Burst bit*/
ADC_DATA_DONE /*Done bit*/
}ADC_DATA_STATUS;
/**
* @}
*/
/* Public Functions ----------------------------------------------------------- */
/** @defgroup ADC_Public_Functions ADC Public Functions
* @{
*/
/* Init/DeInit ADC peripheral ----------------*/
void ADC_Init(LPC_ADC_TypeDef *ADCx, uint32_t rate);
void ADC_DeInit(LPC_ADC_TypeDef *ADCx);
/* Enable/Disable ADC functions --------------*/
void ADC_BurstCmd(LPC_ADC_TypeDef *ADCx, FunctionalState NewState);
void ADC_PowerdownCmd(LPC_ADC_TypeDef *ADCx, FunctionalState NewState);
void ADC_StartCmd(LPC_ADC_TypeDef *ADCx, uint8_t start_mode);
void ADC_ChannelCmd (LPC_ADC_TypeDef *ADCx, uint8_t Channel, FunctionalState NewState);
/* Configure ADC functions -------------------*/
void ADC_EdgeStartConfig(LPC_ADC_TypeDef *ADCx, uint8_t EdgeOption);
void ADC_IntConfig (LPC_ADC_TypeDef *ADCx, ADC_TYPE_INT_OPT IntType, FunctionalState NewState);
/* Get ADC information functions -------------------*/
uint16_t ADC_ChannelGetData(LPC_ADC_TypeDef *ADCx, uint8_t channel);
FlagStatus ADC_ChannelGetStatus(LPC_ADC_TypeDef *ADCx, uint8_t channel, uint32_t StatusType);
uint32_t ADC_GlobalGetData(LPC_ADC_TypeDef *ADCx);
FlagStatus ADC_GlobalGetStatus(LPC_ADC_TypeDef *ADCx, uint32_t StatusType);
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* LPC17XX_ADC_H_ */
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */

View file

@ -1,872 +0,0 @@
/**********************************************************************
* $Id$ lpc17xx_can.h 2010-06-18
*//**
* @file lpc17xx_can.h
* @brief Contains all macro definitions and function prototypes
* support for CAN firmware library on LPC17xx
* @version 3.0
* @date 18. June. 2010
* @author NXP MCU SW Application Team
*
* Copyright(C) 2010, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
/* Peripheral group ----------------------------------------------------------- */
/** @defgroup CAN CAN (Control Area Network)
* @ingroup LPC1700CMSIS_FwLib_Drivers
* @{
*/
#ifndef LPC17XX_CAN_H_
#define LPC17XX_CAN_H_
/* Includes ------------------------------------------------------------------- */
#include "LPC17xx.h"
#include "lpc_types.h"
#ifdef __cplusplus
extern "C"
{
#endif
/* Public Types --------------------------------------------------------------- */
/** @defgroup CAN_Public_Macros CAN Public Macros
* @{
*/
#define MSG_ENABLE ((uint8_t)(0))
#define MSG_DISABLE ((uint8_t)(1))
#define CAN1_CTRL ((uint8_t)(0))
#define CAN2_CTRL ((uint8_t)(1))
#define PARAM_FULLCAN_IC(n) ((n==FULLCAN_IC0)||(n==FULLCAN_IC1))
#define ID_11 1
#define MAX_HW_FULLCAN_OBJ 64
#define MAX_SW_FULLCAN_OBJ 32
/**
* @}
*/
/* Private Macros ------------------------------------------------------------- */
/** @defgroup CAN_Private_Macros CAN Private Macros
* @{
*/
/* --------------------- BIT DEFINITIONS -------------------------------------- */
/*********************************************************************//**
* Macro defines for CAN Mode Register
**********************************************************************/
/** CAN Reset mode */
#define CAN_MOD_RM ((uint32_t)(1))
/** CAN Listen Only Mode */
#define CAN_MOD_LOM ((uint32_t)(1<<1))
/** CAN Self Test mode */
#define CAN_MOD_STM ((uint32_t)(1<<2))
/** CAN Transmit Priority mode */
#define CAN_MOD_TPM ((uint32_t)(1<<3))
/** CAN Sleep mode */
#define CAN_MOD_SM ((uint32_t)(1<<4))
/** CAN Receive Polarity mode */
#define CAN_MOD_RPM ((uint32_t)(1<<5))
/** CAN Test mode */
#define CAN_MOD_TM ((uint32_t)(1<<7))
/*********************************************************************//**
* Macro defines for CAN Command Register
**********************************************************************/
/** CAN Transmission Request */
#define CAN_CMR_TR ((uint32_t)(1))
/** CAN Abort Transmission */
#define CAN_CMR_AT ((uint32_t)(1<<1))
/** CAN Release Receive Buffer */
#define CAN_CMR_RRB ((uint32_t)(1<<2))
/** CAN Clear Data Overrun */
#define CAN_CMR_CDO ((uint32_t)(1<<3))
/** CAN Self Reception Request */
#define CAN_CMR_SRR ((uint32_t)(1<<4))
/** CAN Select Tx Buffer 1 */
#define CAN_CMR_STB1 ((uint32_t)(1<<5))
/** CAN Select Tx Buffer 2 */
#define CAN_CMR_STB2 ((uint32_t)(1<<6))
/** CAN Select Tx Buffer 3 */
#define CAN_CMR_STB3 ((uint32_t)(1<<7))
/*********************************************************************//**
* Macro defines for CAN Global Status Register
**********************************************************************/
/** CAN Receive Buffer Status */
#define CAN_GSR_RBS ((uint32_t)(1))
/** CAN Data Overrun Status */
#define CAN_GSR_DOS ((uint32_t)(1<<1))
/** CAN Transmit Buffer Status */
#define CAN_GSR_TBS ((uint32_t)(1<<2))
/** CAN Transmit Complete Status */
#define CAN_GSR_TCS ((uint32_t)(1<<3))
/** CAN Receive Status */
#define CAN_GSR_RS ((uint32_t)(1<<4))
/** CAN Transmit Status */
#define CAN_GSR_TS ((uint32_t)(1<<5))
/** CAN Error Status */
#define CAN_GSR_ES ((uint32_t)(1<<6))
/** CAN Bus Status */
#define CAN_GSR_BS ((uint32_t)(1<<7))
/** CAN Current value of the Rx Error Counter */
#define CAN_GSR_RXERR(n) ((uint32_t)((n&0xFF)<<16))
/** CAN Current value of the Tx Error Counter */
#define CAN_GSR_TXERR(n) ((uint32_t)(n&0xFF)<<24))
/*********************************************************************//**
* Macro defines for CAN Interrupt and Capture Register
**********************************************************************/
/** CAN Receive Interrupt */
#define CAN_ICR_RI ((uint32_t)(1))
/** CAN Transmit Interrupt 1 */
#define CAN_ICR_TI1 ((uint32_t)(1<<1))
/** CAN Error Warning Interrupt */
#define CAN_ICR_EI ((uint32_t)(1<<2))
/** CAN Data Overrun Interrupt */
#define CAN_ICR_DOI ((uint32_t)(1<<3))
/** CAN Wake-Up Interrupt */
#define CAN_ICR_WUI ((uint32_t)(1<<4))
/** CAN Error Passive Interrupt */
#define CAN_ICR_EPI ((uint32_t)(1<<5))
/** CAN Arbitration Lost Interrupt */
#define CAN_ICR_ALI ((uint32_t)(1<<6))
/** CAN Bus Error Interrupt */
#define CAN_ICR_BEI ((uint32_t)(1<<7))
/** CAN ID Ready Interrupt */
#define CAN_ICR_IDI ((uint32_t)(1<<8))
/** CAN Transmit Interrupt 2 */
#define CAN_ICR_TI2 ((uint32_t)(1<<9))
/** CAN Transmit Interrupt 3 */
#define CAN_ICR_TI3 ((uint32_t)(1<<10))
/** CAN Error Code Capture */
#define CAN_ICR_ERRBIT(n) ((uint32_t)((n&0x1F)<<16))
/** CAN Error Direction */
#define CAN_ICR_ERRDIR ((uint32_t)(1<<21))
/** CAN Error Capture */
#define CAN_ICR_ERRC(n) ((uint32_t)((n&0x3)<<22))
/** CAN Arbitration Lost Capture */
#define CAN_ICR_ALCBIT(n) ((uint32_t)((n&0xFF)<<24))
/*********************************************************************//**
* Macro defines for CAN Interrupt Enable Register
**********************************************************************/
/** CAN Receive Interrupt Enable */
#define CAN_IER_RIE ((uint32_t)(1))
/** CAN Transmit Interrupt Enable for buffer 1 */
#define CAN_IER_TIE1 ((uint32_t)(1<<1))
/** CAN Error Warning Interrupt Enable */
#define CAN_IER_EIE ((uint32_t)(1<<2))
/** CAN Data Overrun Interrupt Enable */
#define CAN_IER_DOIE ((uint32_t)(1<<3))
/** CAN Wake-Up Interrupt Enable */
#define CAN_IER_WUIE ((uint32_t)(1<<4))
/** CAN Error Passive Interrupt Enable */
#define CAN_IER_EPIE ((uint32_t)(1<<5))
/** CAN Arbitration Lost Interrupt Enable */
#define CAN_IER_ALIE ((uint32_t)(1<<6))
/** CAN Bus Error Interrupt Enable */
#define CAN_IER_BEIE ((uint32_t)(1<<7))
/** CAN ID Ready Interrupt Enable */
#define CAN_IER_IDIE ((uint32_t)(1<<8))
/** CAN Transmit Enable Interrupt for Buffer 2 */
#define CAN_IER_TIE2 ((uint32_t)(1<<9))
/** CAN Transmit Enable Interrupt for Buffer 3 */
#define CAN_IER_TIE3 ((uint32_t)(1<<10))
/*********************************************************************//**
* Macro defines for CAN Bus Timing Register
**********************************************************************/
/** CAN Baudrate Prescaler */
#define CAN_BTR_BRP(n) ((uint32_t)(n&0x3FF))
/** CAN Synchronization Jump Width */
#define CAN_BTR_SJM(n) ((uint32_t)((n&0x3)<<14))
/** CAN Time Segment 1 */
#define CAN_BTR_TESG1(n) ((uint32_t)(n&0xF)<<16))
/** CAN Time Segment 2 */
#define CAN_BTR_TESG2(n) ((uint32_t)(n&0xF)<<20))
/** CAN Sampling */
#define CAN_BTR_SAM(n) ((uint32_t)(1<<23))
/*********************************************************************//**
* Macro defines for CAN Error Warning Limit Register
**********************************************************************/
/** CAN Error Warning Limit */
#define CAN_EWL_EWL(n) ((uint32_t)(n&0xFF))
/*********************************************************************//**
* Macro defines for CAN Status Register
**********************************************************************/
/** CAN Receive Buffer Status */
#define CAN_SR_RBS ((uint32_t)(1))
/** CAN Data Overrun Status */
#define CAN_SR_DOS ((uint32_t)(1<<1))
/** CAN Transmit Buffer Status 1 */
#define CAN_SR_TBS1 ((uint32_t)(1<<2))
/** CAN Transmission Complete Status of Buffer 1 */
#define CAN_SR_TCS1 ((uint32_t)(1<<3))
/** CAN Receive Status */
#define CAN_SR_RS ((uint32_t)(1<<4))
/** CAN Transmit Status 1 */
#define CAN_SR_TS1 ((uint32_t)(1<<5))
/** CAN Error Status */
#define CAN_SR_ES ((uint32_t)(1<<6))
/** CAN Bus Status */
#define CAN_SR_BS ((uint32_t)(1<<7))
/** CAN Transmit Buffer Status 2 */
#define CAN_SR_TBS2 ((uint32_t)(1<<10))
/** CAN Transmission Complete Status of Buffer 2 */
#define CAN_SR_TCS2 ((uint32_t)(1<<11))
/** CAN Transmit Status 2 */
#define CAN_SR_TS2 ((uint32_t)(1<<13))
/** CAN Transmit Buffer Status 2 */
#define CAN_SR_TBS3 ((uint32_t)(1<<18))
/** CAN Transmission Complete Status of Buffer 2 */
#define CAN_SR_TCS3 ((uint32_t)(1<<19))
/** CAN Transmit Status 2 */
#define CAN_SR_TS3 ((uint32_t)(1<<21))
/*********************************************************************//**
* Macro defines for CAN Receive Frame Status Register
**********************************************************************/
/** CAN ID Index */
#define CAN_RFS_ID_INDEX(n) ((uint32_t)(n&0x3FF))
/** CAN Bypass */
#define CAN_RFS_BP ((uint32_t)(1<<10))
/** CAN Data Length Code */
#define CAN_RFS_DLC(n) ((uint32_t)((n&0xF)<<16)
/** CAN Remote Transmission Request */
#define CAN_RFS_RTR ((uint32_t)(1<<30))
/** CAN control 11 bit or 29 bit Identifier */
#define CAN_RFS_FF ((uint32_t)(1<<31))
/*********************************************************************//**
* Macro defines for CAN Receive Identifier Register
**********************************************************************/
/** CAN 11 bit Identifier */
#define CAN_RID_ID_11(n) ((uint32_t)(n&0x7FF))
/** CAN 29 bit Identifier */
#define CAN_RID_ID_29(n) ((uint32_t)(n&0x1FFFFFFF))
/*********************************************************************//**
* Macro defines for CAN Receive Data A Register
**********************************************************************/
/** CAN Receive Data 1 */
#define CAN_RDA_DATA1(n) ((uint32_t)(n&0xFF))
/** CAN Receive Data 2 */
#define CAN_RDA_DATA2(n) ((uint32_t)((n&0xFF)<<8))
/** CAN Receive Data 3 */
#define CAN_RDA_DATA3(n) ((uint32_t)((n&0xFF)<<16))
/** CAN Receive Data 4 */
#define CAN_RDA_DATA4(n) ((uint32_t)((n&0xFF)<<24))
/*********************************************************************//**
* Macro defines for CAN Receive Data B Register
**********************************************************************/
/** CAN Receive Data 5 */
#define CAN_RDB_DATA5(n) ((uint32_t)(n&0xFF))
/** CAN Receive Data 6 */
#define CAN_RDB_DATA6(n) ((uint32_t)((n&0xFF)<<8))
/** CAN Receive Data 7 */
#define CAN_RDB_DATA7(n) ((uint32_t)((n&0xFF)<<16))
/** CAN Receive Data 8 */
#define CAN_RDB_DATA8(n) ((uint32_t)((n&0xFF)<<24))
/*********************************************************************//**
* Macro defines for CAN Transmit Frame Information Register
**********************************************************************/
/** CAN Priority */
#define CAN_TFI_PRIO(n) ((uint32_t)(n&0xFF))
/** CAN Data Length Code */
#define CAN_TFI_DLC(n) ((uint32_t)((n&0xF)<<16))
/** CAN Remote Frame Transmission */
#define CAN_TFI_RTR ((uint32_t)(1<<30))
/** CAN control 11-bit or 29-bit Identifier */
#define CAN_TFI_FF ((uint32_t)(1<<31))
/*********************************************************************//**
* Macro defines for CAN Transmit Identifier Register
**********************************************************************/
/** CAN 11-bit Identifier */
#define CAN_TID_ID11(n) ((uint32_t)(n&0x7FF))
/** CAN 11-bit Identifier */
#define CAN_TID_ID29(n) ((uint32_t)(n&0x1FFFFFFF))
/*********************************************************************//**
* Macro defines for CAN Transmit Data A Register
**********************************************************************/
/** CAN Transmit Data 1 */
#define CAN_TDA_DATA1(n) ((uint32_t)(n&0xFF))
/** CAN Transmit Data 2 */
#define CAN_TDA_DATA2(n) ((uint32_t)((n&0xFF)<<8))
/** CAN Transmit Data 3 */
#define CAN_TDA_DATA3(n) ((uint32_t)((n&0xFF)<<16))
/** CAN Transmit Data 4 */
#define CAN_TDA_DATA4(n) ((uint32_t)((n&0xFF)<<24))
/*********************************************************************//**
* Macro defines for CAN Transmit Data B Register
**********************************************************************/
/** CAN Transmit Data 5 */
#define CAN_TDA_DATA5(n) ((uint32_t)(n&0xFF))
/** CAN Transmit Data 6 */
#define CAN_TDA_DATA6(n) ((uint32_t)((n&0xFF)<<8))
/** CAN Transmit Data 7 */
#define CAN_TDA_DATA7(n) ((uint32_t)((n&0xFF)<<16))
/** CAN Transmit Data 8 */
#define CAN_TDA_DATA8(n) ((uint32_t)((n&0xFF)<<24))
/*********************************************************************//**
* Macro defines for CAN Sleep Clear Register
**********************************************************************/
/** CAN1 Sleep mode */
#define CAN1SLEEPCLR ((uint32_t)(1<<1))
/** CAN2 Sleep Mode */
#define CAN2SLEEPCLR ((uint32_t)(1<<2))
/*********************************************************************//**
* Macro defines for CAN Wake up Flags Register
**********************************************************************/
/** CAN1 Sleep mode */
#define CAN_WAKEFLAGES_CAN1WAKE ((uint32_t)(1<<1))
/** CAN2 Sleep Mode */
#define CAN_WAKEFLAGES_CAN2WAKE ((uint32_t)(1<<2))
/*********************************************************************//**
* Macro defines for Central transmit Status Register
**********************************************************************/
/** CAN Transmit 1 */
#define CAN_TSR_TS1 ((uint32_t)(1))
/** CAN Transmit 2 */
#define CAN_TSR_TS2 ((uint32_t)(1<<1))
/** CAN Transmit Buffer Status 1 */
#define CAN_TSR_TBS1 ((uint32_t)(1<<8))
/** CAN Transmit Buffer Status 2 */
#define CAN_TSR_TBS2 ((uint32_t)(1<<9))
/** CAN Transmission Complete Status 1 */
#define CAN_TSR_TCS1 ((uint32_t)(1<<16))
/** CAN Transmission Complete Status 2 */
#define CAN_TSR_TCS2 ((uint32_t)(1<<17))
/*********************************************************************//**
* Macro defines for Central Receive Status Register
**********************************************************************/
/** CAN Receive Status 1 */
#define CAN_RSR_RS1 ((uint32_t)(1))
/** CAN Receive Status 1 */
#define CAN_RSR_RS2 ((uint32_t)(1<<1))
/** CAN Receive Buffer Status 1*/
#define CAN_RSR_RB1 ((uint32_t)(1<<8))
/** CAN Receive Buffer Status 2*/
#define CAN_RSR_RB2 ((uint32_t)(1<<9))
/** CAN Data Overrun Status 1 */
#define CAN_RSR_DOS1 ((uint32_t)(1<<16))
/** CAN Data Overrun Status 1 */
#define CAN_RSR_DOS2 ((uint32_t)(1<<17))
/*********************************************************************//**
* Macro defines for Central Miscellaneous Status Register
**********************************************************************/
/** Same CAN Error Status in CAN1GSR */
#define CAN_MSR_E1 ((uint32_t)(1))
/** Same CAN Error Status in CAN2GSR */
#define CAN_MSR_E2 ((uint32_t)(1<<1))
/** Same CAN Bus Status in CAN1GSR */
#define CAN_MSR_BS1 ((uint32_t)(1<<8))
/** Same CAN Bus Status in CAN2GSR */
#define CAN_MSR_BS2 ((uint32_t)(1<<9))
/*********************************************************************//**
* Macro defines for Acceptance Filter Mode Register
**********************************************************************/
/** CAN Acceptance Filter Off mode */
#define CAN_AFMR_AccOff ((uint32_t)(1))
/** CAN Acceptance File Bypass mode */
#define CAN_AFMR_AccBP ((uint32_t)(1<<1))
/** FullCAN Mode Enhancements */
#define CAN_AFMR_eFCAN ((uint32_t)(1<<2))
/*********************************************************************//**
* Macro defines for Standard Frame Individual Start Address Register
**********************************************************************/
/** The start address of the table of individual Standard Identifier */
#define CAN_STT_sa(n) ((uint32_t)((n&1FF)<<2))
/*********************************************************************//**
* Macro defines for Standard Frame Group Start Address Register
**********************************************************************/
/** The start address of the table of grouped Standard Identifier */
#define CAN_SFF_GRP_sa(n) ((uint32_t)((n&3FF)<<2))
/*********************************************************************//**
* Macro defines for Extended Frame Start Address Register
**********************************************************************/
/** The start address of the table of individual Extended Identifier */
#define CAN_EFF_sa(n) ((uint32_t)((n&1FF)<<2))
/*********************************************************************//**
* Macro defines for Extended Frame Group Start Address Register
**********************************************************************/
/** The start address of the table of grouped Extended Identifier */
#define CAN_Eff_GRP_sa(n) ((uint32_t)((n&3FF)<<2))
/*********************************************************************//**
* Macro defines for End Of AF Table Register
**********************************************************************/
/** The End of Table of AF LookUp Table */
#define CAN_EndofTable(n) ((uint32_t)((n&3FF)<<2))
/*********************************************************************//**
* Macro defines for LUT Error Address Register
**********************************************************************/
/** CAN Look-Up Table Error Address */
#define CAN_LUTerrAd(n) ((uint32_t)((n&1FF)<<2))
/*********************************************************************//**
* Macro defines for LUT Error Register
**********************************************************************/
/** CAN Look-Up Table Error */
#define CAN_LUTerr ((uint32_t)(1))
/*********************************************************************//**
* Macro defines for Global FullCANInterrupt Enable Register
**********************************************************************/
/** Global FullCANInterrupt Enable */
#define CAN_FCANIE ((uint32_t)(1))
/*********************************************************************//**
* Macro defines for FullCAN Interrupt and Capture Register 0
**********************************************************************/
/** FullCAN Interrupt and Capture (0-31)*/
#define CAN_FCANIC0_IntPnd(n) ((uint32_t)(1<<n))
/*********************************************************************//**
* Macro defines for FullCAN Interrupt and Capture Register 1
**********************************************************************/
/** FullCAN Interrupt and Capture (0-31)*/
#define CAN_FCANIC1_IntPnd(n) ((uint32_t)(1<<(n-32)))
/* ---------------- CHECK PARAMETER DEFINITIONS ---------------------------- */
/** Macro to determine if it is valid CAN peripheral or not */
#define PARAM_CANx(x) ((((uint32_t*)x)==((uint32_t *)LPC_CAN1)) \
||(((uint32_t*)x)==((uint32_t *)LPC_CAN2)))
/* Macro to determine if it is valid CANAF or not*/
#define PARAM_CANAFx(x) (((uint32_t*)x)== ((uint32_t*)LPC_CANAF))
/* Macro to determine if it is valid CANAF RAM or not*/
#define PARAM_CANAFRAMx(x) (((uint32_t*)x)== (uint32_t*)LPC_CANAF_RAM)
/* Macro to determine if it is valid CANCR or not*/
#define PARAM_CANCRx(x) (((uint32_t*)x)==((uint32_t*)LPC_CANCR))
/** Macro to check Data to send valid */
#define PARAM_I2S_DATA(data) ((data>=0)&&(data <= 0xFFFFFFFF))
/** Macro to check frequency value */
#define PRAM_I2S_FREQ(freq) ((freq>=16000)&&(freq <= 96000))
/** Macro to check Frame Identifier */
#define PARAM_ID_11(n) ((n>>11)==0) /*-- 11 bit --*/
#define PARAM_ID_29(n) ((n>>29)==0) /*-- 29 bit --*/
/** Macro to check DLC value */
#define PARAM_DLC(n) ((n>>4)==0) /*-- 4 bit --*/
/** Macro to check ID format type */
#define PARAM_ID_FORMAT(n) ((n==STD_ID_FORMAT)||(n==EXT_ID_FORMAT))
/** Macro to check Group identifier */
#define PARAM_GRP_ID(x, y) ((x<=y))
/** Macro to check Frame type */
#define PARAM_FRAME_TYPE(n) ((n==DATA_FRAME)||(n==REMOTE_FRAME))
/** Macro to check Control/Central Status type parameter */
#define PARAM_CTRL_STS_TYPE(n) ((n==CANCTRL_GLOBAL_STS)||(n==CANCTRL_INT_CAP) \
||(n==CANCTRL_ERR_WRN)||(n==CANCTRL_STS))
/** Macro to check CR status type */
#define PARAM_CR_STS_TYPE(n) ((n==CANCR_TX_STS)||(n==CANCR_RX_STS) \
||(n==CANCR_MS))
/** Macro to check AF Mode type parameter */
#define PARAM_AFMODE_TYPE(n) ((n==CAN_Normal)||(n==CAN_AccOff) \
||(n==CAN_AccBP)||(n==CAN_eFCAN))
/** Macro to check Operation Mode */
#define PARAM_MODE_TYPE(n) ((n==CAN_OPERATING_MODE)||(n==CAN_RESET_MODE) \
||(n==CAN_LISTENONLY_MODE)||(n==CAN_SELFTEST_MODE) \
||(n==CAN_TXPRIORITY_MODE)||(n==CAN_SLEEP_MODE) \
||(n==CAN_RXPOLARITY_MODE)||(n==CAN_TEST_MODE))
/** Macro define for struct AF_Section parameter */
#define PARAM_CTRL(n) ((n==CAN1_CTRL)|(n==CAN2_CTRL))
/** Macro define for struct AF_Section parameter */
#define PARAM_MSG_DISABLE(n) ((n==MSG_ENABLE)|(n==MSG_DISABLE))
/**Macro to check Interrupt Type parameter */
#define PARAM_INT_EN_TYPE(n) ((n==CANINT_RIE)||(n==CANINT_TIE1) \
||(n==CANINT_EIE)||(n==CANINT_DOIE) \
||(n==CANINT_WUIE)||(n==CANINT_EPIE) \
||(n==CANINT_ALIE)||(n==CANINT_BEIE) \
||(n==CANINT_IDIE)||(n==CANINT_TIE2) \
||(n==CANINT_TIE3)||(n==CANINT_FCE))
/** Macro to check AFLUT Entry type */
#define PARAM_AFLUT_ENTRY_TYPE(n) ((n==FULLCAN_ENTRY)||(n==EXPLICIT_STANDARD_ENTRY)\
||(n==GROUP_STANDARD_ENTRY)||(n==EXPLICIT_EXTEND_ENTRY) \
||(n==GROUP_EXTEND_ENTRY))
/** Macro to check position */
#define PARAM_POSITION(n) (n<512)
/**
* @}
*/
/* Public Types --------------------------------------------------------------- */
/** @defgroup CAN_Public_Types CAN Public Types
* @{
*/
/** CAN configuration structure */
/***********************************************************************
* CAN device configuration commands (IOCTL commands and arguments)
**********************************************************************/
/**
* @brief CAN ID format definition
*/
typedef enum {
STD_ID_FORMAT = 0, /**< Use standard ID format (11 bit ID) */
EXT_ID_FORMAT = 1 /**< Use extended ID format (29 bit ID) */
} CAN_ID_FORMAT_Type;
/**
* @brief AFLUT Entry type definition
*/
typedef enum {
FULLCAN_ENTRY = 0,
EXPLICIT_STANDARD_ENTRY,
GROUP_STANDARD_ENTRY,
EXPLICIT_EXTEND_ENTRY,
GROUP_EXTEND_ENTRY
} AFLUT_ENTRY_Type;
/**
* @brief Symbolic names for type of CAN message
*/
typedef enum {
DATA_FRAME = 0, /**< Data frame */
REMOTE_FRAME = 1 /**< Remote frame */
} CAN_FRAME_Type;
/**
* @brief CAN Control status definition
*/
typedef enum {
CANCTRL_GLOBAL_STS = 0, /**< CAN Global Status */
CANCTRL_INT_CAP, /**< CAN Interrupt and Capture */
CANCTRL_ERR_WRN, /**< CAN Error Warning Limit */
CANCTRL_STS /**< CAN Control Status */
} CAN_CTRL_STS_Type;
/**
* @brief Central CAN status type definition
*/
typedef enum {
CANCR_TX_STS = 0, /**< Central CAN Tx Status */
CANCR_RX_STS, /**< Central CAN Rx Status */
CANCR_MS /**< Central CAN Miscellaneous Status */
} CAN_CR_STS_Type;
/**
* @brief FullCAN Interrupt Capture type definition
*/
typedef enum{
FULLCAN_IC0, /**< FullCAN Interrupt and Capture 0 */
FULLCAN_IC1 /**< FullCAN Interrupt and Capture 1 */
}FullCAN_IC_Type;
/**
* @brief CAN interrupt enable type definition
*/
typedef enum {
CANINT_RIE = 0, /**< CAN Receiver Interrupt Enable */
CANINT_TIE1, /**< CAN Transmit Interrupt Enable */
CANINT_EIE, /**< CAN Error Warning Interrupt Enable */
CANINT_DOIE, /**< CAN Data Overrun Interrupt Enable */
CANINT_WUIE, /**< CAN Wake-Up Interrupt Enable */
CANINT_EPIE, /**< CAN Error Passive Interrupt Enable */
CANINT_ALIE, /**< CAN Arbitration Lost Interrupt Enable */
CANINT_BEIE, /**< CAN Bus Error Inter rupt Enable */
CANINT_IDIE, /**< CAN ID Ready Interrupt Enable */
CANINT_TIE2, /**< CAN Transmit Interrupt Enable for Buffer2 */
CANINT_TIE3, /**< CAN Transmit Interrupt Enable for Buffer3 */
CANINT_FCE /**< FullCAN Interrupt Enable */
} CAN_INT_EN_Type;
/**
* @brief Acceptance Filter Mode type definition
*/
typedef enum {
CAN_Normal = 0, /**< Normal Mode */
CAN_AccOff, /**< Acceptance Filter Off Mode */
CAN_AccBP, /**< Acceptance Fileter Bypass Mode */
CAN_eFCAN /**< FullCAN Mode Enhancement */
} CAN_AFMODE_Type;
/**
* @brief CAN Mode Type definition
*/
typedef enum {
CAN_OPERATING_MODE = 0, /**< Operating Mode */
CAN_RESET_MODE, /**< Reset Mode */
CAN_LISTENONLY_MODE, /**< Listen Only Mode */
CAN_SELFTEST_MODE, /**< Seft Test Mode */
CAN_TXPRIORITY_MODE, /**< Transmit Priority Mode */
CAN_SLEEP_MODE, /**< Sleep Mode */
CAN_RXPOLARITY_MODE, /**< Receive Polarity Mode */
CAN_TEST_MODE /**< Test Mode */
} CAN_MODE_Type;
/**
* @brief Error values that functions can return
*/
typedef enum {
CAN_OK = 1, /**< No error */
CAN_OBJECTS_FULL_ERROR, /**< No more rx or tx objects available */
CAN_FULL_OBJ_NOT_RCV, /**< Full CAN object not received */
CAN_NO_RECEIVE_DATA, /**< No have receive data available */
CAN_AF_ENTRY_ERROR, /**< Entry load in AFLUT is unvalid */
CAN_CONFLICT_ID_ERROR, /**< Conflict ID occur */
CAN_ENTRY_NOT_EXIT_ERROR /**< Entry remove outo AFLUT is not exit */
} CAN_ERROR;
/**
* @brief Pin Configuration structure
*/
typedef struct {
uint8_t RD; /**< Serial Inputs, from CAN transceivers, should be:
** For CAN1:
- CAN_RD1_P0_0: RD pin is on P0.0
- CAN_RD1_P0_21 : RD pin is on P0.21
** For CAN2:
- CAN_RD2_P0_4: RD pin is on P0.4
- CAN_RD2_P2_7: RD pin is on P2.7
*/
uint8_t TD; /**< Serial Outputs, To CAN transceivers, should be:
** For CAN1:
- CAN_TD1_P0_1: TD pin is on P0.1
- CAN_TD1_P0_22: TD pin is on P0.22
** For CAN2:
- CAN_TD2_P0_5: TD pin is on P0.5
- CAN_TD2_P2_8: TD pin is on P2.8
*/
} CAN_PinCFG_Type;
/**
* @brief CAN message object structure
*/
typedef struct {
uint32_t id; /**< 29 bit identifier, it depend on "format" value
- if format = STD_ID_FORMAT, id should be 11 bit identifier
- if format = EXT_ID_FORMAT, id should be 29 bit identifier
*/
uint8_t dataA[4]; /**< Data field A */
uint8_t dataB[4]; /**< Data field B */
uint8_t len; /**< Length of data field in bytes, should be:
- 0000b-0111b: 0-7 bytes
- 1xxxb: 8 bytes
*/
uint8_t format; /**< Identifier Format, should be:
- STD_ID_FORMAT: Standard ID - 11 bit format
- EXT_ID_FORMAT: Extended ID - 29 bit format
*/
uint8_t type; /**< Remote Frame transmission, should be:
- DATA_FRAME: the number of data bytes called out by the DLC
field are send from the CANxTDA and CANxTDB registers
- REMOTE_FRAME: Remote Frame is sent
*/
} CAN_MSG_Type;
/**
* @brief FullCAN Entry structure
*/
typedef struct {
uint8_t controller; /**< CAN Controller, should be:
- CAN1_CTRL: CAN1 Controller
- CAN2_CTRL: CAN2 Controller
*/
uint8_t disable; /**< Disable bit, should be:
- MSG_ENABLE: disable bit = 0
- MSG_DISABLE: disable bit = 1
*/
uint16_t id_11; /**< Standard ID, should be 11-bit value */
} FullCAN_Entry;
/**
* @brief Standard ID Frame Format Entry structure
*/
typedef struct {
uint8_t controller; /**< CAN Controller, should be:
- CAN1_CTRL: CAN1 Controller
- CAN2_CTRL: CAN2 Controller
*/
uint8_t disable; /**< Disable bit, should be:
- MSG_ENABLE: disable bit = 0
- MSG_DISABLE: disable bit = 1
*/
uint16_t id_11; /**< Standard ID, should be 11-bit value */
} SFF_Entry;
/**
* @brief Group of Standard ID Frame Format Entry structure
*/
typedef struct {
uint8_t controller1; /**< First CAN Controller, should be:
- CAN1_CTRL: CAN1 Controller
- CAN2_CTRL: CAN2 Controller
*/
uint8_t disable1; /**< First Disable bit, should be:
- MSG_ENABLE: disable bit = 0)
- MSG_DISABLE: disable bit = 1
*/
uint16_t lowerID; /**< ID lower bound, should be 11-bit value */
uint8_t controller2; /**< Second CAN Controller, should be:
- CAN1_CTRL: CAN1 Controller
- CAN2_CTRL: CAN2 Controller
*/
uint8_t disable2; /**< Second Disable bit, should be:
- MSG_ENABLE: disable bit = 0
- MSG_DISABLE: disable bit = 1
*/
uint16_t upperID; /**< ID upper bound, should be 11-bit value and
equal or greater than lowerID
*/
} SFF_GPR_Entry;
/**
* @brief Extended ID Frame Format Entry structure
*/
typedef struct {
uint8_t controller; /**< CAN Controller, should be:
- CAN1_CTRL: CAN1 Controller
- CAN2_CTRL: CAN2 Controller
*/
uint32_t ID_29; /**< Extend ID, shoud be 29-bit value */
} EFF_Entry;
/**
* @brief Group of Extended ID Frame Format Entry structure
*/
typedef struct {
uint8_t controller1; /**< First CAN Controller, should be:
- CAN1_CTRL: CAN1 Controller
- CAN2_CTRL: CAN2 Controller
*/
uint8_t controller2; /**< Second Disable bit, should be:
- MSG_ENABLE: disable bit = 0(default)
- MSG_DISABLE: disable bit = 1
*/
uint32_t lowerEID; /**< Extended ID lower bound, should be 29-bit value */
uint32_t upperEID; /**< Extended ID upper bound, should be 29-bit value */
} EFF_GPR_Entry;
/**
* @brief Acceptance Filter Section Table structure
*/
typedef struct {
FullCAN_Entry* FullCAN_Sec; /**< The pointer point to FullCAN_Entry */
uint8_t FC_NumEntry; /**< FullCAN Entry Number */
SFF_Entry* SFF_Sec; /**< The pointer point to SFF_Entry */
uint8_t SFF_NumEntry; /**< Standard ID Entry Number */
SFF_GPR_Entry* SFF_GPR_Sec; /**< The pointer point to SFF_GPR_Entry */
uint8_t SFF_GPR_NumEntry; /**< Group Standard ID Entry Number */
EFF_Entry* EFF_Sec; /**< The pointer point to EFF_Entry */
uint8_t EFF_NumEntry; /**< Extended ID Entry Number */
EFF_GPR_Entry* EFF_GPR_Sec; /**< The pointer point to EFF_GPR_Entry */
uint8_t EFF_GPR_NumEntry; /**< Group Extended ID Entry Number */
} AF_SectionDef;
/**
* @}
*/
/* Public Functions ----------------------------------------------------------- */
/** @defgroup CAN_Public_Functions CAN Public Functions
* @{
*/
/* Init/DeInit CAN peripheral -----------*/
void CAN_Init(LPC_CAN_TypeDef *CANx, uint32_t baudrate);
void CAN_DeInit(LPC_CAN_TypeDef *CANx);
/* CAN messages functions ---------------*/
Status CAN_SendMsg(LPC_CAN_TypeDef *CANx, CAN_MSG_Type *CAN_Msg);
Status CAN_ReceiveMsg(LPC_CAN_TypeDef *CANx, CAN_MSG_Type *CAN_Msg);
CAN_ERROR FCAN_ReadObj(LPC_CANAF_TypeDef* CANAFx, CAN_MSG_Type *CAN_Msg);
/* CAN configure functions ---------------*/
void CAN_ModeConfig(LPC_CAN_TypeDef* CANx, CAN_MODE_Type mode,
FunctionalState NewState);
void CAN_SetAFMode(LPC_CANAF_TypeDef* CANAFx, CAN_AFMODE_Type AFmode);
void CAN_SetCommand(LPC_CAN_TypeDef* CANx, uint32_t CMRType);
/* AFLUT functions ---------------------- */
CAN_ERROR CAN_SetupAFLUT(LPC_CANAF_TypeDef* CANAFx, AF_SectionDef* AFSection);
CAN_ERROR CAN_LoadFullCANEntry(LPC_CAN_TypeDef* CANx, uint16_t ID);
CAN_ERROR CAN_LoadExplicitEntry(LPC_CAN_TypeDef* CANx, uint32_t ID,
CAN_ID_FORMAT_Type format);
CAN_ERROR CAN_LoadGroupEntry(LPC_CAN_TypeDef* CANx, uint32_t lowerID,
uint32_t upperID, CAN_ID_FORMAT_Type format);
CAN_ERROR CAN_RemoveEntry(AFLUT_ENTRY_Type EntryType, uint16_t position);
/* CAN interrupt functions -----------------*/
void CAN_IRQCmd(LPC_CAN_TypeDef* CANx, CAN_INT_EN_Type arg, FunctionalState NewState);
uint32_t CAN_IntGetStatus(LPC_CAN_TypeDef* CANx);
/* CAN get status functions ----------------*/
IntStatus CAN_FullCANIntGetStatus (LPC_CANAF_TypeDef* CANAFx);
uint32_t CAN_FullCANPendGetStatus (LPC_CANAF_TypeDef* CANAFx, FullCAN_IC_Type type);
uint32_t CAN_GetCTRLStatus(LPC_CAN_TypeDef* CANx, CAN_CTRL_STS_Type arg);
uint32_t CAN_GetCRStatus(LPC_CANCR_TypeDef* CANCRx, CAN_CR_STS_Type arg);
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* LPC17XX_CAN_H_ */
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */

View file

@ -1,406 +0,0 @@
/**********************************************************************
* $Id$ lpc17xx_clkpwr.h 2010-05-21
*//**
* @file lpc17xx_clkpwr.h
* @brief Contains all macro definitions and function prototypes
* support for Clock and Power Control firmware library on LPC17xx
* @version 2.0
* @date 21. May. 2010
* @author NXP MCU SW Application Team
*
* Copyright(C) 2010, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
/* Peripheral group ----------------------------------------------------------- */
/** @defgroup CLKPWR CLKPWR (Clock Power)
* @ingroup LPC1700CMSIS_FwLib_Drivers
* @{
*/
#ifndef LPC17XX_CLKPWR_H_
#define LPC17XX_CLKPWR_H_
/* Includes ------------------------------------------------------------------- */
#include "LPC17xx.h"
#include "lpc_types.h"
#ifdef __cplusplus
extern "C"
{
#endif
/* Public Macros -------------------------------------------------------------- */
/** @defgroup CLKPWR_Public_Macros CLKPWR Public Macros
* @{
*/
/**********************************************************************
* Peripheral Clock Selection Definitions
**********************************************************************/
/** Peripheral clock divider bit position for WDT */
#define CLKPWR_PCLKSEL_WDT ((uint32_t)(0))
/** Peripheral clock divider bit position for TIMER0 */
#define CLKPWR_PCLKSEL_TIMER0 ((uint32_t)(2))
/** Peripheral clock divider bit position for TIMER1 */
#define CLKPWR_PCLKSEL_TIMER1 ((uint32_t)(4))
/** Peripheral clock divider bit position for UART0 */
#define CLKPWR_PCLKSEL_UART0 ((uint32_t)(6))
/** Peripheral clock divider bit position for UART1 */
#define CLKPWR_PCLKSEL_UART1 ((uint32_t)(8))
/** Peripheral clock divider bit position for PWM1 */
#define CLKPWR_PCLKSEL_PWM1 ((uint32_t)(12))
/** Peripheral clock divider bit position for I2C0 */
#define CLKPWR_PCLKSEL_I2C0 ((uint32_t)(14))
/** Peripheral clock divider bit position for SPI */
#define CLKPWR_PCLKSEL_SPI ((uint32_t)(16))
/** Peripheral clock divider bit position for SSP1 */
#define CLKPWR_PCLKSEL_SSP1 ((uint32_t)(20))
/** Peripheral clock divider bit position for DAC */
#define CLKPWR_PCLKSEL_DAC ((uint32_t)(22))
/** Peripheral clock divider bit position for ADC */
#define CLKPWR_PCLKSEL_ADC ((uint32_t)(24))
/** Peripheral clock divider bit position for CAN1 */
#define CLKPWR_PCLKSEL_CAN1 ((uint32_t)(26))
/** Peripheral clock divider bit position for CAN2 */
#define CLKPWR_PCLKSEL_CAN2 ((uint32_t)(28))
/** Peripheral clock divider bit position for ACF */
#define CLKPWR_PCLKSEL_ACF ((uint32_t)(30))
/** Peripheral clock divider bit position for QEI */
#define CLKPWR_PCLKSEL_QEI ((uint32_t)(32))
/** Peripheral clock divider bit position for PCB */
#define CLKPWR_PCLKSEL_PCB ((uint32_t)(36))
/** Peripheral clock divider bit position for I2C1 */
#define CLKPWR_PCLKSEL_I2C1 ((uint32_t)(38))
/** Peripheral clock divider bit position for SSP0 */
#define CLKPWR_PCLKSEL_SSP0 ((uint32_t)(42))
/** Peripheral clock divider bit position for TIMER2 */
#define CLKPWR_PCLKSEL_TIMER2 ((uint32_t)(44))
/** Peripheral clock divider bit position for TIMER3 */
#define CLKPWR_PCLKSEL_TIMER3 ((uint32_t)(46))
/** Peripheral clock divider bit position for UART2 */
#define CLKPWR_PCLKSEL_UART2 ((uint32_t)(48))
/** Peripheral clock divider bit position for UART3 */
#define CLKPWR_PCLKSEL_UART3 ((uint32_t)(50))
/** Peripheral clock divider bit position for I2C2 */
#define CLKPWR_PCLKSEL_I2C2 ((uint32_t)(52))
/** Peripheral clock divider bit position for I2S */
#define CLKPWR_PCLKSEL_I2S ((uint32_t)(54))
/** Peripheral clock divider bit position for RIT */
#define CLKPWR_PCLKSEL_RIT ((uint32_t)(58))
/** Peripheral clock divider bit position for SYSCON */
#define CLKPWR_PCLKSEL_SYSCON ((uint32_t)(60))
/** Peripheral clock divider bit position for MC */
#define CLKPWR_PCLKSEL_MC ((uint32_t)(62))
/** Macro for Peripheral Clock Selection register bit values
* Note: When CCLK_DIV_8, Peripheral<EFBFBD>s clock is selected to
* PCLK_xyz = CCLK/8 except for CAN1, CAN2, and CAN filtering
* when <EFBFBD>11<EFBFBD>selects PCLK_xyz = CCLK/6 */
/* Peripheral clock divider is set to 4 from CCLK */
#define CLKPWR_PCLKSEL_CCLK_DIV_4 ((uint32_t)(0))
/** Peripheral clock divider is the same with CCLK */
#define CLKPWR_PCLKSEL_CCLK_DIV_1 ((uint32_t)(1))
/** Peripheral clock divider is set to 2 from CCLK */
#define CLKPWR_PCLKSEL_CCLK_DIV_2 ((uint32_t)(2))
/********************************************************************
* Power Control for Peripherals Definitions
**********************************************************************/
/** Timer/Counter 0 power/clock control bit */
#define CLKPWR_PCONP_PCTIM0 ((uint32_t)(1<<1))
/* Timer/Counter 1 power/clock control bit */
#define CLKPWR_PCONP_PCTIM1 ((uint32_t)(1<<2))
/** UART0 power/clock control bit */
#define CLKPWR_PCONP_PCUART0 ((uint32_t)(1<<3))
/** UART1 power/clock control bit */
#define CLKPWR_PCONP_PCUART1 ((uint32_t)(1<<4))
/** PWM1 power/clock control bit */
#define CLKPWR_PCONP_PCPWM1 ((uint32_t)(1<<6))
/** The I2C0 interface power/clock control bit */
#define CLKPWR_PCONP_PCI2C0 ((uint32_t)(1<<7))
/** The SPI interface power/clock control bit */
#define CLKPWR_PCONP_PCSPI ((uint32_t)(1<<8))
/** The RTC power/clock control bit */
#define CLKPWR_PCONP_PCRTC ((uint32_t)(1<<9))
/** The SSP1 interface power/clock control bit */
#define CLKPWR_PCONP_PCSSP1 ((uint32_t)(1<<10))
/** A/D converter 0 (ADC0) power/clock control bit */
#define CLKPWR_PCONP_PCAD ((uint32_t)(1<<12))
/** CAN Controller 1 power/clock control bit */
#define CLKPWR_PCONP_PCAN1 ((uint32_t)(1<<13))
/** CAN Controller 2 power/clock control bit */
#define CLKPWR_PCONP_PCAN2 ((uint32_t)(1<<14))
/** GPIO power/clock control bit */
#define CLKPWR_PCONP_PCGPIO ((uint32_t)(1<<15))
/** Repetitive Interrupt Timer power/clock control bit */
#define CLKPWR_PCONP_PCRIT ((uint32_t)(1<<16))
/** Motor Control PWM */
#define CLKPWR_PCONP_PCMC ((uint32_t)(1<<17))
/** Quadrature Encoder Interface power/clock control bit */
#define CLKPWR_PCONP_PCQEI ((uint32_t)(1<<18))
/** The I2C1 interface power/clock control bit */
#define CLKPWR_PCONP_PCI2C1 ((uint32_t)(1<<19))
/** The SSP0 interface power/clock control bit */
#define CLKPWR_PCONP_PCSSP0 ((uint32_t)(1<<21))
/** Timer 2 power/clock control bit */
#define CLKPWR_PCONP_PCTIM2 ((uint32_t)(1<<22))
/** Timer 3 power/clock control bit */
#define CLKPWR_PCONP_PCTIM3 ((uint32_t)(1<<23))
/** UART 2 power/clock control bit */
#define CLKPWR_PCONP_PCUART2 ((uint32_t)(1<<24))
/** UART 3 power/clock control bit */
#define CLKPWR_PCONP_PCUART3 ((uint32_t)(1<<25))
/** I2C interface 2 power/clock control bit */
#define CLKPWR_PCONP_PCI2C2 ((uint32_t)(1<<26))
/** I2S interface power/clock control bit*/
#define CLKPWR_PCONP_PCI2S ((uint32_t)(1<<27))
/** GP DMA function power/clock control bit*/
#define CLKPWR_PCONP_PCGPDMA ((uint32_t)(1<<29))
/** Ethernet block power/clock control bit*/
#define CLKPWR_PCONP_PCENET ((uint32_t)(1<<30))
/** USB interface power/clock control bit*/
#define CLKPWR_PCONP_PCUSB ((uint32_t)(1<<31))
/**
* @}
*/
/* Private Macros ------------------------------------------------------------- */
/** @defgroup CLKPWR_Private_Macros CLKPWR Private Macros
* @{
*/
/* --------------------- BIT DEFINITIONS -------------------------------------- */
/*********************************************************************//**
* Macro defines for Clock Source Select Register
**********************************************************************/
/** Internal RC oscillator */
#define CLKPWR_CLKSRCSEL_CLKSRC_IRC ((uint32_t)(0x00))
/** Main oscillator */
#define CLKPWR_CLKSRCSEL_CLKSRC_MAINOSC ((uint32_t)(0x01))
/** RTC oscillator */
#define CLKPWR_CLKSRCSEL_CLKSRC_RTC ((uint32_t)(0x02))
/** Clock source selection bit mask */
#define CLKPWR_CLKSRCSEL_BITMASK ((uint32_t)(0x03))
/*********************************************************************//**
* Macro defines for Clock Output Configuration Register
**********************************************************************/
/* Clock Output Configuration register definition */
/** Selects the CPU clock as the CLKOUT source */
#define CLKPWR_CLKOUTCFG_CLKOUTSEL_CPU ((uint32_t)(0x00))
/** Selects the main oscillator as the CLKOUT source */
#define CLKPWR_CLKOUTCFG_CLKOUTSEL_MAINOSC ((uint32_t)(0x01))
/** Selects the Internal RC oscillator as the CLKOUT source */
#define CLKPWR_CLKOUTCFG_CLKOUTSEL_RC ((uint32_t)(0x02))
/** Selects the USB clock as the CLKOUT source */
#define CLKPWR_CLKOUTCFG_CLKOUTSEL_USB ((uint32_t)(0x03))
/** Selects the RTC oscillator as the CLKOUT source */
#define CLKPWR_CLKOUTCFG_CLKOUTSEL_RTC ((uint32_t)(0x04))
/** Integer value to divide the output clock by, minus one */
#define CLKPWR_CLKOUTCFG_CLKOUTDIV(n) ((uint32_t)((n&0x0F)<<4))
/** CLKOUT enable control */
#define CLKPWR_CLKOUTCFG_CLKOUT_EN ((uint32_t)(1<<8))
/** CLKOUT activity indication */
#define CLKPWR_CLKOUTCFG_CLKOUT_ACT ((uint32_t)(1<<9))
/** Clock source selection bit mask */
#define CLKPWR_CLKOUTCFG_BITMASK ((uint32_t)(0x3FF))
/*********************************************************************//**
* Macro defines for PPL0 Control Register
**********************************************************************/
/** PLL 0 control enable */
#define CLKPWR_PLL0CON_ENABLE ((uint32_t)(0x01))
/** PLL 0 control connect */
#define CLKPWR_PLL0CON_CONNECT ((uint32_t)(0x02))
/** PLL 0 control bit mask */
#define CLKPWR_PLL0CON_BITMASK ((uint32_t)(0x03))
/*********************************************************************//**
* Macro defines for PPL0 Configuration Register
**********************************************************************/
/** PLL 0 Configuration MSEL field */
#define CLKPWR_PLL0CFG_MSEL(n) ((uint32_t)(n&0x7FFF))
/** PLL 0 Configuration NSEL field */
#define CLKPWR_PLL0CFG_NSEL(n) ((uint32_t)((n<<16)&0xFF0000))
/** PLL 0 Configuration bit mask */
#define CLKPWR_PLL0CFG_BITMASK ((uint32_t)(0xFF7FFF))
/*********************************************************************//**
* Macro defines for PPL0 Status Register
**********************************************************************/
/** PLL 0 MSEL value */
#define CLKPWR_PLL0STAT_MSEL(n) ((uint32_t)(n&0x7FFF))
/** PLL NSEL get value */
#define CLKPWR_PLL0STAT_NSEL(n) ((uint32_t)((n>>16)&0xFF))
/** PLL status enable bit */
#define CLKPWR_PLL0STAT_PLLE ((uint32_t)(1<<24))
/** PLL status Connect bit */
#define CLKPWR_PLL0STAT_PLLC ((uint32_t)(1<<25))
/** PLL status lock */
#define CLKPWR_PLL0STAT_PLOCK ((uint32_t)(1<<26))
/*********************************************************************//**
* Macro defines for PPL0 Feed Register
**********************************************************************/
/** PLL0 Feed bit mask */
#define CLKPWR_PLL0FEED_BITMASK ((uint32_t)0xFF)
/*********************************************************************//**
* Macro defines for PLL1 Control Register
**********************************************************************/
/** USB PLL control enable */
#define CLKPWR_PLL1CON_ENABLE ((uint32_t)(0x01))
/** USB PLL control connect */
#define CLKPWR_PLL1CON_CONNECT ((uint32_t)(0x02))
/** USB PLL control bit mask */
#define CLKPWR_PLL1CON_BITMASK ((uint32_t)(0x03))
/*********************************************************************//**
* Macro defines for PLL1 Configuration Register
**********************************************************************/
/** USB PLL MSEL set value */
#define CLKPWR_PLL1CFG_MSEL(n) ((uint32_t)(n&0x1F))
/** USB PLL PSEL set value */
#define CLKPWR_PLL1CFG_PSEL(n) ((uint32_t)((n&0x03)<<5))
/** USB PLL configuration bit mask */
#define CLKPWR_PLL1CFG_BITMASK ((uint32_t)(0x7F))
/*********************************************************************//**
* Macro defines for PLL1 Status Register
**********************************************************************/
/** USB PLL MSEL get value */
#define CLKPWR_PLL1STAT_MSEL(n) ((uint32_t)(n&0x1F))
/** USB PLL PSEL get value */
#define CLKPWR_PLL1STAT_PSEL(n) ((uint32_t)((n>>5)&0x03))
/** USB PLL status enable bit */
#define CLKPWR_PLL1STAT_PLLE ((uint32_t)(1<<8))
/** USB PLL status Connect bit */
#define CLKPWR_PLL1STAT_PLLC ((uint32_t)(1<<9))
/** USB PLL status lock */
#define CLKPWR_PLL1STAT_PLOCK ((uint32_t)(1<<10))
/*********************************************************************//**
* Macro defines for PLL1 Feed Register
**********************************************************************/
/** PLL1 Feed bit mask */
#define CLKPWR_PLL1FEED_BITMASK ((uint32_t)0xFF)
/*********************************************************************//**
* Macro defines for CPU Clock Configuration Register
**********************************************************************/
/** CPU Clock configuration bit mask */
#define CLKPWR_CCLKCFG_BITMASK ((uint32_t)(0xFF))
/*********************************************************************//**
* Macro defines for USB Clock Configuration Register
**********************************************************************/
/** USB Clock Configuration bit mask */
#define CLKPWR_USBCLKCFG_BITMASK ((uint32_t)(0x0F))
/*********************************************************************//**
* Macro defines for IRC Trim Register
**********************************************************************/
/** IRC Trim bit mask */
#define CLKPWR_IRCTRIM_BITMASK ((uint32_t)(0x0F))
/*********************************************************************//**
* Macro defines for Peripheral Clock Selection Register 0 and 1
**********************************************************************/
/** Peripheral Clock Selection 0 mask bit */
#define CLKPWR_PCLKSEL0_BITMASK ((uint32_t)(0xFFF3F3FF))
/** Peripheral Clock Selection 1 mask bit */
#define CLKPWR_PCLKSEL1_BITMASK ((uint32_t)(0xFCF3F0F3))
/** Macro to set peripheral clock of each type
* p: position of two bits that hold divider of peripheral clock
* n: value of divider of peripheral clock to be set */
#define CLKPWR_PCLKSEL_SET(p,n) _SBF(p,n)
/** Macro to mask peripheral clock of each type */
#define CLKPWR_PCLKSEL_BITMASK(p) _SBF(p,0x03)
/** Macro to get peripheral clock of each type */
#define CLKPWR_PCLKSEL_GET(p, n) ((uint32_t)((n>>p)&0x03))
/*********************************************************************//**
* Macro defines for Power Mode Control Register
**********************************************************************/
/** Power mode control bit 0 */
#define CLKPWR_PCON_PM0 ((uint32_t)(1<<0))
/** Power mode control bit 1 */
#define CLKPWR_PCON_PM1 ((uint32_t)(1<<1))
/** Brown-Out Reduced Power Mode */
#define CLKPWR_PCON_BODPDM ((uint32_t)(1<<2))
/** Brown-Out Global Disable */
#define CLKPWR_PCON_BOGD ((uint32_t)(1<<3))
/** Brown Out Reset Disable */
#define CLKPWR_PCON_BORD ((uint32_t)(1<<4))
/** Sleep Mode entry flag */
#define CLKPWR_PCON_SMFLAG ((uint32_t)(1<<8))
/** Deep Sleep entry flag */
#define CLKPWR_PCON_DSFLAG ((uint32_t)(1<<9))
/** Power-down entry flag */
#define CLKPWR_PCON_PDFLAG ((uint32_t)(1<<10))
/** Deep Power-down entry flag */
#define CLKPWR_PCON_DPDFLAG ((uint32_t)(1<<11))
/*********************************************************************//**
* Macro defines for Power Control for Peripheral Register
**********************************************************************/
/** Power Control for Peripherals bit mask */
#define CLKPWR_PCONP_BITMASK 0xEFEFF7DE
/**
* @}
*/
/* Public Functions ----------------------------------------------------------- */
/** @defgroup CLKPWR_Public_Functions CLKPWR Public Functions
* @{
*/
void CLKPWR_SetPCLKDiv (uint32_t ClkType, uint32_t DivVal);
uint32_t CLKPWR_GetPCLKSEL (uint32_t ClkType);
uint32_t CLKPWR_GetPCLK (uint32_t ClkType);
void CLKPWR_ConfigPPWR (uint32_t PPType, FunctionalState NewState);
void CLKPWR_Sleep(void);
void CLKPWR_DeepSleep(void);
void CLKPWR_PowerDown(void);
void CLKPWR_DeepPowerDown(void);
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* LPC17XX_CLKPWR_H_ */
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */

View file

@ -1,154 +0,0 @@
/**********************************************************************
* $Id$ lpc17xx_dac.h 2010-05-21
*//**
* @file lpc17xx_dac.h
* @brief Contains all macro definitions and function prototypes
* support for Clock and Power Control firmware library on LPC17xx
* @version 2.0
* @date 21. May. 2010
* @author NXP MCU SW Application Team
*
* Copyright(C) 2010, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
/* Peripheral group ----------------------------------------------------------- */
/** @defgroup DAC DAC (Digital-to-Analog Controller)
* @ingroup LPC1700CMSIS_FwLib_Drivers
* @{
*/
#ifndef LPC17XX_DAC_H_
#define LPC17XX_DAC_H_
/* Includes ------------------------------------------------------------------- */
#include "LPC17xx.h"
#include "lpc_types.h"
#ifdef __cplusplus
extern "C"
{
#endif
/* Public Macros -------------------------------------------------------------- */
/** @defgroup DAC_Private_Macros DAC Private Macros
* @{
*/
/** After the selected settling time after this field is written with a
new VALUE, the voltage on the AOUT pin (with respect to VSSA)
is VALUE/1024 × VREF */
#define DAC_VALUE(n) ((uint32_t)((n&0x3FF)<<6))
/** If this bit = 0: The settling time of the DAC is 1 microsecond max,
* and the maximum current is 700 microAmpere
* If this bit = 1: The settling time of the DAC is 2.5 microsecond
* and the maximum current is 350 microAmpere */
#define DAC_BIAS_EN ((uint32_t)(1<<16))
/** Value to reload interrupt DMA counter */
#define DAC_CCNT_VALUE(n) ((uint32_t)(n&0xffff))
/** DCAR double buffering */
#define DAC_DBLBUF_ENA ((uint32_t)(1<<1))
/** DCAR Time out count enable */
#define DAC_CNT_ENA ((uint32_t)(1<<2))
/** DCAR DMA access */
#define DAC_DMA_ENA ((uint32_t)(1<<3))
/** DCAR DACCTRL mask bit */
#define DAC_DACCTRL_MASK ((uint32_t)(0x0F))
/** Macro to determine if it is valid DAC peripheral */
#define PARAM_DACx(n) (((uint32_t *)n)==((uint32_t *)LPC_DAC))
/** Macro to check DAC current optional parameter */
#define PARAM_DAC_CURRENT_OPT(OPTION) ((OPTION == DAC_MAX_CURRENT_700uA)\
||(OPTION == DAC_MAX_CURRENT_350uA))
/**
* @}
*/
/* Public Types --------------------------------------------------------------- */
/** @defgroup DAC_Public_Types DAC Public Types
* @{
*/
/**
* @brief Current option in DAC configuration option */
typedef enum
{
DAC_MAX_CURRENT_700uA = 0, /*!< The settling time of the DAC is 1 us max,
and the maximum current is 700 uA */
DAC_MAX_CURRENT_350uA /*!< The settling time of the DAC is 2.5 us
and the maximum current is 350 uA */
} DAC_CURRENT_OPT;
/**
* @brief Configuration for DAC converter control register */
typedef struct
{
uint8_t DBLBUF_ENA; /**<
-0: Disable DACR double buffering
-1: when bit CNT_ENA, enable DACR double buffering feature
*/
uint8_t CNT_ENA; /*!<
-0: Time out counter is disable
-1: Time out conter is enable
*/
uint8_t DMA_ENA; /*!<
-0: DMA access is disable
-1: DMA burst request
*/
uint8_t RESERVED;
} DAC_CONVERTER_CFG_Type;
/**
* @}
*/
/* Public Functions ----------------------------------------------------------- */
/** @defgroup DAC_Public_Functions DAC Public Functions
* @{
*/
void DAC_Init(LPC_DAC_TypeDef *DACx);
void DAC_UpdateValue (LPC_DAC_TypeDef *DACx, uint32_t dac_value);
void DAC_SetBias (LPC_DAC_TypeDef *DACx,uint32_t bias);
void DAC_ConfigDAConverterControl (LPC_DAC_TypeDef *DACx,DAC_CONVERTER_CFG_Type *DAC_ConverterConfigStruct);
void DAC_SetDMATimeOut(LPC_DAC_TypeDef *DACx,uint32_t time_out);
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* LPC17XX_DAC_H_ */
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */

