Add gcode.cpp, motion.*, queue.* - Apply to some G-codes.

This commit is contained in:
Scott Lahteine 2017-09-07 22:33:16 -05:00
parent 4231faf779
commit 722786966a
42 changed files with 1898 additions and 1370 deletions

File diff suppressed because it is too large Load diff

View file

@ -167,9 +167,6 @@ void enable_all_steppers();
void disable_e_steppers(); void disable_e_steppers();
void disable_all_steppers(); void disable_all_steppers();
void FlushSerialRequestResend();
void ok_to_send();
void kill(const char*); void kill(const char*);
void quickstop_stepper(); void quickstop_stepper();
@ -182,13 +179,6 @@ extern bool Running;
inline bool IsRunning() { return Running; } inline bool IsRunning() { return Running; }
inline bool IsStopped() { return !Running; } inline bool IsStopped() { return !Running; }
bool enqueue_and_echo_command(const char* cmd, bool say_ok=false); // Add a single command to the end of the buffer. Return false on failure.
void enqueue_and_echo_commands_P(const char * const cmd); // Set one or more commands to be prioritized over the next Serial/SD command.
void clear_command_queue();
extern millis_t previous_cmd_ms;
inline void refresh_cmd_timeout() { previous_cmd_ms = millis(); }
/** /**
* Feedrate scaling and conversion * Feedrate scaling and conversion
*/ */
@ -196,11 +186,11 @@ extern int16_t feedrate_percentage;
#define MMS_SCALED(MM_S) ((MM_S)*feedrate_percentage*0.01) #define MMS_SCALED(MM_S) ((MM_S)*feedrate_percentage*0.01)
extern bool axis_relative_modes[];
extern bool volumetric_enabled; extern bool volumetric_enabled;
extern int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder extern int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder
extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder. extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder.
extern float volumetric_multiplier[EXTRUDERS]; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner extern float volumetric_multiplier[EXTRUDERS]; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner
extern bool axis_known_position[XYZ]; extern bool axis_known_position[XYZ];
extern bool axis_homed[XYZ]; extern bool axis_homed[XYZ];
extern volatile bool wait_for_heatup; extern volatile bool wait_for_heatup;
@ -209,48 +199,6 @@ extern volatile bool wait_for_heatup;
extern volatile bool wait_for_user; extern volatile bool wait_for_user;
#endif #endif
extern float current_position[NUM_AXIS];
// Workspace offsets
#if HAS_WORKSPACE_OFFSET
#if HAS_HOME_OFFSET
extern float home_offset[XYZ];
#endif
#if HAS_POSITION_SHIFT
extern float position_shift[XYZ];
#endif
#endif
#if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
extern float workspace_offset[XYZ];
#define WORKSPACE_OFFSET(AXIS) workspace_offset[AXIS]
#elif HAS_HOME_OFFSET
#define WORKSPACE_OFFSET(AXIS) home_offset[AXIS]
#elif HAS_POSITION_SHIFT
#define WORKSPACE_OFFSET(AXIS) position_shift[AXIS]
#else
#define WORKSPACE_OFFSET(AXIS) 0
#endif
#define LOGICAL_POSITION(POS, AXIS) ((POS) + WORKSPACE_OFFSET(AXIS))
#define RAW_POSITION(POS, AXIS) ((POS) - WORKSPACE_OFFSET(AXIS))
#if HAS_POSITION_SHIFT || DISABLED(DELTA)
#define LOGICAL_X_POSITION(POS) LOGICAL_POSITION(POS, X_AXIS)
#define LOGICAL_Y_POSITION(POS) LOGICAL_POSITION(POS, Y_AXIS)
#define RAW_X_POSITION(POS) RAW_POSITION(POS, X_AXIS)
#define RAW_Y_POSITION(POS) RAW_POSITION(POS, Y_AXIS)
#else
#define LOGICAL_X_POSITION(POS) (POS)
#define LOGICAL_Y_POSITION(POS) (POS)
#define RAW_X_POSITION(POS) (POS)
#define RAW_Y_POSITION(POS) (POS)
#endif
#define LOGICAL_Z_POSITION(POS) LOGICAL_POSITION(POS, Z_AXIS)
#define RAW_Z_POSITION(POS) RAW_POSITION(POS, Z_AXIS)
#define RAW_CURRENT_POSITION(A) RAW_##A##_POSITION(current_position[A##_AXIS])
// Hotend Offsets // Hotend Offsets
#if HOTENDS > 1 #if HOTENDS > 1
extern float hotend_offset[XYZ][HOTENDS]; extern float hotend_offset[XYZ][HOTENDS];
@ -259,14 +207,6 @@ extern float current_position[NUM_AXIS];
// Software Endstops // Software Endstops
extern float soft_endstop_min[XYZ], soft_endstop_max[XYZ]; extern float soft_endstop_min[XYZ], soft_endstop_max[XYZ];
#if HAS_SOFTWARE_ENDSTOPS
extern bool soft_endstops_enabled;
void clamp_to_software_endstops(float target[XYZ]);
#else
#define soft_endstops_enabled false
#define clamp_to_software_endstops(x) NOOP
#endif
#if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE) #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
void update_software_endstops(const AxisEnum axis); void update_software_endstops(const AxisEnum axis);
#endif #endif
@ -381,15 +321,15 @@ extern float soft_endstop_min[XYZ], soft_endstop_max[XYZ];
extern Stopwatch print_job_timer; extern Stopwatch print_job_timer;
#endif #endif
// Handling multiple extruders pins
extern uint8_t active_extruder;
#if HAS_TEMP_HOTEND || HAS_TEMP_BED #if HAS_TEMP_HOTEND || HAS_TEMP_BED
void print_heaterstates(); void print_heaterstates();
#endif #endif
#if ENABLED(MIXING_EXTRUDER) #if ENABLED(MIXING_EXTRUDER)
extern float mixing_factor[MIXING_STEPPERS]; extern float mixing_factor[MIXING_STEPPERS];
#if MIXING_VIRTUAL_TOOLS > 1
extern float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
#endif
#endif #endif
void calculate_volumetric_multipliers(); void calculate_volumetric_multipliers();
@ -406,62 +346,4 @@ void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s
bool axis_unhomed_error(const bool x=true, const bool y=true, const bool z=true); bool axis_unhomed_error(const bool x=true, const bool y=true, const bool z=true);
#endif #endif
/**
* position_is_reachable family of functions
*/
#if IS_KINEMATIC // (DELTA or SCARA)
#if IS_SCARA
extern const float L1, L2;
#endif
inline bool position_is_reachable_raw_xy(const float &rx, const float &ry) {
#if ENABLED(DELTA)
return HYPOT2(rx, ry) <= sq(DELTA_PRINTABLE_RADIUS);
#elif IS_SCARA
#if MIDDLE_DEAD_ZONE_R > 0
const float R2 = HYPOT2(rx - SCARA_OFFSET_X, ry - SCARA_OFFSET_Y);
return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
#else
return HYPOT2(rx - SCARA_OFFSET_X, ry - SCARA_OFFSET_Y) <= sq(L1 + L2);
#endif
#else // CARTESIAN
// To be migrated from MakerArm branch in future
#endif
}
inline bool position_is_reachable_by_probe_raw_xy(const float &rx, const float &ry) {
// Both the nozzle and the probe must be able to reach the point.
// This won't work on SCARA since the probe offset rotates with the arm.
return position_is_reachable_raw_xy(rx, ry)
&& position_is_reachable_raw_xy(rx - X_PROBE_OFFSET_FROM_EXTRUDER, ry - Y_PROBE_OFFSET_FROM_EXTRUDER);
}
#else // CARTESIAN
inline bool position_is_reachable_raw_xy(const float &rx, const float &ry) {
// Add 0.001 margin to deal with float imprecision
return WITHIN(rx, X_MIN_POS - 0.001, X_MAX_POS + 0.001)
&& WITHIN(ry, Y_MIN_POS - 0.001, Y_MAX_POS + 0.001);
}
inline bool position_is_reachable_by_probe_raw_xy(const float &rx, const float &ry) {
// Add 0.001 margin to deal with float imprecision
return WITHIN(rx, MIN_PROBE_X - 0.001, MAX_PROBE_X + 0.001)
&& WITHIN(ry, MIN_PROBE_Y - 0.001, MAX_PROBE_Y + 0.001);
}
#endif // CARTESIAN
FORCE_INLINE bool position_is_reachable_by_probe_xy(const float &lx, const float &ly) {
return position_is_reachable_by_probe_raw_xy(RAW_X_POSITION(lx), RAW_Y_POSITION(ly));
}
FORCE_INLINE bool position_is_reachable_xy(const float &lx, const float &ly) {
return position_is_reachable_raw_xy(RAW_X_POSITION(lx), RAW_Y_POSITION(ly));
}
#endif // __MARLIN_H__ #endif // __MARLIN_H__

View file

@ -25,6 +25,8 @@
#include "../inc/MarlinConfig.h" #include "../inc/MarlinConfig.h"
constexpr char axis_codes[XYZE] = { 'X', 'Y', 'Z', 'E' };
void safe_delay(millis_t ms); void safe_delay(millis_t ms);
#if ENABLED(EEPROM_SETTINGS) #if ENABLED(EEPROM_SETTINGS)

View file

@ -26,6 +26,8 @@
#include "mesh_bed_leveling.h" #include "mesh_bed_leveling.h"
#include "../../module/motion.h"
mesh_bed_leveling mbl; mesh_bed_leveling mbl;
uint8_t mesh_bed_leveling::status; uint8_t mesh_bed_leveling::status;
@ -49,4 +51,63 @@
ZERO(z_values); ZERO(z_values);
} }
/**
* Prepare a mesh-leveled linear move in a Cartesian setup,
* splitting the move where it crosses mesh borders.
*/
void mesh_line_to_destination(const float fr_mm_s, uint8_t x_splits, uint8_t y_splits) {
int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X)),
cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y)),
cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
NOMORE(cx1, GRID_MAX_POINTS_X - 2);
NOMORE(cy1, GRID_MAX_POINTS_Y - 2);
NOMORE(cx2, GRID_MAX_POINTS_X - 2);
NOMORE(cy2, GRID_MAX_POINTS_Y - 2);
if (cx1 == cx2 && cy1 == cy2) {
// Start and end on same mesh square
line_to_destination(fr_mm_s);
set_current_to_destination();
return;
}
#define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
float normalized_dist, end[XYZE];
// Split at the left/front border of the right/top square
const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
if (cx2 != cx1 && TEST(x_splits, gcx)) {
COPY(end, destination);
destination[X_AXIS] = LOGICAL_X_POSITION(mbl.index_to_xpos[gcx]);
normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
destination[Y_AXIS] = MBL_SEGMENT_END(Y);
CBI(x_splits, gcx);
}
else if (cy2 != cy1 && TEST(y_splits, gcy)) {
COPY(end, destination);
destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.index_to_ypos[gcy]);
normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
destination[X_AXIS] = MBL_SEGMENT_END(X);
CBI(y_splits, gcy);
}
else {
// Already split on a border
line_to_destination(fr_mm_s);
set_current_to_destination();
return;
}
destination[Z_AXIS] = MBL_SEGMENT_END(Z);
destination[E_AXIS] = MBL_SEGMENT_END(E);
// Do the split and look for more borders
mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
// Restore destination from stack
COPY(destination, end);
mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
}
#endif // MESH_BED_LEVELING #endif // MESH_BED_LEVELING

