Merge remote-tracking branch 'MarlinFirmware/Development' into Merge_cleanup
Conflicts: Marlin/Marlin_main.cpp
This commit is contained in:
commit
745d9fe1a4
5 changed files with 389 additions and 323 deletions
|
@ -4,6 +4,10 @@
|
|||
*/
|
||||
#ifndef CONDITIONALS_H
|
||||
|
||||
#ifndef M_PI
|
||||
#define M_PI 3.1415926536
|
||||
#endif
|
||||
|
||||
#ifndef CONFIGURATION_LCD // Get the LCD defines which are needed first
|
||||
|
||||
#define CONFIGURATION_LCD
|
||||
|
@ -255,7 +259,7 @@
|
|||
* Advance calculated values
|
||||
*/
|
||||
#ifdef ADVANCE
|
||||
#define EXTRUSION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159)
|
||||
#define EXTRUSION_AREA (0.25 * D_FILAMENT * D_FILAMENT * M_PI)
|
||||
#define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS] / EXTRUSION_AREA)
|
||||
#endif
|
||||
|
||||
|
|
|
@ -29,6 +29,8 @@
|
|||
|
||||
#define BIT(b) (1<<(b))
|
||||
#define TEST(n,b) (((n)&BIT(b))!=0)
|
||||
#define RADIANS(d) ((d)*M_PI/180.0)
|
||||
#define DEGREES(r) ((d)*180.0/M_PI)
|
||||
|
||||
// Arduino < 1.0.0 does not define this, so we need to do it ourselves
|
||||
#ifndef analogInputToDigitalPin
|
||||
|
|
|
@ -1034,6 +1034,12 @@ inline void line_to_destination() {
|
|||
inline void sync_plan_position() {
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
}
|
||||
#if defined(DELTA) || defined(SCARA)
|
||||
inline void sync_plan_position_delta() {
|
||||
calculate_delta(current_position);
|
||||
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
|
@ -1103,15 +1109,14 @@ inline void sync_plan_position() {
|
|||
destination[Z_AXIS] = -10;
|
||||
prepare_move_raw();
|
||||
st_synchronize();
|
||||
endstops_hit_on_purpose();
|
||||
|
||||
endstops_hit_on_purpose(); // clear endstop hit flags
|
||||
|
||||
// we have to let the planner know where we are right now as it is not where we said to go.
|
||||
long stop_steps = st_get_position(Z_AXIS);
|
||||
float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
|
||||
current_position[Z_AXIS] = mm;
|
||||
calculate_delta(current_position);
|
||||
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
|
||||
|
||||
sync_plan_position_delta();
|
||||
|
||||
#else // !DELTA
|
||||
|
||||
plan_bed_level_matrix.set_to_identity();
|
||||
|
@ -1130,7 +1135,7 @@ inline void sync_plan_position() {
|
|||
zPosition += home_retract_mm(Z_AXIS);
|
||||
line_to_z(zPosition);
|
||||
st_synchronize();
|
||||
endstops_hit_on_purpose();
|
||||
endstops_hit_on_purpose(); // clear endstop hit flags
|
||||
|
||||
// move back down slowly to find bed
|
||||
if (homing_bump_divisor[Z_AXIS] >= 1)
|
||||
|
@ -1143,7 +1148,7 @@ inline void sync_plan_position() {
|
|||
zPosition -= home_retract_mm(Z_AXIS) * 2;
|
||||
line_to_z(zPosition);
|
||||
st_synchronize();
|
||||
endstops_hit_on_purpose();
|
||||
endstops_hit_on_purpose(); // clear endstop hit flags
|
||||
|
||||
current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
|
||||
// make sure the planner knows where we are as it may be a bit different than we last said to move to
|
||||
|
@ -1267,7 +1272,7 @@ inline void sync_plan_position() {
|
|||
if (servo_endstops[Z_AXIS] >= 0) {
|
||||
|
||||
#if Z_RAISE_AFTER_PROBING > 0
|
||||
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_AFTER_PROBING);
|
||||
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
|
||||
st_synchronize();
|
||||
#endif
|
||||
|
||||
|
@ -1355,7 +1360,7 @@ inline void sync_plan_position() {
|
|||
|
||||
#if Z_RAISE_BETWEEN_PROBINGS > 0
|
||||
if (retract_action == ProbeStay) {
|
||||
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_BETWEEN_PROBINGS);
|
||||
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
|
||||
st_synchronize();
|
||||
}
|
||||
#endif
|
||||
|
@ -1440,13 +1445,17 @@ inline void sync_plan_position() {
|
|||
|
||||
#endif // ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
/**
|
||||
* Home an individual axis
|
||||
*/
|
||||
|
||||
#define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
|
||||
|
||||
static void homeaxis(int axis) {
|
||||
#define HOMEAXIS_DO(LETTER) \
|
||||
((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
|
||||
|
||||
if (axis == X_AXIS ? HOMEAXIS_DO(X) :
|
||||
axis == Y_AXIS ? HOMEAXIS_DO(Y) :
|
||||
axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
|
||||
if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
|
||||
|
||||
int axis_home_dir;
|
||||
|
||||
|
@ -1456,166 +1465,165 @@ static void homeaxis(int axis) {
|
|||
axis_home_dir = home_dir(axis);
|
||||
#endif
|
||||
|
||||
// Set the axis position as setup for the move
