diff --git a/Marlin/Makefile b/Marlin/Makefile
index e23c2a19b..34ad1340d 100644
--- a/Marlin/Makefile
+++ b/Marlin/Makefile
@@ -266,8 +266,8 @@ VPATH += $(ARDUINO_INSTALL_DIR)/hardware/teensy/cores/teensy
endif
CXXSRC = WMath.cpp WString.cpp Print.cpp Marlin_main.cpp \
MarlinSerial.cpp Sd2Card.cpp SdBaseFile.cpp SdFatUtil.cpp \
- SdFile.cpp SdVolume.cpp motion_control.cpp planner.cpp \
- stepper.cpp temperature.cpp cardreader.cpp configuration_store.cpp \
+ SdFile.cpp SdVolume.cpp planner.cpp stepper.cpp \
+ temperature.cpp cardreader.cpp configuration_store.cpp \
watchdog.cpp SPI.cpp servo.cpp Tone.cpp ultralcd.cpp digipot_mcp4451.cpp \
vector_3.cpp qr_solve.cpp
ifeq ($(LIQUID_TWI2), 0)
diff --git a/Marlin/Marlin.h b/Marlin/Marlin.h
index c62ba9130..af362457d 100644
--- a/Marlin/Marlin.h
+++ b/Marlin/Marlin.h
@@ -207,7 +207,6 @@ void disable_all_steppers();
void FlushSerialRequestResend();
void ok_to_send();
-void get_coordinates();
#ifdef DELTA
void calculate_delta(float cartesian[3]);
#ifdef ENABLE_AUTO_BED_LEVELING
diff --git a/Marlin/Marlin_main.cpp b/Marlin/Marlin_main.cpp
index ecdad9977..803ea07cf 100644
--- a/Marlin/Marlin_main.cpp
+++ b/Marlin/Marlin_main.cpp
@@ -47,7 +47,6 @@
#include "planner.h"
#include "stepper.h"
#include "temperature.h"
-#include "motion_control.h"
#include "cardreader.h"
#include "watchdog.h"
#include "configuration_store.h"
@@ -226,7 +225,7 @@ bool Running = true;
uint8_t marlin_debug_flags = DEBUG_INFO|DEBUG_ERRORS;
-static float feedrate = 1500.0, next_feedrate, saved_feedrate;
+static float feedrate = 1500.0, saved_feedrate;
float current_position[NUM_AXIS] = { 0.0 };
static float destination[NUM_AXIS] = { 0.0 };
bool axis_known_position[3] = { false };
@@ -258,7 +257,6 @@ const char errormagic[] PROGMEM = "Error:";
const char echomagic[] PROGMEM = "echo:";
const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
-static float offset[3] = { 0 };
static bool relative_mode = false; //Determines Absolute or Relative Coordinates
static char serial_char;
static int serial_count = 0;
@@ -401,7 +399,6 @@ bool target_direction;
//================================ Functions ================================
//===========================================================================
-void get_arc_coordinates();
bool setTargetedHotend(int code);
void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
@@ -1770,12 +1767,32 @@ static void homeaxis(AxisEnum axis) {
*
*/
+/**
+ * Set XYZE destination and feedrate from the current GCode command
+ *
+ * - Set destination from included axis codes
+ * - Set to current for missing axis codes
+ * - Set the feedrate, if included
+ */
+void gcode_get_destination() {
+ for (int i = 0; i < NUM_AXIS; i++) {
+ if (code_seen(axis_codes[i]))
+ destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
+ else
+ destination[i] = current_position[i];
+ }
+ if (code_seen('F')) {
+ float next_feedrate = code_value();
+ if (next_feedrate > 0.0) feedrate = next_feedrate;
+ }
+}
+
/**
* G0, G1: Coordinated movement of X Y Z E axes
*/
inline void gcode_G0_G1() {
if (IsRunning()) {
- get_coordinates(); // For X Y Z E F
+ gcode_get_destination(); // For X Y Z E F
#ifdef FWRETRACT
@@ -1797,14 +1814,158 @@ inline void gcode_G0_G1() {
}
}
+/**
+ * Plan an arc in 2 dimensions
+ *
+ * The arc is approximated by generating many small linear segments.
+ * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
+ * Arcs should only be made relatively large (over 5mm), as larger arcs with
+ * larger segments will tend to be more efficient. Your slicer should have
+ * options for G2/G3 arc generation. In future these options may be GCode tunable.
+ */
+void plan_arc(
+ float *target, // Destination position
+ float *offset, // Center of rotation relative to current_position
+ uint8_t clockwise // Clockwise?
+) {
+
+ float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
+ center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
+ center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
+ linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
+ extruder_travel = target[E_AXIS] - current_position[E_AXIS],
+ r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
+ r_axis1 = -offset[Y_AXIS],
+ rt_axis0 = target[X_AXIS] - center_axis0,
+ rt_axis1 = target[Y_AXIS] - center_axis1;
+
+ // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
+ float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
+ if (angular_travel < 0) { angular_travel += RADIANS(360); }
+ if (clockwise) { angular_travel -= RADIANS(360); }
+
+ // Make a circle if the angular rotation is 0
+ if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
+ angular_travel += RADIANS(360);
+
+ float mm_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
+ if (mm_of_travel < 0.001) { return; }
+ uint16_t segments = floor(mm_of_travel / MM_PER_ARC_SEGMENT);
+ if (segments == 0) segments = 1;
+
+ float theta_per_segment = angular_travel/segments;
+ float linear_per_segment = linear_travel/segments;
+ float extruder_per_segment = extruder_travel/segments;
+
+ /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
+ and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
+ r_T = [cos(phi) -sin(phi);
+ sin(phi) cos(phi] * r ;
+
+ For arc generation, the center of the circle is the axis of rotation and the radius vector is
+ defined from the circle center to the initial position. Each line segment is formed by successive
+ vector rotations. This requires only two cos() and sin() computations to form the rotation
+ matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
+ all double numbers are single precision on the Arduino. (True double precision will not have
+ round off issues for CNC applications.) Single precision error can accumulate to be greater than
+ tool precision in some cases. Therefore, arc path correction is implemented.
+
+ Small angle approximation may be used to reduce computation overhead further. This approximation
+ holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
+ theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
+ to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
+ numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
+ issue for CNC machines with the single precision Arduino calculations.
+
+ This approximation also allows plan_arc to immediately insert a line segment into the planner
+ without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
+ a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
+ This is important when there are successive arc motions.
+ */
+ // Vector rotation matrix values
+ float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
+ float sin_T = theta_per_segment;
+
+ float arc_target[4];
+ float sin_Ti;
+ float cos_Ti;
+ float r_axisi;
+ uint16_t i;
+ int8_t count = 0;
+
+ // Initialize the linear axis
+ arc_target[Z_AXIS] = current_position[Z_AXIS];
+
+ // Initialize the extruder axis
+ arc_target[E_AXIS] = current_position[E_AXIS];
+
+ float feed_rate = feedrate*feedrate_multiplier/60/100.0;
+
+ for (i = 1; i < segments; i++) { // Increment (segments-1)
+
+ if (count < N_ARC_CORRECTION) {
+ // Apply vector rotation matrix to previous r_axis0 / 1
+ r_axisi = r_axis0*sin_T + r_axis1*cos_T;
+ r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
+ r_axis1 = r_axisi;
+ count++;
+ }
+ else {
+ // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
+ // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
+ cos_Ti = cos(i*theta_per_segment);
+ sin_Ti = sin(i*theta_per_segment);
+ r_axis0 = -offset[X_AXIS]*cos_Ti + offset[Y_AXIS]*sin_Ti;
+ r_axis1 = -offset[X_AXIS]*sin_Ti - offset[Y_AXIS]*cos_Ti;
+ count = 0;
+ }
+
+ // Update arc_target location
+ arc_target[X_AXIS] = center_axis0 + r_axis0;
+ arc_target[Y_AXIS] = center_axis1 + r_axis1;
+ arc_target[Z_AXIS] += linear_per_segment;
+ arc_target[E_AXIS] += extruder_per_segment;
+
+ clamp_to_software_endstops(arc_target);
+ plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
+ }
+ // Ensure last segment arrives at target location.