View file

@ -120,4 +120,6 @@ public:
extern mesh_bed_leveling mbl; extern mesh_bed_leveling mbl;
void mesh_line_to_destination(const float fr_mm_s, uint8_t x_splits=0xFF, uint8_t y_splits=0xFF);
#endif // _MESH_BED_LEVELING_H_ #endif // _MESH_BED_LEVELING_H_

View file

@ -33,6 +33,7 @@
#include "../../Marlin.h" #include "../../Marlin.h"
#include "../../module/planner.h" #include "../../module/planner.h"
#include "../../module/stepper.h" #include "../../module/stepper.h"
#include "../../module/motion.h"
#include "../../module/temperature.h" #include "../../module/temperature.h"
#include "../../lcd/ultralcd.h" #include "../../lcd/ultralcd.h"
#include "../../gcode/parser.h" #include "../../gcode/parser.h"
@ -129,7 +130,6 @@
// External references // External references
extern float feedrate_mm_s; // must set before calling prepare_move_to_destination
extern Planner planner; extern Planner planner;
#if ENABLED(ULTRA_LCD) #if ENABLED(ULTRA_LCD)
extern char lcd_status_message[]; extern char lcd_status_message[];

View file

@ -30,6 +30,7 @@
#include "../../module/configuration_store.h" #include "../../module/configuration_store.h"
#include "../../core/serial.h" #include "../../core/serial.h"
#include "../../module/planner.h" #include "../../module/planner.h"
#include "../../module/motion.h"
#include "math.h" #include "math.h"

View file

@ -28,6 +28,7 @@
#include "../../Marlin.h" #include "../../Marlin.h"
#include "../../module/planner.h" #include "../../module/planner.h"
#include "../../module/stepper.h" #include "../../module/stepper.h"
#include "../../module/motion.h"
#include <math.h> #include <math.h>

View file

@ -20,6 +20,8 @@
* *
*/ */
#include "../queue.h"
#include "../../libs/buzzer.h" #include "../../libs/buzzer.h"
#include "../../lcd/ultralcd.h" #include "../../lcd/ultralcd.h"

View file

@ -20,15 +20,18 @@
* *
*/ */
#include "../gcode.h"
#include "../../Marlin.h"
/** /**
* M200: Set filament diameter and set E axis units to cubic units * M200: Set filament diameter and set E axis units to cubic units
* *
* T<extruder> - Optional extruder number. Current extruder if omitted. * T<extruder> - Optional extruder number. Current extruder if omitted.
* D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
*/ */
void gcode_M200() { void GcodeSuite::M200() {
if (get_target_extruder_from_command(200)) return; if (get_target_extruder_from_command()) return;
if (parser.seen('D')) { if (parser.seen('D')) {
// setting any extruder filament size disables volumetric on the assumption that // setting any extruder filament size disables volumetric on the assumption that

View file

@ -27,7 +27,7 @@
*/ */
void gcode_M201() { void gcode_M201() {
GET_TARGET_EXTRUDER(201); GET_TARGET_EXTRUDER();
LOOP_XYZE(i) { LOOP_XYZE(i) {
if (parser.seen(axis_codes[i])) { if (parser.seen(axis_codes[i])) {

View file

@ -27,7 +27,7 @@
*/ */
void gcode_M203() { void gcode_M203() {
GET_TARGET_EXTRUDER(203); GET_TARGET_EXTRUDER();
LOOP_XYZE(i) LOOP_XYZE(i)
if (parser.seen(axis_codes[i])) { if (parser.seen(axis_codes[i])) {

View file

@ -20,6 +20,13 @@
* *
*/ */
#include "../../inc/MarlinConfig.h"
#if HOTENDS > 1
#include "../gcode.h"
#include "../../module/motion.h"
/** /**
* M218 - set hotend offset (in linear units) * M218 - set hotend offset (in linear units)
* *
@ -28,8 +35,8 @@
* Y<yoffset> * Y<yoffset>
* Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_NOZZLE * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_NOZZLE
*/ */
void gcode_M218() { void GcodeSuite::M218() {
if (get_target_extruder_from_command(218) || target_extruder == 0) return; if (get_target_extruder_from_command() || target_extruder == 0) return;
if (parser.seenval('X')) hotend_offset[X_AXIS][target_extruder] = parser.value_linear_units(); if (parser.seenval('X')) hotend_offset[X_AXIS][target_extruder] = parser.value_linear_units();
if (parser.seenval('Y')) hotend_offset[Y_AXIS][target_extruder] = parser.value_linear_units(); if (parser.seenval('Y')) hotend_offset[Y_AXIS][target_extruder] = parser.value_linear_units();
@ -52,3 +59,5 @@ void gcode_M218() {
} }
SERIAL_EOL(); SERIAL_EOL();
} }
#endif // HOTENDS > 1

View file

@ -20,11 +20,14 @@
* *
*/ */
#include "../gcode.h"
#include "../../Marlin.h"
/** /**
* M221: Set extrusion percentage (M221 T0 S95) * M221: Set extrusion percentage (M221 T0 S95)
*/ */
void gcode_M221() { void GcodeSuite::M221() {
if (get_target_extruder_from_command(221)) return; if (get_target_extruder_from_command()) return;
if (parser.seenval('S')) if (parser.seenval('S'))
flow_percentage[target_extruder] = parser.value_int(); flow_percentage[target_extruder] = parser.value_int();
} }

View file

@ -20,6 +20,8 @@
* *
*/ */
#include "../gcode.h"
#include "../../pins/pinsDebug.h" #include "../../pins/pinsDebug.h"
inline void toggle_pins() { inline void toggle_pins() {
@ -141,7 +143,7 @@ inline void servo_probe_test() {
} }
if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards"); if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards");
refresh_cmd_timeout(); gcode.refresh_cmd_timeout();
if (deploy_state != stow_state) { if (deploy_state != stow_state) {
SERIAL_PROTOCOLLNPGM("BLTouch clone detected"); SERIAL_PROTOCOLLNPGM("BLTouch clone detected");
@ -170,7 +172,7 @@ inline void servo_probe_test() {
safe_delay(2); safe_delay(2);
if (0 == j % (500 * 1)) // keep cmd_timeout happy if (0 == j % (500 * 1)) // keep cmd_timeout happy
refresh_cmd_timeout(); gcode.refresh_cmd_timeout();
if (deploy_state != READ(PROBE_TEST_PIN)) { // probe triggered if (deploy_state != READ(PROBE_TEST_PIN)) { // probe triggered

View file

@ -28,7 +28,7 @@
*/ */
void gcode_M92() { void gcode_M92() {
GET_TARGET_EXTRUDER(92); GET_TARGET_EXTRUDER();
LOOP_XYZE(i) { LOOP_XYZE(i) {
if (parser.seen(axis_codes[i])) { if (parser.seen(axis_codes[i])) {

View file

@ -20,6 +20,8 @@
* *
*/ */
#include "../queue.h"
/** /**
* M999: Restart after being stopped * M999: Restart after being stopped
* *
@ -37,5 +39,5 @@ void gcode_M999() {
if (parser.boolval('S')) return; if (parser.boolval('S')) return;
// gcode_LastN = Stopped_gcode_LastN; // gcode_LastN = Stopped_gcode_LastN;
FlushSerialRequestResend(); flush_and_request_resend();
} }