|
||||
current_position[axis] = 0;
|
||||
sync_plan_position();
|
||||
|
||||
#ifndef Z_PROBE_SLED
|
||||
// Engage Servo endstop if enabled
|
||||
#ifdef SERVO_ENDSTOPS
|
||||
#if SERVO_LEVELING
|
||||
if (axis == Z_AXIS) {
|
||||
engage_z_probe();
|
||||
}
|
||||
else
|
||||
#endif // SERVO_LEVELING
|
||||
// Engage Servo endstop if enabled
|
||||
#ifdef SERVO_ENDSTOPS && !defined(Z_PROBE_SLED)
|
||||
|
||||
if (servo_endstops[axis] > -1)
|
||||
servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
|
||||
#if SERVO_LEVELING
|
||||
if (axis == Z_AXIS) engage_z_probe(); else
|
||||
#endif
|
||||
{
|
||||
if (servo_endstops[axis] > -1)
|
||||
servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
|
||||
}
|
||||
|
||||
#endif // SERVO_ENDSTOPS
|
||||
|
||||
#endif // Z_PROBE_SLED
|
||||
#endif // SERVO_ENDSTOPS && !Z_PROBE_SLED
|
||||
|
||||
#ifdef Z_DUAL_ENDSTOPS
|
||||
if (axis == Z_AXIS) In_Homing_Process(true);
|
||||
#endif
|
||||
|
||||
// Move towards the endstop until an endstop is triggered
|
||||
destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
|
||||
feedrate = homing_feedrate[axis];
|
||||
line_to_destination();
|
||||
st_synchronize();
|
||||
|
||||
// Set the axis position as setup for the move
|
||||
current_position[axis] = 0;
|
||||
sync_plan_position();
|
||||
|
||||
// Move away from the endstop by the axis HOME_RETRACT_MM
|
||||
destination[axis] = -home_retract_mm(axis) * axis_home_dir;
|
||||
line_to_destination();
|
||||
st_synchronize();
|
||||
|
||||
destination[axis] = 2 * home_retract_mm(axis) * axis_home_dir;
|
||||
|
||||
// Slow down the feedrate for the next move
|
||||
if (homing_bump_divisor[axis] >= 1)
|
||||
feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
|
||||
else {
|
||||
feedrate = homing_feedrate[axis] / 10;
|
||||
SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
|
||||
SERIAL_ECHOLNPGM("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
|
||||
}
|
||||
|
||||
// Move slowly towards the endstop until triggered
|
||||
destination[axis] = 2 * home_retract_mm(axis) * axis_home_dir;
|
||||
line_to_destination();
|
||||
st_synchronize();
|
||||
|
||||
#ifdef Z_DUAL_ENDSTOPS
|
||||
if (axis==Z_AXIS)
|
||||
{
|
||||
feedrate = homing_feedrate[axis];
|
||||
sync_plan_position();
|
||||
if (axis_home_dir > 0)
|
||||
{
|
||||
destination[axis] = (-1) * fabs(z_endstop_adj);
|
||||
if (z_endstop_adj > 0) Lock_z_motor(true); else Lock_z2_motor(true);
|
||||
} else {
|
||||
destination[axis] = fabs(z_endstop_adj);
|
||||
if (z_endstop_adj < 0) Lock_z_motor(true); else Lock_z2_motor(true);
|
||||
if (axis == Z_AXIS) {
|
||||
float adj = fabs(z_endstop_adj);
|
||||
bool lockZ1;
|
||||
if (axis_home_dir > 0) {
|
||||
adj = -adj;
|
||||
lockZ1 = (z_endstop_adj > 0);
|
||||
}
|
||||
else
|
||||
lockZ1 = (z_endstop_adj < 0);
|
||||
|
||||
if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
|
||||
sync_plan_position();
|
||||
|
||||
// Move to the adjusted endstop height
|
||||
feedrate = homing_feedrate[axis];
|
||||
destination[Z_AXIS] = adj;
|
||||
line_to_destination();
|
||||
st_synchronize();
|
||||
Lock_z_motor(false);
|
||||
Lock_z2_motor(false);
|
||||
|
||||
if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
|
||||
In_Homing_Process(false);
|
||||
} // Z_AXIS
|
||||
#endif
|
||||
|
||||
#ifdef DELTA
|
||||
// retrace by the amount specified in endstop_adj
|
||||
if (endstop_adj[axis] * axis_home_dir < 0) {
|
||||
sync_plan_position();
|
||||
destination[axis] = endstop_adj[axis];
|
||||
line_to_destination();
|
||||
st_synchronize();
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef DELTA
|
||||
// retrace by the amount specified in endstop_adj
|
||||
if (endstop_adj[axis] * axis_home_dir < 0) {
|
||||
sync_plan_position();
|
||||
destination[axis] = endstop_adj[axis];
|
||||
line_to_destination();
|
||||
st_synchronize();
|
||||
}
|
||||
#endif
|
||||
// Set the axis position to its home position (plus home offsets)
|
||||
axis_is_at_home(axis);
|
||||
|
||||
destination[axis] = current_position[axis];
|
||||
feedrate = 0.0;
|
||||
endstops_hit_on_purpose();
|
||||
endstops_hit_on_purpose(); // clear endstop hit flags
|
||||
axis_known_position[axis] = true;
|
||||
|
||||
// Retract Servo endstop if enabled
|
||||
#ifdef SERVO_ENDSTOPS
|
||||
if (servo_endstops[axis] > -1) {
|
||||
if (servo_endstops[axis] > -1)
|
||||
servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
|
||||
}
|
||||
#endif
|
||||
#if SERVO_LEVELING
|
||||
#ifndef Z_PROBE_SLED
|
||||
if (axis==Z_AXIS) retract_z_probe();