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
+
+ // As far as the parser is concerned, the position is now == target. In reality the
+ // motion control system might still be processing the action and the real tool position
+ // in any intermediate location.
+ set_current_to_destination();
+}
+
/**
* G2: Clockwise Arc
* G3: Counterclockwise Arc
*/
inline void gcode_G2_G3(bool clockwise) {
if (IsRunning()) {
- get_arc_coordinates();
- prepare_arc_move(clockwise);
+
+ #ifdef SF_ARC_FIX
+ bool relative_mode_backup = relative_mode;
+ relative_mode = true;
+ #endif
+
+ gcode_get_destination();
+
+ #ifdef SF_ARC_FIX
+ relative_mode = relative_mode_backup;
+ #endif
+
+ // Center of arc as offset from current_position
+ float arc_offset[2] = {
+ code_seen('I') ? code_value() : 0,
+ code_seen('J') ? code_value() : 0
+ };
+
+ // Send an arc to the planner
+ plan_arc(destination, arc_offset, clockwise);
+
+ refresh_cmd_timeout();
}
}
@@ -4308,7 +4469,7 @@ inline void gcode_M303() {
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
//SERIAL_ECHOLN(" Soft endstops disabled ");
if (IsRunning()) {
- //get_coordinates(); // For X Y Z E F
+ //gcode_get_destination(); // For X Y Z E F
delta[X_AXIS] = delta_x;
delta[Y_AXIS] = delta_y;
calculate_SCARA_forward_Transform(delta);
@@ -4932,7 +5093,7 @@ inline void gcode_T() {
make_move = true;
#endif
- next_feedrate = code_value();
+ float next_feedrate = code_value();
if (next_feedrate > 0.0) feedrate = next_feedrate;
}
#if EXTRUDERS > 1
@@ -5562,33 +5723,6 @@ void ok_to_send() {
SERIAL_EOL;
}
-void get_coordinates() {
- for (int i = 0; i < NUM_AXIS; i++) {
- if (code_seen(axis_codes[i]))
- destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
- else
- destination[i] = current_position[i];
- }
- if (code_seen('F')) {
- next_feedrate = code_value();
- if (next_feedrate > 0.0) feedrate = next_feedrate;
- }
-}
-
-void get_arc_coordinates() {
- #ifdef SF_ARC_FIX
- bool relative_mode_backup = relative_mode;
- relative_mode = true;
- #endif
- get_coordinates();
- #ifdef SF_ARC_FIX
- relative_mode = relative_mode_backup;
- #endif
-
- offset[0] = code_seen('I') ? code_value() : 0;
- offset[1] = code_seen('J') ? code_value() : 0;
-}
-
void clamp_to_software_endstops(float target[3]) {
if (min_software_endstops) {
NOLESS(target[X_AXIS], min_pos[X_AXIS]);
@@ -5912,19 +6046,6 @@ void prepare_move() {
set_current_to_destination();
}
-void prepare_arc_move(char isclockwise) {
- float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
-
- // Trace the arc
- mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedrate_multiplier/60/100.0, r, isclockwise, active_extruder);
-
- // As far as the parser is concerned, the position is now == target. In reality the
- // motion control system might still be processing the action and the real tool position
- // in any intermediate location.
- set_current_to_destination();
- refresh_cmd_timeout();
-}
-
#if HAS_CONTROLLERFAN
void controllerFan() {
diff --git a/Marlin/motion_control.cpp b/Marlin/motion_control.cpp
deleted file mode 100644
index b26cbafc8..000000000
--- a/Marlin/motion_control.cpp
+++ /dev/null
@@ -1,145 +0,0 @@
-/*
- motion_control.c - high level interface for issuing motion commands
- Part of Grbl
-
- Copyright (c) 2009-2011 Simen Svale Skogsrud
- Copyright (c) 2011 Sungeun K. Jeon
-
- Grbl is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
-
- Grbl is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with Grbl. If not, see .
-*/
-
-#include "Marlin.h"
-#include "stepper.h"
-#include "planner.h"
-
-// The arc is approximated by generating a huge number of tiny, linear segments. The length of each
-// segment is configured in settings.mm_per_arc_segment.