View file

@ -20,11 +20,243 @@
* *
*/ */
/**
* gcode.cpp - Temporary container for all gcode handlers
* Most will migrate to classes, by feature.
*/
#include "gcode.h"
GcodeSuite gcode;
#include "parser.h"
#include "queue.h"
#include "../module/motion.h"
#if ENABLED(PRINTCOUNTER)
#include "../module/printcounter.h"
#endif
uint8_t GcodeSuite::target_extruder;
millis_t GcodeSuite::previous_cmd_ms;
bool GcodeSuite::axis_relative_modes[] = AXIS_RELATIVE_MODES;
/**
* Set target_extruder from the T parameter or the active_extruder
*
* Returns TRUE if the target is invalid
*/
bool GcodeSuite::get_target_extruder_from_command() {
if (parser.seenval('T')) {
const int8_t e = parser.value_byte();
if (e >= EXTRUDERS) {
SERIAL_ECHO_START();
SERIAL_CHAR('M');
SERIAL_ECHO(parser.codenum);
SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", e);
return true;
}
target_extruder = e;
}
else
target_extruder = active_extruder;
return false;
}
/**
* Set XYZE destination and feedrate from the current GCode command
*
* - Set destination from included axis codes
* - Set to current for missing axis codes
* - Set the feedrate, if included
*/
void GcodeSuite::get_destination_from_command() {
LOOP_XYZE(i) {
if (parser.seen(axis_codes[i]))
destination[i] = parser.value_axis_units((AxisEnum)i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
else
destination[i] = current_position[i];
}
if (parser.linearval('F') > 0.0)
feedrate_mm_s = MMM_TO_MMS(parser.value_feedrate());
#if ENABLED(PRINTCOUNTER)
if (!DEBUGGING(DRYRUN))
print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
#endif
// Get ABCDHI mixing factors
#if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
gcode_get_mix();
#endif
}
//
// Placeholders for non-migrated codes
//
extern void gcode_G0_G1(
#if IS_SCARA
bool fast_move=false
#endif
);
extern void gcode_G2_G3(bool clockwise);
extern void gcode_G4();
extern void gcode_G5();
extern void gcode_G12();
extern void gcode_G17();
extern void gcode_G18();
extern void gcode_G19();
extern void gcode_G20();
extern void gcode_G21();
extern void gcode_G26();
extern void gcode_G27();
extern void gcode_G28(const bool always_home_all);
extern void gcode_G29();
extern void gcode_G30();
extern void gcode_G31();
extern void gcode_G32();
extern void gcode_G33();
extern void gcode_G38(bool is_38_2);
extern void gcode_G42();
extern void gcode_G92();
extern void gcode_M0_M1();
extern void gcode_M3_M4(bool is_M3);
extern void gcode_M5();
extern void gcode_M17();
extern void gcode_M18_M84();
extern void gcode_M20();
extern void gcode_M21();
extern void gcode_M22();
extern void gcode_M23();
extern void gcode_M24();
extern void gcode_M25();
extern void gcode_M26();
extern void gcode_M27();
extern void gcode_M28();
extern void gcode_M29();
extern void gcode_M30();
extern void gcode_M31();
extern void gcode_M32();
extern void gcode_M33();
extern void gcode_M34();
extern void gcode_M42();
extern void gcode_M43();
extern void gcode_M48();
extern void gcode_M49();
extern void gcode_M75();
extern void gcode_M76();
extern void gcode_M77();
extern void gcode_M78();
extern void gcode_M80();
extern void gcode_M81();
extern void gcode_M82();
extern void gcode_M83();
extern void gcode_M85();
extern void gcode_M92();
extern void gcode_M100();
extern void gcode_M105();
extern void gcode_M106();
extern void gcode_M107();
extern void gcode_M108();
extern void gcode_M110();
extern void gcode_M111();
extern void gcode_M112();
extern void gcode_M113();
extern void gcode_M114();
extern void gcode_M115();
extern void gcode_M117();
extern void gcode_M118();
extern void gcode_M119();
extern void gcode_M120();
extern void gcode_M121();
extern void gcode_M125();
extern void gcode_M126();
extern void gcode_M127();
extern void gcode_M128();
extern void gcode_M129();
extern void gcode_M140();
extern void gcode_M145();
extern void gcode_M149();
extern void gcode_M150();
extern void gcode_M155();
extern void gcode_M163();
extern void gcode_M164();
extern void gcode_M165();
extern void gcode_M190();
extern void gcode_M201();
extern void gcode_M203();
extern void gcode_M204();
extern void gcode_M205();
extern void gcode_M206();
extern void gcode_M211();
extern void gcode_M220();
extern void gcode_M226();
extern void gcode_M240();
extern void gcode_M250();
extern void gcode_M260();
extern void gcode_M261();
extern void gcode_M280();
extern void gcode_M300();
extern void gcode_M301();
extern void gcode_M302();
extern void gcode_M304();
extern void gcode_M350();
extern void gcode_M351();
extern void gcode_M355();
extern bool gcode_M360();
extern bool gcode_M361();
extern bool gcode_M362();
extern bool gcode_M363();
extern bool gcode_M364();
extern void gcode_M380();
extern void gcode_M381();
extern void gcode_M400();
extern void gcode_M401();
extern void gcode_M402();
extern void gcode_M404();
extern void gcode_M405();
extern void gcode_M406();
extern void gcode_M407();
extern void gcode_M410();
extern void gcode_M420();
extern void gcode_M421();
extern void gcode_M428();
extern void gcode_M500();
extern void gcode_M501();
extern void gcode_M502();
extern void gcode_M503();
extern void gcode_M540();
extern void gcode_M600();
extern void gcode_M605();
extern void gcode_M665();
extern void gcode_M666();
extern void gcode_M702();
extern void gcode_M851();
extern void gcode_M900();
extern void gcode_M906();
extern void gcode_M911();
extern void gcode_M912();
extern void gcode_M913();
extern void gcode_M914();
extern void gcode_M907();
extern void gcode_M908();
extern void gcode_M909();
extern void gcode_M910();
extern void gcode_M928();
extern void gcode_M999();
extern void gcode_T(uint8_t tmp_extruder);
#if ENABLED(M100_FREE_MEMORY_WATCHER)
extern void M100_dump_routine(const char * const title, const char *start, const char *end);
#endif
/** /**
* Process a single command and dispatch it to its handler * Process a single command and dispatch it to its handler
* This is called from the main loop() * This is called from the main loop()
*/ */
void process_next_command() { void GcodeSuite::process_next_command() {
char * const current_command = command_queue[cmd_queue_index_r]; char * const current_command = command_queue[cmd_queue_index_r];
if (DEBUGGING(ECHO)) { if (DEBUGGING(ECHO)) {
@ -49,9 +281,9 @@ void process_next_command() {
case 0: case 0:
case 1: case 1:
#if IS_SCARA #if IS_SCARA
gcode_G0_G1(parser.codenum == 0); G0_G1(parser.codenum == 0);
#else #else
gcode_G0_G1(); G0_G1();
#endif #endif
break; break;
@ -76,10 +308,10 @@ void process_next_command() {
#if ENABLED(FWRETRACT) #if ENABLED(FWRETRACT)
case 10: // G10: retract case 10: // G10: retract
gcode_G10(); G10();
break; break;
case 11: // G11: retract_recover case 11: // G11: retract_recover
gcode_G11(); G11();
break; break;
#endif // FWRETRACT #endif // FWRETRACT
@ -303,9 +535,8 @@ void process_next_command() {
break; break;
#endif #endif
case 104: // M104: Set hot end temperature case 104: M104(); break; // M104: Set hot end temperature
gcode_M104(); case 109: M109(); break; // M109: Wait for hotend temperature to reach target
break;
case 110: // M110: Set Current Line Number case 110: // M110: Set Current Line Number
gcode_M110(); gcode_M110();
@ -353,10 +584,6 @@ void process_next_command() {
break; break;
#endif #endif
case 109: // M109: Wait for hotend temperature to reach target
gcode_M109();
break;
#if HAS_TEMP_BED #if HAS_TEMP_BED
case 190: // M190: Wait for bed temperature to reach target case 190: // M190: Wait for bed temperature to reach target
gcode_M190(); gcode_M190();
@ -488,7 +715,7 @@ void process_next_command() {
#endif #endif
case 200: // M200: Set filament diameter, E to cubic units case 200: // M200: Set filament diameter, E to cubic units
gcode_M200(); M200();
break; break;
case 201: // M201: Set max acceleration for print moves (units/s^2) case 201: // M201: Set max acceleration for print moves (units/s^2)
gcode_M201(); gcode_M201();
@ -528,13 +755,13 @@ void process_next_command() {
#if ENABLED(FWRETRACT) #if ENABLED(FWRETRACT)
case 207: // M207: Set Retract Length, Feedrate, and Z lift case 207: // M207: Set Retract Length, Feedrate, and Z lift
gcode_M207(); M207();
break; break;
case 208: // M208: Set Recover (unretract) Additional Length and Feedrate case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
gcode_M208(); M208();
break; break;
case 209: // M209: Turn Automatic Retract Detection on/off case 209: // M209: Turn Automatic Retract Detection on/off
if (MIN_AUTORETRACT <= MAX_AUTORETRACT) gcode_M209(); if (MIN_AUTORETRACT <= MAX_AUTORETRACT) M209();
break; break;
#endif // FWRETRACT #endif // FWRETRACT
@ -544,7 +771,7 @@ void process_next_command() {
#if HOTENDS > 1 #if HOTENDS > 1
case 218: // M218: Set a tool offset case 218: // M218: Set a tool offset
gcode_M218(); M218();
break; break;
#endif #endif
@ -553,7 +780,7 @@ void process_next_command() {
break; break;
case 221: // M221: Set Flow Percentage case 221: // M221: Set Flow Percentage
gcode_M221(); M221();
break; break;
case 226: // M226: Wait until a pin reaches a state case 226: // M226: Wait until a pin reaches a state
@ -615,7 +842,7 @@ void process_next_command() {
#endif // PREVENT_COLD_EXTRUSION #endif // PREVENT_COLD_EXTRUSION
case 303: // M303: PID autotune case 303: // M303: PID autotune
gcode_M303(); M303();
break; break;
#if ENABLED(MORGAN_SCARA) #if ENABLED(MORGAN_SCARA)
@ -636,6 +863,15 @@ void process_next_command() {
break; break;
#endif // SCARA #endif // SCARA
#if ENABLED(EXT_SOLENOID)
case 380: // M380: Activate solenoid on active extruder
gcode_M380();
break;
case 381: // M381: Disable all solenoids
gcode_M381();
break;
#endif
case 400: // M400: Finish all moves case 400: // M400: Finish all moves
gcode_M400(); gcode_M400();
break; break;
@ -809,48 +1045,17 @@ void process_next_command() {
#endif #endif
#if ENABLED(I2C_POSITION_ENCODERS) #if ENABLED(I2C_POSITION_ENCODERS)
case 860: M860(); break; // M860: Report encoder module position
case 860: // M860 Report encoder module position case 861: M861(); break; // M861: Report encoder module status
gcode_M860(); case 862: M862(); break; // M862: Perform axis test
break; case 863: M863(); break; // M863: Calibrate steps/mm
case 864: M864(); break; // M864: Change module address
case 861: // M861 Report encoder module status case 865: M865(); break; // M865: Check module firmware version
gcode_M861(); case 866: M866(); break; // M866: Report axis error count
break; case 867: M867(); break; // M867: Toggle error correction
case 868: M868(); break; // M868: Set error correction threshold
case 862: // M862 Perform axis test case 869: M869(); break; // M869: Report axis error
gcode_M862(); #endif
break;
case 863: // M863 Calibrate steps/mm
gcode_M863();
break;
case 864: // M864 Change module address
gcode_M864();
break;
case 865: // M865 Check module firmware version
gcode_M865();
break;
case 866: // M866 Report axis error count
gcode_M866();
break;
case 867: // M867 Toggle error correction
gcode_M867();
break;
case 868: // M868 Set error correction threshold
gcode_M868();
break;
case 869: // M869 Report axis error
gcode_M869();
break;
#endif // I2C_POSITION_ENCODERS
case 999: // M999: Restart after being Stopped case 999: // M999: Restart after being Stopped
gcode_M999(); gcode_M999();
@ -868,4 +1073,4 @@ void process_next_command() {
KEEPALIVE_STATE(NOT_BUSY); KEEPALIVE_STATE(NOT_BUSY);
ok_to_send(); ok_to_send();
} }