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if SERVO_LEVELING && !defined(Z_PROBE_SLED)
|
||||
if (axis == Z_AXIS) retract_z_probe();
|
||||
#endif
|
||||
|
||||
}
|
||||
}
|
||||
#define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
|
||||
|
||||
void refresh_cmd_timeout(void)
|
||||
{
|
||||
previous_millis_cmd = millis();
|
||||
}
|
||||
void refresh_cmd_timeout(void) { previous_millis_cmd = millis(); }
|
||||
|
||||
#ifdef FWRETRACT
|
||||
|
||||
void retract(bool retracting, bool swapretract = false) {
|
||||
if(retracting && !retracted[active_extruder]) {
|
||||
destination[X_AXIS]=current_position[X_AXIS];
|
||||
destination[Y_AXIS]=current_position[Y_AXIS];
|
||||
destination[Z_AXIS]=current_position[Z_AXIS];
|
||||
destination[E_AXIS]=current_position[E_AXIS];
|
||||
if (swapretract) {
|
||||
current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
|
||||
} else {
|
||||
current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
|
||||
}
|
||||
plan_set_e_position(current_position[E_AXIS]);
|
||||
float oldFeedrate = feedrate;
|
||||
|
||||
if (retracting == retracted[active_extruder]) return;
|
||||
|
||||
float oldFeedrate = feedrate;
|
||||
|
||||
for (int i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i];
|
||||
|
||||
if (retracting) {
|
||||
|
||||
feedrate = retract_feedrate * 60;
|
||||
retracted[active_extruder]=true;
|
||||
prepare_move();
|
||||
if(retract_zlift > 0.01) {
|
||||
current_position[Z_AXIS]-=retract_zlift;
|
||||
#ifdef DELTA
|
||||
calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
|
||||
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
|
||||
#else
|
||||
sync_plan_position();
|
||||
#endif
|
||||
prepare_move();
|
||||
}
|
||||
feedrate = oldFeedrate;
|
||||
} else if(!retracting && retracted[active_extruder]) {
|
||||
destination[X_AXIS]=current_position[X_AXIS];
|
||||
destination[Y_AXIS]=current_position[Y_AXIS];
|
||||
destination[Z_AXIS]=current_position[Z_AXIS];
|
||||
destination[E_AXIS]=current_position[E_AXIS];
|
||||
if(retract_zlift > 0.01) {
|
||||
current_position[Z_AXIS]+=retract_zlift;
|
||||
#ifdef DELTA
|
||||
calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
|
||||
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
|
||||
#else
|
||||
sync_plan_position();
|
||||
#endif
|
||||
//prepare_move();
|
||||
}
|
||||
if (swapretract) {
|
||||
current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
|
||||
} else {
|
||||
current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
|
||||
}
|
||||
current_position[E_AXIS] += (swapretract ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
|
||||
plan_set_e_position(current_position[E_AXIS]);
|
||||
float oldFeedrate = feedrate;
|
||||
feedrate = retract_recover_feedrate * 60;
|
||||
retracted[active_extruder] = false;
|
||||
prepare_move();
|
||||
feedrate = oldFeedrate;
|
||||
|
||||
if (retract_zlift > 0.01) {
|
||||
current_position[Z_AXIS] -= retract_zlift;
|
||||
#ifdef DELTA
|
||||
sync_plan_position_delta();
|
||||
#else
|
||||
sync_plan_position();
|
||||
#endif
|
||||
prepare_move();
|
||||
}
|
||||
}
|
||||
} //retract
|
||||
#endif //FWRETRACT
|
||||
else {
|
||||
|
||||
if (retract_zlift > 0.01) {
|
||||
current_position[Z_AXIS] + =retract_zlift;
|
||||
#ifdef DELTA
|
||||
sync_plan_position_delta();
|
||||
#else
|
||||
sync_plan_position();
|
||||
#endif
|
||||
//prepare_move();
|
||||
}
|
||||
|
||||
feedrate = retract_recover_feedrate * 60;
|
||||
float move_e = swapretract ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
|
||||
current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
|
||||
plan_set_e_position(current_position[E_AXIS]);
|
||||
prepare_move();
|
||||
}
|
||||
|
||||
feedrate = oldFeedrate;
|
||||
retracted[active_extruder] = retract;
|
||||
|
||||
} // retract()
|
||||
|
||||
#endif // FWRETRACT
|
||||
|
||||
#ifdef Z_PROBE_SLED
|
||||
|
||||
|
@ -1623,40 +1631,32 @@ void refresh_cmd_timeout(void)
|
|||
#define SLED_DOCKING_OFFSET 0
|
||||
#endif
|
||||
|
||||
//
|
||||
// Method to dock/undock a sled designed by Charles Bell.
|
||||
//
|
||||
// dock[in] If true, move to MAX_X and engage the electromagnet
|
||||
// offset[in] The additional distance to move to adjust docking location
|
||||
//
|
||||
static void dock_sled(bool dock, int offset=0) {
|
||||
int z_loc;
|
||||
|
||||
if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
|
||||
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
|
||||
return;
|
||||
}
|
||||
//
|
||||
// Method to dock/undock a sled designed by Charles Bell.