-void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8_t axis_1,
- uint8_t axis_linear, float feed_rate, float radius, uint8_t isclockwise, uint8_t extruder)
-{
- // int acceleration_manager_was_enabled = plan_is_acceleration_manager_enabled();
- // plan_set_acceleration_manager_enabled(false); // disable acceleration management for the duration of the arc
- float center_axis0 = position[axis_0] + offset[axis_0];
- float center_axis1 = position[axis_1] + offset[axis_1];
- float linear_travel = target[axis_linear] - position[axis_linear];
- float extruder_travel = target[E_AXIS] - position[E_AXIS];
- float r_axis0 = -offset[axis_0]; // Radius vector from center to current location
- float r_axis1 = -offset[axis_1];
- float rt_axis0 = target[axis_0] - center_axis0;
- float rt_axis1 = target[axis_1] - center_axis1;
-
- // CCW angle between position and target from circle center. Only one atan2() trig computation required.
- float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
- if (angular_travel < 0) { angular_travel += 2*M_PI; }
- if (isclockwise) { angular_travel -= 2*M_PI; }
-
- //20141002:full circle for G03 did not work, e.g. G03 X80 Y80 I20 J0 F2000 is giving an Angle of zero so head is not moving
- //to compensate when start pos = target pos && angle is zero -> angle = 2Pi
- if (position[axis_0] == target[axis_0] && position[axis_1] == target[axis_1] && angular_travel == 0)
- {
- angular_travel += 2*M_PI;
- }
- //end fix G03
-
- float millimeters_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
- if (millimeters_of_travel < 0.001) { return; }
- uint16_t segments = floor(millimeters_of_travel/MM_PER_ARC_SEGMENT);
- if(segments == 0) segments = 1;
-
- /*
- // Multiply inverse feed_rate to compensate for the fact that this movement is approximated
- // by a number of discrete segments. The inverse feed_rate should be correct for the sum of
- // all segments.
- if (invert_feed_rate) { feed_rate *= segments; }
- */
- float theta_per_segment = angular_travel/segments;
- float linear_per_segment = linear_travel/segments;
- float extruder_per_segment = extruder_travel/segments;
-
- /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
- and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
- r_T = [cos(phi) -sin(phi);
- sin(phi) cos(phi] * r ;
-
- For arc generation, the center of the circle is the axis of rotation and the radius vector is
- defined from the circle center to the initial position. Each line segment is formed by successive
- vector rotations. This requires only two cos() and sin() computations to form the rotation
- matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
- all double numbers are single precision on the Arduino. (True double precision will not have
- round off issues for CNC applications.) Single precision error can accumulate to be greater than
- tool precision in some cases. Therefore, arc path correction is implemented.
-
- Small angle approximation may be used to reduce computation overhead further. This approximation
- holds for everything, but very small circles and large mm_per_arc_segment values. In other words,
- theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
- to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
- numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
- issue for CNC machines with the single precision Arduino calculations.
-
- This approximation also allows mc_arc to immediately insert a line segment into the planner
- without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
- a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead.
- This is important when there are successive arc motions.
- */
- // Vector rotation matrix values
- float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
- float sin_T = theta_per_segment;
-
- float arc_target[4];
- float sin_Ti;
- float cos_Ti;
- float r_axisi;
- uint16_t i;
- int8_t count = 0;
-
- // Initialize the linear axis
- arc_target[axis_linear] = position[axis_linear];
-
- // Initialize the extruder axis
- arc_target[E_AXIS] = position[E_AXIS];
-
- for (i = 1; i.
-*/
-
-#ifndef motion_control_h
-#define motion_control_h
-
-// Execute an arc in offset mode format. position == current xyz, target == target xyz,
-// offset == offset from current xyz, axis_XXX defines circle plane in tool space, axis_linear is
-// the direction of helical travel, radius == circle radius, isclockwise boolean. Used
-// for vector transformation direction.
-void mc_arc(float *position, float *target, float *offset, unsigned char axis_0, unsigned char axis_1,
- unsigned char axis_linear, float feed_rate, float radius, unsigned char isclockwise, uint8_t extruder);
-
-#endif