View file

@ -237,8 +237,8 @@
* *
*/ */
#ifndef GCODE_H #ifndef _GCODE_H_
#define GCODE_H #define _GCODE_H_
#include "../inc/MarlinConfig.h" #include "../inc/MarlinConfig.h"
#include "parser.h" #include "parser.h"
@ -252,6 +252,30 @@ public:
GcodeSuite() {} GcodeSuite() {}
static uint8_t target_extruder;
static bool axis_relative_modes[];
static millis_t previous_cmd_ms;
FORCE_INLINE static void refresh_cmd_timeout() { previous_cmd_ms = millis(); }
static bool get_target_extruder_from_command();
static void get_destination_from_command();
static void process_next_command();
/**
* Multi-stepper support for M92, M201, M203
*/
#if ENABLED(DISTINCT_E_FACTORS)
#define GET_TARGET_EXTRUDER() if (gcode.get_target_extruder_from_command()) return
#define TARGET_EXTRUDER gcode.target_extruder
#else
#define GET_TARGET_EXTRUDER() NOOP
#define TARGET_EXTRUDER 0
#endif
static FORCE_INLINE void home_all_axes() { G28(true); }
private: private:
static void G0_G1( static void G0_G1(
@ -375,7 +399,7 @@ private:
static void M48(); static void M48();
#endif #endif
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION) #if ENABLED(UBL_G26_MESH_VALIDATION)
static void M49(); static void M49();
#endif #endif
@ -679,4 +703,4 @@ private:
extern GcodeSuite gcode; extern GcodeSuite gcode;
#endif // GCODE_H #endif // _GCODE_H_

View file

@ -20,6 +20,8 @@
* *
*/ */
#include "../queue.h"
/** /**
* M110: Set Current Line Number * M110: Set Current Line Number
*/ */

View file

@ -20,6 +20,8 @@
* *
*/ */
#include "../gcode.h"
/** /**
* M0: Unconditional stop - Wait for user button press on LCD * M0: Unconditional stop - Wait for user button press on LCD
* M1: Conditional stop - Wait for user button press on LCD * M1: Conditional stop - Wait for user button press on LCD
@ -62,7 +64,7 @@ void gcode_M0_M1() {
wait_for_user = true; wait_for_user = true;
stepper.synchronize(); stepper.synchronize();
refresh_cmd_timeout(); gcode.refresh_cmd_timeout();
if (ms > 0) { if (ms > 0) {
ms += previous_cmd_ms; // wait until this time for a click ms += previous_cmd_ms; // wait until this time for a click

View file

@ -20,16 +20,25 @@
* *
*/ */
#include "../gcode.h"
#include "../../module/motion.h"
#include "../../Marlin.h"
#include "../../sd/cardreader.h"
extern float destination[XYZE];
/** /**
* G0, G1: Coordinated movement of X Y Z E axes * G0, G1: Coordinated movement of X Y Z E axes
*/ */
void gcode_G0_G1( void GcodeSuite::G0_G1(
#if IS_SCARA #if IS_SCARA
bool fast_move=false bool fast_move/*=false*/
#endif #endif
) { ) {
if (IsRunning()) { if (IsRunning()) {
gcode_get_destination(); // For X Y Z E F get_destination_from_command(); // For X Y Z E F
#if ENABLED(FWRETRACT) #if ENABLED(FWRETRACT)
if (MIN_AUTORETRACT <= MAX_AUTORETRACT) { if (MIN_AUTORETRACT <= MAX_AUTORETRACT) {

View file

@ -20,6 +20,8 @@
* *
*/ */
#include "../gcode.h"
#if N_ARC_CORRECTION < 1 #if N_ARC_CORRECTION < 1
#undef N_ARC_CORRECTION #undef N_ARC_CORRECTION
#define N_ARC_CORRECTION 1 #define N_ARC_CORRECTION 1
@ -209,7 +211,7 @@ void gcode_G2_G3(bool clockwise) {
relative_mode = true; relative_mode = true;
#endif #endif
gcode_get_destination(); gcode.get_destination_from_command();
#if ENABLED(SF_ARC_FIX) #if ENABLED(SF_ARC_FIX)
relative_mode = relative_mode_backup; relative_mode = relative_mode_backup;
@ -252,7 +254,7 @@ void gcode_G2_G3(bool clockwise) {
// Send the arc to the planner // Send the arc to the planner
plan_arc(destination, arc_offset, clockwise); plan_arc(destination, arc_offset, clockwise);
refresh_cmd_timeout(); gcode.refresh_cmd_timeout();
} }
else { else {
// Bad arguments // Bad arguments

View file

@ -21,6 +21,7 @@
*/ */
#include "../../module/planner_bezier.h" #include "../../module/planner_bezier.h"
#include "../../gcode/gcode.h"
void plan_cubic_move(const float offset[4]) { void plan_cubic_move(const float offset[4]) {
cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder); cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
@ -52,7 +53,7 @@ void gcode_G5() {
} }
#endif #endif
gcode_get_destination(); gcode.get_destination_from_command();
const float offset[] = { const float offset[] = {
parser.linearval('I'), parser.linearval('I'),

View file

@ -242,7 +242,7 @@ public:
FORCE_INLINE static char temp_units_code() { FORCE_INLINE static char temp_units_code() {
return input_temp_units == TEMPUNIT_K ? 'K' : input_temp_units == TEMPUNIT_F ? 'F' : 'C'; return input_temp_units == TEMPUNIT_K ? 'K' : input_temp_units == TEMPUNIT_F ? 'F' : 'C';
} }
FORCE_INLINE static char* temp_units_name() { FORCE_INLINE static const char* temp_units_name() {
return input_temp_units == TEMPUNIT_K ? PSTR("Kelvin") : input_temp_units == TEMPUNIT_F ? PSTR("Fahrenheit") : PSTR("Celsius"); return input_temp_units == TEMPUNIT_K ? PSTR("Kelvin") : input_temp_units == TEMPUNIT_F ? PSTR("Fahrenheit") : PSTR("Celsius");
} }
inline static float to_temp_units(const float &f) { inline static float to_temp_units(const float &f) {

View file

@ -20,6 +20,8 @@
* *
*/ */
#include "../gcode.h"
static bool G38_run_probe() { static bool G38_run_probe() {
bool G38_pass_fail = false; bool G38_pass_fail = false;
@ -88,7 +90,7 @@ static bool G38_run_probe() {
*/ */
void gcode_G38(bool is_38_2) { void gcode_G38(bool is_38_2) {
// Get X Y Z E F // Get X Y Z E F
gcode_get_destination(); gcode.get_destination_from_command();
setup_for_endstop_or_probe_move(); setup_for_endstop_or_probe_move();