|
||||
//
|
||||
// dock[in] If true, move to MAX_X and engage the electromagnet
|
||||
// offset[in] The additional distance to move to adjust docking location
|
||||
//
|
||||
static void dock_sled(bool dock, int offset=0) {
|
||||
if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
|
||||
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
|
||||
return;
|
||||
}
|
||||
|
||||
if (dock) {
|
||||
do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
|
||||
current_position[Y_AXIS],
|
||||
current_position[Z_AXIS]);
|
||||
// turn off magnet
|
||||
digitalWrite(SERVO0_PIN, LOW);
|
||||
} else {
|
||||
if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
|
||||
z_loc = Z_RAISE_BEFORE_PROBING;
|
||||
else
|
||||
z_loc = current_position[Z_AXIS];
|
||||
do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
|
||||
Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
|
||||
// turn on magnet
|
||||
digitalWrite(SERVO0_PIN, HIGH);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
if (dock) {
|
||||
do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], current_position[Z_AXIS]);
|
||||
digitalWrite(SERVO0_PIN, LOW); // turn off magnet
|
||||
} else {
|
||||
float z_loc = current_position[Z_AXIS];
|
||||
if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
|
||||
do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
|
||||
digitalWrite(SERVO0_PIN, HIGH); // turn on magnet
|
||||
}
|
||||
}
|
||||
|
||||
#endif // Z_PROBE_SLED
|
||||
|
||||
/**
|
||||
*
|
||||
|
@ -1798,7 +1798,7 @@ inline void gcode_G28() {
|
|||
feedrate = 1.732 * homing_feedrate[X_AXIS];
|
||||
line_to_destination();
|
||||
st_synchronize();
|
||||
endstops_hit_on_purpose();
|
||||
endstops_hit_on_purpose(); // clear endstop hit flags
|
||||
|
||||
// Destination reached
|
||||
for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
|
||||
|
@ -1808,8 +1808,7 @@ inline void gcode_G28() {
|
|||
HOMEAXIS(Y);
|
||||
HOMEAXIS(Z);
|
||||
|
||||
calculate_delta(current_position);
|
||||
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
|
||||
sync_plan_position_delta();
|
||||
|
||||
#else // NOT DELTA
|
||||
|
||||
|
@ -1817,7 +1816,7 @@ inline void gcode_G28() {
|
|||
homeY = code_seen(axis_codes[Y_AXIS]),
|
||||
homeZ = code_seen(axis_codes[Z_AXIS]);
|
||||
|
||||
home_all_axis = !homeX && !homeY && !homeZ; // No parameters means home all axes
|
||||
home_all_axis = !(homeX || homeY || homeZ) || (homeX && homeY && homeZ);
|
||||
|
||||
#if Z_HOME_DIR > 0 // If homing away from BED do Z first
|
||||
|
||||
|
@ -1836,7 +1835,9 @@ inline void gcode_G28() {
|
|||
#endif
|
||||
|
||||
#ifdef QUICK_HOME
|
||||
if (home_all_axis || (homeX && homeY)) { //first diagonal move
|
||||
|
||||
if (home_all_axis || (homeX && homeY)) { // First diagonal move
|
||||
|
||||
current_position[X_AXIS] = current_position[Y_AXIS] = 0;
|
||||
|
||||
#ifdef DUAL_X_CARRIAGE
|
||||
|
@ -1847,27 +1848,26 @@ inline void gcode_G28() {
|
|||
#endif
|
||||
|
||||
sync_plan_position();
|
||||
destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;
|
||||
destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
|
||||
feedrate = homing_feedrate[X_AXIS];
|
||||
if (homing_feedrate[Y_AXIS] < feedrate) feedrate = homing_feedrate[Y_AXIS];
|
||||
if (max_length(X_AXIS) > max_length(Y_AXIS)) {
|
||||
feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
|
||||
} else {
|
||||
feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
|
||||
}
|
||||
|
||||
float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
|
||||
mlratio = mlx>mly ? mly/mlx : mlx/mly;
|
||||
|
||||
destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
|
||||
destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
|
||||
feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
|
||||
line_to_destination();
|
||||
st_synchronize();
|
||||
|
||||
axis_is_at_home(X_AXIS);
|
||||
axis_is_at_home(Y_AXIS);
|
||||
sync_plan_position();
|
||||
|
||||
destination[X_AXIS] = current_position[X_AXIS];
|
||||
destination[Y_AXIS] = current_position[Y_AXIS];
|
||||
line_to_destination();
|
||||
feedrate = 0.0;
|
||||
st_synchronize();
|
||||
endstops_hit_on_purpose();
|
||||
endstops_hit_on_purpose(); // clear endstop hit flags
|
||||
|
||||
current_position[X_AXIS] = destination[X_AXIS];
|
||||
current_position[Y_AXIS] = destination[Y_AXIS];
|
||||
|
@ -1875,7 +1875,8 @@ inline void gcode_G28() {
|
|||
current_position[Z_AXIS] = destination[Z_AXIS];
|
||||
#endif
|
||||
}
|
||||
#endif //QUICK_HOME
|
||||
|
||||
#endif // QUICK_HOME
|
||||
|
||||
// Home X
|
||||
if (home_all_axis || homeX) {
|
||||
|
@ -1957,7 +1958,7 @@ inline void gcode_G28() {
|
|||
&& cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
|
||||
&& cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
|
||||
current_position[Z_AXIS] = 0;
|
||||
plan_set_position(cpx, cpy, current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
plan_set_position(cpx, cpy, 0, current_position[E_AXIS]);
|
||||
destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
|
||||
feedrate = max_feedrate[Z_AXIS];
|
||||
line_to_destination();
|
||||
|
@ -1996,8 +1997,7 @@ inline void gcode_G28() {
|
|||
#endif // else DELTA
|
||||
|
||||
#ifdef SCARA
|
||||
calculate_delta(current_position);
|
||||
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
|
||||
sync_plan_position_delta();
|
||||
#endif
|
||||
|
||||
#ifdef ENDSTOPS_ONLY_FOR_HOMING
|
||||
|
@ -2024,7 +2024,7 @@ inline void gcode_G28() {
|
|||
feedrate = saved_feedrate;
|
||||
feedmultiply = saved_feedmultiply;
|
||||
previous_millis_cmd = millis();
|
||||
endstops_hit_on_purpose();
|
||||
endstops_hit_on_purpose(); // clear endstop hit flags
|
||||
}
|
||||
|
||||
#if defined(MESH_BED_LEVELING) || defined(ENABLE_AUTO_BED_LEVELING)
|
||||
|
@ -2196,8 +2196,7 @@ inline void gcode_G28() {
|
|||
bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
|
||||
#endif
|
||||
|
||||
if (verbose_level > 0)
|
||||
{
|
||||
if (verbose_level > 0) {
|
||||
SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
|
||||
if (dryrun) SERIAL_ECHOLN("Running in DRY-RUN mode");
|
||||
}
|
||||
|
@ -2272,10 +2271,9 @@ inline void gcode_G28() {
|
|||
current_position[Y_AXIS] = uncorrected_position.y;
|
||||
current_position[Z_AXIS] = uncorrected_position.z;
|
||||
sync_plan_position();
|
||||
|
||||
#endif // !DELTA
|
||||
}
|
||||
|
||||
|
||||
setup_for_endstop_move();
|
||||
|
||||
feedrate = homing_feedrate[Z_AXIS];
|
||||
|
@ -2283,8 +2281,8 @@ inline void gcode_G28() {
|
|||
#ifdef AUTO_BED_LEVELING_GRID
|
||||
|
||||
// probe at the points of a lattice grid
|
||||
const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points-1);
|
||||
const int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points-1);
|
||||
const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
|
||||
yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
|
||||
|
||||
#ifdef DELTA
|
||||
delta_grid_spacing[0] = xGridSpacing;
|
||||
|
@ -2842,9 +2840,7 @@ inline void gcode_M42() {
|
|||
inline void gcode_M48() {
|
||||
|
||||
double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
|
||||
int verbose_level = 1, n = 0, j, n_samples = 10, n_legs = 0, engage_probe_for_each_reading = 0;
|
||||
double X_current, Y_current, Z_current;
|
||||
double X_probe_location, Y_probe_location, Z_start_location, ext_position;
|
||||
int verbose_level = 1, n_samples = 10, n_legs = 0;
|
||||
|
||||
if (code_seen('V') || code_seen('v')) {
|
||||
verbose_level = code_value();
|
||||
|
@ -2865,14 +2861,14 @@ inline void gcode_M42() {
|
|||
}
|
||||
}
|
||||
|
||||
X_current = X_probe_location = st_get_position_mm(X_AXIS);
|
||||
Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
|
||||
Z_current = st_get_position_mm(Z_AXIS);
|
||||
Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
|
||||
ext_position = st_get_position_mm(E_AXIS);
|
||||
double X_probe_location, Y_probe_location,
|
||||
X_current = X_probe_location = st_get_position_mm(X_AXIS),
|
||||
Y_current = Y_probe_location = st_get_position_mm(Y_AXIS),
|
||||
Z_current = st_get_position_mm(Z_AXIS),
|
||||
Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING,
|
||||
ext_position = st_get_position_mm(E_AXIS);
|
||||
|
||||
if (code_seen('E') || code_seen('e'))
|
||||
engage_probe_for_each_reading++;
|
||||
bool engage_probe_for_each_reading = code_seen('E') || code_seen('e');
|
||||
|
||||
if (code_seen('X') || code_seen('x')) {
|
||||
X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
|
||||
|
@ -2952,33 +2948,29 @@ inline void gcode_M42() {
|
|||
|
||||
if (engage_probe_for_each_reading) retract_z_probe();
|
||||
|
||||
for (n=0; n < n_samples; n++) {
|
||||
for (uint16_t n=0; n < n_samples; n++) {
|
||||
|
||||
do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
|
||||
do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
|
||||
|
||||
if (n_legs) {
|
||||
double radius=0.0, theta=0.0;
|
||||
int l;
|
||||
int rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
|
||||
radius = (unsigned long)millis() % (long)(X_MAX_LENGTH / 4); // limit how far out to go
|
||||
theta = (float)((unsigned long)millis() % 360L) / (360. / (2 * 3.1415926)); // turn into radians
|
||||
unsigned long ms = millis();
|
||||
double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
|
||||
theta = RADIANS(ms % 360L);
|
||||
float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
|
||||
|
||||
//SERIAL_ECHOPAIR("starting radius: ",radius);
|
||||
//SERIAL_ECHOPAIR(" theta: ",theta);
|
||||
//SERIAL_ECHOPAIR(" direction: ",rotational_direction);
|
||||
//SERIAL_ECHOPAIR(" direction: ",dir);
|
||||
//SERIAL_EOL;
|
||||
|
||||
float dir = rotational_direction ? 1 : -1;
|
||||
for (l = 0; l < n_legs - 1; l++) {
|
||||
theta += dir * (float)((unsigned long)millis() % 20L) / (360.0/(2*3.1415926)); // turn into radians
|
||||
|
||||
radius += (float)(((long)((unsigned long) millis() % 10L)) - 5L);
|
||||
for (int l = 0; l < n_legs - 1; l++) {
|
||||
ms = millis();
|
||||
theta += RADIANS(dir * (ms % 20L));