View file

@ -1,711 +0,0 @@
/**********************************************************************
* $Id$ lpc17xx_emac.h 2010-05-21
*//**
* @file lpc17xx_emac.h
* @brief Contains all macro definitions and function prototypes
* support for Ethernet MAC firmware library on LPC17xx
* @version 2.0
* @date 21. May. 2010
* @author NXP MCU SW Application Team
*
* Copyright(C) 2010, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
/* Peripheral group ----------------------------------------------------------- */
/** @defgroup EMAC EMAC (Ethernet Media Access Controller)
* @ingroup LPC1700CMSIS_FwLib_Drivers
* @{
*/
#ifndef LPC17XX_EMAC_H_
#define LPC17XX_EMAC_H_
/* Includes ------------------------------------------------------------------- */
#include "LPC17xx.h"
#include "lpc_types.h"
#ifdef __cplusplus
extern "C"
{
#endif
#define MCB_LPC_1768
//#define IAR_LPC_1768
/* Public Macros -------------------------------------------------------------- */
/** @defgroup EMAC_Public_Macros EMAC Public Macros
* @{
*/
/* EMAC PHY status type definitions */
#define EMAC_PHY_STAT_LINK (0) /**< Link Status */
#define EMAC_PHY_STAT_SPEED (1) /**< Speed Status */
#define EMAC_PHY_STAT_DUP (2) /**< Duplex Status */
/* EMAC PHY device Speed definitions */
#define EMAC_MODE_AUTO (0) /**< Auto-negotiation mode */
#define EMAC_MODE_10M_FULL (1) /**< 10Mbps FullDuplex mode */
#define EMAC_MODE_10M_HALF (2) /**< 10Mbps HalfDuplex mode */
#define EMAC_MODE_100M_FULL (3) /**< 100Mbps FullDuplex mode */
#define EMAC_MODE_100M_HALF (4) /**< 100Mbps HalfDuplex mode */
/**
* @}
*/
/* Private Macros ------------------------------------------------------------- */
/** @defgroup EMAC_Private_Macros EMAC Private Macros
* @{
*/
/* EMAC Memory Buffer configuration for 16K Ethernet RAM */
#define EMAC_NUM_RX_FRAG 4 /**< Num.of RX Fragments 4*1536= 6.0kB */
#define EMAC_NUM_TX_FRAG 3 /**< Num.of TX Fragments 3*1536= 4.6kB */
#define EMAC_ETH_MAX_FLEN 1536 /**< Max. Ethernet Frame Size */
#define EMAC_TX_FRAME_TOUT 0x00100000 /**< Frame Transmit timeout count */
/* --------------------- BIT DEFINITIONS -------------------------------------- */
/*********************************************************************//**
* Macro defines for MAC Configuration Register 1
**********************************************************************/
#define EMAC_MAC1_REC_EN 0x00000001 /**< Receive Enable */
#define EMAC_MAC1_PASS_ALL 0x00000002 /**< Pass All Receive Frames */
#define EMAC_MAC1_RX_FLOWC 0x00000004 /**< RX Flow Control */
#define EMAC_MAC1_TX_FLOWC 0x00000008 /**< TX Flow Control */
#define EMAC_MAC1_LOOPB 0x00000010 /**< Loop Back Mode */
#define EMAC_MAC1_RES_TX 0x00000100 /**< Reset TX Logic */
#define EMAC_MAC1_RES_MCS_TX 0x00000200 /**< Reset MAC TX Control Sublayer */
#define EMAC_MAC1_RES_RX 0x00000400 /**< Reset RX Logic */
#define EMAC_MAC1_RES_MCS_RX 0x00000800 /**< Reset MAC RX Control Sublayer */
#define EMAC_MAC1_SIM_RES 0x00004000 /**< Simulation Reset */
#define EMAC_MAC1_SOFT_RES 0x00008000 /**< Soft Reset MAC */
/*********************************************************************//**
* Macro defines for MAC Configuration Register 2
**********************************************************************/
#define EMAC_MAC2_FULL_DUP 0x00000001 /**< Full-Duplex Mode */
#define EMAC_MAC2_FRM_LEN_CHK 0x00000002 /**< Frame Length Checking */
#define EMAC_MAC2_HUGE_FRM_EN 0x00000004 /**< Huge Frame Enable */
#define EMAC_MAC2_DLY_CRC 0x00000008 /**< Delayed CRC Mode */
#define EMAC_MAC2_CRC_EN 0x00000010 /**< Append CRC to every Frame */
#define EMAC_MAC2_PAD_EN 0x00000020 /**< Pad all Short Frames */
#define EMAC_MAC2_VLAN_PAD_EN 0x00000040 /**< VLAN Pad Enable */
#define EMAC_MAC2_ADET_PAD_EN 0x00000080 /**< Auto Detect Pad Enable */
#define EMAC_MAC2_PPREAM_ENF 0x00000100 /**< Pure Preamble Enforcement */
#define EMAC_MAC2_LPREAM_ENF 0x00000200 /**< Long Preamble Enforcement */
#define EMAC_MAC2_NO_BACKOFF 0x00001000 /**< No Backoff Algorithm */
#define EMAC_MAC2_BACK_PRESSURE 0x00002000 /**< Backoff Presurre / No Backoff */
#define EMAC_MAC2_EXCESS_DEF 0x00004000 /**< Excess Defer */
/*********************************************************************//**
* Macro defines for Back-to-Back Inter-Packet-Gap Register
**********************************************************************/
/** Programmable field representing the nibble time offset of the minimum possible period
* between the end of any transmitted packet to the beginning of the next */
#define EMAC_IPGT_BBIPG(n) (n&0x7F)
/** Recommended value for Full Duplex of Programmable field representing the nibble time
* offset of the minimum possible period between the end of any transmitted packet to the
* beginning of the next */
#define EMAC_IPGT_FULL_DUP (EMAC_IPGT_BBIPG(0x15))
/** Recommended value for Half Duplex of Programmable field representing the nibble time
* offset of the minimum possible period between the end of any transmitted packet to the
* beginning of the next */
#define EMAC_IPGT_HALF_DUP (EMAC_IPGT_BBIPG(0x12))
/*********************************************************************//**
* Macro defines for Non Back-to-Back Inter-Packet-Gap Register
**********************************************************************/
/** Programmable field representing the Non-Back-to-Back Inter-Packet-Gap */
#define EMAC_IPGR_NBBIPG_P2(n) (n&0x7F)
/** Recommended value for Programmable field representing the Non-Back-to-Back Inter-Packet-Gap Part 1 */
#define EMAC_IPGR_P2_DEF (EMAC_IPGR_NBBIPG_P2(0x12))
/** Programmable field representing the optional carrierSense window referenced in
* IEEE 802.3/4.2.3.2.1 'Carrier Deference' */
#define EMAC_IPGR_NBBIPG_P1(n) ((n&0x7F)<<8)
/** Recommended value for Programmable field representing the Non-Back-to-Back Inter-Packet-Gap Part 2 */
#define EMAC_IPGR_P1_DEF EMAC_IPGR_NBBIPG_P1(0x0C)
/*********************************************************************//**
* Macro defines for Collision Window/Retry Register
**********************************************************************/
/** Programmable field specifying the number of retransmission attempts following a collision before
* aborting the packet due to excessive collisions */
#define EMAC_CLRT_MAX_RETX(n) (n&0x0F)
/** Programmable field representing the slot time or collision window during which collisions occur
* in properly configured networks */
#define EMAC_CLRT_COLL(n) ((n&0x3F)<<8)
/** Default value for Collision Window / Retry register */
#define EMAC_CLRT_DEF ((EMAC_CLRT_MAX_RETX(0x0F))|(EMAC_CLRT_COLL(0x37)))
/*********************************************************************//**
* Macro defines for Maximum Frame Register
**********************************************************************/
/** Represents a maximum receive frame of 1536 octets */
#define EMAC_MAXF_MAXFRMLEN(n) (n&0xFFFF)
/*********************************************************************//**
* Macro defines for PHY Support Register
**********************************************************************/
#define EMAC_SUPP_SPEED 0x00000100 /**< Reduced MII Logic Current Speed */
//#define EMAC_SUPP_RES_RMII 0x00000800 /**< Reset Reduced MII Logic */
/*********************************************************************//**
* Macro defines for Test Register
**********************************************************************/
#define EMAC_TEST_SHCUT_PQUANTA 0x00000001 /**< Shortcut Pause Quanta */
#define EMAC_TEST_TST_PAUSE 0x00000002 /**< Test Pause */
#define EMAC_TEST_TST_BACKP 0x00000004 /**< Test Back Pressure */
/*********************************************************************//**
* Macro defines for MII Management Configuration Register
**********************************************************************/
#define EMAC_MCFG_SCAN_INC 0x00000001 /**< Scan Increment PHY Address */
#define EMAC_MCFG_SUPP_PREAM 0x00000002 /**< Suppress Preamble */
#define EMAC_MCFG_CLK_SEL(n) ((n&0x0F)<<2) /**< Clock Select Field */
#define EMAC_MCFG_RES_MII 0x00008000 /**< Reset MII Management Hardware */
#define EMAC_MCFG_MII_MAXCLK 2500000UL /**< MII Clock max */
/*********************************************************************//**
* Macro defines for MII Management Command Register
**********************************************************************/
#define EMAC_MCMD_READ 0x00000001 /**< MII Read */
#define EMAC_MCMD_SCAN 0x00000002 /**< MII Scan continuously */
#define EMAC_MII_WR_TOUT 0x00050000 /**< MII Write timeout count */
#define EMAC_MII_RD_TOUT 0x00050000 /**< MII Read timeout count */
/*********************************************************************//**
* Macro defines for MII Management Address Register
**********************************************************************/
#define EMAC_MADR_REG_ADR(n) (n&0x1F) /**< MII Register Address field */
#define EMAC_MADR_PHY_ADR(n) ((n&0x1F)<<8) /**< PHY Address Field */
/*********************************************************************//**
* Macro defines for MII Management Write Data Register
**********************************************************************/
#define EMAC_MWTD_DATA(n) (n&0xFFFF) /**< Data field for MMI Management Write Data register */
/*********************************************************************//**
* Macro defines for MII Management Read Data Register
**********************************************************************/
#define EMAC_MRDD_DATA(n) (n&0xFFFF) /**< Data field for MMI Management Read Data register */
/*********************************************************************//**
* Macro defines for MII Management Indicators Register
**********************************************************************/
#define EMAC_MIND_BUSY 0x00000001 /**< MII is Busy */
#define EMAC_MIND_SCAN 0x00000002 /**< MII Scanning in Progress */
#define EMAC_MIND_NOT_VAL 0x00000004 /**< MII Read Data not valid */
#define EMAC_MIND_MII_LINK_FAIL 0x00000008 /**< MII Link Failed */
/* Station Address 0 Register */
/* Station Address 1 Register */
/* Station Address 2 Register */
/* Control register definitions --------------------------------------------------------------------------- */
/*********************************************************************//**
* Macro defines for Command Register
**********************************************************************/
#define EMAC_CR_RX_EN 0x00000001 /**< Enable Receive */
#define EMAC_CR_TX_EN 0x00000002 /**< Enable Transmit */
#define EMAC_CR_REG_RES 0x00000008 /**< Reset Host Registers */
#define EMAC_CR_TX_RES 0x00000010 /**< Reset Transmit Datapath */
#define EMAC_CR_RX_RES 0x00000020 /**< Reset Receive Datapath */
#define EMAC_CR_PASS_RUNT_FRM 0x00000040 /**< Pass Runt Frames */
#define EMAC_CR_PASS_RX_FILT 0x00000080 /**< Pass RX Filter */
#define EMAC_CR_TX_FLOW_CTRL 0x00000100 /**< TX Flow Control */
#define EMAC_CR_RMII 0x00000200 /**< Reduced MII Interface */
#define EMAC_CR_FULL_DUP 0x00000400 /**< Full Duplex */
/*********************************************************************//**
* Macro defines for Status Register
**********************************************************************/
#define EMAC_SR_RX_EN 0x00000001 /**< Enable Receive */
#define EMAC_SR_TX_EN 0x00000002 /**< Enable Transmit */
/*********************************************************************//**
* Macro defines for Transmit Status Vector 0 Register
**********************************************************************/
#define EMAC_TSV0_CRC_ERR 0x00000001 /**< CRC error */
#define EMAC_TSV0_LEN_CHKERR 0x00000002 /**< Length Check Error */
#define EMAC_TSV0_LEN_OUTRNG 0x00000004 /**< Length Out of Range */
#define EMAC_TSV0_DONE 0x00000008 /**< Tramsmission Completed */
#define EMAC_TSV0_MCAST 0x00000010 /**< Multicast Destination */
#define EMAC_TSV0_BCAST 0x00000020 /**< Broadcast Destination */
#define EMAC_TSV0_PKT_DEFER 0x00000040 /**< Packet Deferred */
#define EMAC_TSV0_EXC_DEFER 0x00000080 /**< Excessive Packet Deferral */
#define EMAC_TSV0_EXC_COLL 0x00000100 /**< Excessive Collision */
#define EMAC_TSV0_LATE_COLL 0x00000200 /**< Late Collision Occured */
#define EMAC_TSV0_GIANT 0x00000400 /**< Giant Frame */
#define EMAC_TSV0_UNDERRUN 0x00000800 /**< Buffer Underrun */
#define EMAC_TSV0_BYTES 0x0FFFF000 /**< Total Bytes Transferred */
#define EMAC_TSV0_CTRL_FRAME 0x10000000 /**< Control Frame */
#define EMAC_TSV0_PAUSE 0x20000000 /**< Pause Frame */
#define EMAC_TSV0_BACK_PRESS 0x40000000 /**< Backpressure Method Applied */
#define EMAC_TSV0_VLAN 0x80000000 /**< VLAN Frame */
/*********************************************************************//**
* Macro defines for Transmit Status Vector 1 Register
**********************************************************************/
#define EMAC_TSV1_BYTE_CNT 0x0000FFFF /**< Transmit Byte Count */
#define EMAC_TSV1_COLL_CNT 0x000F0000 /**< Transmit Collision Count */
/*********************************************************************//**
* Macro defines for Receive Status Vector Register
**********************************************************************/
#define EMAC_RSV_BYTE_CNT 0x0000FFFF /**< Receive Byte Count */
#define EMAC_RSV_PKT_IGNORED 0x00010000 /**< Packet Previously Ignored */
#define EMAC_RSV_RXDV_SEEN 0x00020000 /**< RXDV Event Previously Seen */
#define EMAC_RSV_CARR_SEEN 0x00040000 /**< Carrier Event Previously Seen */
#define EMAC_RSV_REC_CODEV 0x00080000 /**< Receive Code Violation */
#define EMAC_RSV_CRC_ERR 0x00100000 /**< CRC Error */
#define EMAC_RSV_LEN_CHKERR 0x00200000 /**< Length Check Error */
#define EMAC_RSV_LEN_OUTRNG 0x00400000 /**< Length Out of Range */
#define EMAC_RSV_REC_OK 0x00800000 /**< Frame Received OK */
#define EMAC_RSV_MCAST 0x01000000 /**< Multicast Frame */
#define EMAC_RSV_BCAST 0x02000000 /**< Broadcast Frame */
#define EMAC_RSV_DRIB_NIBB 0x04000000 /**< Dribble Nibble */
#define EMAC_RSV_CTRL_FRAME 0x08000000 /**< Control Frame */
#define EMAC_RSV_PAUSE 0x10000000 /**< Pause Frame */
#define EMAC_RSV_UNSUPP_OPC 0x20000000 /**< Unsupported Opcode */
#define EMAC_RSV_VLAN 0x40000000 /**< VLAN Frame */
/*********************************************************************//**
* Macro defines for Flow Control Counter Register
**********************************************************************/
#define EMAC_FCC_MIRR_CNT(n) (n&0xFFFF) /**< Mirror Counter */
#define EMAC_FCC_PAUSE_TIM(n) ((n&0xFFFF)<<16) /**< Pause Timer */
/*********************************************************************//**
* Macro defines for Flow Control Status Register
**********************************************************************/
#define EMAC_FCS_MIRR_CNT(n) (n&0xFFFF) /**< Mirror Counter Current */
/* Receive filter register definitions -------------------------------------------------------- */
/*********************************************************************//**
* Macro defines for Receive Filter Control Register
**********************************************************************/
#define EMAC_RFC_UCAST_EN 0x00000001 /**< Accept Unicast Frames Enable */
#define EMAC_RFC_BCAST_EN 0x00000002 /**< Accept Broadcast Frames Enable */
#define EMAC_RFC_MCAST_EN 0x00000004 /**< Accept Multicast Frames Enable */
#define EMAC_RFC_UCAST_HASH_EN 0x00000008 /**< Accept Unicast Hash Filter Frames */
#define EMAC_RFC_MCAST_HASH_EN 0x00000010 /**< Accept Multicast Hash Filter Fram.*/
#define EMAC_RFC_PERFECT_EN 0x00000020 /**< Accept Perfect Match Enable */
#define EMAC_RFC_MAGP_WOL_EN 0x00001000 /**< Magic Packet Filter WoL Enable */
#define EMAC_RFC_PFILT_WOL_EN 0x00002000 /**< Perfect Filter WoL Enable */
/*********************************************************************//**
* Macro defines for Receive Filter WoL Status/Clear Registers
**********************************************************************/
#define EMAC_WOL_UCAST 0x00000001 /**< Unicast Frame caused WoL */
#define EMAC_WOL_BCAST 0x00000002 /**< Broadcast Frame caused WoL */
#define EMAC_WOL_MCAST 0x00000004 /**< Multicast Frame caused WoL */
#define EMAC_WOL_UCAST_HASH 0x00000008 /**< Unicast Hash Filter Frame WoL */
#define EMAC_WOL_MCAST_HASH 0x00000010 /**< Multicast Hash Filter Frame WoL */
#define EMAC_WOL_PERFECT 0x00000020 /**< Perfect Filter WoL */
#define EMAC_WOL_RX_FILTER 0x00000080 /**< RX Filter caused WoL */
#define EMAC_WOL_MAG_PACKET 0x00000100 /**< Magic Packet Filter caused WoL */
#define EMAC_WOL_BITMASK 0x01BF /**< Receive Filter WoL Status/Clear bitmasl value */
/* Module control register definitions ---------------------------------------------------- */
/*********************************************************************//**
* Macro defines for Interrupt Status/Enable/Clear/Set Registers
**********************************************************************/
#define EMAC_INT_RX_OVERRUN 0x00000001 /**< Overrun Error in RX Queue */
#define EMAC_INT_RX_ERR 0x00000002 /**< Receive Error */
#define EMAC_INT_RX_FIN 0x00000004 /**< RX Finished Process Descriptors */
#define EMAC_INT_RX_DONE 0x00000008 /**< Receive Done */
#define EMAC_INT_TX_UNDERRUN 0x00000010 /**< Transmit Underrun */
#define EMAC_INT_TX_ERR 0x00000020 /**< Transmit Error */
#define EMAC_INT_TX_FIN 0x00000040 /**< TX Finished Process Descriptors */
#define EMAC_INT_TX_DONE 0x00000080 /**< Transmit Done */
#define EMAC_INT_SOFT_INT 0x00001000 /**< Software Triggered Interrupt */
#define EMAC_INT_WAKEUP 0x00002000 /**< Wakeup Event Interrupt */
/*********************************************************************//**
* Macro defines for Power Down Register
**********************************************************************/
#define EMAC_PD_POWER_DOWN 0x80000000 /**< Power Down MAC */
/* Descriptor and status formats ---------------------------------------------------- */
/*********************************************************************//**
* Macro defines for RX Descriptor Control Word
**********************************************************************/
#define EMAC_RCTRL_SIZE(n) (n&0x7FF) /**< Buffer size field */
#define EMAC_RCTRL_INT 0x80000000 /**< Generate RxDone Interrupt */
/*********************************************************************//**
* Macro defines for RX Status Hash CRC Word
**********************************************************************/
#define EMAC_RHASH_SA 0x000001FF /**< Hash CRC for Source Address */
#define EMAC_RHASH_DA 0x001FF000 /**< Hash CRC for Destination Address */
/*********************************************************************//**
* Macro defines for RX Status Information Word
**********************************************************************/
#define EMAC_RINFO_SIZE 0x000007FF /**< Data size in bytes */
#define EMAC_RINFO_CTRL_FRAME 0x00040000 /**< Control Frame */
#define EMAC_RINFO_VLAN 0x00080000 /**< VLAN Frame */
#define EMAC_RINFO_FAIL_FILT 0x00100000 /**< RX Filter Failed */
#define EMAC_RINFO_MCAST 0x00200000 /**< Multicast Frame */
#define EMAC_RINFO_BCAST 0x00400000 /**< Broadcast Frame */
#define EMAC_RINFO_CRC_ERR 0x00800000 /**< CRC Error in Frame */
#define EMAC_RINFO_SYM_ERR 0x01000000 /**< Symbol Error from PHY */
#define EMAC_RINFO_LEN_ERR 0x02000000 /**< Length Error */
#define EMAC_RINFO_RANGE_ERR 0x04000000 /**< Range Error (exceeded max. size) */
#define EMAC_RINFO_ALIGN_ERR 0x08000000 /**< Alignment Error */
#define EMAC_RINFO_OVERRUN 0x10000000 /**< Receive overrun */
#define EMAC_RINFO_NO_DESCR 0x20000000 /**< No new Descriptor available */
#define EMAC_RINFO_LAST_FLAG 0x40000000 /**< Last Fragment in Frame */
#define EMAC_RINFO_ERR 0x80000000 /**< Error Occured (OR of all errors) */
#define EMAC_RINFO_ERR_MASK (EMAC_RINFO_FAIL_FILT | EMAC_RINFO_CRC_ERR | EMAC_RINFO_SYM_ERR | \
EMAC_RINFO_LEN_ERR | EMAC_RINFO_ALIGN_ERR | EMAC_RINFO_OVERRUN)
/*********************************************************************//**
* Macro defines for TX Descriptor Control Word
**********************************************************************/
#define EMAC_TCTRL_SIZE 0x000007FF /**< Size of data buffer in bytes */
#define EMAC_TCTRL_OVERRIDE 0x04000000 /**< Override Default MAC Registers */
#define EMAC_TCTRL_HUGE 0x08000000 /**< Enable Huge Frame */
#define EMAC_TCTRL_PAD 0x10000000 /**< Pad short Frames to 64 bytes */
#define EMAC_TCTRL_CRC 0x20000000 /**< Append a hardware CRC to Frame */
#define EMAC_TCTRL_LAST 0x40000000 /**< Last Descriptor for TX Frame */
#define EMAC_TCTRL_INT 0x80000000 /**< Generate TxDone Interrupt */
/*********************************************************************//**
* Macro defines for TX Status Information Word
**********************************************************************/
#define EMAC_TINFO_COL_CNT 0x01E00000 /**< Collision Count */
#define EMAC_TINFO_DEFER 0x02000000 /**< Packet Deferred (not an error) */
#define EMAC_TINFO_EXCESS_DEF 0x04000000 /**< Excessive Deferral */
#define EMAC_TINFO_EXCESS_COL 0x08000000 /**< Excessive Collision */
#define EMAC_TINFO_LATE_COL 0x10000000 /**< Late Collision Occured */
#define EMAC_TINFO_UNDERRUN 0x20000000 /**< Transmit Underrun */
#define EMAC_TINFO_NO_DESCR 0x40000000 /**< No new Descriptor available */
#define EMAC_TINFO_ERR 0x80000000 /**< Error Occured (OR of all errors) */
#ifdef MCB_LPC_1768
/* DP83848C PHY definition ------------------------------------------------------------ */
/** PHY device reset time out definition */
#define EMAC_PHY_RESP_TOUT 0x100000UL
/* ENET Device Revision ID */
#define EMAC_OLD_EMAC_MODULE_ID 0x39022000 /**< Rev. ID for first rev '-' */
/*********************************************************************//**
* Macro defines for DP83848C PHY Registers
**********************************************************************/
#define EMAC_PHY_REG_BMCR 0x00 /**< Basic Mode Control Register */
#define EMAC_PHY_REG_BMSR 0x01 /**< Basic Mode Status Register */
#define EMAC_PHY_REG_IDR1 0x02 /**< PHY Identifier 1 */
#define EMAC_PHY_REG_IDR2 0x03 /**< PHY Identifier 2 */
#define EMAC_PHY_REG_ANAR 0x04 /**< Auto-Negotiation Advertisement */
#define EMAC_PHY_REG_ANLPAR 0x05 /**< Auto-Neg. Link Partner Abitily */
#define EMAC_PHY_REG_ANER 0x06 /**< Auto-Neg. Expansion Register */
#define EMAC_PHY_REG_ANNPTR 0x07 /**< Auto-Neg. Next Page TX */
#define EMAC_PHY_REG_LPNPA 0x08
/*********************************************************************//**
* Macro defines for PHY Extended Registers
**********************************************************************/
#define EMAC_PHY_REG_STS 0x10 /**< Status Register */
#define EMAC_PHY_REG_MICR 0x11 /**< MII Interrupt Control Register */
#define EMAC_PHY_REG_MISR 0x12 /**< MII Interrupt Status Register */
#define EMAC_PHY_REG_FCSCR 0x14 /**< False Carrier Sense Counter */
#define EMAC_PHY_REG_RECR 0x15 /**< Receive Error Counter */
#define EMAC_PHY_REG_PCSR 0x16 /**< PCS Sublayer Config. and Status */
#define EMAC_PHY_REG_RBR 0x17 /**< RMII and Bypass Register */
#define EMAC_PHY_REG_LEDCR 0x18 /**< LED Direct Control Register */
#define EMAC_PHY_REG_PHYCR 0x19 /**< PHY Control Register */
#define EMAC_PHY_REG_10BTSCR 0x1A /**< 10Base-T Status/Control Register */
#define EMAC_PHY_REG_CDCTRL1 0x1B /**< CD Test Control and BIST Extens. */
#define EMAC_PHY_REG_EDCR 0x1D /**< Energy Detect Control Register */
/*********************************************************************//**
* Macro defines for PHY Basic Mode Control Register
**********************************************************************/
#define EMAC_PHY_BMCR_RESET (1<<15) /**< Reset bit */
#define EMAC_PHY_BMCR_LOOPBACK (1<<14) /**< Loop back */
#define EMAC_PHY_BMCR_SPEED_SEL (1<<13) /**< Speed selection */
#define EMAC_PHY_BMCR_AN (1<<12) /**< Auto Negotiation */
#define EMAC_PHY_BMCR_POWERDOWN (1<<11) /**< Power down mode */
#define EMAC_PHY_BMCR_ISOLATE (1<<10) /**< Isolate */
#define EMAC_PHY_BMCR_RE_AN (1<<9) /**< Restart auto negotiation */
#define EMAC_PHY_BMCR_DUPLEX (1<<8) /**< Duplex mode */
/*********************************************************************//**
* Macro defines for PHY Basic Mode Status Status Register
**********************************************************************/
#define EMAC_PHY_BMSR_100BE_T4 (1<<15) /**< 100 base T4 */
#define EMAC_PHY_BMSR_100TX_FULL (1<<14) /**< 100 base full duplex */
#define EMAC_PHY_BMSR_100TX_HALF (1<<13) /**< 100 base half duplex */
#define EMAC_PHY_BMSR_10BE_FULL (1<<12) /**< 10 base T full duplex */
#define EMAC_PHY_BMSR_10BE_HALF (1<<11) /**< 10 base T half duplex */
#define EMAC_PHY_BMSR_NOPREAM (1<<6) /**< MF Preamable Supress */
#define EMAC_PHY_BMSR_AUTO_DONE (1<<5) /**< Auto negotiation complete */
#define EMAC_PHY_BMSR_REMOTE_FAULT (1<<4) /**< Remote fault */
#define EMAC_PHY_BMSR_NO_AUTO (1<<3) /**< Auto Negotiation ability */
#define EMAC_PHY_BMSR_LINK_ESTABLISHED (1<<2) /**< Link status */
/*********************************************************************//**
* Macro defines for PHY Status Register
**********************************************************************/
#define EMAC_PHY_SR_REMOTE_FAULT (1<<6) /**< Remote Fault */
#define EMAC_PHY_SR_JABBER (1<<5) /**< Jabber detect */
#define EMAC_PHY_SR_AUTO_DONE (1<<4) /**< Auto Negotiation complete */
#define EMAC_PHY_SR_LOOPBACK (1<<3) /**< Loop back status */
#define EMAC_PHY_SR_DUP (1<<2) /**< Duplex status */
#define EMAC_PHY_SR_SPEED (1<<1) /**< Speed status */
#define EMAC_PHY_SR_LINK (1<<0) /**< Link Status */
#define EMAC_PHY_FULLD_100M 0x2100 /**< Full Duplex 100Mbit */
#define EMAC_PHY_HALFD_100M 0x2000 /**< Half Duplex 100Mbit */
#define EMAC_PHY_FULLD_10M 0x0100 /**< Full Duplex 10Mbit */
#define EMAC_PHY_HALFD_10M 0x0000 /**< Half Duplex 10MBit */
#define EMAC_PHY_AUTO_NEG 0x3000 /**< Select Auto Negotiation */
#define EMAC_DEF_ADR 0x0100 /**< Default PHY device address */
#define EMAC_DP83848C_ID 0x20005C90 /**< PHY Identifier */
#define EMAC_PHY_SR_100_SPEED ((1<<14)|(1<<13))
#define EMAC_PHY_SR_FULL_DUP ((1<<14)|(1<<12))
#define EMAC_PHY_BMSR_LINK_STATUS (1<<2) /**< Link status */
#elif defined(IAR_LPC_1768)
/* KSZ8721BL PHY definition ------------------------------------------------------------ */
/** PHY device reset time out definition */
#define EMAC_PHY_RESP_TOUT 0x100000UL
/* ENET Device Revision ID */
#define EMAC_OLD_EMAC_MODULE_ID 0x39022000 /**< Rev. ID for first rev '-' */
/*********************************************************************//**
* Macro defines for KSZ8721BL PHY Registers
**********************************************************************/
#define EMAC_PHY_REG_BMCR 0x00 /**< Basic Mode Control Register */
#define EMAC_PHY_REG_BMSR 0x01 /**< Basic Mode Status Register */
#define EMAC_PHY_REG_IDR1 0x02 /**< PHY Identifier 1 */
#define EMAC_PHY_REG_IDR2 0x03 /**< PHY Identifier 2 */
#define EMAC_PHY_REG_ANAR 0x04 /**< Auto-Negotiation Advertisement */
#define EMAC_PHY_REG_ANLPAR 0x05 /**< Auto-Neg. Link Partner Abitily */
#define EMAC_PHY_REG_ANER 0x06 /**< Auto-Neg. Expansion Register */
#define EMAC_PHY_REG_ANNPTR 0x07 /**< Auto-Neg. Next Page TX */
#define EMAC_PHY_REG_LPNPA 0x08 /**< Link Partner Next Page Ability */
#define EMAC_PHY_REG_REC 0x15 /**< RXError Counter Register */
#define EMAC_PHY_REG_ISC 0x1b /**< Interrupt Control/Status Register */
#define EMAC_PHY_REG_100BASE 0x1f /**< 100BASE-TX PHY Control Register */
/*********************************************************************//**
* Macro defines for PHY Basic Mode Control Register
**********************************************************************/
#define EMAC_PHY_BMCR_RESET (1<<15) /**< Reset bit */
#define EMAC_PHY_BMCR_LOOPBACK (1<<14) /**< Loop back */
#define EMAC_PHY_BMCR_SPEED_SEL (1<<13) /**< Speed selection */
#define EMAC_PHY_BMCR_AN (1<<12) /**< Auto Negotiation */
#define EMAC_PHY_BMCR_POWERDOWN (1<<11) /**< Power down mode */
#define EMAC_PHY_BMCR_ISOLATE (1<<10) /**< Isolate */
#define EMAC_PHY_BMCR_RE_AN (1<<9) /**< Restart auto negotiation */
#define EMAC_PHY_BMCR_DUPLEX (1<<8) /**< Duplex mode */
#define EMAC_PHY_BMCR_COLLISION (1<<7) /**< Collision test */
#define EMAC_PHY_BMCR_TXDIS (1<<0) /**< Disable transmit */
/*********************************************************************//**
* Macro defines for PHY Basic Mode Status Register
**********************************************************************/
#define EMAC_PHY_BMSR_100BE_T4 (1<<15) /**< 100 base T4 */
#define EMAC_PHY_BMSR_100TX_FULL (1<<14) /**< 100 base full duplex */
#define EMAC_PHY_BMSR_100TX_HALF (1<<13) /**< 100 base half duplex */
#define EMAC_PHY_BMSR_10BE_FULL (1<<12) /**< 10 base T full duplex */
#define EMAC_PHY_BMSR_10BE_HALF (1<<11) /**< 10 base T half duplex */
#define EMAC_PHY_BMSR_NOPREAM (1<<6) /**< MF Preamable Supress */
#define EMAC_PHY_BMSR_AUTO_DONE (1<<5) /**< Auto negotiation complete */
#define EMAC_PHY_BMSR_REMOTE_FAULT (1<<4) /**< Remote fault */
#define EMAC_PHY_BMSR_NO_AUTO (1<<3) /**< Auto Negotiation ability */
#define EMAC_PHY_BMSR_LINK_STATUS (1<<2) /**< Link status */
#define EMAC_PHY_BMSR_JABBER_DETECT (1<<1) /**< Jabber detect */
#define EMAC_PHY_BMSR_EXTEND (1<<0) /**< Extended support */
/*********************************************************************//**
* Macro defines for PHY Identifier
**********************************************************************/
/* PHY Identifier 1 bitmap definitions */
#define EMAC_PHY_IDR1(n) (n & 0xFFFF) /**< PHY ID1 Number */
/* PHY Identifier 2 bitmap definitions */
#define EMAC_PHY_IDR2(n) (n & 0xFFFF) /**< PHY ID2 Number */
/*********************************************************************//**
* Macro defines for Auto-Negotiation Advertisement
**********************************************************************/
#define EMAC_PHY_AN_NEXTPAGE (1<<15) /**< Next page capable */
#define EMAC_PHY_AN_REMOTE_FAULT (1<<13) /**< Remote Fault support */
#define EMAC_PHY_AN_PAUSE (1<<10) /**< Pause support */
#define EMAC_PHY_AN_100BASE_T4 (1<<9) /**< T4 capable */
#define EMAC_PHY_AN_100BASE_TX_FD (1<<8) /**< TX with Full-duplex capable */
#define EMAC_PHY_AN_100BASE_TX (1<<7) /**< TX capable */
#define EMAC_PHY_AN_10BASE_T_FD (1<<6) /**< 10Mbps with full-duplex capable */
#define EMAC_PHY_AN_10BASE_T (1<<5) /**< 10Mbps capable */
#define EMAC_PHY_AN_FIELD(n) (n & 0x1F) /**< Selector Field */
#define EMAC_PHY_FULLD_100M 0x2100 /**< Full Duplex 100Mbit */
#define EMAC_PHY_HALFD_100M 0x2000 /**< Half Duplex 100Mbit */
#define EMAC_PHY_FULLD_10M 0x0100 /**< Full Duplex 10Mbit */
#define EMAC_PHY_HALFD_10M 0x0000 /**< Half Duplex 10MBit */
#define EMAC_PHY_AUTO_NEG 0x3000 /**< Select Auto Negotiation */
#define EMAC_PHY_SR_100_SPEED ((1<<14)|(1<<13))
#define EMAC_PHY_SR_FULL_DUP ((1<<14)|(1<<12))
#define EMAC_DEF_ADR (0x01<<8) /**< Default PHY device address */
#define EMAC_KSZ8721BL_ID ((0x22 << 16) | 0x1619 ) /**< PHY Identifier */
#endif
/**
* @}
*/
/* Public Types --------------------------------------------------------------- */
/** @defgroup EMAC_Public_Types EMAC Public Types
* @{
*/
/* Descriptor and status formats ---------------------------------------------- */
/**
* @brief RX Descriptor structure type definition
*/
typedef struct {
uint32_t Packet; /**< Receive Packet Descriptor */
uint32_t Ctrl; /**< Receive Control Descriptor */
} RX_Desc;
/**
* @brief RX Status structure type definition
*/
typedef struct {
uint32_t Info; /**< Receive Information Status */
uint32_t HashCRC; /**< Receive Hash CRC Status */
} RX_Stat;
/**
* @brief TX Descriptor structure type definition
*/
typedef struct {
uint32_t Packet; /**< Transmit Packet Descriptor */
uint32_t Ctrl; /**< Transmit Control Descriptor */
} TX_Desc;
/**
* @brief TX Status structure type definition
*/
typedef struct {
uint32_t Info; /**< Transmit Information Status */
} TX_Stat;
/**
* @brief TX Data Buffer structure definition
*/
typedef struct {
uint32_t ulDataLen; /**< Data length */
uint32_t *pbDataBuf; /**< A word-align data pointer to data buffer */
} EMAC_PACKETBUF_Type;
/**
* @brief EMAC configuration structure definition
*/
typedef struct {
uint32_t Mode; /**< Supported EMAC PHY device speed, should be one of the following:
- EMAC_MODE_AUTO
- EMAC_MODE_10M_FULL
- EMAC_MODE_10M_HALF
- EMAC_MODE_100M_FULL
- EMAC_MODE_100M_HALF
*/
uint8_t *pbEMAC_Addr; /**< Pointer to EMAC Station address that contains 6-bytes
of MAC address, it must be sorted in order (bEMAC_Addr[0]..[5])
*/
} EMAC_CFG_Type;
/**
* @}
*/
/* Public Functions ----------------------------------------------------------- */
/** @defgroup EMAC_Public_Functions EMAC Public Functions
* @{
*/
/* Init/DeInit EMAC peripheral */
Status EMAC_Init(EMAC_CFG_Type *EMAC_ConfigStruct);
void EMAC_DeInit(void);
/* PHY functions --------------*/
int32_t EMAC_CheckPHYStatus(uint32_t ulPHYState);
int32_t EMAC_SetPHYMode(uint32_t ulPHYMode);
int32_t EMAC_UpdatePHYStatus(void);
/* Filter functions ----------*/
void EMAC_SetHashFilter(uint8_t dstMAC_addr[], FunctionalState NewState);
void EMAC_SetFilterMode(uint32_t ulFilterMode, FunctionalState NewState);
/* EMAC Packet Buffer functions */
void EMAC_WritePacketBuffer(EMAC_PACKETBUF_Type *pDataStruct);
void EMAC_ReadPacketBuffer(EMAC_PACKETBUF_Type *pDataStruct);
/* EMAC Interrupt functions -------*/
void EMAC_IntCmd(uint32_t ulIntType, FunctionalState NewState);
IntStatus EMAC_IntGetStatus(uint32_t ulIntType);
/* EMAC Index functions -----------*/
Bool EMAC_CheckReceiveIndex(void);
Bool EMAC_CheckTransmitIndex(void);
void EMAC_UpdateRxConsumeIndex(void);
void EMAC_UpdateTxProduceIndex(void);
FlagStatus EMAC_CheckReceiveDataStatus(uint32_t ulRxStatType);
uint32_t EMAC_GetReceiveDataSize(void);
FlagStatus EMAC_GetWoLStatus(uint32_t ulWoLMode);
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* LPC17XX_EMAC_H_ */
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */

View file

@ -1,155 +0,0 @@
/**********************************************************************
* $Id$ lpc17xx_exti.h 2010-05-21
*//**
* @file lpc17xx_exti.h
* @brief Contains all macro definitions and function prototypes
* support for External interrupt firmware library on LPC17xx
* @version 2.0
* @date 21. May. 2010
* @author NXP MCU SW Application Team
*
* Copyright(C) 2010, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
/* Peripheral group ----------------------------------------------------------- */
/** @defgroup EXTI EXTI (External Interrupt)
* @ingroup LPC1700CMSIS_FwLib_Drivers
* @{
*/
#ifndef LPC17XX_EXTI_H_
#define LPC17XX_EXTI_H_
/* Includes ------------------------------------------------------------------- */
#include "LPC17xx.h"
#include "lpc_types.h"
#ifdef __cplusplus
extern "C"
{
#endif
/* Private Macros ------------------------------------------------------------- */
/** @defgroup EXTI_Private_Macros EXTI Private Macros
* @{
*/
/*********************************************************************//**
* Macro defines for EXTI control register
**********************************************************************/
#define EXTI_EINT0_BIT_MARK 0x01
#define EXTI_EINT1_BIT_MARK 0x02
#define EXTI_EINT2_BIT_MARK 0x04
#define EXTI_EINT3_BIT_MARK 0x08
/**
* @}
*/
/* Private Macros ------------------------------------------------------------- */
/** @defgroup EXTI_Public_Types EXTI Public Types
* @{
*/
/**
* @brief EXTI external interrupt line option
*/
typedef enum
{
EXTI_EINT0, /*!< External interrupt 0, P2.10 */
EXTI_EINT1, /*!< External interrupt 0, P2.11 */
EXTI_EINT2, /*!< External interrupt 0, P2.12 */
EXTI_EINT3 /*!< External interrupt 0, P2.13 */
} EXTI_LINE_ENUM;
/**
* @brief EXTI mode option
*/
typedef enum
{
EXTI_MODE_LEVEL_SENSITIVE, /*!< Level sensitivity is selected */
EXTI_MODE_EDGE_SENSITIVE /*!< Edge sensitivity is selected */
} EXTI_MODE_ENUM;
/**
* @brief EXTI polarity option
*/
typedef enum
{
EXTI_POLARITY_LOW_ACTIVE_OR_FALLING_EDGE, /*!< Low active or falling edge sensitive
depending on pin mode */
EXTI_POLARITY_HIGH_ACTIVE_OR_RISING_EDGE /*!< High active or rising edge sensitive
depending on pin mode */
} EXTI_POLARITY_ENUM;
/**
* @brief EXTI Initialize structure
*/
typedef struct
{
EXTI_LINE_ENUM EXTI_Line; /*!<Select external interrupt pin (EINT0, EINT1, EINT 2, EINT3) */
EXTI_MODE_ENUM EXTI_Mode; /*!< Choose between Level-sensitivity or Edge sensitivity */
EXTI_POLARITY_ENUM EXTI_polarity; /*!< If EXTI mode is level-sensitive: this element use to select low or high active level
if EXTI mode is polarity-sensitive: this element use to select falling or rising edge */
}EXTI_InitTypeDef;
/**
* @}
*/
/* Public Functions ----------------------------------------------------------- */
/** @defgroup EXTI_Public_Functions EXTI Public Functions
* @{
*/
void EXTI_Init(void);
void EXTI_DeInit(void);
void EXTI_Config(EXTI_InitTypeDef *EXTICfg);
void EXTI_SetMode(EXTI_LINE_ENUM EXTILine, EXTI_MODE_ENUM mode);
void EXTI_SetPolarity(EXTI_LINE_ENUM EXTILine, EXTI_POLARITY_ENUM polarity);
void EXTI_ClearEXTIFlag(EXTI_LINE_ENUM EXTILine);
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* LPC17XX_EXTI_H_ */
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */

View file

@ -1,429 +0,0 @@
/**********************************************************************
* $Id$ lpc17xx_gpdma.h 2010-05-21
*//**
* @file lpc17xx_gpdma.h
* @brief Contains all macro definitions and function prototypes
* support for GPDMA firmware library on LPC17xx
* @version 2.0
* @date 21. May. 2010
* @author NXP MCU SW Application Team
*
* Copyright(C) 2010, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
/* Peripheral group ----------------------------------------------------------- */
/** @defgroup GPDMA GPDMA (General Purpose Direct Memory Access)
* @ingroup LPC1700CMSIS_FwLib_Drivers
* @{
*/
#ifndef LPC17XX_GPDMA_H_
#define LPC17XX_GPDMA_H_
/* Includes ------------------------------------------------------------------- */
#include "LPC17xx.h"
#include "lpc_types.h"
#ifdef __cplusplus
extern "C"
{
#endif
/* Public Macros -------------------------------------------------------------- */
/** @defgroup GPDMA_Public_Macros GPDMA Public Macros
* @{
*/
/** DMA Connection number definitions */
#define GPDMA_CONN_SSP0_Tx ((0UL)) /**< SSP0 Tx */
#define GPDMA_CONN_SSP0_Rx ((1UL)) /**< SSP0 Rx */
#define GPDMA_CONN_SSP1_Tx ((2UL)) /**< SSP1 Tx */
#define GPDMA_CONN_SSP1_Rx ((3UL)) /**< SSP1 Rx */
#define GPDMA_CONN_ADC ((4UL)) /**< ADC */
#define GPDMA_CONN_I2S_Channel_0 ((5UL)) /**< I2S channel 0 */
#define GPDMA_CONN_I2S_Channel_1 ((6UL)) /**< I2S channel 1 */
#define GPDMA_CONN_DAC ((7UL)) /**< DAC */
#define GPDMA_CONN_UART0_Tx ((8UL)) /**< UART0 Tx */
#define GPDMA_CONN_UART0_Rx ((9UL)) /**< UART0 Rx */
#define GPDMA_CONN_UART1_Tx ((10UL)) /**< UART1 Tx */
#define GPDMA_CONN_UART1_Rx ((11UL)) /**< UART1 Rx */
#define GPDMA_CONN_UART2_Tx ((12UL)) /**< UART2 Tx */
#define GPDMA_CONN_UART2_Rx ((13UL)) /**< UART2 Rx */
#define GPDMA_CONN_UART3_Tx ((14UL)) /**< UART3 Tx */
#define GPDMA_CONN_UART3_Rx ((15UL)) /**< UART3 Rx */
#define GPDMA_CONN_MAT0_0 ((16UL)) /**< MAT0.0 */
#define GPDMA_CONN_MAT0_1 ((17UL)) /**< MAT0.1 */
#define GPDMA_CONN_MAT1_0 ((18UL)) /**< MAT1.0 */
#define GPDMA_CONN_MAT1_1 ((19UL)) /**< MAT1.1 */
#define GPDMA_CONN_MAT2_0 ((20UL)) /**< MAT2.0 */
#define GPDMA_CONN_MAT2_1 ((21UL)) /**< MAT2.1 */
#define GPDMA_CONN_MAT3_0 ((22UL)) /**< MAT3.0 */
#define GPDMA_CONN_MAT3_1 ((23UL)) /**< MAT3.1 */
/** GPDMA Transfer type definitions */
#define GPDMA_TRANSFERTYPE_M2M ((0UL)) /**< Memory to memory - DMA control */
#define GPDMA_TRANSFERTYPE_M2P ((1UL)) /**< Memory to peripheral - DMA control */
#define GPDMA_TRANSFERTYPE_P2M ((2UL)) /**< Peripheral to memory - DMA control */
#define GPDMA_TRANSFERTYPE_P2P ((3UL)) /**< Source peripheral to destination peripheral - DMA control */
/** Burst size in Source and Destination definitions */
#define GPDMA_BSIZE_1 ((0UL)) /**< Burst size = 1 */
#define GPDMA_BSIZE_4 ((1UL)) /**< Burst size = 4 */
#define GPDMA_BSIZE_8 ((2UL)) /**< Burst size = 8 */
#define GPDMA_BSIZE_16 ((3UL)) /**< Burst size = 16 */
#define GPDMA_BSIZE_32 ((4UL)) /**< Burst size = 32 */
#define GPDMA_BSIZE_64 ((5UL)) /**< Burst size = 64 */
#define GPDMA_BSIZE_128 ((6UL)) /**< Burst size = 128 */
#define GPDMA_BSIZE_256 ((7UL)) /**< Burst size = 256 */
/** Width in Source transfer width and Destination transfer width definitions */
#define GPDMA_WIDTH_BYTE ((0UL)) /**< Width = 1 byte */
#define GPDMA_WIDTH_HALFWORD ((1UL)) /**< Width = 2 bytes */
#define GPDMA_WIDTH_WORD ((2UL)) /**< Width = 4 bytes */
/** DMA Request Select Mode definitions */
#define GPDMA_REQSEL_UART ((0UL)) /**< UART TX/RX is selected */
#define GPDMA_REQSEL_TIMER ((1UL)) /**< Timer match is selected */
/**
* @}
*/
/* Private Macros ------------------------------------------------------------- */
/** @defgroup GPDMA_Private_Macros GPDMA Private Macros
* @{
*/
/* --------------------- BIT DEFINITIONS -------------------------------------- */
/*********************************************************************//**
* Macro defines for DMA Interrupt Status register
**********************************************************************/
#define GPDMA_DMACIntStat_Ch(n) (((1UL<<n)&0xFF))
#define GPDMA_DMACIntStat_BITMASK ((0xFF))
/*********************************************************************//**
* Macro defines for DMA Interrupt Terminal Count Request Status register
**********************************************************************/
#define GPDMA_DMACIntTCStat_Ch(n) (((1UL<<n)&0xFF))
#define GPDMA_DMACIntTCStat_BITMASK ((0xFF))
/*********************************************************************//**
* Macro defines for DMA Interrupt Terminal Count Request Clear register
**********************************************************************/
#define GPDMA_DMACIntTCClear_Ch(n) (((1UL<<n)&0xFF))
#define GPDMA_DMACIntTCClear_BITMASK ((0xFF))
/*********************************************************************//**
* Macro defines for DMA Interrupt Error Status register
**********************************************************************/
#define GPDMA_DMACIntErrStat_Ch(n) (((1UL<<n)&0xFF))
#define GPDMA_DMACIntErrStat_BITMASK ((0xFF))
/*********************************************************************//**
* Macro defines for DMA Interrupt Error Clear register
**********************************************************************/
#define GPDMA_DMACIntErrClr_Ch(n) (((1UL<<n)&0xFF))
#define GPDMA_DMACIntErrClr_BITMASK ((0xFF))
/*********************************************************************//**
* Macro defines for DMA Raw Interrupt Terminal Count Status register
**********************************************************************/
#define GPDMA_DMACRawIntTCStat_Ch(n) (((1UL<<n)&0xFF))
#define GPDMA_DMACRawIntTCStat_BITMASK ((0xFF))
/*********************************************************************//**
* Macro defines for DMA Raw Error Interrupt Status register
**********************************************************************/
#define GPDMA_DMACRawIntErrStat_Ch(n) (((1UL<<n)&0xFF))
#define GPDMA_DMACRawIntErrStat_BITMASK ((0xFF))
/*********************************************************************//**
* Macro defines for DMA Enabled Channel register
**********************************************************************/
#define GPDMA_DMACEnbldChns_Ch(n) (((1UL<<n)&0xFF))
#define GPDMA_DMACEnbldChns_BITMASK ((0xFF))
/*********************************************************************//**
* Macro defines for DMA Software Burst Request register
**********************************************************************/
#define GPDMA_DMACSoftBReq_Src(n) (((1UL<<n)&0xFFFF))
#define GPDMA_DMACSoftBReq_BITMASK ((0xFFFF))
/*********************************************************************//**
* Macro defines for DMA Software Single Request register
**********************************************************************/
#define GPDMA_DMACSoftSReq_Src(n) (((1UL<<n)&0xFFFF))
#define GPDMA_DMACSoftSReq_BITMASK ((0xFFFF))
/*********************************************************************//**
* Macro defines for DMA Software Last Burst Request register
**********************************************************************/
#define GPDMA_DMACSoftLBReq_Src(n) (((1UL<<n)&0xFFFF))
#define GPDMA_DMACSoftLBReq_BITMASK ((0xFFFF))
/*********************************************************************//**
* Macro defines for DMA Software Last Single Request register
**********************************************************************/
#define GPDMA_DMACSoftLSReq_Src(n) (((1UL<<n)&0xFFFF))
#define GPDMA_DMACSoftLSReq_BITMASK ((0xFFFF))
/*********************************************************************//**
* Macro defines for DMA Configuration register
**********************************************************************/
#define GPDMA_DMACConfig_E ((0x01)) /**< DMA Controller enable*/
#define GPDMA_DMACConfig_M ((0x02)) /**< AHB Master endianness configuration*/
#define GPDMA_DMACConfig_BITMASK ((0x03))
/*********************************************************************//**
* Macro defines for DMA Synchronization register
**********************************************************************/
#define GPDMA_DMACSync_Src(n) (((1UL<<n)&0xFFFF))
#define GPDMA_DMACSync_BITMASK ((0xFFFF))
/*********************************************************************//**
* Macro defines for DMA Request Select register
**********************************************************************/
#define GPDMA_DMAReqSel_Input(n) (((1UL<<(n-8))&0xFF))
#define GPDMA_DMAReqSel_BITMASK ((0xFF))
/*********************************************************************//**
* Macro defines for DMA Channel Linked List Item registers
**********************************************************************/
/** DMA Channel Linked List Item registers bit mask*/
#define GPDMA_DMACCxLLI_BITMASK ((0xFFFFFFFC))
/*********************************************************************//**
* Macro defines for DMA channel control registers
**********************************************************************/
#define GPDMA_DMACCxControl_TransferSize(n) (((n&0xFFF)<<0)) /**< Transfer size*/
#define GPDMA_DMACCxControl_SBSize(n) (((n&0x07)<<12)) /**< Source burst size*/
#define GPDMA_DMACCxControl_DBSize(n) (((n&0x07)<<15)) /**< Destination burst size*/
#define GPDMA_DMACCxControl_SWidth(n) (((n&0x07)<<18)) /**< Source transfer width*/
#define GPDMA_DMACCxControl_DWidth(n) (((n&0x07)<<21)) /**< Destination transfer width*/
#define GPDMA_DMACCxControl_SI ((1UL<<26)) /**< Source increment*/
#define GPDMA_DMACCxControl_DI ((1UL<<27)) /**< Destination increment*/
#define GPDMA_DMACCxControl_Prot1 ((1UL<<28)) /**< Indicates that the access is in user mode or privileged mode*/
#define GPDMA_DMACCxControl_Prot2 ((1UL<<29)) /**< Indicates that the access is bufferable or not bufferable*/
#define GPDMA_DMACCxControl_Prot3 ((1UL<<30)) /**< Indicates that the access is cacheable or not cacheable*/
#define GPDMA_DMACCxControl_I ((1UL<<31)) /**< Terminal count interrupt enable bit */
/** DMA channel control registers bit mask */
#define GPDMA_DMACCxControl_BITMASK ((0xFCFFFFFF))
/*********************************************************************//**
* Macro defines for DMA Channel Configuration registers
**********************************************************************/
#define GPDMA_DMACCxConfig_E ((1UL<<0)) /**< DMA control enable*/
#define GPDMA_DMACCxConfig_SrcPeripheral(n) (((n&0x1F)<<1)) /**< Source peripheral*/
#define GPDMA_DMACCxConfig_DestPeripheral(n) (((n&0x1F)<<6)) /**< Destination peripheral*/
#define GPDMA_DMACCxConfig_TransferType(n) (((n&0x7)<<11)) /**< This value indicates the type of transfer*/
#define GPDMA_DMACCxConfig_IE ((1UL<<14)) /**< Interrupt error mask*/
#define GPDMA_DMACCxConfig_ITC ((1UL<<15)) /**< Terminal count interrupt mask*/
#define GPDMA_DMACCxConfig_L ((1UL<<16)) /**< Lock*/
#define GPDMA_DMACCxConfig_A ((1UL<<17)) /**< Active*/
#define GPDMA_DMACCxConfig_H ((1UL<<18)) /**< Halt*/
/** DMA Channel Configuration registers bit mask */
#define GPDMA_DMACCxConfig_BITMASK ((0x7FFFF))
/* ---------------- CHECK PARAMETER DEFINITIONS ---------------------------- */
/* Macros check GPDMA channel */
#define PARAM_GPDMA_CHANNEL(n) (n<=7)
/* Macros check GPDMA connection type */
#define PARAM_GPDMA_CONN(n) ((n==GPDMA_CONN_SSP0_Tx) || (n==GPDMA_CONN_SSP0_Rx) \
|| (n==GPDMA_CONN_SSP1_Tx) || (n==GPDMA_CONN_SSP1_Rx) \
|| (n==GPDMA_CONN_ADC) || (n==GPDMA_CONN_I2S_Channel_0) \
|| (n==GPDMA_CONN_I2S_Channel_1) || (n==GPDMA_CONN_DAC) \
|| (n==GPDMA_CONN_UART0_Tx) || (n==GPDMA_CONN_UART0_Rx) \
|| (n==GPDMA_CONN_UART1_Tx) || (n==GPDMA_CONN_UART1_Rx) \
|| (n==GPDMA_CONN_UART2_Tx) || (n==GPDMA_CONN_UART2_Rx) \
|| (n==GPDMA_CONN_UART3_Tx) || (n==GPDMA_CONN_UART3_Rx) \
|| (n==GPDMA_CONN_MAT0_0) || (n==GPDMA_CONN_MAT0_1) \
|| (n==GPDMA_CONN_MAT1_0) || (n==GPDMA_CONN_MAT1_1) \
|| (n==GPDMA_CONN_MAT2_0) || (n==GPDMA_CONN_MAT2_1) \
|| (n==GPDMA_CONN_MAT3_0) || (n==GPDMA_CONN_MAT3_1))
/* Macros check GPDMA burst size type */
#define PARAM_GPDMA_BSIZE(n) ((n==GPDMA_BSIZE_1) || (n==GPDMA_BSIZE_4) \
|| (n==GPDMA_BSIZE_8) || (n==GPDMA_BSIZE_16) \
|| (n==GPDMA_BSIZE_32) || (n==GPDMA_BSIZE_64) \
|| (n==GPDMA_BSIZE_128) || (n==GPDMA_BSIZE_256))
/* Macros check GPDMA width type */
#define PARAM_GPDMA_WIDTH(n) ((n==GPDMA_WIDTH_BYTE) || (n==GPDMA_WIDTH_HALFWORD) \
|| (n==GPDMA_WIDTH_WORD))
/* Macros check GPDMA status type */
#define PARAM_GPDMA_STAT(n) ((n==GPDMA_STAT_INT) || (n==GPDMA_STAT_INTTC) \
|| (n==GPDMA_STAT_INTERR) || (n==GPDMA_STAT_RAWINTTC) \
|| (n==GPDMA_STAT_RAWINTERR) || (n==GPDMA_STAT_ENABLED_CH))
/* Macros check GPDMA transfer type */
#define PARAM_GPDMA_TRANSFERTYPE(n) ((n==GPDMA_TRANSFERTYPE_M2M)||(n==GPDMA_TRANSFERTYPE_M2P) \
||(n==GPDMA_TRANSFERTYPE_P2M)||(n==GPDMA_TRANSFERTYPE_P2P))
/* Macros check GPDMA state clear type */
#define PARAM_GPDMA_STATCLR(n) ((n==GPDMA_STATCLR_INTTC) || (n==GPDMA_STATCLR_INTERR))
/* Macros check GPDMA request select type */
#define PARAM_GPDMA_REQSEL(n) ((n==GPDMA_REQSEL_UART) || (n==GPDMA_REQSEL_TIMER))
/**
* @}
*/
/* Public Types --------------------------------------------------------------- */
/** @defgroup GPDMA_Public_Types GPDMA Public Types
* @{
*/
/**
* @brief GPDMA Status enumeration
*/
typedef enum {
GPDMA_STAT_INT, /**< GPDMA Interrupt Status */
GPDMA_STAT_INTTC, /**< GPDMA Interrupt Terminal Count Request Status */
GPDMA_STAT_INTERR, /**< GPDMA Interrupt Error Status */
GPDMA_STAT_RAWINTTC, /**< GPDMA Raw Interrupt Terminal Count Status */
GPDMA_STAT_RAWINTERR, /**< GPDMA Raw Error Interrupt Status */
GPDMA_STAT_ENABLED_CH /**< GPDMA Enabled Channel Status */
} GPDMA_Status_Type;
/**
* @brief GPDMA Interrupt clear status enumeration
*/
typedef enum{
GPDMA_STATCLR_INTTC, /**< GPDMA Interrupt Terminal Count Request Clear */
GPDMA_STATCLR_INTERR /**< GPDMA Interrupt Error Clear */
}GPDMA_StateClear_Type;
/**
* @brief GPDMA Channel configuration structure type definition
*/
typedef struct {
uint32_t ChannelNum; /**< DMA channel number, should be in
range from 0 to 7.
Note: DMA channel 0 has the highest priority
and DMA channel 7 the lowest priority.
*/
uint32_t TransferSize; /**< Length/Size of transfer */
uint32_t TransferWidth; /**< Transfer width - used for TransferType is GPDMA_TRANSFERTYPE_M2M only */
uint32_t SrcMemAddr; /**< Physical Source Address, used in case TransferType is chosen as
GPDMA_TRANSFERTYPE_M2M or GPDMA_TRANSFERTYPE_M2P */
uint32_t DstMemAddr; /**< Physical Destination Address, used in case TransferType is chosen as
GPDMA_TRANSFERTYPE_M2M or GPDMA_TRANSFERTYPE_P2M */
uint32_t TransferType; /**< Transfer Type, should be one of the following:
- GPDMA_TRANSFERTYPE_M2M: Memory to memory - DMA control
- GPDMA_TRANSFERTYPE_M2P: Memory to peripheral - DMA control
- GPDMA_TRANSFERTYPE_P2M: Peripheral to memory - DMA control
- GPDMA_TRANSFERTYPE_P2P: Source peripheral to destination peripheral - DMA control
*/
uint32_t SrcConn; /**< Peripheral Source Connection type, used in case TransferType is chosen as
GPDMA_TRANSFERTYPE_P2M or GPDMA_TRANSFERTYPE_P2P, should be one of
following:
- GPDMA_CONN_SSP0_Tx: SSP0, Tx
- GPDMA_CONN_SSP0_Rx: SSP0, Rx
- GPDMA_CONN_SSP1_Tx: SSP1, Tx
- GPDMA_CONN_SSP1_Rx: SSP1, Rx
- GPDMA_CONN_ADC: ADC
- GPDMA_CONN_I2S_Channel_0: I2S Channel 0
- GPDMA_CONN_I2S_Channel_1: I2S Channel 1
- GPDMA_CONN_DAC: DAC
- GPDMA_CONN_UART0_Tx_MAT0_0: UART0 Tx / MAT0.0
- GPDMA_CONN_UART0_Rx_MAT0_1: UART0 Rx / MAT0.1
- GPDMA_CONN_UART1_Tx_MAT1_0: UART1 Tx / MAT1.0
- GPDMA_CONN_UART1_Rx_MAT1_1: UART1 Rx / MAT1.1
- GPDMA_CONN_UART2_Tx_MAT2_0: UART2 Tx / MAT2.0
- GPDMA_CONN_UART2_Rx_MAT2_1: UART2 Rx / MAT2.1
- GPDMA_CONN_UART3_Tx_MAT3_0: UART3 Tx / MAT3.0
- GPDMA_CONN_UART3_Rx_MAT3_1: UART3 Rx / MAT3.1
*/
uint32_t DstConn; /**< Peripheral Destination Connection type, used in case TransferType is chosen as
GPDMA_TRANSFERTYPE_M2P or GPDMA_TRANSFERTYPE_P2P, should be one of
following:
- GPDMA_CONN_SSP0_Tx: SSP0, Tx
- GPDMA_CONN_SSP0_Rx: SSP0, Rx
- GPDMA_CONN_SSP1_Tx: SSP1, Tx
- GPDMA_CONN_SSP1_Rx: SSP1, Rx
- GPDMA_CONN_ADC: ADC
- GPDMA_CONN_I2S_Channel_0: I2S Channel 0
- GPDMA_CONN_I2S_Channel_1: I2S Channel 1
- GPDMA_CONN_DAC: DAC
- GPDMA_CONN_UART0_Tx_MAT0_0: UART0 Tx / MAT0.0
- GPDMA_CONN_UART0_Rx_MAT0_1: UART0 Rx / MAT0.1
- GPDMA_CONN_UART1_Tx_MAT1_0: UART1 Tx / MAT1.0
- GPDMA_CONN_UART1_Rx_MAT1_1: UART1 Rx / MAT1.1
- GPDMA_CONN_UART2_Tx_MAT2_0: UART2 Tx / MAT2.0
- GPDMA_CONN_UART2_Rx_MAT2_1: UART2 Rx / MAT2.1
- GPDMA_CONN_UART3_Tx_MAT3_0: UART3 Tx / MAT3.0
- GPDMA_CONN_UART3_Rx_MAT3_1: UART3 Rx / MAT3.1
*/
uint32_t DMALLI; /**< Linker List Item structure data address
if there's no Linker List, set as '0'
*/
} GPDMA_Channel_CFG_Type;
/**
* @brief GPDMA Linker List Item structure type definition
*/
typedef struct {
uint32_t SrcAddr; /**< Source Address */
uint32_t DstAddr; /**< Destination address */
uint32_t NextLLI; /**< Next LLI address, otherwise set to '0' */
uint32_t Control; /**< GPDMA Control of this LLI */
} GPDMA_LLI_Type;
/**
* @}
*/
/* Public Functions ----------------------------------------------------------- */
/** @defgroup GPDMA_Public_Functions GPDMA Public Functions
* @{
*/
void GPDMA_Init(void);
//Status GPDMA_Setup(GPDMA_Channel_CFG_Type *GPDMAChannelConfig, fnGPDMACbs_Type *pfnGPDMACbs);
Status GPDMA_Setup(GPDMA_Channel_CFG_Type *GPDMAChannelConfig);
IntStatus GPDMA_IntGetStatus(GPDMA_Status_Type type, uint8_t channel);
void GPDMA_ClearIntPending(GPDMA_StateClear_Type type, uint8_t channel);
void GPDMA_ChannelCmd(uint8_t channelNum, FunctionalState NewState);
//void GPDMA_IntHandler(void);
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* LPC17XX_GPDMA_H_ */
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */

View file

@ -1,177 +0,0 @@
/**********************************************************************
* $Id$ lpc17xx_gpio.h 2010-06-18
*//**
* @file lpc17xx_gpio.h
* @brief Contains all macro definitions and function prototypes
* support for GPDMA firmware library on LPC17xx
* @version 3.0
* @date 18. June. 2010
* @author NXP MCU SW Application Team
*
* Copyright(C) 2010, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
/* Peripheral group ----------------------------------------------------------- */
/** @defgroup GPIO GPIO (General Purpose Input/Output)
* @ingroup LPC1700CMSIS_FwLib_Drivers
* @{
*/
#ifndef LPC17XX_GPIO_H_
#define LPC17XX_GPIO_H_
/* Includes ------------------------------------------------------------------- */
#include "LPC17xx.h"
#include "lpc_types.h"
#ifdef __cplusplus
extern "C"
{
#endif
/* Public Macros -------------------------------------------------------------- */
/** @defgroup GPIO_Public_Macros GPIO Public Macros
* @{
*/
/** Fast GPIO port 0 byte accessible definition */
#define GPIO0_Byte ((GPIO_Byte_TypeDef *)(LPC_GPIO0_BASE))
/** Fast GPIO port 1 byte accessible definition */
#define GPIO1_Byte ((GPIO_Byte_TypeDef *)(LPC_GPIO1_BASE))
/** Fast GPIO port 2 byte accessible definition */
#define GPIO2_Byte ((GPIO_Byte_TypeDef *)(LPC_GPIO2_BASE))
/** Fast GPIO port 3 byte accessible definition */
#define GPIO3_Byte ((GPIO_Byte_TypeDef *)(LPC_GPIO3_BASE))
/** Fast GPIO port 4 byte accessible definition */
#define GPIO4_Byte ((GPIO_Byte_TypeDef *)(LPC_GPIO4_BASE))
/** Fast GPIO port 0 half-word accessible definition */
#define GPIO0_HalfWord ((GPIO_HalfWord_TypeDef *)(LPC_GPIO0_BASE))
/** Fast GPIO port 1 half-word accessible definition */
#define GPIO1_HalfWord ((GPIO_HalfWord_TypeDef *)(LPC_GPIO1_BASE))
/** Fast GPIO port 2 half-word accessible definition */
#define GPIO2_HalfWord ((GPIO_HalfWord_TypeDef *)(LPC_GPIO2_BASE))
/** Fast GPIO port 3 half-word accessible definition */
#define GPIO3_HalfWord ((GPIO_HalfWord_TypeDef *)(LPC_GPIO3_BASE))
/** Fast GPIO port 4 half-word accessible definition */
#define GPIO4_HalfWord ((GPIO_HalfWord_TypeDef *)(LPC_GPIO4_BASE))
/**
* @}
*/
/* Public Types --------------------------------------------------------------- */
/** @defgroup GPIO_Public_Types GPIO Public Types
* @{
*/
/**
* @brief Fast GPIO port byte type definition
*/
typedef struct {
__IO uint8_t FIODIR[4]; /**< FIO direction register in byte-align */
uint32_t RESERVED0[3]; /**< Reserved */
__IO uint8_t FIOMASK[4]; /**< FIO mask register in byte-align */
__IO uint8_t FIOPIN[4]; /**< FIO pin register in byte align */
__IO uint8_t FIOSET[4]; /**< FIO set register in byte-align */
__O uint8_t FIOCLR[4]; /**< FIO clear register in byte-align */
} GPIO_Byte_TypeDef;
/**
* @brief Fast GPIO port half-word type definition
*/
typedef struct {
__IO uint16_t FIODIRL; /**< FIO direction register lower halfword part */
__IO uint16_t FIODIRU; /**< FIO direction register upper halfword part */
uint32_t RESERVED0[3]; /**< Reserved */
__IO uint16_t FIOMASKL; /**< FIO mask register lower halfword part */
__IO uint16_t FIOMASKU; /**< FIO mask register upper halfword part */
__IO uint16_t FIOPINL; /**< FIO pin register lower halfword part */
__IO uint16_t FIOPINU; /**< FIO pin register upper halfword part */
__IO uint16_t FIOSETL; /**< FIO set register lower halfword part */
__IO uint16_t FIOSETU; /**< FIO set register upper halfword part */
__O uint16_t FIOCLRL; /**< FIO clear register lower halfword part */
__O uint16_t FIOCLRU; /**< FIO clear register upper halfword part */
} GPIO_HalfWord_TypeDef;
/**
* @}
*/
/* Public Functions ----------------------------------------------------------- */
/** @defgroup GPIO_Public_Functions GPIO Public Functions
* @{
*/
/* GPIO style ------------------------------- */
void GPIO_SetDir(uint8_t portNum, uint32_t bitValue, uint8_t dir);
void GPIO_SetValue(uint8_t portNum, uint32_t bitValue);
void GPIO_ClearValue(uint8_t portNum, uint32_t bitValue);
uint32_t GPIO_ReadValue(uint8_t portNum);
void GPIO_IntCmd(uint8_t portNum, uint32_t bitValue, uint8_t edgeState);
FunctionalState GPIO_GetIntStatus(uint8_t portNum, uint32_t pinNum, uint8_t edgeState);
void GPIO_ClearInt(uint8_t portNum, uint32_t bitValue);
/* FIO (word-accessible) style ------------------------------- */
void FIO_SetDir(uint8_t portNum, uint32_t bitValue, uint8_t dir);
void FIO_SetValue(uint8_t portNum, uint32_t bitValue);
void FIO_ClearValue(uint8_t portNum, uint32_t bitValue);
uint32_t FIO_ReadValue(uint8_t portNum);
void FIO_SetMask(uint8_t portNum, uint32_t bitValue, uint8_t maskValue);
void FIO_IntCmd(uint8_t portNum, uint32_t bitValue, uint8_t edgeState);
FunctionalState FIO_GetIntStatus(uint8_t portNum, uint32_t pinNum, uint8_t edgeState);
void FIO_ClearInt(uint8_t portNum, uint32_t pinNum);
/* FIO (halfword-accessible) style ------------------------------- */
void FIO_HalfWordSetDir(uint8_t portNum, uint8_t halfwordNum, uint16_t bitValue, uint8_t dir);
void FIO_HalfWordSetMask(uint8_t portNum, uint8_t halfwordNum, uint16_t bitValue, uint8_t maskValue);
void FIO_HalfWordSetValue(uint8_t portNum, uint8_t halfwordNum, uint16_t bitValue);
void FIO_HalfWordClearValue(uint8_t portNum, uint8_t halfwordNum, uint16_t bitValue);
uint16_t FIO_HalfWordReadValue(uint8_t portNum, uint8_t halfwordNum);
/* FIO (byte-accessible) style ------------------------------- */
void FIO_ByteSetDir(uint8_t portNum, uint8_t byteNum, uint8_t bitValue, uint8_t dir);
void FIO_ByteSetMask(uint8_t portNum, uint8_t byteNum, uint8_t bitValue, uint8_t maskValue);
void FIO_ByteSetValue(uint8_t portNum, uint8_t byteNum, uint8_t bitValue);
void FIO_ByteClearValue(uint8_t portNum, uint8_t byteNum, uint8_t bitValue);
uint8_t FIO_ByteReadValue(uint8_t portNum, uint8_t byteNum);
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* LPC17XX_GPIO_H_ */
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */

View file

@ -1,434 +0,0 @@
/**********************************************************************
* $Id$ lpc17xx_i2c.h 2010-05-21
*//**
* @file lpc17xx_i2c.h
* @brief Contains all macro definitions and function prototypes
* support for I2C firmware library on LPC17xx
* @version 2.0
* @date 21. May. 2010
* @author NXP MCU SW Application Team
*
* Copyright(C) 2010, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
/* Peripheral group ----------------------------------------------------------- */
/** @defgroup I2C I2C (Inter-IC Control bus)
* @ingroup LPC1700CMSIS_FwLib_Drivers
* @{
*/
#ifndef LPC17XX_I2C_H_
#define LPC17XX_I2C_H_
/* Includes ------------------------------------------------------------------- */
#include "LPC17xx.h"
#include "lpc_types.h"
#ifdef __cplusplus
extern "C"
{
#endif
/* Private Macros ------------------------------------------------------------- */
/** @defgroup I2C_Private_Macros I2C Private Macros
* @{
*/
/* --------------------- BIT DEFINITIONS -------------------------------------- */
/*******************************************************************//**
* I2C Control Set register description
*********************************************************************/
#define I2C_I2CONSET_AA ((0x04)) /*!< Assert acknowledge flag */
#define I2C_I2CONSET_SI ((0x08)) /*!< I2C interrupt flag */
#define I2C_I2CONSET_STO ((0x10)) /*!< STOP flag */
#define I2C_I2CONSET_STA ((0x20)) /*!< START flag */
#define I2C_I2CONSET_I2EN ((0x40)) /*!< I2C interface enable */
/*******************************************************************//**
* I2C Control Clear register description
*********************************************************************/
/** Assert acknowledge Clear bit */
#define I2C_I2CONCLR_AAC ((1<<2))
/** I2C interrupt Clear bit */
#define I2C_I2CONCLR_SIC ((1<<3))
/** I2C STOP Clear bit */
#define I2C_I2CONCLR_STOC ((1<<4))
/** START flag Clear bit */
#define I2C_I2CONCLR_STAC ((1<<5))
/** I2C interface Disable bit */
#define I2C_I2CONCLR_I2ENC ((1<<6))
/********************************************************************//**
* I2C Status Code definition (I2C Status register)
*********************************************************************/
/* Return Code in I2C status register */
#define I2C_STAT_CODE_BITMASK ((0xF8))
/* I2C return status code definitions ----------------------------- */
/** No relevant information */
#define I2C_I2STAT_NO_INF ((0xF8))
/** Bus Error */
#define I2C_I2STAT_BUS_ERROR ((0x00))
/* Master transmit mode -------------------------------------------- */
/** A start condition has been transmitted */
#define I2C_I2STAT_M_TX_START ((0x08))
/** A repeat start condition has been transmitted */
#define I2C_I2STAT_M_TX_RESTART ((0x10))
/** SLA+W has been transmitted, ACK has been received */
#define I2C_I2STAT_M_TX_SLAW_ACK ((0x18))
/** SLA+W has been transmitted, NACK has been received */
#define I2C_I2STAT_M_TX_SLAW_NACK ((0x20))
/** Data has been transmitted, ACK has been received */
#define I2C_I2STAT_M_TX_DAT_ACK ((0x28))
/** Data has been transmitted, NACK has been received */
#define I2C_I2STAT_M_TX_DAT_NACK ((0x30))
/** Arbitration lost in SLA+R/W or Data bytes */
#define I2C_I2STAT_M_TX_ARB_LOST ((0x38))
/* Master receive mode -------------------------------------------- */
/** A start condition has been transmitted */
#define I2C_I2STAT_M_RX_START ((0x08))
/** A repeat start condition has been transmitted */
#define I2C_I2STAT_M_RX_RESTART ((0x10))
/** Arbitration lost */
#define I2C_I2STAT_M_RX_ARB_LOST ((0x38))
/** SLA+R has been transmitted, ACK has been received */
#define I2C_I2STAT_M_RX_SLAR_ACK ((0x40))
/** SLA+R has been transmitted, NACK has been received */
#define I2C_I2STAT_M_RX_SLAR_NACK ((0x48))
/** Data has been received, ACK has been returned */
#define I2C_I2STAT_M_RX_DAT_ACK ((0x50))
/** Data has been received, NACK has been return */
#define I2C_I2STAT_M_RX_DAT_NACK ((0x58))
/* Slave receive mode -------------------------------------------- */
/** Own slave address has been received, ACK has been returned */
#define I2C_I2STAT_S_RX_SLAW_ACK ((0x60))
/** Arbitration lost in SLA+R/W as master */
#define I2C_I2STAT_S_RX_ARB_LOST_M_SLA ((0x68))
/** General call address has been received, ACK has been returned */
#define I2C_I2STAT_S_RX_GENCALL_ACK ((0x70))
/** Arbitration lost in SLA+R/W (GENERAL CALL) as master */
#define I2C_I2STAT_S_RX_ARB_LOST_M_GENCALL ((0x78))
/** Previously addressed with own SLV address;
* Data has been received, ACK has been return */
#define I2C_I2STAT_S_RX_PRE_SLA_DAT_ACK ((0x80))
/** Previously addressed with own SLA;
* Data has been received and NOT ACK has been return */
#define I2C_I2STAT_S_RX_PRE_SLA_DAT_NACK ((0x88))
/** Previously addressed with General Call;
* Data has been received and ACK has been return */
#define I2C_I2STAT_S_RX_PRE_GENCALL_DAT_ACK ((0x90))
/** Previously addressed with General Call;
* Data has been received and NOT ACK has been return */
#define I2C_I2STAT_S_RX_PRE_GENCALL_DAT_NACK ((0x98))
/** A STOP condition or repeated START condition has
* been received while still addressed as SLV/REC
* (Slave Receive) or SLV/TRX (Slave Transmit) */
#define I2C_I2STAT_S_RX_STA_STO_SLVREC_SLVTRX ((0xA0))
/** Slave transmit mode */
/** Own SLA+R has been received, ACK has been returned */
#define I2C_I2STAT_S_TX_SLAR_ACK ((0xA8))
/** Arbitration lost in SLA+R/W as master */
#define I2C_I2STAT_S_TX_ARB_LOST_M_SLA ((0xB0))
/** Data has been transmitted, ACK has been received */
#define I2C_I2STAT_S_TX_DAT_ACK ((0xB8))
/** Data has been transmitted, NACK has been received */
#define I2C_I2STAT_S_TX_DAT_NACK ((0xC0))
/** Last data byte in I2DAT has been transmitted (AA = 0);
ACK has been received */
#define I2C_I2STAT_S_TX_LAST_DAT_ACK ((0xC8))
/** Time out in case of using I2C slave mode */
#define I2C_SLAVE_TIME_OUT 0x10000UL
/********************************************************************//**
* I2C Data register definition
*********************************************************************/
/** Mask for I2DAT register*/
#define I2C_I2DAT_BITMASK ((0xFF))
/** Idle data value will be send out in slave mode in case of the actual
* expecting data requested from the master is greater than its sending data
* length that can be supported */
#define I2C_I2DAT_IDLE_CHAR (0xFF)
/********************************************************************//**
* I2C Monitor mode control register description
*********************************************************************/
#define I2C_I2MMCTRL_MM_ENA ((1<<0)) /**< Monitor mode enable */
#define I2C_I2MMCTRL_ENA_SCL ((1<<1)) /**< SCL output enable */
#define I2C_I2MMCTRL_MATCH_ALL ((1<<2)) /**< Select interrupt register match */
#define I2C_I2MMCTRL_BITMASK ((0x07)) /**< Mask for I2MMCTRL register */
/********************************************************************//**
* I2C Data buffer register description
*********************************************************************/
/** I2C Data buffer register bit mask */
#define I2DATA_BUFFER_BITMASK ((0xFF))
/********************************************************************//**
* I2C Slave Address registers definition
*********************************************************************/
/** General Call enable bit */
#define I2C_I2ADR_GC ((1<<0))
/** I2C Slave Address registers bit mask */
#define I2C_I2ADR_BITMASK ((0xFF))
/********************************************************************//**
* I2C Mask Register definition
*********************************************************************/
/** I2C Mask Register mask field */
#define I2C_I2MASK_MASK(n) ((n&0xFE))
/********************************************************************//**
* I2C SCL HIGH duty cycle Register definition
*********************************************************************/
/** I2C SCL HIGH duty cycle Register bit mask */
#define I2C_I2SCLH_BITMASK ((0xFFFF))
/********************************************************************//**
* I2C SCL LOW duty cycle Register definition
*********************************************************************/
/** I2C SCL LOW duty cycle Register bit mask */
#define I2C_I2SCLL_BITMASK ((0xFFFF))
/* I2C status values */
#define I2C_SETUP_STATUS_ARBF (1<<8) /**< Arbitration false */
#define I2C_SETUP_STATUS_NOACKF (1<<9) /**< No ACK returned */
#define I2C_SETUP_STATUS_DONE (1<<10) /**< Status DONE */
/*********************************************************************//**
* I2C monitor control configuration defines
**********************************************************************/
#define I2C_MONITOR_CFG_SCL_OUTPUT I2C_I2MMCTRL_ENA_SCL /**< SCL output enable */
#define I2C_MONITOR_CFG_MATCHALL I2C_I2MMCTRL_MATCH_ALL /**< Select interrupt register match */
/* ---------------- CHECK PARAMETER DEFINITIONS ---------------------------- */
/* Macros check I2C slave address */
#define PARAM_I2C_SLAVEADDR_CH(n) (n<=3)
/** Macro to determine if it is valid SSP port number */
#define PARAM_I2Cx(n) ((((uint32_t *)n)==((uint32_t *)LPC_I2C0)) \
|| (((uint32_t *)n)==((uint32_t *)LPC_I2C1)) \
|| (((uint32_t *)n)==((uint32_t *)LPC_I2C2)))
/* Macros check I2C monitor configuration type */
#define PARAM_I2C_MONITOR_CFG(n) ((n==I2C_MONITOR_CFG_SCL_OUTPUT) || (I2C_MONITOR_CFG_MATCHALL))
/* I2C state handle return values */
#define I2C_OK 0x00
#define I2C_BYTE_SENT 0x01
#define I2C_BYTE_RECV 0x02
#define I2C_LAST_BYTE_RECV 0x04
#define I2C_SEND_END 0x08
#define I2C_RECV_END 0x10
#define I2C_STA_STO_RECV 0x20
#define I2C_ERR (0x10000000)
#define I2C_NAK_RECV (0x10000000 |0x01)
#define I2C_CheckError(ErrorCode) (ErrorCode & 0x10000000)
/**
* @}
*/
/* Public Types --------------------------------------------------------------- */
/** @defgroup I2C_Public_Types I2C Public Types
* @{
*/
typedef enum
{
I2C_0 = 0,
I2C_1,
I2C_2
} en_I2C_unitId;
typedef enum
{
I2C_MASTER_MODE,
I2C_SLAVE_MODE,
I2C_GENERAL_MODE,
} en_I2C_Mode;
/**
* @brief I2C Own slave address setting structure
*/
typedef struct {
uint8_t SlaveAddrChannel; /**< Slave Address channel in I2C control,
should be in range from 0..3
*/
uint8_t SlaveAddr_7bit; /**< Value of 7-bit slave address */
uint8_t GeneralCallState; /**< Enable/Disable General Call Functionality
when I2C control being in Slave mode, should be:
- ENABLE: Enable General Call function.
- DISABLE: Disable General Call function.
*/
uint8_t SlaveAddrMaskValue; /**< Any bit in this 8-bit value (bit 7:1)
which is set to '1' will cause an automatic compare on
the corresponding bit of the received address when it
is compared to the SlaveAddr_7bit value associated with this
mask register. In other words, bits in SlaveAddr_7bit value
which are masked are not taken into account in determining
an address match
*/
} I2C_OWNSLAVEADDR_CFG_Type;
/**
* @brief Master transfer setup data structure definitions
*/
typedef struct
{
uint32_t sl_addr7bit; /**< Slave address in 7bit mode */
__IO uint8_t* tx_data; /**< Pointer to Transmit data - NULL if data transmit
is not used */
uint32_t tx_length; /**< Transmit data length - 0 if data transmit
is not used*/
__IO uint32_t tx_count; /**< Current Transmit data counter */
__IO uint8_t* rx_data; /**< Pointer to Receive data - NULL if data receive
is not used */
uint32_t rx_length; /**< Receive data length - 0 if data receive is
not used */
__IO uint32_t rx_count; /**< Current Receive data counter */
uint32_t retransmissions_max; /**< Max Re-Transmission value */
uint32_t retransmissions_count; /**< Current Re-Transmission counter */
__IO uint32_t status; /**< Current status of I2C activity */
void (*callback)(void); /**< Pointer to Call back function when transmission complete
used in interrupt transfer mode */
} I2C_M_SETUP_Type;
/**
* @brief Slave transfer setup data structure definitions
*/
typedef struct
{
__IO uint8_t* tx_data;
uint32_t tx_length;
__IO uint32_t tx_count;
__IO uint8_t* rx_data;
uint32_t rx_length;
__IO uint32_t rx_count;
__IO uint32_t status;
void (*callback)(void);
} I2C_S_SETUP_Type;
/**
* @brief Transfer option type definitions
*/
typedef enum {
I2C_TRANSFER_POLLING = 0, /**< Transfer in polling mode */
I2C_TRANSFER_INTERRUPT /**< Transfer in interrupt mode */
} I2C_TRANSFER_OPT_Type;
/**
* @}
*/
/* Public Functions ----------------------------------------------------------- */
/** @defgroup I2C_Public_Functions I2C Public Functions
* @{
*/
/* I2C Init/DeInit functions ---------- */
void I2C_Init(LPC_I2C_TypeDef *I2Cx, uint32_t clockrate);
void I2C_DeInit(LPC_I2C_TypeDef* I2Cx);
void I2C_Cmd(LPC_I2C_TypeDef* I2Cx, en_I2C_Mode Mode, FunctionalState NewState);
/* I2C transfer data functions -------- */
Status I2C_MasterTransferData(LPC_I2C_TypeDef *I2Cx, \
I2C_M_SETUP_Type *TransferCfg, I2C_TRANSFER_OPT_Type Opt);
Status I2C_SlaveTransferData(LPC_I2C_TypeDef *I2Cx, \
I2C_S_SETUP_Type *TransferCfg, I2C_TRANSFER_OPT_Type Opt);
uint32_t I2C_MasterTransferComplete(LPC_I2C_TypeDef *I2Cx);
uint32_t I2C_SlaveTransferComplete(LPC_I2C_TypeDef *I2Cx);
void I2C_SetOwnSlaveAddr(LPC_I2C_TypeDef *I2Cx, I2C_OWNSLAVEADDR_CFG_Type *OwnSlaveAddrConfigStruct);
uint8_t I2C_GetLastStatusCode(LPC_I2C_TypeDef* I2Cx);
/* I2C Monitor functions ---------------*/
void I2C_MonitorModeConfig(LPC_I2C_TypeDef *I2Cx, uint32_t MonitorCfgType, FunctionalState NewState);
void I2C_MonitorModeCmd(LPC_I2C_TypeDef *I2Cx, FunctionalState NewState);
uint8_t I2C_MonitorGetDatabuffer(LPC_I2C_TypeDef *I2Cx);
BOOL_8 I2C_MonitorHandler(LPC_I2C_TypeDef *I2Cx, uint8_t *buffer, uint32_t size);
/* I2C Interrupt handler functions ------*/
void I2C_IntCmd (LPC_I2C_TypeDef *I2Cx, Bool NewState);
void I2C_MasterHandler (LPC_I2C_TypeDef *I2Cx);
void I2C_SlaveHandler (LPC_I2C_TypeDef *I2Cx);
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* LPC17XX_I2C_H_ */
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */

View file

@ -1,384 +0,0 @@
/**********************************************************************
* $Id$ lpc17xx_i2s.h 2011-06-06
*//**
* @file lpc17xx_i2s.h
* @brief Contains all macro definitions and function prototypes
* support for I2S firmware library on LPC17xx
* @version 3.1
* @date 06. June. 2011
* @author NXP MCU SW Application Team
*
* Copyright(C) 2011, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
/* Peripheral group ----------------------------------------------------------- */
/** @defgroup I2S I2S (Inter-IC Sound bus)
* @ingroup LPC1700CMSIS_FwLib_Drivers
* @{
*/
#ifndef LPC17XX_I2S_H_
#define LPC17XX_I2S_H_
/* Includes ------------------------------------------------------------------- */
#include "LPC17xx.h"
#include "lpc_types.h"
#ifdef __cplusplus
extern "C"
{
#endif
/* Public Macros -------------------------------------------------------------- */
/** @defgroup I2S_Public_Macros I2S Public Macros
* @{
*/
/*********************************************************************//**
* I2S configuration parameter defines
**********************************************************************/
/** I2S Wordwidth bit */
#define I2S_WORDWIDTH_8 ((uint32_t)(0))
#define I2S_WORDWIDTH_16 ((uint32_t)(1))
#define I2S_WORDWIDTH_32 ((uint32_t)(3))
/** I2S Channel bit */
#define I2S_STEREO ((uint32_t)(0))
#define I2S_MONO ((uint32_t)(1))
/** I2S Master/Slave mode bit */
#define I2S_MASTER_MODE ((uint8_t)(0))
#define I2S_SLAVE_MODE ((uint8_t)(1))
/** I2S Stop bit */
#define I2S_STOP_ENABLE ((uint8_t)(1))
#define I2S_STOP_DISABLE ((uint8_t)(0))
/** I2S Reset bit */
#define I2S_RESET_ENABLE ((uint8_t)(1))
#define I2S_RESET_DISABLE ((uint8_t)(0))
/** I2S Mute bit */
#define I2S_MUTE_ENABLE ((uint8_t)(1))
#define I2S_MUTE_DISABLE ((uint8_t)(0))
/** I2S Transmit/Receive bit */
#define I2S_TX_MODE ((uint8_t)(0))
#define I2S_RX_MODE ((uint8_t)(1))
/** I2S Clock Select bit */
#define I2S_CLKSEL_FRDCLK ((uint8_t)(0))
#define I2S_CLKSEL_MCLK ((uint8_t)(2))
/** I2S 4-pin Mode bit */
#define I2S_4PIN_ENABLE ((uint8_t)(1))
#define I2S_4PIN_DISABLE ((uint8_t)(0))
/** I2S MCLK Enable bit */
#define I2S_MCLK_ENABLE ((uint8_t)(1))
#define I2S_MCLK_DISABLE ((uint8_t)(0))
/** I2S select DMA bit */
#define I2S_DMA_1 ((uint8_t)(0))
#define I2S_DMA_2 ((uint8_t)(1))
/**
* @}
*/
/* Private Macros ------------------------------------------------------------- */
/** @defgroup I2S_Private_Macros I2S Private Macros
* @{
*/
/*********************************************************************//**
* Macro defines for DAO-Digital Audio Output register
**********************************************************************/
/** I2S wordwide - the number of bytes in data*/
#define I2S_DAO_WORDWIDTH_8 ((uint32_t)(0)) /** 8 bit */
#define I2S_DAO_WORDWIDTH_16 ((uint32_t)(1)) /** 16 bit */
#define I2S_DAO_WORDWIDTH_32 ((uint32_t)(3)) /** 32 bit */
/** I2S control mono or stereo format */
#define I2S_DAO_MONO ((uint32_t)(1<<2))
/** I2S control stop mode */
#define I2S_DAO_STOP ((uint32_t)(1<<3))
/** I2S control reset mode */
#define I2S_DAO_RESET ((uint32_t)(1<<4))
/** I2S control master/slave mode */
#define I2S_DAO_SLAVE ((uint32_t)(1<<5))
/** I2S word select half period minus one */
#define I2S_DAO_WS_HALFPERIOD(n) ((uint32_t)(n<<6))
/** I2S control mute mode */
#define I2S_DAO_MUTE ((uint32_t)(1<<15))
/*********************************************************************//**
* Macro defines for DAI-Digital Audio Input register
**********************************************************************/
/** I2S wordwide - the number of bytes in data*/
#define I2S_DAI_WORDWIDTH_8 ((uint32_t)(0)) /** 8 bit */
#define I2S_DAI_WORDWIDTH_16 ((uint32_t)(1)) /** 16 bit */
#define I2S_DAI_WORDWIDTH_32 ((uint32_t)(3)) /** 32 bit */
/** I2S control mono or stereo format */
#define I2S_DAI_MONO ((uint32_t)(1<<2))
/** I2S control stop mode */
#define I2S_DAI_STOP ((uint32_t)(1<<3))
/** I2S control reset mode */
#define I2S_DAI_RESET ((uint32_t)(1<<4))
/** I2S control master/slave mode */
#define I2S_DAI_SLAVE ((uint32_t)(1<<5))
/** I2S word select half period minus one (9 bits)*/
#define I2S_DAI_WS_HALFPERIOD(n) ((uint32_t)((n&0x1FF)<<6))
/** I2S control mute mode */
#define I2S_DAI_MUTE ((uint32_t)(1<<15))
/*********************************************************************//**
* Macro defines for STAT register (Status Feedback register)
**********************************************************************/
/** I2S Status Receive or Transmit Interrupt */
#define I2S_STATE_IRQ ((uint32_t)(1))
/** I2S Status Receive or Transmit DMA1 */
#define I2S_STATE_DMA1 ((uint32_t)(1<<1))
/** I2S Status Receive or Transmit DMA2 */
#define I2S_STATE_DMA2 ((uint32_t)(1<<2))
/** I2S Status Current level of the Receive FIFO (5 bits)*/
#define I2S_STATE_RX_LEVEL(n) ((uint32_t)((n&1F)<<8))
/** I2S Status Current level of the Transmit FIFO (5 bits)*/
#define I2S_STATE_TX_LEVEL(n) ((uint32_t)((n&1F)<<16))
/*********************************************************************//**
* Macro defines for DMA1 register (DMA1 Configuration register)
**********************************************************************/
/** I2S control DMA1 for I2S receive */
#define I2S_DMA1_RX_ENABLE ((uint32_t)(1))
/** I2S control DMA1 for I2S transmit */
#define I2S_DMA1_TX_ENABLE ((uint32_t)(1<<1))
/** I2S set FIFO level that trigger a receive DMA request on DMA1 */
#define I2S_DMA1_RX_DEPTH(n) ((uint32_t)((n&0x1F)<<8))
/** I2S set FIFO level that trigger a transmit DMA request on DMA1 */
#define I2S_DMA1_TX_DEPTH(n) ((uint32_t)((n&0x1F)<<16))
/*********************************************************************//**
* Macro defines for DMA2 register (DMA2 Configuration register)
**********************************************************************/
/** I2S control DMA2 for I2S receive */
#define I2S_DMA2_RX_ENABLE ((uint32_t)(1))
/** I2S control DMA1 for I2S transmit */
#define I2S_DMA2_TX_ENABLE ((uint32_t)(1<<1))
/** I2S set FIFO level that trigger a receive DMA request on DMA1 */
#define I2S_DMA2_RX_DEPTH(n) ((uint32_t)((n&0x1F)<<8))
/** I2S set FIFO level that trigger a transmit DMA request on DMA1 */
#define I2S_DMA2_TX_DEPTH(n) ((uint32_t)((n&0x1F)<<16))
/*********************************************************************//**
* Macro defines for IRQ register (Interrupt Request Control register)
**********************************************************************/
/** I2S control I2S receive interrupt */
#define I2S_IRQ_RX_ENABLE ((uint32_t)(1))
/** I2S control I2S transmit interrupt */
#define I2S_IRQ_TX_ENABLE ((uint32_t)(1<<1))
/** I2S set the FIFO level on which to create an irq request */
#define I2S_IRQ_RX_DEPTH(n) ((uint32_t)((n&0x1F)<<8))
/** I2S set the FIFO level on which to create an irq request */
#define I2S_IRQ_TX_DEPTH(n) ((uint32_t)((n&0x1F)<<16))
/********************************************************************************//**
* Macro defines for TXRATE/RXRATE register (Transmit/Receive Clock Rate register)
*********************************************************************************/
/** I2S Transmit MCLK rate denominator */
#define I2S_TXRATE_Y_DIVIDER(n) ((uint32_t)(n&0xFF))
/** I2S Transmit MCLK rate denominator */
#define I2S_TXRATE_X_DIVIDER(n) ((uint32_t)((n&0xFF)<<8))
/** I2S Receive MCLK rate denominator */
#define I2S_RXRATE_Y_DIVIDER(n) ((uint32_t)(n&0xFF))
/** I2S Receive MCLK rate denominator */
#define I2S_RXRATE_X_DIVIDER(n) ((uint32_t)((n&0xFF)<<8))
/*************************************************************************************//**
* Macro defines for TXBITRATE & RXBITRATE register (Transmit/Receive Bit Rate register)
**************************************************************************************/
#define I2S_TXBITRATE(n) ((uint32_t)(n&0x3F))
#define I2S_RXBITRATE(n) ((uint32_t)(n&0x3F))
/**********************************************************************************//**
* Macro defines for TXMODE/RXMODE register (Transmit/Receive Mode Control register)
************************************************************************************/
/** I2S Transmit select clock source (2 bits)*/
#define I2S_TXMODE_CLKSEL(n) ((uint32_t)(n&0x03))
/** I2S Transmit control 4-pin mode */
#define I2S_TXMODE_4PIN_ENABLE ((uint32_t)(1<<2))
/** I2S Transmit control the TX_MCLK output */
#define I2S_TXMODE_MCENA ((uint32_t)(1<<3))
/** I2S Receive select clock source */
#define I2S_RXMODE_CLKSEL(n) ((uint32_t)(n&0x03))
/** I2S Receive control 4-pin mode */
#define I2S_RXMODE_4PIN_ENABLE ((uint32_t)(1<<2))
/** I2S Receive control the TX_MCLK output */
#define I2S_RXMODE_MCENA ((uint32_t)(1<<3))
/* ---------------- CHECK PARAMETER DEFINITIONS ---------------------------- */
/** Macro to determine if it is valid I2S peripheral */
#define PARAM_I2Sx(n) (((uint32_t *)n)==((uint32_t *)LPC_I2S))
/** Macro to check Data to send valid */
#define PRAM_I2S_FREQ(freq) ((freq>=16000)&&(freq <= 96000))
/* Macro check I2S word width type */
#define PARAM_I2S_WORDWIDTH(n) ((n==I2S_WORDWIDTH_8)||(n==I2S_WORDWIDTH_16)\
||(n==I2S_WORDWIDTH_32))
/* Macro check I2S channel type */
#define PARAM_I2S_CHANNEL(n) ((n==I2S_STEREO)||(n==I2S_MONO))
/* Macro check I2S master/slave mode */
#define PARAM_I2S_WS_SEL(n) ((n==I2S_MASTER_MODE)||(n==I2S_SLAVE_MODE))
/* Macro check I2S stop mode */
#define PARAM_I2S_STOP(n) ((n==I2S_STOP_ENABLE)||(n==I2S_STOP_DISABLE))
/* Macro check I2S reset mode */
#define PARAM_I2S_RESET(n) ((n==I2S_RESET_ENABLE)||(n==I2S_RESET_DISABLE))
/* Macro check I2S reset mode */
#define PARAM_I2S_MUTE(n) ((n==I2S_MUTE_ENABLE)||(n==I2S_MUTE_DISABLE))
/* Macro check I2S transmit/receive mode */
#define PARAM_I2S_TRX(n) ((n==I2S_TX_MODE)||(n==I2S_RX_MODE))
/* Macro check I2S clock select mode */
#define PARAM_I2S_CLKSEL(n) ((n==I2S_CLKSEL_FRDCLK)||(n==I2S_CLKSEL_MCLK))
/* Macro check I2S 4-pin mode */
#define PARAM_I2S_4PIN(n) ((n==I2S_4PIN_ENABLE)||(n==I2S_4PIN_DISABLE))
/* Macro check I2S MCLK mode */
#define PARAM_I2S_MCLK(n) ((n==I2S_MCLK_ENABLE)||(n==I2S_MCLK_DISABLE))
/* Macro check I2S DMA mode */
#define PARAM_I2S_DMA(n) ((n==I2S_DMA_1)||(n==I2S_DMA_2))
/* Macro check I2S DMA depth value */
#define PARAM_I2S_DMA_DEPTH(n) (n<=31)
/* Macro check I2S irq level value */
#define PARAM_I2S_IRQ_LEVEL(n) (n<=31)
/* Macro check I2S half-period value */
#define PARAM_I2S_HALFPERIOD(n) (n<512)
/* Macro check I2S bit-rate value */
#define PARAM_I2S_BITRATE(n) (n<=63)
/**
* @}
*/
/* Public Types --------------------------------------------------------------- */
/** @defgroup I2S_Public_Types I2S Public Types
* @{
*/
/**
* @brief I2S configuration structure definition
*/
typedef struct {
uint8_t wordwidth; /** the number of bytes in data as follow:
-I2S_WORDWIDTH_8: 8 bit data
-I2S_WORDWIDTH_16: 16 bit data
-I2S_WORDWIDTH_32: 32 bit data */
uint8_t mono; /** Set mono/stereo mode, should be:
- I2S_STEREO: stereo mode
- I2S_MONO: mono mode */
uint8_t stop; /** Disables accesses on FIFOs, should be:
- I2S_STOP_ENABLE: enable stop mode
- I2S_STOP_DISABLE: disable stop mode */
uint8_t reset; /** Asynchronously reset tje transmit channel and FIFO, should be:
- I2S_RESET_ENABLE: enable reset mode
- I2S_RESET_DISABLE: disable reset mode */
uint8_t ws_sel; /** Set Master/Slave mode, should be:
- I2S_MASTER_MODE: I2S master mode
- I2S_SLAVE_MODE: I2S slave mode */
uint8_t mute; /** MUTE mode: when true, the transmit channel sends only zeroes, shoule be:
- I2S_MUTE_ENABLE: enable mute mode
- I2S_MUTE_DISABLE: disable mute mode */
uint8_t Reserved0[2];
} I2S_CFG_Type;
/**
* @brief I2S DMA configuration structure definition
*/
typedef struct {
uint8_t DMAIndex; /** Select DMA1 or DMA2, should be:
- I2S_DMA_1: DMA1
- I2S_DMA_2: DMA2 */
uint8_t depth; /** FIFO level that triggers a DMA request */
uint8_t Reserved0[2];
}I2S_DMAConf_Type;
/**
* @brief I2S mode configuration structure definition
*/
typedef struct{
uint8_t clksel; /** Clock source selection, should be:
- I2S_CLKSEL_FRDCLK: Select the fractional rate divider clock output
- I2S_CLKSEL_MCLK: Select the MCLK signal as the clock source */
uint8_t fpin; /** Select four pin mode, should be:
- I2S_4PIN_ENABLE: 4-pin enable
- I2S_4PIN_DISABLE: 4-pin disable */
uint8_t mcena; /** Select MCLK mode, should be:
- I2S_MCLK_ENABLE: MCLK enable for output
- I2S_MCLK_DISABLE: MCLK disable for output */
uint8_t Reserved;
}I2S_MODEConf_Type;
/**
* @}
*/
/* Public Functions ----------------------------------------------------------- */
/** @defgroup I2S_Public_Functions I2S Public Functions
* @{
*/
/* I2S Init/DeInit functions ---------*/
void I2S_Init(LPC_I2S_TypeDef *I2Sx);
void I2S_DeInit(LPC_I2S_TypeDef *I2Sx);
/* I2S configuration functions --------*/
void I2S_Config(LPC_I2S_TypeDef *I2Sx, uint8_t TRMode, I2S_CFG_Type* ConfigStruct);
Status I2S_FreqConfig(LPC_I2S_TypeDef *I2Sx, uint32_t Freq, uint8_t TRMode);
void I2S_SetBitRate(LPC_I2S_TypeDef *I2Sx, uint8_t bitrate, uint8_t TRMode);
void I2S_ModeConfig(LPC_I2S_TypeDef *I2Sx, I2S_MODEConf_Type* ModeConfig, uint8_t TRMode);
uint8_t I2S_GetLevel(LPC_I2S_TypeDef *I2Sx, uint8_t TRMode);
/* I2S operate functions -------------*/
void I2S_Send(LPC_I2S_TypeDef *I2Sx, uint32_t BufferData);
uint32_t I2S_Receive(LPC_I2S_TypeDef* I2Sx);
void I2S_Start(LPC_I2S_TypeDef *I2Sx);
void I2S_Pause(LPC_I2S_TypeDef *I2Sx, uint8_t TRMode);
void I2S_Mute(LPC_I2S_TypeDef *I2Sx, uint8_t TRMode);
void I2S_Stop(LPC_I2S_TypeDef *I2Sx, uint8_t TRMode);
/* I2S DMA functions ----------------*/
void I2S_DMAConfig(LPC_I2S_TypeDef *I2Sx, I2S_DMAConf_Type* DMAConfig, uint8_t TRMode);
void I2S_DMACmd(LPC_I2S_TypeDef *I2Sx, uint8_t DMAIndex,uint8_t TRMode, FunctionalState NewState);
/* I2S IRQ functions ----------------*/
void I2S_IRQCmd(LPC_I2S_TypeDef *I2Sx,uint8_t TRMode, FunctionalState NewState);
void I2S_IRQConfig(LPC_I2S_TypeDef *I2Sx, uint8_t TRMode, uint8_t level);
FunctionalState I2S_GetIRQStatus(LPC_I2S_TypeDef *I2Sx,uint8_t TRMode);
uint8_t I2S_GetIRQDepth(LPC_I2S_TypeDef *I2Sx,uint8_t TRMode);
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* LPC17XX_SSP_H_ */
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */

View file

@ -1,153 +0,0 @@
/**********************************************************************
* $Id$ lpc17xx_iap.h 2012-04-18
*//**
* @file lpc17xx_iap.h
* @brief Contains all functions support for IAP
* on lpc17xx
* @version 1.0
* @date 18. April. 2012
* @author NXP MCU SW Application Team
*
* Copyright(C) 2011, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
#ifndef _LPC17xx_IAP_H
#define _LPC17xx_IAP_H
#include "lpc_types.h"
/** @defgroup IAP IAP (In Application Programming)
* @ingroup LPC1700CMSIS_FwLib_Drivers
* @{
*/
/** @defgroup IAP_Public_Macros IAP Public Macros
* @{
*/
/** IAP entry location */
#define IAP_LOCATION (0x1FFF1FF1UL)
/**
* @}
*/
/** @defgroup IAP_Public_Types IAP Public Types
* @{
*/
/**
* @brief IAP command code definitions
*/
typedef enum
{
IAP_PREPARE = 50, // Prepare sector(s) for write operation
IAP_COPY_RAM2FLASH = 51, // Copy RAM to Flash
IAP_ERASE = 52, // Erase sector(s)
IAP_BLANK_CHECK = 53, // Blank check sector(s)
IAP_READ_PART_ID = 54, // Read chip part ID
IAP_READ_BOOT_VER = 55, // Read chip boot code version
IAP_COMPARE = 56, // Compare memory areas
IAP_REINVOKE_ISP = 57, // Reinvoke ISP
IAP_READ_SERIAL_NUMBER = 58, // Read serial number
} IAP_COMMAND_CODE;
/**
* @brief IAP status code definitions
*/
typedef enum
{
CMD_SUCCESS, // Command is executed successfully.
INVALID_COMMAND, // Invalid command.
SRC_ADDR_ERROR, // Source address is not on a word boundary.
DST_ADDR_ERROR, // Destination address is not on a correct boundary.
SRC_ADDR_NOT_MAPPED, // Source address is not mapped in the memory map.
DST_ADDR_NOT_MAPPED, // Destination address is not mapped in the memory map.
COUNT_ERROR, // Byte count is not multiple of 4 or is not a permitted value.
INVALID_SECTOR, // Sector number is invalid.
SECTOR_NOT_BLANK, // Sector is not blank.
SECTOR_NOT_PREPARED_FOR_WRITE_OPERATION, // Command to prepare sector for write operation was not executed.
COMPARE_ERROR, // Source and destination data is not same.
BUSY, // Flash programming hardware interface is busy.
} IAP_STATUS_CODE;
/**
* @brief IAP write length definitions
*/
typedef enum {
IAP_WRITE_256 = 256,
IAP_WRITE_512 = 512,
IAP_WRITE_1024 = 1024,
IAP_WRITE_4096 = 4096,
} IAP_WRITE_SIZE;
/**
* @brief IAP command structure
*/
typedef struct {
uint32_t cmd; // Command
uint32_t param[4]; // Parameters
uint32_t status; // status code
uint32_t result[4]; // Result
} IAP_COMMAND_Type;
/**
* @}
*/
/* Public Functions ----------------------------------------------------------- */
/** @defgroup IAP_Public_Functions IAP Public Functions
* @{
*/
/** Get sector number of an address */
uint32_t GetSecNum (uint32_t adr);
/** Prepare sector(s) for write operation */
IAP_STATUS_CODE PrepareSector(uint32_t start_sec, uint32_t end_sec);
/** Copy RAM to Flash */
IAP_STATUS_CODE CopyRAM2Flash(uint8_t * dest, uint8_t* source, IAP_WRITE_SIZE size);
/** Prepare sector(s) for write operation */
IAP_STATUS_CODE EraseSector(uint32_t start_sec, uint32_t end_sec);
/** Blank check sectors */
IAP_STATUS_CODE BlankCheckSector(uint32_t start_sec, uint32_t end_sec,
uint32_t *first_nblank_loc,
uint32_t *first_nblank_val);
/** Read part identification number */
IAP_STATUS_CODE ReadPartID(uint32_t *partID);
/** Read boot code version */
IAP_STATUS_CODE ReadBootCodeVer(uint8_t *major, uint8_t* minor);
/** Read Device serial number */
IAP_STATUS_CODE ReadDeviceSerialNum(uint32_t *uid);
/** Compare memory */
IAP_STATUS_CODE Compare(uint8_t *addr1, uint8_t *addr2, uint32_t size);
/** Invoke ISP */
void InvokeISP(void);
/**
* @}
*/
/**
* @}
*/
#endif /*_LPC17xx_IAP_H*/

View file

@ -1,181 +0,0 @@
/**********************************************************************
* $Id$ lpc17xx_libcfg_default.h 2010-05-21
*//**
* @file lpc17xx_libcfg_default.h
* @brief Default Library configuration header file
* @version 2.0
* @date 21. May. 2010
* @author NXP MCU SW Application Team
*
* Copyright(C) 2010, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
/* Library Configuration group ----------------------------------------------------------- */
/** @defgroup LIBCFG_DEFAULT LIBCFG_DEFAULT (Default Library Configuration)
* @ingroup LPC1700CMSIS_FwLib_Drivers
* @{
*/
#ifndef LPC17XX_LIBCFG_DEFAULT_H_
#define LPC17XX_LIBCFG_DEFAULT_H_
/* Includes ------------------------------------------------------------------- */
#include "lpc_types.h"
/* Public Macros -------------------------------------------------------------- */
/** @defgroup LIBCFG_DEFAULT_Public_Macros LIBCFG_DEFAULT Public Macros
* @{
*/
/************************** DEBUG MODE DEFINITIONS *********************************/
/* Un-comment the line below to compile the library in DEBUG mode, this will expanse
the "CHECK_PARAM" macro in the FW library code */
//#define DEBUG
/******************* PERIPHERAL FW LIBRARY CONFIGURATION DEFINITIONS ***********************/
/* Comment the line below to disable the specific peripheral inclusion */
/* DEBUG_FRAMWORK ------------------------------ */
#define _DBGFWK
/* GPIO ------------------------------- */
#define _GPIO
/* EXTI ------------------------------- */
#define _EXTI
/* UART ------------------------------- */
#define _UART
#define _UART0
#define _UART1
#define _UART2
#define _UART3
/* SPI ------------------------------- */
#define _SPI
/* SYSTICK --------------------------- */
#define _SYSTICK
/* SSP ------------------------------- */
#define _SSP
#define _SSP0
#define _SSP1
/* I2C ------------------------------- */
#define _I2C
#define _I2C0
#define _I2C1
#define _I2C2
/* TIMER ------------------------------- */
#define _TIM
/* WDT ------------------------------- */
#define _WDT
/* GPDMA ------------------------------- */
#define _GPDMA
/* DAC ------------------------------- */
#define _DAC
/* DAC ------------------------------- */
#define _ADC
/* PWM ------------------------------- */
#define _PWM
#define _PWM1
/* RTC ------------------------------- */
#define _RTC
/* I2S ------------------------------- */
#define _I2S
/* USB device ------------------------------- */
#define _USBDEV
#define _USB_DMA
/* QEI ------------------------------- */
#define _QEI
/* MCPWM ------------------------------- */
#define _MCPWM
/* CAN--------------------------------*/
#define _CAN
/* RIT ------------------------------- */
#define _RIT
/* EMAC ------------------------------ */
#define _EMAC
/************************** GLOBAL/PUBLIC MACRO DEFINITIONS *********************************/
#ifdef DEBUG
/*******************************************************************************
* @brief The CHECK_PARAM macro is used for function's parameters check.
* It is used only if the library is compiled in DEBUG mode.
* @param[in] expr - If expr is false, it calls check_failed() function
* which reports the name of the source file and the source
* line number of the call that failed.
* - If expr is true, it returns no value.
* @return None
*******************************************************************************/
#define CHECK_PARAM(expr) ((expr) ? (void)0 : check_failed((uint8_t *)__FILE__, __LINE__))
#else
#define CHECK_PARAM(expr)
#endif /* DEBUG */
/**
* @}
*/
/* Public Functions ----------------------------------------------------------- */
/** @defgroup LIBCFG_DEFAULT_Public_Functions LIBCFG_DEFAULT Public Functions
* @{
*/
#ifdef DEBUG
void check_failed(uint8_t *file, uint32_t line);
#endif
/**
* @}
*/
#endif /* LPC17XX_LIBCFG_DEFAULT_H_ */
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */

View file

@ -1,329 +0,0 @@
/**********************************************************************
* $Id$ lpc17xx_mcpwm.h 2010-05-21
*//**
* @file lpc17xx_mcpwm.h
* @brief Contains all macro definitions and function prototypes
* support for Motor Control PWM firmware library on LPC17xx
* @version 2.0
* @date 21. May. 2010
* @author NXP MCU SW Application Team
*
* Copyright(C) 2010, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
/* Peripheral group ----------------------------------------------------------- */
/** @defgroup MCPWM MCPWM (Motor Control PWM)
* @ingroup LPC1700CMSIS_FwLib_Drivers
* @{
*/
#ifndef LPC17XX_MCPWM_H_
#define LPC17XX_MCPWM_H_
/* Includes ------------------------------------------------------------------- */
#include "LPC17xx.h"
#include "lpc_types.h"
#ifdef __cplusplus
extern "C"
{
#endif
/* Public Macros -------------------------------------------------------------- */
/** @defgroup MCPWM_Public_Macros MCPWM Public Macros
* @{
*/
/** Edge aligned mode for channel in MCPWM */
#define MCPWM_CHANNEL_EDGE_MODE ((uint32_t)(0))
/** Center aligned mode for channel in MCPWM */
#define MCPWM_CHANNEL_CENTER_MODE ((uint32_t)(1))
/** Polarity of the MCOA and MCOB pins: Passive state is LOW, active state is HIGH */
#define MCPWM_CHANNEL_PASSIVE_LO ((uint32_t)(0))
/** Polarity of the MCOA and MCOB pins: Passive state is HIGH, active state is LOW */
#define MCPWM_CHANNEL_PASSIVE_HI ((uint32_t)(1))
/* Output Patent in 3-phase DC mode, the internal MCOA0 signal is routed to any or all of
* the six output pins under the control of the bits in this register */
#define MCPWM_PATENT_A0 ((uint32_t)(1<<0)) /**< MCOA0 tracks internal MCOA0 */
#define MCPWM_PATENT_B0 ((uint32_t)(1<<1)) /**< MCOB0 tracks internal MCOA0 */
#define MCPWM_PATENT_A1 ((uint32_t)(1<<2)) /**< MCOA1 tracks internal MCOA0 */
#define MCPWM_PATENT_B1 ((uint32_t)(1<<3)) /**< MCOB1 tracks internal MCOA0 */
#define MCPWM_PATENT_A2 ((uint32_t)(1<<4)) /**< MCOA2 tracks internal MCOA0 */
#define MCPWM_PATENT_B2 ((uint32_t)(1<<5)) /**< MCOB2 tracks internal MCOA0 */
/* Interrupt type in MCPWM */
/** Limit interrupt for channel (0) */
#define MCPWM_INTFLAG_LIM0 MCPWM_INT_ILIM(0)
/** Match interrupt for channel (0) */
#define MCPWM_INTFLAG_MAT0 MCPWM_INT_IMAT(0)
/** Capture interrupt for channel (0) */
#define MCPWM_INTFLAG_CAP0 MCPWM_INT_ICAP(0)
/** Limit interrupt for channel (1) */
#define MCPWM_INTFLAG_LIM1 MCPWM_INT_ILIM(1)
/** Match interrupt for channel (1) */
#define MCPWM_INTFLAG_MAT1 MCPWM_INT_IMAT(1)
/** Capture interrupt for channel (1) */
#define MCPWM_INTFLAG_CAP1 MCPWM_INT_ICAP(1)
/** Limit interrupt for channel (2) */
#define MCPWM_INTFLAG_LIM2 MCPWM_INT_ILIM(2)
/** Match interrupt for channel (2) */
#define MCPWM_INTFLAG_MAT2 MCPWM_INT_IMAT(2)
/** Capture interrupt for channel (2) */
#define MCPWM_INTFLAG_CAP2 MCPWM_INT_ICAP(2)
/** Fast abort interrupt */
#define MCPWM_INTFLAG_ABORT MCPWM_INT_ABORT
/**
* @}
*/
/* Private Macros ------------------------------------------------------------- */
/** @defgroup MCPWM_Private_Macros MCPWM Private Macros
* @{
*/
/*********************************************************************//**
* Macro defines for MCPWM Control register
**********************************************************************/
/* MCPWM Control register, these macro definitions below can be applied for these
* register type:
* - MCPWM Control read address
* - MCPWM Control set address
* - MCPWM Control clear address
*/
#define MCPWM_CON_RUN(n) ((n<=2) ? ((uint32_t)(1<<((n*8)+0))) : (0)) /**< Stops/starts timer channel n */
#define MCPWM_CON_CENTER(n) ((n<=2) ? ((uint32_t)(1<<((n*8)+1))) : (0)) /**< Edge/center aligned operation for channel n */
#define MCPWM_CON_POLAR(n) ((n<=2) ? ((uint32_t)(1<<((n*8)+2))) : (0)) /**< Select polarity of the MCOAn and MCOBn pin */
#define MCPWM_CON_DTE(n) ((n<=2) ? ((uint32_t)(1<<((n*8)+3))) : (0)) /**< Control the dead-time feature for channel n */
#define MCPWM_CON_DISUP(n) ((n<=2) ? ((uint32_t)(1<<((n*8)+4))) : (0)) /**< Enable/Disable update of functional register for channel n */
#define MCPWM_CON_INVBDC ((uint32_t)(1<<29)) /**< Control the polarity for all 3 channels */
#define MCPWM_CON_ACMODE ((uint32_t)(1<<30)) /**< 3-phase AC mode select */
#define MCPWM_CON_DCMODE ((uint32_t)(0x80000000)) /**< 3-phase DC mode select */
/*********************************************************************//**
* Macro defines for MCPWM Capture Control register
**********************************************************************/
/* Capture Control register, these macro definitions below can be applied for these
* register type:
* - MCPWM Capture Control read address
* - MCPWM Capture Control set address
* - MCPWM Capture control clear address
*/
/** Enables/Disable channel (cap) capture event on a rising edge on MCI(mci) */
#define MCPWM_CAPCON_CAPMCI_RE(cap,mci) (((cap<=2)&&(mci<=2)) ? ((uint32_t)(1<<((cap*6)+(mci*2)+0))) : (0))
/** Enables/Disable channel (cap) capture event on a falling edge on MCI(mci) */
#define MCPWM_CAPCON_CAPMCI_FE(cap,mci) (((cap<=2)&&(mci<=2)) ? ((uint32_t)(1<<((cap*6)+(mci*2)+1))) : (0))
/** TC(n) is reset by channel (n) capture event */
#define MCPWM_CAPCON_RT(n) ((n<=2) ? ((uint32_t)(1<<(18+(n)))) : (0))
/** Hardware noise filter: channel (n) capture events are delayed */
#define MCPWM_CAPCON_HNFCAP(n) ((n<=2) ? ((uint32_t)(1<<(21+(n)))) : (0))
/*********************************************************************//**
* Macro defines for MCPWM Interrupt register
**********************************************************************/
/* Interrupt registers, these macro definitions below can be applied for these
* register type:
* - MCPWM Interrupt Enable read address
* - MCPWM Interrupt Enable set address
* - MCPWM Interrupt Enable clear address
* - MCPWM Interrupt Flags read address
* - MCPWM Interrupt Flags set address
* - MCPWM Interrupt Flags clear address
*/
/** Limit interrupt for channel (n) */
#define MCPWM_INT_ILIM(n) (((n>=0)&&(n<=2)) ? ((uint32_t)(1<<((n*4)+0))) : (0))
/** Match interrupt for channel (n) */
#define MCPWM_INT_IMAT(n) (((n>=0)&&(n<=2)) ? ((uint32_t)(1<<((n*4)+1))) : (0))
/** Capture interrupt for channel (n) */
#define MCPWM_INT_ICAP(n) (((n>=0)&&(n<=2)) ? ((uint32_t)(1<<((n*4)+2))) : (0))
/** Fast abort interrupt */
#define MCPWM_INT_ABORT ((uint32_t)(1<<15))
/*********************************************************************//**
* Macro defines for MCPWM Count Control register
**********************************************************************/
/* MCPWM Count Control register, these macro definitions below can be applied for these
* register type:
* - MCPWM Count Control read address
* - MCPWM Count Control set address
* - MCPWM Count Control clear address
*/
/** Counter(tc) advances on a rising edge on MCI(mci) pin */
#define MCPWM_CNTCON_TCMCI_RE(tc,mci) (((tc<=2)&&(mci<=2)) ? ((uint32_t)(1<<((6*tc)+(2*mci)+0))) : (0))
/** Counter(cnt) advances on a falling edge on MCI(mci) pin */
#define MCPWM_CNTCON_TCMCI_FE(tc,mci) (((tc<=2)&&(mci<=2)) ? ((uint32_t)(1<<((6*tc)+(2*mci)+1))) : (0))
/** Channel (n) is in counter mode */
#define MCPWM_CNTCON_CNTR(n) ((n<=2) ? ((uint32_t)(1<<(29+n))) : (0))
/*********************************************************************//**
* Macro defines for MCPWM Dead-time register
**********************************************************************/
/** Dead time value x for channel n */
#define MCPWM_DT(n,x) ((n<=2) ? ((uint32_t)((x&0x3FF)<<(n*10))) : (0))
/*********************************************************************//**
* Macro defines for MCPWM Communication Pattern register
**********************************************************************/
#define MCPWM_CP_A0 ((uint32_t)(1<<0)) /**< MCOA0 tracks internal MCOA0 */
#define MCPWM_CP_B0 ((uint32_t)(1<<1)) /**< MCOB0 tracks internal MCOA0 */
#define MCPWM_CP_A1 ((uint32_t)(1<<2)) /**< MCOA1 tracks internal MCOA0 */
#define MCPWM_CP_B1 ((uint32_t)(1<<3)) /**< MCOB1 tracks internal MCOA0 */
#define MCPWM_CP_A2 ((uint32_t)(1<<4)) /**< MCOA2 tracks internal MCOA0 */
#define MCPWM_CP_B2 ((uint32_t)(1<<5)) /**< MCOB2 tracks internal MCOA0 */
/*********************************************************************//**
* Macro defines for MCPWM Capture clear address register
**********************************************************************/
/** Clear the MCCAP (n) register */
#define MCPWM_CAPCLR_CAP(n) ((n<=2) ? ((uint32_t)(1<<n)) : (0))
/**
* @}
*/
/* Public Types --------------------------------------------------------------- */
/** @defgroup MCPWM_Public_Types MCPWM Public Types
* @{
*/
/**
* @brief Motor Control PWM Channel Configuration structure type definition
*/
typedef struct {
uint32_t channelType; /**< Edge/center aligned mode for this channel,
should be:
- MCPWM_CHANNEL_EDGE_MODE: Channel is in Edge mode
- MCPWM_CHANNEL_CENTER_MODE: Channel is in Center mode
*/
uint32_t channelPolarity; /**< Polarity of the MCOA and MCOB pins, should be:
- MCPWM_CHANNEL_PASSIVE_LO: Passive state is LOW, active state is HIGH
- MCPWM_CHANNEL_PASSIVE_HI: Passive state is HIGH, active state is LOW
*/
uint32_t channelDeadtimeEnable; /**< Enable/Disable DeadTime function for channel, should be:
- ENABLE.
- DISABLE.
*/
uint32_t channelDeadtimeValue; /**< DeadTime value, should be less than 0x3FF */
uint32_t channelUpdateEnable; /**< Enable/Disable updates of functional registers,
should be:
- ENABLE.
- DISABLE.
*/
uint32_t channelTimercounterValue; /**< MCPWM Timer Counter value */
uint32_t channelPeriodValue; /**< MCPWM Period value */
uint32_t channelPulsewidthValue; /**< MCPWM Pulse Width value */
} MCPWM_CHANNEL_CFG_Type;
/**
* @brief MCPWM Capture Configuration type definition
*/
typedef struct {
uint32_t captureChannel; /**< Capture Channel Number, should be in range from 0 to 2 */
uint32_t captureRising; /**< Enable/Disable Capture on Rising Edge event, should be:
- ENABLE.
- DISABLE.
*/
uint32_t captureFalling; /**< Enable/Disable Capture on Falling Edge event, should be:
- ENABLE.
- DISABLE.
*/
uint32_t timerReset; /**< Enable/Disable Timer reset function an capture, should be:
- ENABLE.
- DISABLE.
*/
uint32_t hnfEnable; /**< Enable/Disable Hardware noise filter function, should be:
- ENABLE.
- DISABLE.
*/
} MCPWM_CAPTURE_CFG_Type;
/**
* @brief MCPWM Count Control Configuration type definition
*/
typedef struct {
uint32_t counterChannel; /**< Counter Channel Number, should be in range from 0 to 2 */
uint32_t countRising; /**< Enable/Disable Capture on Rising Edge event, should be:
- ENABLE.
- DISABLE.
*/
uint32_t countFalling; /**< Enable/Disable Capture on Falling Edge event, should be:
- ENABLE.
- DISABLE.
*/
} MCPWM_COUNT_CFG_Type;
/**
* @}
*/
/* Public Functions ----------------------------------------------------------- */
/** @defgroup MCPWM_Public_Functions MCPWM Public Functions
* @{
*/
void MCPWM_Init(LPC_MCPWM_TypeDef *MCPWMx);
void MCPWM_ConfigChannel(LPC_MCPWM_TypeDef *MCPWMx, uint32_t channelNum,
MCPWM_CHANNEL_CFG_Type * channelSetup);
void MCPWM_WriteToShadow(LPC_MCPWM_TypeDef *MCPWMx, uint32_t channelNum,
MCPWM_CHANNEL_CFG_Type *channelSetup);
void MCPWM_ConfigCapture(LPC_MCPWM_TypeDef *MCPWMx, uint32_t channelNum,
MCPWM_CAPTURE_CFG_Type *captureConfig);
void MCPWM_ClearCapture(LPC_MCPWM_TypeDef *MCPWMx, uint32_t captureChannel);
uint32_t MCPWM_GetCapture(LPC_MCPWM_TypeDef *MCPWMx, uint32_t captureChannel);
void MCPWM_CountConfig(LPC_MCPWM_TypeDef *MCPWMx, uint32_t channelNum,
uint32_t countMode, MCPWM_COUNT_CFG_Type *countConfig);
void MCPWM_Start(LPC_MCPWM_TypeDef *MCPWMx,uint32_t channel0, uint32_t channel1, uint32_t channel2);
void MCPWM_Stop(LPC_MCPWM_TypeDef *MCPWMx,uint32_t channel0, uint32_t channel1, uint32_t channel2);
void MCPWM_ACMode(LPC_MCPWM_TypeDef *MCPWMx,uint32_t acMode);
void MCPWM_DCMode(LPC_MCPWM_TypeDef *MCPWMx, uint32_t dcMode,
uint32_t outputInvered, uint32_t outputPattern);
void MCPWM_IntConfig(LPC_MCPWM_TypeDef *MCPWMx, uint32_t ulIntType, FunctionalState NewState);
void MCPWM_IntSet(LPC_MCPWM_TypeDef *MCPWMx, uint32_t ulIntType);
void MCPWM_IntClear(LPC_MCPWM_TypeDef *MCPWMx, uint32_t ulIntType);
FlagStatus MCPWM_GetIntStatus(LPC_MCPWM_TypeDef *MCPWMx, uint32_t ulIntType);
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* LPC17XX_MCPWM_H_ */
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */

View file

@ -1,76 +0,0 @@
/**********************************************************************
* $Id$ lpc17xx_nvic.h 2010-05-21
*//**
* @file lpc17xx_nvic.h
* @brief Contains all macro definitions and function prototypes
* support for Nesting Vectored Interrupt firmware library
* on LPC17xx
* @version 2.0
* @date 21. May. 2010
* @author NXP MCU SW Application Team
*
* Copyright(C) 2010, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
/* Peripheral group ----------------------------------------------------------- */
/** @defgroup NVIC NVIC (Nested Vectored Interrupt Controller)
* @ingroup LPC1700CMSIS_FwLib_Drivers
* @{
*/
#ifndef LPC17XX_NVIC_H_
#define LPC17XX_NVIC_H_
/* Includes ------------------------------------------------------------------- */
#include "LPC17xx.h"
#include "lpc_types.h"
#ifdef __cplusplus
extern "C"
{
#endif
/* Public Functions ----------------------------------------------------------- */
/** @defgroup NVIC_Public_Functions NVIC Public Functions
* @{
*/
void NVIC_DeInit(void);
void NVIC_SCBDeInit(void);
void NVIC_SetVTOR(uint32_t offset);
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* LPC17XX_NVIC_H_ */
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */

View file

@ -1,203 +0,0 @@
/**********************************************************************
* $Id$ lpc17xx_pinsel.h 2010-05-21
*//**
* @file lpc17xx_pinsel.h
* @brief Contains all macro definitions and function prototypes
* support for Pin connect block firmware library on LPC17xx
* @version 2.0
* @date 21. May. 2010
* @author NXP MCU SW Application Team
*
* Copyright(C) 2010, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
/* Peripheral group ----------------------------------------------------------- */
/** @defgroup PINSEL PINSEL (Pin Selection)
* @ingroup LPC1700CMSIS_FwLib_Drivers
* @{
*/
#ifndef LPC17XX_PINSEL_H_
#define LPC17XX_PINSEL_H_
/* Includes ------------------------------------------------------------------- */
#include "LPC17xx.h"
#include "lpc_types.h"
#ifdef __cplusplus
extern "C"
{
#endif
/* Public Macros -------------------------------------------------------------- */
/** @defgroup PINSEL_Public_Macros PINSEL Public Macros
* @{
*/
/*********************************************************************//**
*!< Macros define for PORT Selection
***********************************************************************/
#define PINSEL_PORT_0 ((0)) /**< PORT 0*/
#define PINSEL_PORT_1 ((1)) /**< PORT 1*/
#define PINSEL_PORT_2 ((2)) /**< PORT 2*/
#define PINSEL_PORT_3 ((3)) /**< PORT 3*/
#define PINSEL_PORT_4 ((4)) /**< PORT 4*/
/***********************************************************************
* Macros define for Pin Function selection
**********************************************************************/
#define PINSEL_FUNC_0 ((0)) /**< default function*/
#define PINSEL_FUNC_1 ((1)) /**< first alternate function*/
#define PINSEL_FUNC_2 ((2)) /**< second alternate function*/
#define PINSEL_FUNC_3 ((3)) /**< third or reserved alternate function*/
/***********************************************************************
* Macros define for Pin Number of Port
**********************************************************************/
#define PINSEL_PIN_0 ((0)) /**< Pin 0 */
#define PINSEL_PIN_1 ((1)) /**< Pin 1 */
#define PINSEL_PIN_2 ((2)) /**< Pin 2 */
#define PINSEL_PIN_3 ((3)) /**< Pin 3 */
#define PINSEL_PIN_4 ((4)) /**< Pin 4 */
#define PINSEL_PIN_5 ((5)) /**< Pin 5 */
#define PINSEL_PIN_6 ((6)) /**< Pin 6 */
#define PINSEL_PIN_7 ((7)) /**< Pin 7 */
#define PINSEL_PIN_8 ((8)) /**< Pin 8 */
#define PINSEL_PIN_9 ((9)) /**< Pin 9 */
#define PINSEL_PIN_10 ((10)) /**< Pin 10 */
#define PINSEL_PIN_11 ((11)) /**< Pin 11 */
#define PINSEL_PIN_12 ((12)) /**< Pin 12 */
#define PINSEL_PIN_13 ((13)) /**< Pin 13 */
#define PINSEL_PIN_14 ((14)) /**< Pin 14 */
#define PINSEL_PIN_15 ((15)) /**< Pin 15 */
#define PINSEL_PIN_16 ((16)) /**< Pin 16 */
#define PINSEL_PIN_17 ((17)) /**< Pin 17 */
#define PINSEL_PIN_18 ((18)) /**< Pin 18 */
#define PINSEL_PIN_19 ((19)) /**< Pin 19 */
#define PINSEL_PIN_20 ((20)) /**< Pin 20 */
#define PINSEL_PIN_21 ((21)) /**< Pin 21 */
#define PINSEL_PIN_22 ((22)) /**< Pin 22 */
#define PINSEL_PIN_23 ((23)) /**< Pin 23 */
#define PINSEL_PIN_24 ((24)) /**< Pin 24 */
#define PINSEL_PIN_25 ((25)) /**< Pin 25 */
#define PINSEL_PIN_26 ((26)) /**< Pin 26 */
#define PINSEL_PIN_27 ((27)) /**< Pin 27 */
#define PINSEL_PIN_28 ((28)) /**< Pin 28 */
#define PINSEL_PIN_29 ((29)) /**< Pin 29 */
#define PINSEL_PIN_30 ((30)) /**< Pin 30 */
#define PINSEL_PIN_31 ((31)) /**< Pin 31 */
/***********************************************************************
* Macros define for Pin mode
**********************************************************************/
#define PINSEL_PINMODE_PULLUP ((0)) /**< Internal pull-up resistor*/
#define PINSEL_PINMODE_TRISTATE ((2)) /**< Tri-state */
#define PINSEL_PINMODE_PULLDOWN ((3)) /**< Internal pull-down resistor */
/***********************************************************************
* Macros define for Pin mode (normal/open drain)
**********************************************************************/
#define PINSEL_PINMODE_NORMAL ((0)) /**< Pin is in the normal (not open drain) mode.*/
#define PINSEL_PINMODE_OPENDRAIN ((1)) /**< Pin is in the open drain mode */
/***********************************************************************
* Macros define for I2C mode
***********************************************************************/
#define PINSEL_I2C_Normal_Mode ((0)) /**< The standard drive mode */
#define PINSEL_I2C_Fast_Mode ((1)) /**< Fast Mode Plus drive mode */
/**
* @}
*/
/* Private Macros ------------------------------------------------------------- */
/** @defgroup PINSEL_Private_Macros PINSEL Private Macros
* @{
*/
/* Pin selection define */
/* I2C Pin Configuration register bit description */
#define PINSEL_I2CPADCFG_SDADRV0 _BIT(0) /**< Drive mode control for the SDA0 pin, P0.27 */
#define PINSEL_I2CPADCFG_SDAI2C0 _BIT(1) /**< I2C mode control for the SDA0 pin, P0.27 */
#define PINSEL_I2CPADCFG_SCLDRV0 _BIT(2) /**< Drive mode control for the SCL0 pin, P0.28 */
#define PINSEL_I2CPADCFG_SCLI2C0 _BIT(3) /**< I2C mode control for the SCL0 pin, P0.28 */
/**
* @}
*/
/* Public Types --------------------------------------------------------------- */
/** @defgroup PINSEL_Public_Types PINSEL Public Types
* @{
*/
/** @brief Pin configuration structure */
typedef struct
{
uint8_t Portnum; /**< Port Number, should be PINSEL_PORT_x,
where x should be in range from 0 to 4 */
uint8_t Pinnum; /**< Pin Number, should be PINSEL_PIN_x,
where x should be in range from 0 to 31 */
uint8_t Funcnum; /**< Function Number, should be PINSEL_FUNC_x,
where x should be in range from 0 to 3 */
uint8_t Pinmode; /**< Pin Mode, should be:
- PINSEL_PINMODE_PULLUP: Internal pull-up resistor
- PINSEL_PINMODE_TRISTATE: Tri-state
- PINSEL_PINMODE_PULLDOWN: Internal pull-down resistor */
uint8_t OpenDrain; /**< OpenDrain mode, should be:
- PINSEL_PINMODE_NORMAL: Pin is in the normal (not open drain) mode
- PINSEL_PINMODE_OPENDRAIN: Pin is in the open drain mode */
} PINSEL_CFG_Type;
/**
* @}
*/
/* Public Functions ----------------------------------------------------------- */
/** @defgroup PINSEL_Public_Functions PINSEL Public Functions
* @{
*/
void PINSEL_ConfigPin(PINSEL_CFG_Type *PinCfg);
void PINSEL_ConfigTraceFunc (FunctionalState NewState);
void PINSEL_SetI2C0Pins(uint8_t i2cPinMode, FunctionalState filterSlewRateEnable);
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* LPC17XX_PINSEL_H_ */
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */

View file

@ -1,348 +0,0 @@
/**********************************************************************
* $Id$ lpc17xx_pwm.h 2011-03-31
*//**
* @file lpc17xx_pwm.h
* @brief Contains all macro definitions and function prototypes
* support for PWM firmware library on LPC17xx
* @version 2.1
* @date 31. Mar. 2011
* @author NXP MCU SW Application Team
*
* Copyright(C) 2011, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
/* Peripheral group ----------------------------------------------------------- */
/** @defgroup PWM PWM (Pulse Width Modulator)
* @ingroup LPC1700CMSIS_FwLib_Drivers
* @{
*/
#ifndef LPC17XX_PWM_H_
#define LPC17XX_PWM_H_
/* Includes ------------------------------------------------------------------- */
#include "LPC17xx.h"
#include "lpc_types.h"
#ifdef __cplusplus
extern "C"
{
#endif
/* Private Macros ------------------------------------------------------------- */
/** @defgroup PWM_Private_Macros PWM Private Macros
* @{
*/
/* --------------------- BIT DEFINITIONS -------------------------------------- */
/**********************************************************************
* IR register definitions
**********************************************************************/
/** Interrupt flag for PWM match channel for 6 channel */
#define PWM_IR_PWMMRn(n) ((uint32_t)((n<4)?(1<<n):(1<<(n+4))))
/** Interrupt flag for capture input */
#define PWM_IR_PWMCAPn(n) ((uint32_t)(1<<(n+4)))
/** IR register mask */
#define PWM_IR_BITMASK ((uint32_t)(0x0000073F))
/**********************************************************************
* TCR register definitions
**********************************************************************/
/** TCR register mask */
#define PWM_TCR_BITMASK ((uint32_t)(0x0000000B))
#define PWM_TCR_COUNTER_ENABLE ((uint32_t)(1<<0)) /*!< PWM Counter Enable */
#define PWM_TCR_COUNTER_RESET ((uint32_t)(1<<1)) /*!< PWM Counter Reset */
#define PWM_TCR_PWM_ENABLE ((uint32_t)(1<<3)) /*!< PWM Enable */
/**********************************************************************
* CTCR register definitions
**********************************************************************/
/** CTCR register mask */
#define PWM_CTCR_BITMASK ((uint32_t)(0x0000000F))
/** PWM Counter-Timer Mode */
#define PWM_CTCR_MODE(n) ((uint32_t)(n&0x03))
/** PWM Capture input select */
#define PWM_CTCR_SELECT_INPUT(n) ((uint32_t)((n&0x03)<<2))
/**********************************************************************
* MCR register definitions
**********************************************************************/
/** MCR register mask */
#define PWM_MCR_BITMASK ((uint32_t)(0x001FFFFF))
/** generate a PWM interrupt when a MATCHn occurs */
#define PWM_MCR_INT_ON_MATCH(n) ((uint32_t)(1<<(((n&0x7)<<1)+(n&0x07))))
/** reset the PWM when a MATCHn occurs */
#define PWM_MCR_RESET_ON_MATCH(n) ((uint32_t)(1<<(((n&0x7)<<1)+(n&0x07)+1)))
/** stop the PWM when a MATCHn occurs */
#define PWM_MCR_STOP_ON_MATCH(n) ((uint32_t)(1<<(((n&0x7)<<1)+(n&0x07)+2)))
/**********************************************************************
* CCR register definitions
**********************************************************************/
/** CCR register mask */
#define PWM_CCR_BITMASK ((uint32_t)(0x0000003F))
/** PCAPn is rising edge sensitive */
#define PWM_CCR_CAP_RISING(n) ((uint32_t)(1<<(((n&0x2)<<1)+(n&0x1))))
/** PCAPn is falling edge sensitive */
#define PWM_CCR_CAP_FALLING(n) ((uint32_t)(1<<(((n&0x2)<<1)+(n&0x1)+1)))
/** PWM interrupt is generated on a PCAP event */
#define PWM_CCR_INT_ON_CAP(n) ((uint32_t)(1<<(((n&0x2)<<1)+(n&0x1)+2)))
/**********************************************************************
* PCR register definitions
**********************************************************************/
/** PCR register mask */
#define PWM_PCR_BITMASK (uint32_t)0x00007E7C
/** PWM output n is a single edge controlled output */
#define PWM_PCR_PWMSELn(n) ((uint32_t)(((n&0x7)<2) ? 0 : (1<<n)))
/** enable PWM output n */
#define PWM_PCR_PWMENAn(n) ((uint32_t)(((n&0x7)<1) ? 0 : (1<<(n+8))))
/**********************************************************************
* LER register definitions
**********************************************************************/
/** LER register mask*/
#define PWM_LER_BITMASK ((uint32_t)(0x0000007F))
/** PWM MATCHn register update control */
#define PWM_LER_EN_MATCHn_LATCH(n) ((uint32_t)((n<7) ? (1<<n) : 0))
/* ---------------- CHECK PARAMETER DEFINITIONS ---------------------------- */
/** Macro to determine if it is valid PWM peripheral or not */
#define PARAM_PWMx(n) (((uint32_t *)n)==((uint32_t *)LPC_PWM1))
/** Macro check PWM1 match channel value */
#define PARAM_PWM1_MATCH_CHANNEL(n) (n<=6)
/** Macro check PWM1 channel value */
#define PARAM_PWM1_CHANNEL(n) ((n>=1) && (n<=6))
/** Macro check PWM1 edge channel mode */
#define PARAM_PWM1_EDGE_MODE_CHANNEL(n) ((n>=2) && (n<=6))
/** Macro check PWM1 capture channel mode */
#define PARAM_PWM1_CAPTURE_CHANNEL(n) ((n==0) || (n==1))
/** Macro check PWM1 interrupt status type */
#define PARAM_PWM_INTSTAT(n) ((n==PWM_INTSTAT_MR0) || (n==PWM_INTSTAT_MR1) || (n==PWM_INTSTAT_MR2) \
|| (n==PWM_INTSTAT_MR3) || (n==PWM_INTSTAT_MR4) || (n==PWM_INTSTAT_MR5) \
|| (n==PWM_INTSTAT_MR6) || (n==PWM_INTSTAT_CAP0) || (n==PWM_INTSTAT_CAP1))
/**
* @}
*/
/* Public Types --------------------------------------------------------------- */
/** @defgroup PWM_Public_Types PWM Public Types
* @{
*/
/** @brief Configuration structure in PWM TIMER mode */
typedef struct {
uint8_t PrescaleOption; /**< Prescale option, should be:
- PWM_TIMER_PRESCALE_TICKVAL: Prescale in absolute value
- PWM_TIMER_PRESCALE_USVAL: Prescale in microsecond value
*/
uint8_t Reserved[3];
uint32_t PrescaleValue; /**< Prescale value, 32-bit long, should be matched
with PrescaleOption
*/
} PWM_TIMERCFG_Type;
/** @brief Configuration structure in PWM COUNTER mode */
typedef struct {
uint8_t CounterOption; /**< Counter Option, should be:
- PWM_COUNTER_RISING: Rising Edge
- PWM_COUNTER_FALLING: Falling Edge
- PWM_COUNTER_ANY: Both rising and falling mode
*/
uint8_t CountInputSelect; /**< Counter input select, should be:
- PWM_COUNTER_PCAP1_0: PWM Counter input selected is PCAP1.0 pin
- PWM_COUNTER_PCAP1_1: PWM Counter input selected is PCAP1.1 pin
*/
uint8_t Reserved[2];
} PWM_COUNTERCFG_Type;
/** @brief PWM Match channel configuration structure */
typedef struct {
uint8_t MatchChannel; /**< Match channel, should be in range
from 0..6 */
uint8_t IntOnMatch; /**< Interrupt On match, should be:
- ENABLE: Enable this function.
- DISABLE: Disable this function.
*/
uint8_t StopOnMatch; /**< Stop On match, should be:
- ENABLE: Enable this function.
- DISABLE: Disable this function.
*/
uint8_t ResetOnMatch; /**< Reset On match, should be:
- ENABLE: Enable this function.
- DISABLE: Disable this function.
*/
} PWM_MATCHCFG_Type;
/** @brief PWM Capture Input configuration structure */
typedef struct {
uint8_t CaptureChannel; /**< Capture channel, should be in range
from 0..1 */
uint8_t RisingEdge; /**< caption rising edge, should be:
- ENABLE: Enable rising edge.
- DISABLE: Disable this function.
*/
uint8_t FallingEdge; /**< caption falling edge, should be:
- ENABLE: Enable falling edge.
- DISABLE: Disable this function.
*/
uint8_t IntOnCaption; /**< Interrupt On caption, should be:
- ENABLE: Enable interrupt function.
- DISABLE: Disable this function.
*/
} PWM_CAPTURECFG_Type;
/* Timer/Counter in PWM configuration type definition -----------------------------------*/
/** @brief PMW TC mode select option */
typedef enum {
PWM_MODE_TIMER = 0, /*!< PWM using Timer mode */
PWM_MODE_COUNTER /*!< PWM using Counter mode */
} PWM_TC_MODE_OPT;
#define PARAM_PWM_TC_MODE(n) ((n==PWM_MODE_TIMER) || (n==PWM_MODE_COUNTER))
/** @brief PWM Timer/Counter prescale option */
typedef enum
{
PWM_TIMER_PRESCALE_TICKVAL = 0, /*!< Prescale in absolute value */
PWM_TIMER_PRESCALE_USVAL /*!< Prescale in microsecond value */
} PWM_TIMER_PRESCALE_OPT;
#define PARAM_PWM_TIMER_PRESCALE(n) ((n==PWM_TIMER_PRESCALE_TICKVAL) || (n==PWM_TIMER_PRESCALE_USVAL))
/** @brief PWM Input Select in counter mode */
typedef enum {
PWM_COUNTER_PCAP1_0 = 0, /*!< PWM Counter input selected is PCAP1.0 pin */
PWM_COUNTER_PCAP1_1 /*!< PWM counter input selected is CAP1.1 pin */
} PWM_COUNTER_INPUTSEL_OPT;
#define PARAM_PWM_COUNTER_INPUTSEL(n) ((n==PWM_COUNTER_PCAP1_0) || (n==PWM_COUNTER_PCAP1_1))
/** @brief PWM Input Edge Option in counter mode */
typedef enum {
PWM_COUNTER_RISING = 1, /*!< Rising edge mode */
PWM_COUNTER_FALLING = 2, /*!< Falling edge mode */
PWM_COUNTER_ANY = 3 /*!< Both rising and falling mode */
} PWM_COUNTER_EDGE_OPT;
#define PARAM_PWM_COUNTER_EDGE(n) ((n==PWM_COUNTER_RISING) || (n==PWM_COUNTER_FALLING) \
|| (n==PWM_COUNTER_ANY))
/* PWM configuration type definition ----------------------------------------------------- */
/** @brief PWM operating mode options */
typedef enum {
PWM_CHANNEL_SINGLE_EDGE, /*!< PWM Channel Single edge mode */
PWM_CHANNEL_DUAL_EDGE /*!< PWM Channel Dual edge mode */
} PWM_CHANNEL_EDGE_OPT;
#define PARAM_PWM_CHANNEL_EDGE(n) ((n==PWM_CHANNEL_SINGLE_EDGE) || (n==PWM_CHANNEL_DUAL_EDGE))
/** @brief PWM update type */
typedef enum {
PWM_MATCH_UPDATE_NOW = 0, /**< PWM Match Channel Update Now */
PWM_MATCH_UPDATE_NEXT_RST /**< PWM Match Channel Update on next
PWM Counter resetting */
} PWM_MATCH_UPDATE_OPT;
#define PARAM_PWM_MATCH_UPDATE(n) ((n==PWM_MATCH_UPDATE_NOW) || (n==PWM_MATCH_UPDATE_NEXT_RST))
/** @brief PWM interrupt status type definition ----------------------------------------------------- */
/** @brief PWM Interrupt status type */
typedef enum
{
PWM_INTSTAT_MR0 = PWM_IR_PWMMRn(0), /**< Interrupt flag for PWM match channel 0 */
PWM_INTSTAT_MR1 = PWM_IR_PWMMRn(1), /**< Interrupt flag for PWM match channel 1 */
PWM_INTSTAT_MR2 = PWM_IR_PWMMRn(2), /**< Interrupt flag for PWM match channel 2 */
PWM_INTSTAT_MR3 = PWM_IR_PWMMRn(3), /**< Interrupt flag for PWM match channel 3 */
PWM_INTSTAT_CAP0 = PWM_IR_PWMCAPn(0), /**< Interrupt flag for capture input 0 */
PWM_INTSTAT_CAP1 = PWM_IR_PWMCAPn(1), /**< Interrupt flag for capture input 1 */
PWM_INTSTAT_MR4 = PWM_IR_PWMMRn(4), /**< Interrupt flag for PWM match channel 4 */
PWM_INTSTAT_MR6 = PWM_IR_PWMMRn(5), /**< Interrupt flag for PWM match channel 5 */
PWM_INTSTAT_MR5 = PWM_IR_PWMMRn(6) /**< Interrupt flag for PWM match channel 6 */
}PWM_INTSTAT_TYPE;
/** @brief Match update structure */
typedef struct
{
uint32_t Matchvalue;
FlagStatus Status;
}PWM_Match_T;
/**
* @}
*/
/* Public Functions ----------------------------------------------------------- */
/** @defgroup PWM_Public_Functions PWM Public Functions
* @{
*/
void PWM_PinConfig(LPC_PWM_TypeDef *PWMx, uint8_t PWM_Channel, uint8_t PinselOption);
IntStatus PWM_GetIntStatus(LPC_PWM_TypeDef *PWMx, uint32_t IntFlag);
void PWM_ClearIntPending(LPC_PWM_TypeDef *PWMx, uint32_t IntFlag);
void PWM_ConfigStructInit(uint8_t PWMTimerCounterMode, void *PWM_InitStruct);
void PWM_Init(LPC_PWM_TypeDef *PWMx, uint32_t PWMTimerCounterMode, void *PWM_ConfigStruct);
void PWM_DeInit (LPC_PWM_TypeDef *PWMx);
void PWM_Cmd(LPC_PWM_TypeDef *PWMx, FunctionalState NewState);
void PWM_CounterCmd(LPC_PWM_TypeDef *PWMx, FunctionalState NewState);
void PWM_ResetCounter(LPC_PWM_TypeDef *PWMx);
void PWM_ConfigMatch(LPC_PWM_TypeDef *PWMx, PWM_MATCHCFG_Type *PWM_MatchConfigStruct);
void PWM_ConfigCapture(LPC_PWM_TypeDef *PWMx, PWM_CAPTURECFG_Type *PWM_CaptureConfigStruct);
uint32_t PWM_GetCaptureValue(LPC_PWM_TypeDef *PWMx, uint8_t CaptureChannel);
void PWM_MatchUpdate(LPC_PWM_TypeDef *PWMx, uint8_t MatchChannel, \
uint32_t MatchValue, uint8_t UpdateType);
void PWM_ChannelConfig(LPC_PWM_TypeDef *PWMx, uint8_t PWMChannel, uint8_t ModeOption);
void PWM_ChannelCmd(LPC_PWM_TypeDef *PWMx, uint8_t PWMChannel, FunctionalState NewState);
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* LPC17XX_PWM_H_ */
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */

View file

@ -1,424 +0,0 @@
/**********************************************************************
* $Id$ lpc17xx_qei.h 2010-05-21
*//**
* @file lpc17xx_qei.h
* @brief Contains all macro definitions and function prototypes
* support for QEI firmware library on LPC17xx
* @version 2.0
* @date 21. May. 2010
* @author NXP MCU SW Application Team
*
* Copyright(C) 2010, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
/* Peripheral group ----------------------------------------------------------- */
/** @defgroup QEI QEI (Quadrature Encoder Interface)
* @ingroup LPC1700CMSIS_FwLib_Drivers
* @{
*/
#ifndef LPC17XX_QEI_H_
#define LPC17XX_QEI_H_
/* Includes ------------------------------------------------------------------- */
#include "LPC17xx.h"
#include "lpc_types.h"
#ifdef __cplusplus
extern "C"
{
#endif
/* Public Macros -------------------------------------------------------------- */
/** @defgroup QEI_Public_Macros QEI Public Macros
* @{
*/
/* QEI Reset types */
#define QEI_RESET_POS QEI_CON_RESP /**< Reset position counter */
#define QEI_RESET_POSOnIDX QEI_CON_RESPI /**< Reset Posistion Counter on Index */
#define QEI_RESET_VEL QEI_CON_RESV /**< Reset Velocity */
#define QEI_RESET_IDX QEI_CON_RESI /**< Reset Index Counter */
/* QEI Direction Invert Type Option */
#define QEI_DIRINV_NONE ((uint32_t)(0)) /**< Direction is not inverted */
#define QEI_DIRINV_CMPL ((uint32_t)(1)) /**< Direction is complemented */
/* QEI Signal Mode Option */
#define QEI_SIGNALMODE_QUAD ((uint32_t)(0)) /**< Signal operation: Quadrature phase mode */
#define QEI_SIGNALMODE_CLKDIR ((uint32_t)(1)) /**< Signal operation: Clock/Direction mode */
/* QEI Capture Mode Option */
#define QEI_CAPMODE_2X ((uint32_t)(0)) /**< Capture mode: Only Phase-A edges are counted (2X) */
#define QEI_CAPMODE_4X ((uint32_t)(1)) /**< Capture mode: BOTH PhA and PhB edges are counted (4X)*/
/* QEI Invert Index Signal Option */
#define QEI_INVINX_NONE ((uint32_t)(0)) /**< Invert Index signal option: None */
#define QEI_INVINX_EN ((uint32_t)(1)) /**< Invert Index signal option: Enable */
/* QEI timer reload option */
#define QEI_TIMERRELOAD_TICKVAL ((uint8_t)(0)) /**< Reload value in absolute value */
#define QEI_TIMERRELOAD_USVAL ((uint8_t)(1)) /**< Reload value in microsecond value */
/* QEI Flag Status type */
#define QEI_STATUS_DIR ((uint32_t)(1<<0)) /**< Direction status */
/* QEI Compare Position channel option */
#define QEI_COMPPOS_CH_0 ((uint8_t)(0)) /**< QEI compare position channel 0 */
#define QEI_COMPPOS_CH_1 ((uint8_t)(1)) /**< QEI compare position channel 1 */
#define QEI_COMPPOS_CH_2 ((uint8_t)(2)) /**< QEI compare position channel 2 */
/* QEI interrupt flag type */
#define QEI_INTFLAG_INX_Int ((uint32_t)(1<<0)) /**< index pulse was detected interrupt */
#define QEI_INTFLAG_TIM_Int ((uint32_t)(1<<1)) /**< Velocity timer over flow interrupt */
#define QEI_INTFLAG_VELC_Int ((uint32_t)(1<<2)) /**< Capture velocity is less than compare interrupt */
#define QEI_INTFLAG_DIR_Int ((uint32_t)(1<<3)) /**< Change of direction interrupt */
#define QEI_INTFLAG_ERR_Int ((uint32_t)(1<<4)) /**< An encoder phase error interrupt */
#define QEI_INTFLAG_ENCLK_Int ((uint32_t)(1<<5)) /**< An encoder clock pulse was detected interrupt */
#define QEI_INTFLAG_POS0_Int ((uint32_t)(1<<6)) /**< position 0 compare value is equal to the
current position interrupt */
#define QEI_INTFLAG_POS1_Int ((uint32_t)(1<<7)) /**< position 1 compare value is equal to the
current position interrupt */
#define QEI_INTFLAG_POS2_Int ((uint32_t)(1<<8)) /**< position 2 compare value is equal to the
current position interrupt */
#define QEI_INTFLAG_REV_Int ((uint32_t)(1<<9)) /**< Index compare value is equal to the current
index count interrupt */
#define QEI_INTFLAG_POS0REV_Int ((uint32_t)(1<<10)) /**< Combined position 0 and revolution count interrupt */
#define QEI_INTFLAG_POS1REV_Int ((uint32_t)(1<<11)) /**< Combined position 1 and revolution count interrupt */
#define QEI_INTFLAG_POS2REV_Int ((uint32_t)(1<<12)) /**< Combined position 2 and revolution count interrupt */
/**
* @}
*/
/* Private Macros ------------------------------------------------------------- */
/** @defgroup QEI_Private_Macros QEI Private Macros
* @{
*/
/* --------------------- BIT DEFINITIONS -------------------------------------- */
/* Quadrature Encoder Interface Control Register Definition --------------------- */
/*********************************************************************//**
* Macro defines for QEI Control register
**********************************************************************/
#define QEI_CON_RESP ((uint32_t)(1<<0)) /**< Reset position counter */
#define QEI_CON_RESPI ((uint32_t)(1<<1)) /**< Reset Posistion Counter on Index */
#define QEI_CON_RESV ((uint32_t)(1<<2)) /**< Reset Velocity */
#define QEI_CON_RESI ((uint32_t)(1<<3)) /**< Reset Index Counter */
#define QEI_CON_BITMASK ((uint32_t)(0x0F)) /**< QEI Control register bit-mask */
/*********************************************************************//**
* Macro defines for QEI Configuration register
**********************************************************************/
#define QEI_CONF_DIRINV ((uint32_t)(1<<0)) /**< Direction Invert */
#define QEI_CONF_SIGMODE ((uint32_t)(1<<1)) /**< Signal mode */
#define QEI_CONF_CAPMODE ((uint32_t)(1<<2)) /**< Capture mode */
#define QEI_CONF_INVINX ((uint32_t)(1<<3)) /**< Invert index */
#define QEI_CONF_BITMASK ((uint32_t)(0x0F)) /**< QEI Configuration register bit-mask */
/*********************************************************************//**
* Macro defines for QEI Status register
**********************************************************************/
#define QEI_STAT_DIR ((uint32_t)(1<<0)) /**< Direction bit */
#define QEI_STAT_BITMASK ((uint32_t)(1<<0)) /**< QEI status register bit-mask */
/* Quadrature Encoder Interface Interrupt registers definitions --------------------- */
/*********************************************************************//**
* Macro defines for QEI Interrupt Status register
**********************************************************************/
#define QEI_INTSTAT_INX_Int ((uint32_t)(1<<0)) /**< Indicates that an index pulse was detected */
#define QEI_INTSTAT_TIM_Int ((uint32_t)(1<<1)) /**< Indicates that a velocity timer overflow occurred */
#define QEI_INTSTAT_VELC_Int ((uint32_t)(1<<2)) /**< Indicates that capture velocity is less than compare velocity */
#define QEI_INTSTAT_DIR_Int ((uint32_t)(1<<3)) /**< Indicates that a change of direction was detected */
#define QEI_INTSTAT_ERR_Int ((uint32_t)(1<<4)) /**< Indicates that an encoder phase error was detected */
#define QEI_INTSTAT_ENCLK_Int ((uint32_t)(1<<5)) /**< Indicates that and encoder clock pulse was detected */
#define QEI_INTSTAT_POS0_Int ((uint32_t)(1<<6)) /**< Indicates that the position 0 compare value is equal to the
current position */
#define QEI_INTSTAT_POS1_Int ((uint32_t)(1<<7)) /**< Indicates that the position 1compare value is equal to the
current position */
#define QEI_INTSTAT_POS2_Int ((uint32_t)(1<<8)) /**< Indicates that the position 2 compare value is equal to the
current position */
#define QEI_INTSTAT_REV_Int ((uint32_t)(1<<9)) /**< Indicates that the index compare value is equal to the current
index count */
#define QEI_INTSTAT_POS0REV_Int ((uint32_t)(1<<10)) /**< Combined position 0 and revolution count interrupt. Set when
both the POS0_Int bit is set and the REV_Int is set */
#define QEI_INTSTAT_POS1REV_Int ((uint32_t)(1<<11)) /**< Combined position 1 and revolution count interrupt. Set when
both the POS1_Int bit is set and the REV_Int is set */
#define QEI_INTSTAT_POS2REV_Int ((uint32_t)(1<<12)) /**< Combined position 2 and revolution count interrupt. Set when
both the POS2_Int bit is set and the REV_Int is set */
#define QEI_INTSTAT_BITMASK ((uint32_t)(0x1FFF)) /**< QEI Interrupt Status register bit-mask */
/*********************************************************************//**
* Macro defines for QEI Interrupt Set register
**********************************************************************/
#define QEI_INTSET_INX_Int ((uint32_t)(1<<0)) /**< Set Bit Indicates that an index pulse was detected */
#define QEI_INTSET_TIM_Int ((uint32_t)(1<<1)) /**< Set Bit Indicates that a velocity timer overflow occurred */
#define QEI_INTSET_VELC_Int ((uint32_t)(1<<2)) /**< Set Bit Indicates that capture velocity is less than compare velocity */
#define QEI_INTSET_DIR_Int ((uint32_t)(1<<3)) /**< Set Bit Indicates that a change of direction was detected */
#define QEI_INTSET_ERR_Int ((uint32_t)(1<<4)) /**< Set Bit Indicates that an encoder phase error was detected */
#define QEI_INTSET_ENCLK_Int ((uint32_t)(1<<5)) /**< Set Bit Indicates that and encoder clock pulse was detected */
#define QEI_INTSET_POS0_Int ((uint32_t)(1<<6)) /**< Set Bit Indicates that the position 0 compare value is equal to the
current position */
#define QEI_INTSET_POS1_Int ((uint32_t)(1<<7)) /**< Set Bit Indicates that the position 1compare value is equal to the
current position */
#define QEI_INTSET_POS2_Int ((uint32_t)(1<<8)) /**< Set Bit Indicates that the position 2 compare value is equal to the
current position */
#define QEI_INTSET_REV_Int ((uint32_t)(1<<9)) /**< Set Bit Indicates that the index compare value is equal to the current
index count */
#define QEI_INTSET_POS0REV_Int ((uint32_t)(1<<10)) /**< Set Bit that combined position 0 and revolution count interrupt */
#define QEI_INTSET_POS1REV_Int ((uint32_t)(1<<11)) /**< Set Bit that Combined position 1 and revolution count interrupt */
#define QEI_INTSET_POS2REV_Int ((uint32_t)(1<<12)) /**< Set Bit that Combined position 2 and revolution count interrupt */
#define QEI_INTSET_BITMASK ((uint32_t)(0x1FFF)) /**< QEI Interrupt Set register bit-mask */
/*********************************************************************//**
* Macro defines for QEI Interrupt Clear register
**********************************************************************/
#define QEI_INTCLR_INX_Int ((uint32_t)(1<<0)) /**< Clear Bit Indicates that an index pulse was detected */
#define QEI_INTCLR_TIM_Int ((uint32_t)(1<<1)) /**< Clear Bit Indicates that a velocity timer overflow occurred */
#define QEI_INTCLR_VELC_Int ((uint32_t)(1<<2)) /**< Clear Bit Indicates that capture velocity is less than compare velocity */
#define QEI_INTCLR_DIR_Int ((uint32_t)(1<<3)) /**< Clear Bit Indicates that a change of direction was detected */
#define QEI_INTCLR_ERR_Int ((uint32_t)(1<<4)) /**< Clear Bit Indicates that an encoder phase error was detected */
#define QEI_INTCLR_ENCLK_Int ((uint32_t)(1<<5)) /**< Clear Bit Indicates that and encoder clock pulse was detected */
#define QEI_INTCLR_POS0_Int ((uint32_t)(1<<6)) /**< Clear Bit Indicates that the position 0 compare value is equal to the
current position */
#define QEI_INTCLR_POS1_Int ((uint32_t)(1<<7)) /**< Clear Bit Indicates that the position 1compare value is equal to the
current position */
#define QEI_INTCLR_POS2_Int ((uint32_t)(1<<8)) /**< Clear Bit Indicates that the position 2 compare value is equal to the
current position */
#define QEI_INTCLR_REV_Int ((uint32_t)(1<<9)) /**< Clear Bit Indicates that the index compare value is equal to the current
index count */
#define QEI_INTCLR_POS0REV_Int ((uint32_t)(1<<10)) /**< Clear Bit that combined position 0 and revolution count interrupt */
#define QEI_INTCLR_POS1REV_Int ((uint32_t)(1<<11)) /**< Clear Bit that Combined position 1 and revolution count interrupt */
#define QEI_INTCLR_POS2REV_Int ((uint32_t)(1<<12)) /**< Clear Bit that Combined position 2 and revolution count interrupt */
#define QEI_INTCLR_BITMASK ((uint32_t)(0x1FFF)) /**< QEI Interrupt Clear register bit-mask */
/*********************************************************************//**
* Macro defines for QEI Interrupt Enable register
**********************************************************************/
#define QEI_INTEN_INX_Int ((uint32_t)(1<<0)) /**< Enabled Interrupt Bit Indicates that an index pulse was detected */
#define QEI_INTEN_TIM_Int ((uint32_t)(1<<1)) /**< Enabled Interrupt Bit Indicates that a velocity timer overflow occurred */
#define QEI_INTEN_VELC_Int ((uint32_t)(1<<2)) /**< Enabled Interrupt Bit Indicates that capture velocity is less than compare velocity */
#define QEI_INTEN_DIR_Int ((uint32_t)(1<<3)) /**< Enabled Interrupt Bit Indicates that a change of direction was detected */
#define QEI_INTEN_ERR_Int ((uint32_t)(1<<4)) /**< Enabled Interrupt Bit Indicates that an encoder phase error was detected */
#define QEI_INTEN_ENCLK_Int ((uint32_t)(1<<5)) /**< Enabled Interrupt Bit Indicates that and encoder clock pulse was detected */
#define QEI_INTEN_POS0_Int ((uint32_t)(1<<6)) /**< Enabled Interrupt Bit Indicates that the position 0 compare value is equal to the
current position */
#define QEI_INTEN_POS1_Int ((uint32_t)(1<<7)) /**< Enabled Interrupt Bit Indicates that the position 1compare value is equal to the
current position */
#define QEI_INTEN_POS2_Int ((uint32_t)(1<<8)) /**< Enabled Interrupt Bit Indicates that the position 2 compare value is equal to the
current position */
#define QEI_INTEN_REV_Int ((uint32_t)(1<<9)) /**< Enabled Interrupt Bit Indicates that the index compare value is equal to the current
index count */
#define QEI_INTEN_POS0REV_Int ((uint32_t)(1<<10)) /**< Enabled Interrupt Bit that combined position 0 and revolution count interrupt */
#define QEI_INTEN_POS1REV_Int ((uint32_t)(1<<11)) /**< Enabled Interrupt Bit that Combined position 1 and revolution count interrupt */
#define QEI_INTEN_POS2REV_Int ((uint32_t)(1<<12)) /**< Enabled Interrupt Bit that Combined position 2 and revolution count interrupt */
#define QEI_INTEN_BITMASK ((uint32_t)(0x1FFF)) /**< QEI Interrupt Enable register bit-mask */
/*********************************************************************//**
* Macro defines for QEI Interrupt Enable Set register
**********************************************************************/
#define QEI_IESET_INX_Int ((uint32_t)(1<<0)) /**< Set Enable Interrupt Bit Indicates that an index pulse was detected */
#define QEI_IESET_TIM_Int ((uint32_t)(1<<1)) /**< Set Enable Interrupt Bit Indicates that a velocity timer overflow occurred */
#define QEI_IESET_VELC_Int ((uint32_t)(1<<2)) /**< Set Enable Interrupt Bit Indicates that capture velocity is less than compare velocity */
#define QEI_IESET_DIR_Int ((uint32_t)(1<<3)) /**< Set Enable Interrupt Bit Indicates that a change of direction was detected */
#define QEI_IESET_ERR_Int ((uint32_t)(1<<4)) /**< Set Enable Interrupt Bit Indicates that an encoder phase error was detected */
#define QEI_IESET_ENCLK_Int ((uint32_t)(1<<5)) /**< Set Enable Interrupt Bit Indicates that and encoder clock pulse was detected */
#define QEI_IESET_POS0_Int ((uint32_t)(1<<6)) /**< Set Enable Interrupt Bit Indicates that the position 0 compare value is equal to the
current position */
#define QEI_IESET_POS1_Int ((uint32_t)(1<<7)) /**< Set Enable Interrupt Bit Indicates that the position 1compare value is equal to the
current position */
#define QEI_IESET_POS2_Int ((uint32_t)(1<<8)) /**< Set Enable Interrupt Bit Indicates that the position 2 compare value is equal to the
current position */
#define QEI_IESET_REV_Int ((uint32_t)(1<<9)) /**< Set Enable Interrupt Bit Indicates that the index compare value is equal to the current
index count */
#define QEI_IESET_POS0REV_Int ((uint32_t)(1<<10)) /**< Set Enable Interrupt Bit that combined position 0 and revolution count interrupt */
#define QEI_IESET_POS1REV_Int ((uint32_t)(1<<11)) /**< Set Enable Interrupt Bit that Combined position 1 and revolution count interrupt */
#define QEI_IESET_POS2REV_Int ((uint32_t)(1<<12)) /**< Set Enable Interrupt Bit that Combined position 2 and revolution count interrupt */
#define QEI_IESET_BITMASK ((uint32_t)(0x1FFF)) /**< QEI Interrupt Enable Set register bit-mask */
/*********************************************************************//**
* Macro defines for QEI Interrupt Enable Clear register
**********************************************************************/
#define QEI_IECLR_INX_Int ((uint32_t)(1<<0)) /**< Clear Enabled Interrupt Bit Indicates that an index pulse was detected */
#define QEI_IECLR_TIM_Int ((uint32_t)(1<<1)) /**< Clear Enabled Interrupt Bit Indicates that a velocity timer overflow occurred */
#define QEI_IECLR_VELC_Int ((uint32_t)(1<<2)) /**< Clear Enabled Interrupt Bit Indicates that capture velocity is less than compare velocity */
#define QEI_IECLR_DIR_Int ((uint32_t)(1<<3)) /**< Clear Enabled Interrupt Bit Indicates that a change of direction was detected */
#define QEI_IECLR_ERR_Int ((uint32_t)(1<<4)) /**< Clear Enabled Interrupt Bit Indicates that an encoder phase error was detected */
#define QEI_IECLR_ENCLK_Int ((uint32_t)(1<<5)) /**< Clear Enabled Interrupt Bit Indicates that and encoder clock pulse was detected */
#define QEI_IECLR_POS0_Int ((uint32_t)(1<<6)) /**< Clear Enabled Interrupt Bit Indicates that the position 0 compare value is equal to the
current position */
#define QEI_IECLR_POS1_Int ((uint32_t)(1<<7)) /**< Clear Enabled Interrupt Bit Indicates that the position 1compare value is equal to the
current position */
#define QEI_IECLR_POS2_Int ((uint32_t)(1<<8)) /**< Clear Enabled Interrupt Bit Indicates that the position 2 compare value is equal to the
current position */
#define QEI_IECLR_REV_Int ((uint32_t)(1<<9)) /**< Clear Enabled Interrupt Bit Indicates that the index compare value is equal to the current
index count */
#define QEI_IECLR_POS0REV_Int ((uint32_t)(1<<10)) /**< Clear Enabled Interrupt Bit that combined position 0 and revolution count interrupt */
#define QEI_IECLR_POS1REV_Int ((uint32_t)(1<<11)) /**< Clear Enabled Interrupt Bit that Combined position 1 and revolution count interrupt */
#define QEI_IECLR_POS2REV_Int ((uint32_t)(1<<12)) /**< Clear Enabled Interrupt Bit that Combined position 2 and revolution count interrupt */
#define QEI_IECLR_BITMASK ((uint32_t)(0x1FFF)) /**< QEI Interrupt Enable Clear register bit-mask */
/* ---------------- CHECK PARAMETER DEFINITIONS ---------------------------- */
/* Macro check QEI peripheral */
#define PARAM_QEIx(n) ((n==LPC_QEI))
/* Macro check QEI reset type */
#define PARAM_QEI_RESET(n) ((n==QEI_CON_RESP) \
|| (n==QEI_RESET_POSOnIDX) \
|| (n==QEI_RESET_VEL) \
|| (n==QEI_RESET_IDX))
/* Macro check QEI Direction invert mode */
#define PARAM_QEI_DIRINV(n) ((n==QEI_DIRINV_NONE) || (n==QEI_DIRINV_CMPL))
/* Macro check QEI signal mode */
#define PARAM_QEI_SIGNALMODE(n) ((n==QEI_SIGNALMODE_QUAD) || (n==QEI_SIGNALMODE_CLKDIR))
/* Macro check QEI Capture mode */
#define PARAM_QEI_CAPMODE(n) ((n==QEI_CAPMODE_2X) || (n==QEI_CAPMODE_4X))
/* Macro check QEI Invert index mode */
#define PARAM_QEI_INVINX(n) ((n==QEI_INVINX_NONE) || (n==QEI_INVINX_EN))
/* Macro check QEI Direction invert mode */
#define PARAM_QEI_TIMERRELOAD(n) ((n==QEI_TIMERRELOAD_TICKVAL) || (n==QEI_TIMERRELOAD_USVAL))
/* Macro check QEI status type */
#define PARAM_QEI_STATUS(n) ((n==QEI_STATUS_DIR))
/* Macro check QEI combine position type */
#define PARAM_QEI_COMPPOS_CH(n) ((n==QEI_COMPPOS_CH_0) || (n==QEI_COMPPOS_CH_1) || (n==QEI_COMPPOS_CH_2))
/* Macro check QEI interrupt flag type */
#define PARAM_QEI_INTFLAG(n) ((n==QEI_INTFLAG_INX_Int) \
|| (n==QEI_INTFLAG_TIM_Int) \
|| (n==QEI_INTFLAG_VELC_Int) \
|| (n==QEI_INTFLAG_DIR_Int) \
|| (n==QEI_INTFLAG_ERR_Int) \
|| (n==QEI_INTFLAG_ENCLK_Int) \
|| (n==QEI_INTFLAG_POS0_Int) \
|| (n==QEI_INTFLAG_POS1_Int) \
|| (n==QEI_INTFLAG_POS2_Int) \
|| (n==QEI_INTFLAG_REV_Int) \
|| (n==QEI_INTFLAG_POS0REV_Int) \
|| (n==QEI_INTFLAG_POS1REV_Int) \
|| (n==QEI_INTFLAG_POS2REV_Int))
/**
* @}
*/
/* Public Types --------------------------------------------------------------- */
/** @defgroup QEI_Public_Types QEI Public Types
* @{
*/
/**
* @brief QEI Configuration structure type definition
*/
typedef struct {
uint32_t DirectionInvert :1; /**< Direction invert option:
- QEI_DIRINV_NONE: QEI Direction is normal
- QEI_DIRINV_CMPL: QEI Direction is complemented
*/
uint32_t SignalMode :1; /**< Signal mode Option:
- QEI_SIGNALMODE_QUAD: Signal is in Quadrature phase mode
- QEI_SIGNALMODE_CLKDIR: Signal is in Clock/Direction mode
*/
uint32_t CaptureMode :1; /**< Capture Mode Option:
- QEI_CAPMODE_2X: Only Phase-A edges are counted (2X)
- QEI_CAPMODE_4X: BOTH Phase-A and Phase-B edges are counted (4X)
*/
uint32_t InvertIndex :1; /**< Invert Index Option:
- QEI_INVINX_NONE: the sense of the index input is normal
- QEI_INVINX_EN: inverts the sense of the index input
*/
} QEI_CFG_Type;
/**
* @brief Timer Reload Configuration structure type definition
*/
typedef struct {
uint8_t ReloadOption; /**< Velocity Timer Reload Option, should be:
- QEI_TIMERRELOAD_TICKVAL: Reload value in absolute value
- QEI_TIMERRELOAD_USVAL: Reload value in microsecond value
*/
uint8_t Reserved[3];
uint32_t ReloadValue; /**< Velocity Timer Reload Value, 32-bit long, should be matched
with Velocity Timer Reload Option
*/
} QEI_RELOADCFG_Type;
/**
* @}
*/
/* Public Functions ----------------------------------------------------------- */
/** @defgroup QEI_Public_Functions QEI Public Functions
* @{
*/
void QEI_Reset(LPC_QEI_TypeDef *QEIx, uint32_t ulResetType);
void QEI_Init(LPC_QEI_TypeDef *QEIx, QEI_CFG_Type *QEI_ConfigStruct);
void QEI_ConfigStructInit(QEI_CFG_Type *QIE_InitStruct);
void QEI_DeInit(LPC_QEI_TypeDef *QEIx);
FlagStatus QEI_GetStatus(LPC_QEI_TypeDef *QEIx, uint32_t ulFlagType);
uint32_t QEI_GetPosition(LPC_QEI_TypeDef *QEIx);
void QEI_SetMaxPosition(LPC_QEI_TypeDef *QEIx, uint32_t ulMaxPos);
void QEI_SetPositionComp(LPC_QEI_TypeDef *QEIx, uint8_t bPosCompCh, uint32_t ulPosComp);
uint32_t QEI_GetIndex(LPC_QEI_TypeDef *QEIx);
void QEI_SetIndexComp(LPC_QEI_TypeDef *QEIx, uint32_t ulIndexComp);
void QEI_SetTimerReload(LPC_QEI_TypeDef *QEIx, QEI_RELOADCFG_Type *QEIReloadStruct);
uint32_t QEI_GetTimer(LPC_QEI_TypeDef *QEIx);
uint32_t QEI_GetVelocity(LPC_QEI_TypeDef *QEIx);
uint32_t QEI_GetVelocityCap(LPC_QEI_TypeDef *QEIx);
void QEI_SetVelocityComp(LPC_QEI_TypeDef *QEIx, uint32_t ulVelComp);
void QEI_SetDigiFilter(LPC_QEI_TypeDef *QEIx, uint32_t ulSamplingPulse);
FlagStatus QEI_GetIntStatus(LPC_QEI_TypeDef *QEIx, uint32_t ulIntType);
void QEI_IntCmd(LPC_QEI_TypeDef *QEIx, uint32_t ulIntType, FunctionalState NewState);
void QEI_IntSet(LPC_QEI_TypeDef *QEIx, uint32_t ulIntType);
void QEI_IntClear(LPC_QEI_TypeDef *QEIx, uint32_t ulIntType);
uint32_t QEI_CalculateRPM(LPC_QEI_TypeDef *QEIx, uint32_t ulVelCapValue, uint32_t ulPPR);
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* LPC17XX_QEI_H_ */
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */

View file

@ -1,112 +0,0 @@
/**********************************************************************
* $Id$ lpc17xx_rit.h 2010-05-21
*//**
* @file lpc17xx_rit.h
* @brief Contains all macro definitions and function prototypes
* support for RIT firmware library on LPC17xx
* @version 2.0
* @date 21. May. 2010
* @author NXP MCU SW Application Team
*
* Copyright(C) 2010, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
/* Peripheral group ----------------------------------------------------------- */
/** @defgroup RIT RIT (Repetitive Interrupt Timer)
* @ingroup LPC1700CMSIS_FwLib_Drivers
* @{
*/
#ifndef LPC17XX_RIT_H_
#define LPC17XX_RIT_H_
/* Includes ------------------------------------------------------------------- */
#include "LPC17xx.h"
#include "lpc_types.h"
#ifdef __cplusplus
extern "C"
{
#endif
/* Private Macros ------------------------------------------------------------- */
/** @defgroup RIT_Private_Macros RIT Private Macros
* @{
*/
/* --------------------- BIT DEFINITIONS -------------------------------------- */
/*********************************************************************//**
* Macro defines for RIT control register
**********************************************************************/
/** Set interrupt flag when the counter value equals the masked compare value */
#define RIT_CTRL_INTEN ((uint32_t) (1))
/** Set timer enable clear to 0 when the counter value equals the masked compare value */
#define RIT_CTRL_ENCLR ((uint32_t) _BIT(1))
/** Set timer enable on debug */
#define RIT_CTRL_ENBR ((uint32_t) _BIT(2))
/** Set timer enable */
#define RIT_CTRL_TEN ((uint32_t) _BIT(3))
/** Macro to determine if it is valid RIT peripheral */
#define PARAM_RITx(n) (((uint32_t *)n)==((uint32_t *)LPC_RIT))
/**
* @}
*/
/* Public Functions ----------------------------------------------------------- */
/** @defgroup RIT_Public_Functions RIT Public Functions
* @{
*/
/* RIT Init/DeInit functions */
void RIT_Init(LPC_RIT_TypeDef *RITx);
void RIT_DeInit(LPC_RIT_TypeDef *RITx);
/* RIT config timer functions */
void RIT_TimerConfig(LPC_RIT_TypeDef *RITx, uint32_t time_interval);
/* Enable/Disable RIT functions */
void RIT_TimerClearCmd(LPC_RIT_TypeDef *RITx, FunctionalState NewState);
void RIT_Cmd(LPC_RIT_TypeDef *RITx, FunctionalState NewState);
void RIT_TimerDebugCmd(LPC_RIT_TypeDef *RITx, FunctionalState NewState);
/* RIT Interrupt functions */
IntStatus RIT_GetIntStatus(LPC_RIT_TypeDef *RITx);
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* LPC17XX_RIT_H_ */
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */

View file

@ -1,314 +0,0 @@
/**********************************************************************
* $Id$ lpc17xx_rtc.h 2010-05-21
*//**
* @file lpc17xx_rtc.h
* @brief Contains all macro definitions and function prototypes
* support for RTC firmware library on LPC17xx
* @version 2.0
* @date 21. May. 2010
* @author NXP MCU SW Application Team
*
* Copyright(C) 2010, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors'
* relevant copyright in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
**********************************************************************/
/* Peripheral group ----------------------------------------------------------- */
/** @defgroup RTC RTC (Real Time Clock)
* @ingroup LPC1700CMSIS_FwLib_Drivers
* @{
*/
#ifndef LPC17XX_RTC_H_
#define LPC17XX_RTC_H_
/* Includes ------------------------------------------------------------------- */
#include "LPC17xx.h"
#include "lpc_types.h"
#ifdef __cplusplus
extern "C"
{
#endif
/* Private Macros ------------------------------------------------------------- */
/** @defgroup RTC_Private_Macros RTC Private Macros
* @{
*/
/* ----------------------- BIT DEFINITIONS ----------------------------------- */
/* Miscellaneous register group --------------------------------------------- */
/**********************************************************************
* ILR register definitions
**********************************************************************/
/** ILR register mask */
#define RTC_ILR_BITMASK ((0x00000003))
/** Bit inform the source interrupt is counter increment*/
#define RTC_IRL_RTCCIF ((1<<0))
/** Bit inform the source interrupt is alarm match*/
#define RTC_IRL_RTCALF ((1<<1))
/**********************************************************************
* CCR register definitions
**********************************************************************/
/** CCR register mask */
#define RTC_CCR_BITMASK ((0x00000013))
/** Clock enable */
#define RTC_CCR_CLKEN ((1<<0))
/** Clock reset */
#define RTC_CCR_CTCRST ((1<<1))
/** Calibration counter enable */
#define RTC_CCR_CCALEN ((1<<4))
/**********************************************************************
* CIIR register definitions
**********************************************************************/
/** Counter Increment Interrupt bit for second */
#define RTC_CIIR_IMSEC ((1<<0))
/** Counter Increment Interrupt bit for minute */
#define RTC_CIIR_IMMIN ((1<<1))
/** Counter Increment Interrupt bit for hour */
#define RTC_CIIR_IMHOUR ((1<<2))
/** Counter Increment Interrupt bit for day of month */
#define RTC_CIIR_IMDOM ((1<<3))
/** Counter Increment Interrupt bit for day of week */
#define RTC_CIIR_IMDOW ((1<<4))
/** Counter Increment Interrupt bit for day of year */
#define RTC_CIIR_IMDOY ((1<<5))
/** Counter Increment Interrupt bit for month */
#define RTC_CIIR_IMMON ((1<<6))
/** Counter Increment Interrupt bit for year */
#define RTC_CIIR_IMYEAR ((1<<7))
/** CIIR bit mask */
#define RTC_CIIR_BITMASK ((0xFF))
/**********************************************************************
* AMR register definitions
**********************************************************************/
/** Counter Increment Select Mask bit for second */
#define RTC_AMR_AMRSEC ((1<<0))
/** Counter Increment Select Mask bit for minute */
#define RTC_AMR_AMRMIN ((1<<1))
/** Counter Increment Select Mask bit for hour */
#define RTC_AMR_AMRHOUR ((1<<2))
/** Counter Increment Select Mask bit for day of month */
#define RTC_AMR_AMRDOM ((1<<3))
/** Counter Increment Select Mask bit for day of week */
#define RTC_AMR_AMRDOW ((1<<4))
/** Counter Increment Select Mask bit for day of year */
#define RTC_AMR_AMRDOY ((1<<5))
/** Counter Increment Select Mask bit for month */
#define RTC_AMR_AMRMON ((1<<6))
/** Counter Increment Select Mask bit for year */
#define RTC_AMR_AMRYEAR ((1<<7))
/** AMR bit mask */
#define RTC_AMR_BITMASK ((0xFF))
/**********************************************************************
* RTC_AUX register definitions
**********************************************************************/
/** RTC Oscillator Fail detect flag */
#define RTC_AUX_RTC_OSCF ((1<<4))
/**********************************************************************
* RTC_AUXEN register definitions
**********************************************************************/
/** Oscillator Fail Detect interrupt enable*/
#define RTC_AUXEN_RTC_OSCFEN ((1<<4))
/* Consolidated time register group ----------------------------------- */
/**********************************************************************
* Consolidated Time Register 0 definitions
**********************************************************************/
#define RTC_CTIME0_SECONDS_MASK ((0x3F))
#define RTC_CTIME0_MINUTES_MASK ((0x3F00))
#define RTC_CTIME0_HOURS_MASK ((0x1F0000))
#define RTC_CTIME0_DOW_MASK ((0x7000000))
/**********************************************************************
* Consolidated Time Register 1 definitions
**********************************************************************/
#define RTC_CTIME1_DOM_MASK ((0x1F))
#define RTC_CTIME1_MONTH_MASK ((0xF00))
#define RTC_CTIME1_YEAR_MASK ((0xFFF0000))
/**********************************************************************
* Consolidated Time Register 2 definitions
**********************************************************************/
#define RTC_CTIME2_DOY_MASK ((0xFFF))
/**********************************************************************
* Time Counter Group and Alarm register group
**********************************************************************/
/** SEC register mask */
#define RTC_SEC_MASK (0x0000003F)
/** MIN register mask */
#define RTC_MIN_MASK (0x0000003F)
/** HOUR register mask */
#define RTC_HOUR_MASK (0x0000001F)
/** DOM register mask */
#define RTC_DOM_MASK (0x0000001F)
/** DOW register mask */
#define RTC_DOW_MASK (0x00000007)
/** DOY register mask */
#define RTC_DOY_MASK (0x000001FF)
/** MONTH register mask */
#define RTC_MONTH_MASK (0x0000000F)
/** YEAR register mask */
#define RTC_YEAR_MASK (0x00000FFF)
#define RTC_SECOND_MAX 59 /*!< Maximum value of second */
#define RTC_MINUTE_MAX 59 /*!< Maximum value of minute*/
#define RTC_HOUR_MAX 23 /*!< Maximum value of hour*/
#define RTC_MONTH_MIN 1 /*!< Minimum value of month*/
#define RTC_MONTH_MAX 12 /*!< Maximum value of month*/
#define RTC_DAYOFMONTH_MIN 1 /*!< Minimum value of day of month*/
#define RTC_DAYOFMONTH_MAX 31 /*!< Maximum value of day of month*/
#define RTC_DAYOFWEEK_MAX 6 /*!< Maximum value of day of week*/
#define RTC_DAYOFYEAR_MIN 1 /*!< Minimum value of day of year*/
#define RTC_DAYOFYEAR_MAX 366 /*!< Maximum value of day of year*/
#define RTC_YEAR_MAX 4095 /*!< Maximum value of year*/
/**********************************************************************
* Calibration register
**********************************************************************/
/* Calibration register */
/** Calibration value */
#define RTC_CALIBRATION_CALVAL_MASK ((0x1FFFF))
/** Calibration direction */
#define RTC_CALIBRATION_LIBDIR ((1<<17))
/** Calibration max value */
#define RTC_CALIBRATION_MAX ((0x20000))
/** Calibration definitions */
#define RTC_CALIB_DIR_FORWARD ((uint8_t)(0))
#define RTC_CALIB_DIR_BACKWARD ((uint8_t)(1))
/* ---------------- CHECK PARAMETER DEFINITIONS ---------------------------- */
/** Macro to determine if it is valid RTC peripheral */
#define PARAM_RTCx(x) (((uint32_t *)x)==((uint32_t *)LPC_RTC))
/* Macro check RTC interrupt type */
#define PARAM_RTC_INT(n) ((n==RTC_INT_COUNTER_INCREASE) || (n==RTC_INT_ALARM))
/* Macro check RTC time type */
#define PARAM_RTC_TIMETYPE(n) ((n==RTC_TIMETYPE_SECOND) || (n==RTC_TIMETYPE_MINUTE) \
|| (n==RTC_TIMETYPE_HOUR) || (n==RTC_TIMETYPE_DAYOFWEEK) \
|| (n==RTC_TIMETYPE_DAYOFMONTH) || (n==RTC_TIMETYPE_DAYOFYEAR) \
|| (n==RTC_TIMETYPE_MONTH) || (n==RTC_TIMETYPE_YEAR))
/* Macro check RTC calibration type */
#define PARAM_RTC_CALIB_DIR(n) ((n==RTC_CALIB_DIR_FORWARD) || (n==RTC_CALIB_DIR_BACKWARD))
/* Macro check RTC GPREG type */
#define PARAM_RTC_GPREG_CH(n) (n<=4)
/**
* @}
*/
/* Public Types --------------------------------------------------------------- */
/** @defgroup RTC_Public_Types RTC Public Types
* @{
*/
/** @brief Time structure definitions for easy manipulate the data */
typedef struct {
uint32_t SEC; /*!< Seconds Register */
uint32_t MIN; /*!< Minutes Register */
uint32_t HOUR; /*!< Hours Register */
uint32_t DOM; /*!< Day of Month Register */
uint32_t DOW; /*!< Day of Week Register */
uint32_t DOY; /*!< Day of Year Register */
uint32_t MONTH; /*!< Months Register */
uint32_t YEAR; /*!< Years Register */
} RTC_TIME_Type;
/** @brief RTC interrupt source */
typedef enum {
RTC_INT_COUNTER_INCREASE = RTC_IRL_RTCCIF, /*!< Counter Increment Interrupt */
RTC_INT_ALARM = RTC_IRL_RTCALF /*!< The alarm interrupt */
} RTC_INT_OPT;
/** @brief RTC time type option */
typedef enum {
RTC_TIMETYPE_SECOND = 0, /*!< Second */
RTC_TIMETYPE_MINUTE = 1, /*!< Month */
RTC_TIMETYPE_HOUR = 2, /*!< Hour */
RTC_TIMETYPE_DAYOFWEEK = 3, /*!< Day of week */
RTC_TIMETYPE_DAYOFMONTH = 4, /*!< Day of month */
RTC_TIMETYPE_DAYOFYEAR = 5, /*!< Day of year */
RTC_TIMETYPE_MONTH = 6, /*!< Month */
RTC_TIMETYPE_YEAR = 7 /*!< Year */
} RTC_TIMETYPE_Num;
/**
* @}
*/
/* Public Functions ----------------------------------------------------------- */
/** @defgroup RTC_Public_Functions RTC Public Functions
* @{
*/
void RTC_Init (LPC_RTC_TypeDef *RTCx);
void RTC_DeInit(LPC_RTC_TypeDef *RTCx);
void RTC_ResetClockTickCounter(LPC_RTC_TypeDef *RTCx);
void RTC_Cmd (LPC_RTC_TypeDef *RTCx, FunctionalState NewState);
void RTC_CntIncrIntConfig (LPC_RTC_TypeDef *RTCx, uint32_t CntIncrIntType, \
FunctionalState NewState);
void RTC_AlarmIntConfig (LPC_RTC_TypeDef *RTCx, uint32_t AlarmTimeType, \
FunctionalState NewState);
void RTC_SetTime (LPC_RTC_TypeDef *RTCx, uint32_t Timetype, uint32_t TimeValue);
uint32_t RTC_GetTime(LPC_RTC_TypeDef *RTCx, uint32_t Timetype);
void RTC_SetFullTime (LPC_RTC_TypeDef *RTCx, RTC_TIME_Type *pFullTime);
void RTC_GetFullTime (LPC_RTC_TypeDef *RTCx, RTC_TIME_Type *pFullTime);
void RTC_SetAlarmTime (LPC_RTC_TypeDef *RTCx, uint32_t Timetype, uint32_t ALValue);
uint32_t RTC_GetAlarmTime (LPC_RTC_TypeDef *RTCx, uint32_t Timetype);
void RTC_SetFullAlarmTime (LPC_RTC_TypeDef *RTCx, RTC_TIME_Type *pFullTime);
void RTC_GetFullAlarmTime (LPC_RTC_TypeDef *RTCx, RTC_TIME_Type *pFullTime);
IntStatus RTC_GetIntPending (LPC_RTC_TypeDef *RTCx, uint32_t IntType);
void RTC_ClearIntPending (LPC_RTC_TypeDef *RTCx, uint32_t IntType);
void RTC_CalibCounterCmd(LPC_RTC_TypeDef *RTCx, FunctionalState NewState);
void RTC_CalibConfig(LPC_RTC_TypeDef *RTCx, uint32_t CalibValue, uint8_t CalibDir);
void RTC_WriteGPREG (LPC_RTC_TypeDef *RTCx, uint8_t Channel, uint32_t Value);
uint32_t RTC_ReadGPREG (LPC_RTC_TypeDef *RTCx, uint8_t Channel);
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* LPC17XX_RTC_H_ */
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */

Some files were not shown because too many files have changed in this diff Show more