473
Marlin/src/gcode/queue.cpp Normal file
View file

@ -0,0 +1,473 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* queue.cpp - The G-code command queue
*/
#include "queue.h"
#include "gcode.h"
#include "../lcd/ultralcd.h"
#include "../sd/cardreader.h"
#include "../module/planner.h"
#include "../Marlin.h"
/**
* GCode line number handling. Hosts may opt to include line numbers when
* sending commands to Marlin, and lines will be checked for sequentiality.
* M110 N<int> sets the current line number.
*/
long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
/**
* GCode Command Queue
* A simple ring buffer of BUFSIZE command strings.
*
* Commands are copied into this buffer by the command injectors
* (immediate, serial, sd card) and they are processed sequentially by
* the main loop. The gcode.process_next_command method parses the next
* command and hands off execution to individual handler functions.
*/
uint8_t commands_in_queue = 0, // Count of commands in the queue
cmd_queue_index_r = 0, // Ring buffer read position
cmd_queue_index_w = 0; // Ring buffer write position
char command_queue[BUFSIZE][MAX_CMD_SIZE];
/**
* Serial command injection
*/
// Number of characters read in the current line of serial input
static int serial_count = 0;
bool send_ok[BUFSIZE];
/**
* Next Injected Command pointer. NULL if no commands are being injected.
* Used by Marlin internally to ensure that commands initiated from within
* are enqueued ahead of any pending serial or sd card commands.
*/
static const char *injected_commands_P = NULL;
void queue_setup() {
// Send "ok" after commands by default
for (uint8_t i = 0; i < COUNT(send_ok); i++) send_ok[i] = true;
}
/**
* Clear the Marlin command queue
*/
void clear_command_queue() {
cmd_queue_index_r = cmd_queue_index_w;
commands_in_queue = 0;
}
/**
* Once a new command is in the ring buffer, call this to commit it
*/
inline void _commit_command(bool say_ok) {
send_ok[cmd_queue_index_w] = say_ok;
if (++cmd_queue_index_w >= BUFSIZE) cmd_queue_index_w = 0;
commands_in_queue++;
}
/**
* Copy a command from RAM into the main command buffer.
* Return true if the command was successfully added.
* Return false for a full buffer, or if the 'command' is a comment.
*/
inline bool _enqueuecommand(const char* cmd, bool say_ok/*=false*/) {
if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
strcpy(command_queue[cmd_queue_index_w], cmd);
_commit_command(say_ok);
return true;
}
/**
* Enqueue with Serial Echo
*/
bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
if (_enqueuecommand(cmd, say_ok)) {
SERIAL_ECHO_START();
SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd);
SERIAL_CHAR('"');
SERIAL_EOL();
return true;
}
return false;
}
/**
* Inject the next "immediate" command, when possible, onto the front of the queue.
* Return true if any immediate commands remain to inject.
*/
static bool drain_injected_commands_P() {
if (injected_commands_P != NULL) {
size_t i = 0;
char c, cmd[30];
strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
cmd[sizeof(cmd) - 1] = '\0';
while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
cmd[i] = '\0';
if (enqueue_and_echo_command(cmd)) // success?
injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done
}
return (injected_commands_P != NULL); // return whether any more remain
}
/**
* Record one or many commands to run from program memory.
* Aborts the current queue, if any.
* Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
*/
void enqueue_and_echo_commands_P(const char * const pgcode) {
injected_commands_P = pgcode;
drain_injected_commands_P(); // first command executed asap (when possible)
}
/**
* Send an "ok" message to the host, indicating
* that a command was successfully processed.
*
* If ADVANCED_OK is enabled also include:
* N<int> Line number of the command, if any
* P<int> Planner space remaining
* B<int> Block queue space remaining
*/
void ok_to_send() {
gcode.refresh_cmd_timeout();
if (!send_ok[cmd_queue_index_r]) return;
SERIAL_PROTOCOLPGM(MSG_OK);
#if ENABLED(ADVANCED_OK)
char* p = command_queue[cmd_queue_index_r];
if (*p == 'N') {
SERIAL_PROTOCOL(' ');
SERIAL_ECHO(*p++);
while (NUMERIC_SIGNED(*p))
SERIAL_ECHO(*p++);
}
SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
#endif
SERIAL_EOL();
}
/**
* Send a "Resend: nnn" message to the host to
* indicate that a command needs to be re-sent.
*/
void flush_and_request_resend() {
//char command_queue[cmd_queue_index_r][100]="Resend:";
MYSERIAL.flush();
SERIAL_PROTOCOLPGM(MSG_RESEND);
SERIAL_PROTOCOLLN(gcode_LastN + 1);
ok_to_send();
}
void gcode_line_error(const char* err, bool doFlush = true) {
SERIAL_ERROR_START();
serialprintPGM(err);
SERIAL_ERRORLN(gcode_LastN);
//Serial.println(gcode_N);
if (doFlush) flush_and_request_resend();
serial_count = 0;
}
/**
* Get all commands waiting on the serial port and queue them.
* Exit when the buffer is full or when no more characters are
* left on the serial port.
*/
inline void get_serial_commands() {
static char serial_line_buffer[MAX_CMD_SIZE];
static bool serial_comment_mode = false;
// If the command buffer is empty for too long,
// send "wait" to indicate Marlin is still waiting.
#if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
static millis_t last_command_time = 0;
const millis_t ms = millis();
if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
SERIAL_ECHOLNPGM(MSG_WAIT);
last_command_time = ms;
}
#endif
/**
* Loop while serial characters are incoming and the queue is not full
*/
while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
char serial_char = MYSERIAL.read();
/**
* If the character ends the line
*/
if (serial_char == '\n' || serial_char == '\r') {
serial_comment_mode = false; // end of line == end of comment
if (!serial_count) continue; // skip empty lines
serial_line_buffer[serial_count] = 0; // terminate string
serial_count = 0; //reset buffer
char* command = serial_line_buffer;
while (*command == ' ') command++; // skip any leading spaces
char *npos = (*command == 'N') ? command : NULL, // Require the N parameter to start the line
*apos = strchr(command, '*');
if (npos) {
bool M110 = strstr_P(command, PSTR("M110")) != NULL;
if (M110) {
char* n2pos = strchr(command + 4, 'N');
if (n2pos) npos = n2pos;
}
gcode_N = strtol(npos + 1, NULL, 10);
if (gcode_N != gcode_LastN + 1 && !M110) {
gcode_line_error(PSTR(MSG_ERR_LINE_NO));
return;
}
if (apos) {
byte checksum = 0, count = 0;
while (command[count] != '*') checksum ^= command[count++];
if (strtol(apos + 1, NULL, 10) != checksum) {
gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
return;
}
// if no errors, continue parsing
}
else {
gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
return;
}
gcode_LastN = gcode_N;
// if no errors, continue parsing
}
else if (apos) { // No '*' without 'N'
gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
return;
}
// Movement commands alert when stopped
if (IsStopped()) {
char* gpos = strchr(command, 'G');
if (gpos) {
const int codenum = strtol(gpos + 1, NULL, 10);
switch (codenum) {
case 0:
case 1:
case 2:
case 3:
SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
LCD_MESSAGEPGM(MSG_STOPPED);
break;
}
}
}
#if DISABLED(EMERGENCY_PARSER)
// If command was e-stop process now
if (strcmp(command, "M108") == 0) {
wait_for_heatup = false;
#if ENABLED(ULTIPANEL)
wait_for_user = false;
#endif
}
if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
#endif
#if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
last_command_time = ms;
#endif
// Add the command to the queue
_enqueuecommand(serial_line_buffer, true);
}
else if (serial_count >= MAX_CMD_SIZE - 1) {
// Keep fetching, but ignore normal characters beyond the max length
// The command will be injected when EOL is reached
}
else if (serial_char == '\\') { // Handle escapes
if (MYSERIAL.available() > 0) {
// if we have one more character, copy it over
serial_char = MYSERIAL.read();
if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
}
// otherwise do nothing
}
else { // it's not a newline, carriage return or escape char
if (serial_char == ';') serial_comment_mode = true;
if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
}
} // queue has space, serial has data
}
#if ENABLED(SDSUPPORT)
/**
* Get commands from the SD Card until the command buffer is full
* or until the end of the file is reached. The special character '#'
* can also interrupt buffering.
*/
inline void get_sdcard_commands() {
static bool stop_buffering = false,
sd_comment_mode = false;
if (!IS_SD_PRINTING) return;
/**
* '#' stops reading from SD to the buffer prematurely, so procedural
* macro calls are possible. If it occurs, stop_buffering is triggered
* and the buffer is run dry; this character _can_ occur in serial com
* due to checksums, however, no checksums are used in SD printing.
*/
if (commands_in_queue == 0) stop_buffering = false;
uint16_t sd_count = 0;
bool card_eof = card.eof();
while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
const int16_t n = card.get();
char sd_char = (char)n;
card_eof = card.eof();
if (card_eof || n == -1
|| sd_char == '\n' || sd_char == '\r'
|| ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
) {
if (card_eof) {
SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
card.printingHasFinished();
#if ENABLED(PRINTER_EVENT_LEDS)
LCD_MESSAGEPGM(MSG_INFO_COMPLETED_PRINTS);
set_led_color(0, 255, 0); // Green
#if HAS_RESUME_CONTINUE
enqueue_and_echo_commands_P(PSTR("M0")); // end of the queue!
#else
safe_delay(1000);
#endif
set_led_color(0, 0, 0); // OFF
#endif
card.checkautostart(true);
}
else if (n == -1) {
SERIAL_ERROR_START();
SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
}
if (sd_char == '#') stop_buffering = true;
sd_comment_mode = false; // for new command
if (!sd_count) continue; // skip empty lines (and comment lines)
command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate string
sd_count = 0; // clear sd line buffer
_commit_command(false);
}
else if (sd_count >= MAX_CMD_SIZE - 1) {
/**
* Keep fetching, but ignore normal characters beyond the max length
* The command will be injected when EOL is reached
*/
}
else {
if (sd_char == ';') sd_comment_mode = true;
if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
}
}
}
#endif // SDSUPPORT
/**
* Add to the circular command queue the next command from:
* - The command-injection queue (injected_commands_P)
* - The active serial input (usually USB)
* - The SD card file being actively printed
*/
void get_available_commands() {
// if any immediate commands remain, don't get other commands yet
if (drain_injected_commands_P()) return;
get_serial_commands();
#if ENABLED(SDSUPPORT)
get_sdcard_commands();
#endif
}
/**
* Get the next command in the queue, optionally log it to SD, then dispatch it
*/
void advance_command_queue() {
if (!commands_in_queue) return;
#if ENABLED(SDSUPPORT)
if (card.saving) {
char* command = command_queue[cmd_queue_index_r];
if (strstr_P(command, PSTR("M29"))) {
// M29 closes the file
card.closefile();
SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
ok_to_send();
}
else {
// Write the string from the read buffer to SD
card.write_command(command);
if (card.logging)
gcode.process_next_command(); // The card is saving because it's logging
else
ok_to_send();
}
}
else
gcode.process_next_command();
#else
gcode.process_next_command();
#endif // SDSUPPORT
// The queue may be reset by a command handler or by code invoked by idle() within a handler
if (commands_in_queue) {
--commands_in_queue;
if (++cmd_queue_index_r >= BUFSIZE) cmd_queue_index_r = 0;
}
}

106
Marlin/src/gcode/queue.h Normal file
View file

@ -0,0 +1,106 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* queue.h - The G-code command queue, which holds commands before they
* go to the parser and dispatcher.
*/
#ifndef GCODE_QUEUE_H
#define GCODE_QUEUE_H
#include "../inc/MarlinConfig.h"
/**
* GCode line number handling. Hosts may include line numbers when sending
* commands to Marlin, and lines will be checked for sequentiality.
* M110 N<int> sets the current line number.
*/
extern long gcode_LastN, Stopped_gcode_LastN;
/**
* GCode Command Queue
* A simple ring buffer of BUFSIZE command strings.
*
* Commands are copied into this buffer by the command injectors
* (immediate, serial, sd card) and they are processed sequentially by
* the main loop. The gcode.process_next_command method parses the next
* command and hands off execution to individual handler functions.
*/
extern uint8_t commands_in_queue, // Count of commands in the queue
cmd_queue_index_r; // Ring buffer read position
extern char command_queue[BUFSIZE][MAX_CMD_SIZE];
/**
* Initialization of queue for setup()
*/
void queue_setup();
/**
* Clear the Marlin command queue
*/
void clear_command_queue();
/**
* Clear the serial line and request a resend of
* the next expected line number.
*/
void flush_and_request_resend();
/**
* Send an "ok" message to the host, indicating
* that a command was successfully processed.
*
* If ADVANCED_OK is enabled also include:
* N<int> Line number of the command, if any
* P<int> Planner space remaining
* B<int> Block queue space remaining
*/
void ok_to_send();
/**
* Record one or many commands to run from program memory.
* Aborts the current queue, if any.
* Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
*/
void enqueue_and_echo_commands_P(const char * const pgcode);
/**
* Enqueue with Serial Echo
*/
bool enqueue_and_echo_command(const char* cmd, bool say_ok=false);
/**
* Add to the circular command queue the next command from:
* - The command-injection queue (injected_commands_P)
* - The active serial input (usually USB)
* - The SD card file being actively printed
*/
void get_available_commands();
/**
* Get the next command in the queue, optionally log it to SD, then dispatch it
*/
void advance_command_queue();
#endif // GCODE_QUEUE_H

View file

@ -20,23 +20,35 @@
* *
*/ */
#include "../gcode.h"
#include "../../module/temperature.h"
#include "../../module/motion.h"
#include "../../module/planner.h"
#include "../../lcd/ultralcd.h"
#if ENABLED(PRINTJOB_TIMER_AUTOSTART)
#include "../../module/printcounter.h"
#endif
/** /**
* M104: Set hot end temperature * M104: Set hot end temperature
*/ */
void gcode_M104() { void GcodeSuite::M104() {
if (get_target_extruder_from_command(104)) return; if (get_target_extruder_from_command()) return;
if (DEBUGGING(DRYRUN)) return; if (DEBUGGING(DRYRUN)) return;
const uint8_t e = target_extruder;
#if ENABLED(SINGLENOZZLE) #if ENABLED(SINGLENOZZLE)
if (target_extruder != active_extruder) return; if (e != active_extruder) return;
#endif #endif
if (parser.seenval('S')) { if (parser.seenval('S')) {
const int16_t temp = parser.value_celsius(); const int16_t temp = parser.value_celsius();
thermalManager.setTargetHotend(temp, target_extruder); thermalManager.setTargetHotend(temp, e);
#if ENABLED(DUAL_X_CARRIAGE) #if ENABLED(DUAL_X_CARRIAGE)
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0) if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && e == 0)
thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1); thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
#endif #endif
@ -53,8 +65,8 @@ void gcode_M104() {
} }
#endif #endif
if (parser.value_celsius() > thermalManager.degHotend(target_extruder)) if (parser.value_celsius() > thermalManager.degHotend(e))
lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING); lcd_status_printf_P(0, PSTR("E%i %s"), e + 1, MSG_HEATING);
} }
#if ENABLED(AUTOTEMP) #if ENABLED(AUTOTEMP)