|
||||
radius += (ms % 10L) - 5L;
|
||||
if (radius < 0.0) radius = -radius;
|
||||
|
||||
X_current = X_probe_location + cos(theta) * radius;
|
||||
Y_current = Y_probe_location + sin(theta) * radius;
|
||||
|
||||
// Make sure our X & Y are sane
|
||||
X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
|
||||
Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
|
||||
|
||||
|
@ -2988,10 +2980,13 @@ inline void gcode_M42() {
|
|||
SERIAL_EOL;
|
||||
}
|
||||
|
||||
do_blocking_move_to( X_current, Y_current, Z_current );
|
||||
}
|
||||
do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
|
||||
}
|
||||
do_blocking_move_to(X_current, Y_current, Z_current);
|
||||
|
||||
} // n_legs loop
|
||||
|
||||
do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
|
||||
|
||||
} // n_legs
|
||||
|
||||
if (engage_probe_for_each_reading) {
|
||||
engage_z_probe();
|
||||
|
@ -3007,46 +3002,49 @@ inline void gcode_M42() {
|
|||
// Get the current mean for the data points we have so far
|
||||
//
|
||||
sum = 0.0;
|
||||
for (j=0; j<=n; j++) sum += sample_set[j];
|
||||
mean = sum / (double (n+1));
|
||||
for (int j = 0; j <= n; j++) sum += sample_set[j];
|
||||
mean = sum / (n + 1);
|
||||
|
||||
//
|
||||
// Now, use that mean to calculate the standard deviation for the
|
||||
// data points we have so far
|
||||
//
|
||||
sum = 0.0;
|
||||
for (j=0; j<=n; j++) sum += (sample_set[j]-mean) * (sample_set[j]-mean);
|
||||
sigma = sqrt( sum / (double (n+1)) );
|
||||
for (int j = 0; j <= n; j++) {
|
||||
float ss = sample_set[j] - mean;
|
||||
sum += ss * ss;
|
||||
}
|
||||
sigma = sqrt(sum / (n + 1));
|
||||
|
||||
if (verbose_level > 1) {
|
||||
SERIAL_PROTOCOL(n+1);
|
||||
SERIAL_PROTOCOL(" of ");
|
||||
SERIAL_PROTOCOLPGM(" of ");
|
||||
SERIAL_PROTOCOL(n_samples);
|
||||
SERIAL_PROTOCOLPGM(" z: ");
|
||||
SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
|
||||
}
|
||||
|
||||
if (verbose_level > 2) {
|
||||
SERIAL_PROTOCOL(" mean: ");
|
||||
SERIAL_PROTOCOL_F(mean,6);
|
||||
SERIAL_PROTOCOL(" sigma: ");
|
||||
SERIAL_PROTOCOL_F(sigma,6);
|
||||
if (verbose_level > 2) {
|
||||
SERIAL_PROTOCOLPGM(" mean: ");
|
||||
SERIAL_PROTOCOL_F(mean,6);
|
||||
SERIAL_PROTOCOLPGM(" sigma: ");
|
||||
SERIAL_PROTOCOL_F(sigma,6);
|
||||
}
|
||||
}
|
||||
|
||||
if (verbose_level > 0) SERIAL_EOL;
|
||||
|
||||
plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location,
|
||||
current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
|
||||
plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
|
||||
st_synchronize();
|
||||
|
||||
if (engage_probe_for_each_reading) {
|
||||
retract_z_probe();
|
||||
retract_z_probe();
|
||||
delay(1000);
|
||||
}
|
||||
}
|
||||
|
||||
retract_z_probe();
|
||||
delay(1000);
|
||||
if (!engage_probe_for_each_reading) {
|
||||
retract_z_probe();
|
||||
delay(1000);
|
||||
}
|
||||
|
||||
clean_up_after_endstop_move();
|
||||
|
||||
|
@ -4688,9 +4686,7 @@ inline void gcode_T() {
|
|||
active_extruder = tmp_extruder;
|
||||
#endif // !DUAL_X_CARRIAGE
|
||||
#ifdef DELTA
|
||||
calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
|
||||
//sent position to plan_set_position();
|
||||
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
|
||||
sync_plan_position_delta();
|
||||
#else
|
||||
sync_plan_position();
|
||||
#endif
|
||||
|
@ -5279,104 +5275,99 @@ void clamp_to_software_endstops(float target[3])
|
|||
}
|
||||
|
||||
#ifdef DELTA
|
||||
void recalc_delta_settings(float radius, float diagonal_rod)
|
||||
{
|
||||
delta_tower1_x= -SIN_60*radius; // front left tower
|
||||
delta_tower1_y= -COS_60*radius;
|
||||
delta_tower2_x= SIN_60*radius; // front right tower
|
||||
delta_tower2_y= -COS_60*radius;
|
||||
delta_tower3_x= 0.0; // back middle tower
|
||||
delta_tower3_y= radius;
|
||||
delta_diagonal_rod_2= sq(diagonal_rod);
|
||||
}
|
||||
|
||||
void calculate_delta(float cartesian[3])
|
||||
{
|
||||
delta[X_AXIS] = sqrt(delta_diagonal_rod_2
|
||||
- sq(delta_tower1_x-cartesian[X_AXIS])
|
||||
- sq(delta_tower1_y-cartesian[Y_AXIS])
|
||||
) + cartesian[Z_AXIS];
|
||||
delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
|
||||
- sq(delta_tower2_x-cartesian[X_AXIS])
|
||||
- sq(delta_tower2_y-cartesian[Y_AXIS])
|
||||
) + cartesian[Z_AXIS];
|
||||
delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
|
||||
- sq(delta_tower3_x-cartesian[X_AXIS])
|
||||
- sq(delta_tower3_y-cartesian[Y_AXIS])
|
||||
) + cartesian[Z_AXIS];
|
||||
/*
|
||||
SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
|
||||
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
|
||||
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
|
||||
|
||||
SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
|
||||
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
|
||||
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
|
||||
*/
|
||||
}
|
||||
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
// Adjust print surface height by linear interpolation over the bed_level array.
|
||||
int delta_grid_spacing[2] = { 0, 0 };
|
||||
void adjust_delta(float cartesian[3])
|
||||
{
|
||||
if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0)
|
||||
return; // G29 not done
|
||||
|
||||
int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
|
||||
float grid_x = max(0.001-half, min(half-0.001, cartesian[X_AXIS] / delta_grid_spacing[0]));
|
||||
float grid_y = max(0.001-half, min(half-0.001, cartesian[Y_AXIS] / delta_grid_spacing[1]));
|
||||
int floor_x = floor(grid_x);
|
||||
int floor_y = floor(grid_y);
|
||||
float ratio_x = grid_x - floor_x;
|
||||
float ratio_y = grid_y - floor_y;
|
||||
float z1 = bed_level[floor_x+half][floor_y+half];
|
||||
float z2 = bed_level[floor_x+half][floor_y+half+1];
|
||||
float z3 = bed_level[floor_x+half+1][floor_y+half];
|
||||
float z4 = bed_level[floor_x+half+1][floor_y+half+1];
|
||||
float left = (1-ratio_y)*z1 + ratio_y*z2;
|
||||
float right = (1-ratio_y)*z3 + ratio_y*z4;
|
||||
float offset = (1-ratio_x)*left + ratio_x*right;
|
||||
|
||||
delta[X_AXIS] += offset;
|
||||
delta[Y_AXIS] += offset;
|
||||
delta[Z_AXIS] += offset;
|
||||
|
||||
/*
|
||||
SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
|
||||
SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
|
||||
SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
|
||||
SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
|
||||
SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
|
||||
SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
|
||||
SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
|
||||
SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
|
||||
SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
|
||||
SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
|
||||
SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
|
||||
SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
|
||||
SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
|
||||
*/
|
||||
}
|
||||
#endif //ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
void prepare_move_raw()
|
||||
{
|
||||
previous_millis_cmd = millis();
|
||||
calculate_delta(destination);
|
||||
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
|
||||
destination[E_AXIS], feedrate*feedmultiply/60/100.0,
|
||||
active_extruder);
|
||||
for(int8_t i=0; i < NUM_AXIS; i++) {
|
||||
current_position[i] = destination[i];
|
||||
void recalc_delta_settings(float radius, float diagonal_rod) {
|
||||
delta_tower1_x = -SIN_60 * radius; // front left tower
|
||||
delta_tower1_y = -COS_60 * radius;
|
||||
delta_tower2_x = SIN_60 * radius; // front right tower
|
||||
delta_tower2_y = -COS_60 * radius;
|
||||
delta_tower3_x = 0.0; // back middle tower
|
||||
delta_tower3_y = radius;
|
||||
delta_diagonal_rod_2 = sq(diagonal_rod);
|
||||
}
|
||||
}
|
||||
#endif //DELTA
|
||||
|
||||
void calculate_delta(float cartesian[3]) {
|
||||
delta[X_AXIS] = sqrt(delta_diagonal_rod_2
|
||||
- sq(delta_tower1_x-cartesian[X_AXIS])
|
||||
- sq(delta_tower1_y-cartesian[Y_AXIS])
|
||||
) + cartesian[Z_AXIS];
|
||||
delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
|
||||
- sq(delta_tower2_x-cartesian[X_AXIS])
|
||||
- sq(delta_tower2_y-cartesian[Y_AXIS])
|
||||
) + cartesian[Z_AXIS];
|
||||
delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
|
||||
- sq(delta_tower3_x-cartesian[X_AXIS])
|
||||
- sq(delta_tower3_y-cartesian[Y_AXIS])
|
||||
) + cartesian[Z_AXIS];
|
||||
/*
|
||||
SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
|
||||
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
|
||||
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
|
||||
|
||||
SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
|
||||
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
|
||||
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
|
||||
*/
|
||||
}
|
||||
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
// Adjust print surface height by linear interpolation over the bed_level array.
|
||||
int delta_grid_spacing[2] = { 0, 0 };
|
||||
void adjust_delta(float cartesian[3]) {
|
||||
if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
|
||||
|
||||
int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
|
||||
float h1 = 0.001 - half, h2 = half - 0.001,
|
||||
grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
|
||||
grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
|
||||
int floor_x = floor(grid_x), floor_y = floor(grid_y);
|
||||
float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
|
||||
z1 = bed_level[floor_x + half][floor_y + half],
|
||||
z2 = bed_level[floor_x + half][floor_y + half + 1],
|
||||
z3 = bed_level[floor_x + half + 1][floor_y + half],
|
||||
z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
|
||||
left = (1 - ratio_y) * z1 + ratio_y * z2,
|
||||
right = (1 - ratio_y) * z3 + ratio_y * z4,
|
||||
offset = (1 - ratio_x) * left + ratio_x * right;
|
||||
|
||||
delta[X_AXIS] += offset;
|
||||
delta[Y_AXIS] += offset;
|
||||
delta[Z_AXIS] += offset;
|
||||
|
||||
/*
|
||||
SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
|
||||
SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
|
||||
SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
|
||||
SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
|
||||
SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
|
||||
SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
|
||||
SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
|
||||
SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