View file

@ -24,7 +24,7 @@
* M105: Read hot end and bed temperature * M105: Read hot end and bed temperature
*/ */
void gcode_M105() { void gcode_M105() {
if (get_target_extruder_from_command(105)) return; if (gcode.get_target_extruder_from_command()) return;
#if HAS_TEMP_HOTEND || HAS_TEMP_BED #if HAS_TEMP_HOTEND || HAS_TEMP_BED
SERIAL_PROTOCOLPGM(MSG_OK); SERIAL_PROTOCOLPGM(MSG_OK);

View file

@ -20,6 +20,20 @@
* *
*/ */
#include "../gcode.h"
#include "../../module/temperature.h"
#include "../../module/planner.h"
#include "../../lcd/ultralcd.h"
#include "../../Marlin.h"
#if ENABLED(PRINTJOB_TIMER_AUTOSTART)
#include "../../module/printcounter.h"
#endif
#if ENABLED(DUAL_X_CARRIAGE)
#include "../../module/motion.h"
#endif
/** /**
* M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
* Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
@ -32,9 +46,9 @@
#define MIN_COOLING_SLOPE_TIME 60 #define MIN_COOLING_SLOPE_TIME 60
#endif #endif
void gcode_M109() { void GcodeSuite::M109() {
if (get_target_extruder_from_command(109)) return; if (get_target_extruder_from_command()) return;
if (DEBUGGING(DRYRUN)) return; if (DEBUGGING(DRYRUN)) return;
#if ENABLED(SINGLENOZZLE) #if ENABLED(SINGLENOZZLE)

View file

@ -20,6 +20,8 @@
* *
*/ */
#include "../gcode.h"
#ifndef MIN_COOLING_SLOPE_DEG_BED #ifndef MIN_COOLING_SLOPE_DEG_BED
#define MIN_COOLING_SLOPE_DEG_BED 1.50 #define MIN_COOLING_SLOPE_DEG_BED 1.50
#endif #endif
@ -63,7 +65,7 @@ void gcode_M190() {
KEEPALIVE_STATE(NOT_BUSY); KEEPALIVE_STATE(NOT_BUSY);
#endif #endif
target_extruder = active_extruder; // for print_heaterstates gcode.target_extruder = active_extruder; // for print_heaterstates
#if ENABLED(PRINTER_EVENT_LEDS) #if ENABLED(PRINTER_EVENT_LEDS)
const float start_temp = thermalManager.degBed(); const float start_temp = thermalManager.degBed();
@ -95,7 +97,7 @@ void gcode_M190() {
} }
idle(); idle();
refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out gcode.refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
const float temp = thermalManager.degBed(); const float temp = thermalManager.degBed();

View file

@ -20,6 +20,9 @@
* *
*/ */
#include "../gcode.h"
#include "../../module/temperature.h"
/** /**
* M303: PID relay autotune * M303: PID relay autotune
* *
@ -28,7 +31,7 @@
* C<cycles> * C<cycles>
* U<bool> with a non-zero value will apply the result to current settings * U<bool> with a non-zero value will apply the result to current settings
*/ */
void gcode_M303() { void GcodeSuite::M303() {
#if HAS_PID_HEATING #if HAS_PID_HEATING
const int e = parser.intval('E'), c = parser.intval('C', 5); const int e = parser.intval('E'), c = parser.intval('C', 5);
const bool u = parser.boolval('U'); const bool u = parser.boolval('U');

View file

@ -23,9 +23,9 @@
/** /**
* M82: Set E codes absolute (default) * M82: Set E codes absolute (default)
*/ */
void gcode_M82() { axis_relative_modes[E_AXIS] = false; } void gcode_M82() { gcode.axis_relative_modes[E_AXIS] = false; }
/** /**
* M83: Set E codes relative while in Absolute Coordinates (G90) mode * M83: Set E codes relative while in Absolute Coordinates (G90) mode
*/ */
void gcode_M83() { axis_relative_modes[E_AXIS] = true; } void gcode_M83() { gcode.axis_relative_modes[E_AXIS] = true; }

View file

@ -30,6 +30,9 @@
#include "../module/temperature.h" #include "../module/temperature.h"
#include "../module/planner.h" #include "../module/planner.h"
#include "../module/stepper.h" #include "../module/stepper.h"
#include "../module/motion.h"
#include "../gcode/gcode.h"
#include "../gcode/queue.h"
#include "../module/configuration_store.h" #include "../module/configuration_store.h"
#include "../Marlin.h" #include "../Marlin.h"
@ -1734,7 +1737,7 @@ void kill_screen(const char* lcd_msg) {
// Encoder knob or keypad buttons adjust the Z position // Encoder knob or keypad buttons adjust the Z position
// //
if (encoderPosition) { if (encoderPosition) {
refresh_cmd_timeout(); gcode.refresh_cmd_timeout();
const float z = current_position[Z_AXIS] + float((int32_t)encoderPosition) * (MBL_Z_STEP); const float z = current_position[Z_AXIS] + float((int32_t)encoderPosition) * (MBL_Z_STEP);
line_to_z(constrain(z, -(LCD_PROBE_Z_RANGE) * 0.5, (LCD_PROBE_Z_RANGE) * 0.5)); line_to_z(constrain(z, -(LCD_PROBE_Z_RANGE) * 0.5, (LCD_PROBE_Z_RANGE) * 0.5));
lcdDrawUpdate = LCDVIEW_CALL_REDRAW_NEXT; lcdDrawUpdate = LCDVIEW_CALL_REDRAW_NEXT;
@ -2280,7 +2283,7 @@ void kill_screen(const char* lcd_msg) {
x_plot += step_scaler / (ENCODER_STEPS_PER_MENU_ITEM); x_plot += step_scaler / (ENCODER_STEPS_PER_MENU_ITEM);
if (abs(step_scaler) >= ENCODER_STEPS_PER_MENU_ITEM) if (abs(step_scaler) >= ENCODER_STEPS_PER_MENU_ITEM)
step_scaler = 0; step_scaler = 0;
refresh_cmd_timeout(); gcode.refresh_cmd_timeout();
encoderPosition = 0; encoderPosition = 0;
lcdDrawUpdate = LCDVIEW_REDRAW_NOW; lcdDrawUpdate = LCDVIEW_REDRAW_NOW;
@ -2317,7 +2320,7 @@ void kill_screen(const char* lcd_msg) {
set_current_from_steppers_for_axis(ALL_AXES); set_current_from_steppers_for_axis(ALL_AXES);
sync_plan_position(); sync_plan_position();
ubl_map_move_to_xy(); // Move to new location ubl_map_move_to_xy(); // Move to new location
refresh_cmd_timeout(); gcode.refresh_cmd_timeout();
} }
} }
} }
@ -2702,7 +2705,7 @@ void kill_screen(const char* lcd_msg) {
if (lcd_clicked) { return lcd_goto_previous_menu(); } if (lcd_clicked) { return lcd_goto_previous_menu(); }
ENCODER_DIRECTION_NORMAL(); ENCODER_DIRECTION_NORMAL();
if (encoderPosition) { if (encoderPosition) {
refresh_cmd_timeout(); gcode.refresh_cmd_timeout();
float min = current_position[axis] - 1000, float min = current_position[axis] - 1000,
max = current_position[axis] + 1000; max = current_position[axis] + 1000;

View file

@ -23,6 +23,7 @@
#include "nozzle.h" #include "nozzle.h"
#include "../Marlin.h" #include "../Marlin.h"
#include "../module/motion.h"
#include "point_t.h" #include "point_t.h"
/** /**