|
||||
SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
|
||||
SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
|
||||
SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
|
||||
SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
|
||||
SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
|
||||
*/
|
||||
}
|
||||
#endif // ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
void prepare_move_raw() {
|
||||
previous_millis_cmd = millis();
|
||||
calculate_delta(destination);
|
||||
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
|
||||
for (int i = 0; i < NUM_AXIS; i++) current_position[i] = destination[i];
|
||||
}
|
||||
|
||||
#endif // DELTA
|
||||
|
||||
#if defined(MESH_BED_LEVELING)
|
||||
#if !defined(MIN)
|
||||
#define MIN(_v1, _v2) (((_v1) < (_v2)) ? (_v1) : (_v2))
|
||||
#endif // ! MIN
|
||||
|
||||
#if !defined(MIN)
|
||||
#define MIN(_v1, _v2) (((_v1) < (_v2)) ? (_v1) : (_v2))
|
||||
#endif // ! MIN
|
||||
|
||||
// This function is used to split lines on mesh borders so each segment is only part of one mesh area
|
||||
void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
|
||||
{
|
||||
|
@ -5448,8 +5439,7 @@ void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_
|
|||
}
|
||||
#endif // MESH_BED_LEVELING
|
||||
|
||||
void prepare_move()
|
||||
{
|
||||
void prepare_move() {
|
||||
clamp_to_software_endstops(destination);
|
||||
previous_millis_cmd = millis();
|
||||
|
||||
|
@ -5563,7 +5553,7 @@ void prepare_move()
|
|||
}
|
||||
#endif //DUAL_X_CARRIAGE
|
||||
|
||||
#if ! (defined DELTA || defined SCARA)
|
||||
#if !defined(DELTA) && !defined(SCARA)
|
||||
// Do not use feedmultiply for E or Z only moves
|
||||
if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
|
||||
line_to_destination();
|
||||
|
|
|
@ -312,6 +312,75 @@ static const pin_map_t digitalPinMap[] = {
|
|||
{&DDRC, &PINC, &PORTC, 4}, // C4 18
|
||||
{&DDRC, &PINC, &PORTC, 5} // C5 19
|
||||
};
|
||||
#elif defined(__AVR_ATmega1281__)
|
||||
// Waspmote
|
||||
|
||||
// Two Wire (aka I2C) ports
|
||||
uint8_t const SDA_PIN = 41;
|
||||
uint8_t const SCL_PIN = 40;
|
||||
|
||||
|
||||
#undef MOSI_PIN
|
||||
#undef MISO_PIN
|
||||
// SPI port
|
||||
uint8_t const SS_PIN = 16; // B0
|
||||
uint8_t const MOSI_PIN = 11; // B2
|
||||
uint8_t const MISO_PIN = 12; // B3
|
||||
uint8_t const SCK_PIN = 10; // B1
|
||||
|
||||
static const pin_map_t digitalPinMap[] = {
|
||||
{&DDRE, &PINE, &PORTE, 0}, // E0 0
|
||||
{&DDRE, &PINE, &PORTE, 1}, // E1 1
|
||||
{&DDRE, &PINE, &PORTE, 3}, // E3 2
|
||||
{&DDRE, &PINE, &PORTE, 4}, // E4 3
|
||||
{&DDRC, &PINC, &PORTC, 4}, // C4 4
|
||||
{&DDRC, &PINC, &PORTC, 5}, // C5 5
|
||||
{&DDRC, &PINC, &PORTC, 6}, // C6 6
|
||||
{&DDRC, &PINC, &PORTC, 7}, // C7 7
|
||||
{&DDRA, &PINA, &PORTA, 2}, // A2 8
|
||||
{&DDRA, &PINA, &PORTA, 3}, // A3 9
|
||||
{&DDRA, &PINA, &PORTA, 4}, // A4 10
|
||||
{&DDRD, &PIND, &PORTD, 5}, // D5 11
|
||||
{&DDRD, &PIND, &PORTD, 6}, // D6 12
|
||||
{&DDRC, &PINC, &PORTC, 1}, // C1 13
|
||||
{&DDRF, &PINF, &PORTF, 1}, // F1 14
|
||||
{&DDRF, &PINF, &PORTF, 2}, // F2 15
|
||||
{&DDRF, &PINF, &PORTF, 3}, // F3 16
|
||||
{&DDRF, &PINF, &PORTF, 4}, // F4 17
|
||||
{&DDRF, &PINF, &PORTF, 5}, // F5 18
|
||||
{&DDRF, &PINF, &PORTF, 6}, // F6 19
|
||||
{&DDRF, &PINF, &PORTF, 7}, // F7 20
|
||||
{&DDRF, &PINF, &PORTF, 0}, // F0 21
|
||||
{&DDRA, &PINA, &PORTA, 1}, // A1 22
|
||||
{&DDRD, &PIND, &PORTD, 7}, // D7 23
|
||||
{&DDRE, &PINE, &PORTE, 5}, // E5 24
|
||||
{&DDRA, &PINA, &PORTA, 6}, // A6 25
|
||||
{&DDRE, &PINE, &PORTE, 2}, // E2 26
|
||||
{&DDRA, &PINA, &PORTA, 5}, // A5 27
|
||||
{&DDRC, &PINC, &PORTC, 0}, // C0 28
|
||||
{&DDRB, &PINB, &PORTB, 0}, // B0 29
|
||||
{&DDRB, &PINB, &PORTB, 1}, // B1 30
|
||||
{&DDRB, &PINB, &PORTB, 2}, // B2 31
|
||||
{&DDRB, &PINB, &PORTB, 3}, // B3 32
|
||||
{&DDRB, &PINB, &PORTB, 4}, // B4 33
|
||||
{&DDRB, &PINB, &PORTB, 5}, // B5 34
|
||||
{&DDRA, &PINA, &PORTA, 0}, // A0 35
|
||||
{&DDRB, &PINB, &PORTB, 6}, // B6 36
|
||||
{&DDRB, &PINB, &PORTB, 7}, // B7 37
|
||||
{&DDRE, &PINE, &PORTE, 6}, // E6 38
|
||||
{&DDRE, &PINE, &PORTE, 7}, // E7 39
|
||||
{&DDRD, &PIND, &PORTD, 0}, // D0 40
|
||||
{&DDRD, &PIND, &PORTD, 1}, // D1 41
|
||||
{&DDRC, &PINC, &PORTC, 3}, // C3 42
|
||||
{&DDRD, &PIND, &PORTD, 2}, // D2 43
|
||||
{&DDRD, &PIND, &PORTD, 3}, // D3 44
|
||||
{&DDRA, &PINA, &PORTA, 7}, // A7 45
|
||||
{&DDRC, &PINC, &PORTC, 2}, // C2 46
|
||||
{&DDRD, &PIND, &PORTD, 4}, // D4 47
|
||||
{&DDRG, &PING, &PORTG, 2}, // G2 48
|
||||
{&DDRG, &PING, &PORTG, 1}, // G1 49
|
||||
{&DDRG, &PING, &PORTG, 0}, // G0 50
|
||||
};
|
||||
#else // defined(__AVR_ATmega1280__)
|
||||
#error unknown chip
|
||||
#endif // defined(__AVR_ATmega1280__)
|
||||
|
@ -364,4 +433,4 @@ static inline __attribute__((always_inline))
|
|||
#endif // Sd2PinMap_h
|
||||
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
|
|
@ -99,7 +99,8 @@
|
|||
#else //no LCD
|
||||
FORCE_INLINE void lcd_update() {}
|
||||
FORCE_INLINE void lcd_init() {}
|
||||
FORCE_INLINE void lcd_setstatus(const char* message) {}
|
||||
FORCE_INLINE void lcd_setstatus(const char* message, const bool persist=false) {}
|
||||
FORCE_INLINE void lcd_setstatuspgm(const char* message, const uint8_t level=0) {}
|
||||
FORCE_INLINE void lcd_buttons_update() {}
|
||||
FORCE_INLINE void lcd_reset_alert_level() {}
|
||||
FORCE_INLINE void lcd_buzz(long duration,uint16_t freq) {}
|
||||
|
|
Loading…
Reference in a new issue