View file

@ -0,0 +1,574 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* motion.cpp
*/
#include "motion.h"
#include "../gcode/gcode.h"
// #include "../module/planner.h"
// #include "../Marlin.h"
// #include "../inc/MarlinConfig.h"
#include "../core/serial.h"
#include "../module/stepper.h"
#include "../module/temperature.h"
#if IS_SCARA
#include "../libs/buzzer.h"
#include "../lcd/ultralcd.h"
#endif
#if ENABLED(AUTO_BED_LEVELING_UBL)
#include "../feature/ubl/ubl.h"
#endif
#define XYZ_CONSTS(type, array, CONFIG) const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }
XYZ_CONSTS(float, base_min_pos, MIN_POS);
XYZ_CONSTS(float, base_max_pos, MAX_POS);
XYZ_CONSTS(float, base_home_pos, HOME_POS);
XYZ_CONSTS(float, max_length, MAX_LENGTH);
XYZ_CONSTS(float, home_bump_mm, HOME_BUMP_MM);
XYZ_CONSTS(signed char, home_dir, HOME_DIR);
// Relative Mode. Enable with G91, disable with G90.
bool relative_mode = false;
/**
* Cartesian Current Position
* Used to track the logical position as moves are queued.
* Used by 'line_to_current_position' to do a move after changing it.
* Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
*/
float current_position[XYZE] = { 0.0 };
/**
* Cartesian Destination
* A temporary position, usually applied to 'current_position'.
* Set with 'get_destination_from_command' or 'set_destination_to_current'.
* 'line_to_destination' sets 'current_position' to 'destination'.
*/
float destination[XYZE] = { 0.0 };
// The active extruder (tool). Set with T<extruder> command.
uint8_t active_extruder = 0;
// The feedrate for the current move, often used as the default if
// no other feedrate is specified. Overridden for special moves.
// Set by the last G0 through G5 command's "F" parameter.
// Functions that override this for custom moves *must always* restore it!
float feedrate_mm_s = MMM_TO_MMS(1500.0);
/**
* sync_plan_position
*
* Set the planner/stepper positions directly from current_position with
* no kinematic translation. Used for homing axes and cartesian/core syncing.
*/
void sync_plan_position() {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
#endif
planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
}
void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
/**
* Move the planner to the current position from wherever it last moved
* (or from wherever it has been told it is located).
*/
void line_to_current_position() {
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
}
/**
* Move the planner to the position stored in the destination array, which is
* used by G0/G1/G2/G3/G5 and many other functions to set a destination.
*/
void line_to_destination(const float fr_mm_s) {
planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
}
#if IS_KINEMATIC
void sync_plan_position_kinematic() {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
#endif
planner.set_position_mm_kinematic(current_position);
}
/**
* Calculate delta, start a line, and set current_position to destination
*/
void prepare_uninterpolated_move_to_destination(const float fr_mm_s/*=0.0*/) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
#endif
gcode.refresh_cmd_timeout();
#if UBL_DELTA
// ubl segmented line will do z-only moves in single segment
ubl.prepare_segmented_line_to(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s));
#else
if ( current_position[X_AXIS] == destination[X_AXIS]
&& current_position[Y_AXIS] == destination[Y_AXIS]
&& current_position[Z_AXIS] == destination[Z_AXIS]
&& current_position[E_AXIS] == destination[E_AXIS]
) return;
planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
#endif
set_current_to_destination();
}
#endif // IS_KINEMATIC
// Software Endstops are based on the configured limits.
float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
soft_endstop_max[XYZ] = { X_MAX_BED, Y_MAX_BED, Z_MAX_POS };
#if HAS_SOFTWARE_ENDSTOPS
// Software Endstops are based on the configured limits.
bool soft_endstops_enabled = true;
/**
* Constrain the given coordinates to the software endstops.
*/
// NOTE: This makes no sense for delta beds other than Z-axis.
// For delta the X/Y would need to be clamped at
// DELTA_PRINTABLE_RADIUS from center of bed, but delta
// now enforces is_position_reachable for X/Y regardless
// of HAS_SOFTWARE_ENDSTOPS, so that enforcement would be
// redundant here.
void clamp_to_software_endstops(float target[XYZ]) {
if (!soft_endstops_enabled) return;
#if ENABLED(MIN_SOFTWARE_ENDSTOPS)
#if DISABLED(DELTA)
NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
#endif
NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
#endif
#if ENABLED(MAX_SOFTWARE_ENDSTOPS)
#if DISABLED(DELTA)
NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
#endif
NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
#endif
}
#endif
#if ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
#define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) * ABL_BG_FACTOR(A##_AXIS))
/**
* Prepare a bilinear-leveled linear move on Cartesian,
* splitting the move where it crosses grid borders.
*/
void bilinear_line_to_destination(const float fr_mm_s, uint16_t x_splits=0xFFFF, uint16_t y_splits=0xFFFF);
int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
cx2 = CELL_INDEX(X, destination[X_AXIS]),
cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
if (cx1 == cx2 && cy1 == cy2) {
// Start and end on same mesh square
line_to_destination(fr_mm_s);
set_current_to_destination();
return;
}
#define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
float normalized_dist, end[XYZE];
// Split at the left/front border of the right/top square
const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
if (cx2 != cx1 && TEST(x_splits, gcx)) {
COPY(end, destination);
destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx);
normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
destination[Y_AXIS] = LINE_SEGMENT_END(Y);
CBI(x_splits, gcx);
}
else if (cy2 != cy1 && TEST(y_splits, gcy)) {
COPY(end, destination);
destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy);
normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
destination[X_AXIS] = LINE_SEGMENT_END(X);
CBI(y_splits, gcy);
}
else {
// Already split on a border
line_to_destination(fr_mm_s);
set_current_to_destination();
return;
}
destination[Z_AXIS] = LINE_SEGMENT_END(Z);
destination[E_AXIS] = LINE_SEGMENT_END(E);
// Do the split and look for more borders
bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
// Restore destination from stack
COPY(destination, end);
bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
}
#endif // AUTO_BED_LEVELING_BILINEAR
#if IS_KINEMATIC && !UBL_DELTA
/**
* Prepare a linear move in a DELTA or SCARA setup.
*
* This calls planner.buffer_line several times, adding
* small incremental moves for DELTA or SCARA.
*/
inline bool prepare_kinematic_move_to(float ltarget[XYZE]) {
// Get the top feedrate of the move in the XY plane
const float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
// If the move is only in Z/E don't split up the move
if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
return false;
}
// Fail if attempting move outside printable radius
if (!position_is_reachable_xy(ltarget[X_AXIS], ltarget[Y_AXIS])) return true;
// Get the cartesian distances moved in XYZE
const float difference[XYZE] = {
ltarget[X_AXIS] - current_position[X_AXIS],
ltarget[Y_AXIS] - current_position[Y_AXIS],
ltarget[Z_AXIS] - current_position[Z_AXIS],
ltarget[E_AXIS] - current_position[E_AXIS]
};
// Get the linear distance in XYZ
float cartesian_mm = SQRT(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
// If the move is very short, check the E move distance
if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = FABS(difference[E_AXIS]);
// No E move either? Game over.
if (UNEAR_ZERO(cartesian_mm)) return true;
// Minimum number of seconds to move the given distance
const float seconds = cartesian_mm / _feedrate_mm_s;
// The number of segments-per-second times the duration
// gives the number of segments
uint16_t segments = delta_segments_per_second * seconds;
// For SCARA minimum segment size is 0.25mm
#if IS_SCARA
NOMORE(segments, cartesian_mm * 4);
#endif
// At least one segment is required
NOLESS(segments, 1);
// The approximate length of each segment
const float inv_segments = 1.0 / float(segments),
segment_distance[XYZE] = {
difference[X_AXIS] * inv_segments,
difference[Y_AXIS] * inv_segments,
difference[Z_AXIS] * inv_segments,
difference[E_AXIS] * inv_segments
};
// SERIAL_ECHOPAIR("mm=", cartesian_mm);
// SERIAL_ECHOPAIR(" seconds=", seconds);
// SERIAL_ECHOLNPAIR(" segments=", segments);
#if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
// SCARA needs to scale the feed rate from mm/s to degrees/s
const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
feed_factor = inv_segment_length * _feedrate_mm_s;
float oldA = stepper.get_axis_position_degrees(A_AXIS),
oldB = stepper.get_axis_position_degrees(B_AXIS);
#endif
// Get the logical current position as starting point
float logical[XYZE];
COPY(logical, current_position);
// Drop one segment so the last move is to the exact target.
// If there's only 1 segment, loops will be skipped entirely.
--segments;
// Calculate and execute the segments
for (uint16_t s = segments + 1; --s;) {
LOOP_XYZE(i) logical[i] += segment_distance[i];
#if ENABLED(DELTA)
DELTA_LOGICAL_IK(); // Delta can inline its kinematics
#else
inverse_kinematics(logical);
#endif
ADJUST_DELTA(logical); // Adjust Z if bed leveling is enabled
#if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
// For SCARA scale the feed rate from mm/s to degrees/s
// Use ratio between the length of the move and the larger angle change
const float adiff = abs(delta[A_AXIS] - oldA),
bdiff = abs(delta[B_AXIS] - oldB);
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
oldA = delta[A_AXIS];
oldB = delta[B_AXIS];
#else
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
#endif
}
// Since segment_distance is only approximate,
// the final move must be to the exact destination.
#if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
// For SCARA scale the feed rate from mm/s to degrees/s
// With segments > 1 length is 1 segment, otherwise total length
inverse_kinematics(ltarget);
ADJUST_DELTA(ltarget);
const float adiff = abs(delta[A_AXIS] - oldA),
bdiff = abs(delta[B_AXIS] - oldB);
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
#else
planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
#endif
return false;
}
#else // !IS_KINEMATIC || UBL_DELTA
/**
* Prepare a linear move in a Cartesian setup.
* If Mesh Bed Leveling is enabled, perform a mesh move.
*
* Returns true if the caller didn't update current_position.
*/
inline bool prepare_move_to_destination_cartesian() {
#if ENABLED(AUTO_BED_LEVELING_UBL)
const float fr_scaled = MMS_SCALED(feedrate_mm_s);
if (ubl.state.active) { // direct use of ubl.state.active for speed
ubl.line_to_destination_cartesian(fr_scaled, active_extruder);
return true;
}
else
line_to_destination(fr_scaled);
#else
// Do not use feedrate_percentage for E or Z only moves
if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS])
line_to_destination();
else {
const float fr_scaled = MMS_SCALED(feedrate_mm_s);
#if ENABLED(MESH_BED_LEVELING)
if (mbl.active()) { // direct used of mbl.active() for speed
mesh_line_to_destination(fr_scaled);
return true;
}
else
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
if (planner.abl_enabled) { // direct use of abl_enabled for speed
bilinear_line_to_destination(fr_scaled);
return true;
}
else
#endif
line_to_destination(fr_scaled);
}
#endif
return false;
}
#endif // !IS_KINEMATIC || UBL_DELTA
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
bool extruder_duplication_enabled = false; // Used in Dual X mode 2
#endif
#if ENABLED(DUAL_X_CARRIAGE)
DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
float inactive_extruder_x_pos = X2_MAX_POS, // used in mode 0 & 1
raised_parked_position[XYZE], // used in mode 1
duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
bool active_extruder_parked = false; // used in mode 1 & 2
millis_t delayed_move_time = 0; // used in mode 1
int16_t duplicate_extruder_temp_offset = 0; // used in mode 2
float x_home_pos(const int extruder) {
if (extruder == 0)
return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
else
/**
* In dual carriage mode the extruder offset provides an override of the
* second X-carriage position when homed - otherwise X2_HOME_POS is used.
* This allows soft recalibration of the second extruder home position
* without firmware reflash (through the M218 command).
*/
return LOGICAL_X_POSITION(hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS);
}
/**
* Prepare a linear move in a dual X axis setup
*/
inline bool prepare_move_to_destination_dualx() {
if (active_extruder_parked) {
switch (dual_x_carriage_mode) {
case DXC_FULL_CONTROL_MODE:
break;
case DXC_AUTO_PARK_MODE:
if (current_position[E_AXIS] == destination[E_AXIS]) {
// This is a travel move (with no extrusion)
// Skip it, but keep track of the current position
// (so it can be used as the start of the next non-travel move)
if (delayed_move_time != 0xFFFFFFFFUL) {
set_current_to_destination();
NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
delayed_move_time = millis();
return true;
}
}
// unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
for (uint8_t i = 0; i < 3; i++)
planner.buffer_line(
i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
current_position[E_AXIS],
i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
active_extruder
);
delayed_move_time = 0;
active_extruder_parked = false;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Clear active_extruder_parked");
#endif
break;
case DXC_DUPLICATION_MODE:
if (active_extruder == 0) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("Set planner X", LOGICAL_X_POSITION(inactive_extruder_x_pos));
SERIAL_ECHOLNPAIR(" ... Line to X", current_position[X_AXIS] + duplicate_extruder_x_offset);
}
#endif
// move duplicate extruder into correct duplication position.
planner.set_position_mm(
LOGICAL_X_POSITION(inactive_extruder_x_pos),
current_position[Y_AXIS],
current_position[Z_AXIS],
current_position[E_AXIS]
);
planner.buffer_line(
current_position[X_AXIS] + duplicate_extruder_x_offset,
current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
planner.max_feedrate_mm_s[X_AXIS], 1
);
SYNC_PLAN_POSITION_KINEMATIC();
stepper.synchronize();
extruder_duplication_enabled = true;
active_extruder_parked = false;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Set extruder_duplication_enabled\nClear active_extruder_parked");
#endif
}
else {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Active extruder not 0");
#endif
}
break;
}
}
return false;
}
#endif // DUAL_X_CARRIAGE
/**
* Prepare a single move and get ready for the next one
*
* This may result in several calls to planner.buffer_line to
* do smaller moves for DELTA, SCARA, mesh moves, etc.
*/
void prepare_move_to_destination() {
clamp_to_software_endstops(destination);
gcode.refresh_cmd_timeout();
#if ENABLED(PREVENT_COLD_EXTRUSION)
if (!DEBUGGING(DRYRUN)) {
if (destination[E_AXIS] != current_position[E_AXIS]) {
if (thermalManager.tooColdToExtrude(active_extruder)) {
current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
SERIAL_ECHO_START();
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
}
#if ENABLED(PREVENT_LENGTHY_EXTRUDE)
if (destination[E_AXIS] - current_position[E_AXIS] > EXTRUDE_MAXLENGTH) {
current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
SERIAL_ECHO_START();
SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
}
#endif
}
}
#endif
if (
#if UBL_DELTA // Also works for CARTESIAN (smaller segments follow mesh more closely)
ubl.prepare_segmented_line_to(destination, feedrate_mm_s)
#elif IS_KINEMATIC
prepare_kinematic_move_to(destination)
#elif ENABLED(DUAL_X_CARRIAGE)
prepare_move_to_destination_dualx() || prepare_move_to_destination_cartesian()
#else
prepare_move_to_destination_cartesian()
#endif
) return;
set_current_to_destination();
}

237
Marlin/src/module/motion.h Normal file
View file

@ -0,0 +1,237 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* motion.h
*
* High-level motion commands to feed the planner
* Some of these methods may migrate to the planner class.
*/
#ifndef MOTION_H
#define MOTION_H
#include "../inc/MarlinConfig.h"
//#include "../HAL/HAL.h"
// #if ENABLED(DELTA)
// #include "../module/delta.h"
// #endif
extern bool relative_mode;
extern float current_position[XYZE], destination[XYZE];
extern float feedrate_mm_s;
extern uint8_t active_extruder;
extern float soft_endstop_min[XYZ], soft_endstop_max[XYZ];
FORCE_INLINE float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
FORCE_INLINE signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
#define XYZ_DEFS(type, array, CONFIG) \
extern const type array##_P[XYZ]; \
FORCE_INLINE type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); } \
typedef void __void_##CONFIG##__
XYZ_DEFS(float, base_min_pos, MIN_POS);
XYZ_DEFS(float, base_max_pos, MAX_POS);
XYZ_DEFS(float, base_home_pos, HOME_POS);
XYZ_DEFS(float, max_length, MAX_LENGTH);
XYZ_DEFS(float, home_bump_mm, HOME_BUMP_MM);
XYZ_DEFS(signed char, home_dir, HOME_DIR);
#if HAS_SOFTWARE_ENDSTOPS
extern bool soft_endstops_enabled;
void clamp_to_software_endstops(float target[XYZ]);
#else
#define soft_endstops_enabled false
#define clamp_to_software_endstops(x) NOOP
#endif
inline void set_current_to_destination() { COPY(current_position, destination); }
inline void set_destination_to_current() { COPY(destination, current_position); }
/**
* sync_plan_position
*
* Set the planner/stepper positions directly from current_position with
* no kinematic translation. Used for homing axes and cartesian/core syncing.
*/
void sync_plan_position();
void sync_plan_position_e();
#if IS_KINEMATIC
void sync_plan_position_kinematic();
#define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
#else
#define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
#endif
/**
* Move the planner to the current position from wherever it last moved
* (or from wherever it has been told it is located).
*/
void line_to_current_position();
/**
* Move the planner to the position stored in the destination array, which is
* used by G0/G1/G2/G3/G5 and many other functions to set a destination.
*/
void line_to_destination(const float fr_mm_s);
inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
#if IS_KINEMATIC
void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0);
#endif
void prepare_move_to_destination();
void clamp_to_software_endstops(float target[XYZ]);
//
// Macros
//
// Workspace offsets
#if HAS_WORKSPACE_OFFSET
#if HAS_HOME_OFFSET
extern float home_offset[XYZ];
#endif
#if HAS_POSITION_SHIFT
extern float position_shift[XYZ];
#endif
#endif
#if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
extern float workspace_offset[XYZ];
#define WORKSPACE_OFFSET(AXIS) workspace_offset[AXIS]
#elif HAS_HOME_OFFSET
#define WORKSPACE_OFFSET(AXIS) home_offset[AXIS]
#elif HAS_POSITION_SHIFT
#define WORKSPACE_OFFSET(AXIS) position_shift[AXIS]
#else
#define WORKSPACE_OFFSET(AXIS) 0
#endif
#define LOGICAL_POSITION(POS, AXIS) ((POS) + WORKSPACE_OFFSET(AXIS))
#define RAW_POSITION(POS, AXIS) ((POS) - WORKSPACE_OFFSET(AXIS))
#if HAS_POSITION_SHIFT || DISABLED(DELTA)
#define LOGICAL_X_POSITION(POS) LOGICAL_POSITION(POS, X_AXIS)
#define LOGICAL_Y_POSITION(POS) LOGICAL_POSITION(POS, Y_AXIS)
#define RAW_X_POSITION(POS) RAW_POSITION(POS, X_AXIS)
#define RAW_Y_POSITION(POS) RAW_POSITION(POS, Y_AXIS)
#else
#define LOGICAL_X_POSITION(POS) (POS)
#define LOGICAL_Y_POSITION(POS) (POS)
#define RAW_X_POSITION(POS) (POS)
#define RAW_Y_POSITION(POS) (POS)
#endif
#define LOGICAL_Z_POSITION(POS) LOGICAL_POSITION(POS, Z_AXIS)
#define RAW_Z_POSITION(POS) RAW_POSITION(POS, Z_AXIS)
#define RAW_CURRENT_POSITION(A) RAW_##A##_POSITION(current_position[A##_AXIS])
/**
* position_is_reachable family of functions
*/
#if IS_KINEMATIC // (DELTA or SCARA)
#if IS_SCARA
extern const float L1, L2;
#endif
inline bool position_is_reachable_raw_xy(const float &rx, const float &ry) {
#if ENABLED(DELTA)
return HYPOT2(rx, ry) <= sq(DELTA_PRINTABLE_RADIUS);
#elif IS_SCARA
#if MIDDLE_DEAD_ZONE_R > 0
const float R2 = HYPOT2(rx - SCARA_OFFSET_X, ry - SCARA_OFFSET_Y);
return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
#else
return HYPOT2(rx - SCARA_OFFSET_X, ry - SCARA_OFFSET_Y) <= sq(L1 + L2);
#endif
#else // CARTESIAN
// To be migrated from MakerArm branch in future
#endif
}
inline bool position_is_reachable_by_probe_raw_xy(const float &rx, const float &ry) {
// Both the nozzle and the probe must be able to reach the point.
// This won't work on SCARA since the probe offset rotates with the arm.
return position_is_reachable_raw_xy(rx, ry)
&& position_is_reachable_raw_xy(rx - X_PROBE_OFFSET_FROM_EXTRUDER, ry - Y_PROBE_OFFSET_FROM_EXTRUDER);
}
#else // CARTESIAN
inline bool position_is_reachable_raw_xy(const float &rx, const float &ry) {
// Add 0.001 margin to deal with float imprecision
return WITHIN(rx, X_MIN_POS - 0.001, X_MAX_POS + 0.001)
&& WITHIN(ry, Y_MIN_POS - 0.001, Y_MAX_POS + 0.001);
}
inline bool position_is_reachable_by_probe_raw_xy(const float &rx, const float &ry) {
// Add 0.001 margin to deal with float imprecision
return WITHIN(rx, MIN_PROBE_X - 0.001, MAX_PROBE_X + 0.001)
&& WITHIN(ry, MIN_PROBE_Y - 0.001, MAX_PROBE_Y + 0.001);
}
#endif // CARTESIAN
FORCE_INLINE bool position_is_reachable_by_probe_xy(const float &lx, const float &ly) {
return position_is_reachable_by_probe_raw_xy(RAW_X_POSITION(lx), RAW_Y_POSITION(ly));
}
FORCE_INLINE bool position_is_reachable_xy(const float &lx, const float &ly) {
return position_is_reachable_raw_xy(RAW_X_POSITION(lx), RAW_Y_POSITION(ly));
}
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
extern bool extruder_duplication_enabled; // Used in Dual X mode 2
#endif
#if ENABLED(DUAL_X_CARRIAGE)
extern DualXMode dual_x_carriage_mode;
extern float inactive_extruder_x_pos, // used in mode 0 & 1
raised_parked_position[XYZE], // used in mode 1
duplicate_extruder_x_offset; // used in mode 2
extern bool active_extruder_parked; // used in mode 1 & 2
extern millis_t delayed_move_time; // used in mode 1
extern int16_t duplicate_extruder_temp_offset; // used in mode 2
float x_home_pos(const int extruder);
FORCE_INLINE int x_home_dir(const uint8_t extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
#endif // DUAL_X_CARRIAGE
#endif // MOTION_H

View file

@ -60,6 +60,7 @@
#include "planner.h" #include "planner.h"
#include "stepper.h" #include "stepper.h"
#include "motion.h"
#include "../module/temperature.h" #include "../module/temperature.h"
#include "../lcd/ultralcd.h" #include "../lcd/ultralcd.h"
#include "../core/language.h" #include "../core/language.h"

View file

@ -31,10 +31,13 @@
#if ENABLED(BEZIER_CURVE_SUPPORT) #if ENABLED(BEZIER_CURVE_SUPPORT)
#include "planner.h"
#include "motion.h"
#include "temperature.h"
#include "../Marlin.h" #include "../Marlin.h"
#include "../module/planner.h"
#include "../core/language.h" #include "../core/language.h"
#include "../module/temperature.h" #include "../gcode/queue.h"
// See the meaning in the documentation of cubic_b_spline(). // See the meaning in the documentation of cubic_b_spline().
#define MIN_STEP 0.002 #define MIN_STEP 0.002

View file

@ -57,6 +57,7 @@
#include "../module/temperature.h" #include "../module/temperature.h"
#include "../lcd/ultralcd.h" #include "../lcd/ultralcd.h"
#include "../core/language.h" #include "../core/language.h"
#include "../gcode/queue.h"
#include "../sd/cardreader.h" #include "../sd/cardreader.h"
#if MB(ALLIGATOR) #if MB(ALLIGATOR)

View file

@ -31,6 +31,7 @@
#include "../module/stepper.h" #include "../module/stepper.h"
#include "../module/printcounter.h" #include "../module/printcounter.h"
#include "../core/language.h" #include "../core/language.h"
#include "../gcode/queue.h"
#include <ctype.h> #include <ctype.h>