Merge pull request #575 from buildrob101/DualXCarriageMerge

Add duplication and auto-park mode for dual x-carriage support.
This commit is contained in:
ErikZalm 2013-08-07 13:10:54 -07:00
commit aa6c58ad37
5 changed files with 316 additions and 59 deletions

1
.gitignore vendored
View file

@ -3,3 +3,4 @@ applet/
*~
*.orig
*.rej
*.bak

View file

@ -155,8 +155,8 @@
// Configuration for second X-carriage
// Note: the first x-carriage is defined as the x-carriage which homes to the minimum endstop;
// the second x-carriage always homes to the maximum endstop.
#define X2_MIN_POS 88 // set minimum to ensure second x-carriage doesn't hit the parked first X-carriage
#define X2_MAX_POS 350.45 // set maximum to the distance between toolheads when both heads are homed
#define X2_MIN_POS 80 // set minimum to ensure second x-carriage doesn't hit the parked first X-carriage
#define X2_MAX_POS 353 // set maximum to the distance between toolheads when both heads are homed
#define X2_HOME_DIR 1 // the second X-carriage always homes to the maximum endstop position
#define X2_HOME_POS X2_MAX_POS // default home position is the maximum carriage position
// However: In this mode the EXTRUDER_OFFSET_X value for the second extruder provides a software
@ -169,7 +169,29 @@
#define X2_STEP_PIN 25
#define X2_DIR_PIN 23
#endif // DUAL_X_CARRIAGE
// There are a few selectable movement modes for dual x-carriages using M605 S<mode>
// Mode 0: Full control. The slicer has full control over both x-carriages and can achieve optimal travel results
// as long as it supports dual x-carriages. (M605 S0)
// Mode 1: Auto-park mode. The firmware will automatically park and unpark the x-carriages on tool changes so
// that additional slicer support is not required. (M605 S1)
// Mode 2: Duplication mode. The firmware will transparently make the second x-carriage and extruder copy all
// actions of the first x-carriage. This allows the printer to print 2 arbitrary items at
// once. (2nd extruder x offset and temp offset are set using: M605 S2 [Xnnn] [Rmmm])
// This is the default power-up mode which can be later using M605.
#define DEFAULT_DUAL_X_CARRIAGE_MODE 0
// As the x-carriages are independent we can now account for any relative Z offset
#define EXTRUDER1_Z_OFFSET 0.0 // z offset relative to extruder 0
// Default settings in "Auto-park Mode"
#define TOOLCHANGE_PARK_ZLIFT 0.2 // the distance to raise Z axis when parking an extruder
#define TOOLCHANGE_UNPARK_ZLIFT 1 // the distance to raise Z axis when unparking an extruder
// Default x offset in duplication mode (typically set to half print bed width)
#define DEFAULT_DUPLICATION_X_OFFSET 100
#endif //DUAL_X_CARRIAGE
//homing hits the endstop, then retracts by this distance, before it tries to slowly bump again:
#define X_HOME_RETRACT_MM 5

View file

@ -139,6 +139,7 @@
// M503 - print the current settings (from memory not from eeprom)
// M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
// M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
// M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
// M907 - Set digital trimpot motor current using axis codes.
// M908 - Control digital trimpot directly.
// M350 - Set microstepping mode.
@ -168,9 +169,15 @@ float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
float add_homeing[3]={0,0,0};
float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
// Extruder offset, only in XY plane
// Extruder offset
#if EXTRUDERS > 1
float extruder_offset[2][EXTRUDERS] = {
#ifndef DUAL_X_CARRIAGE
#define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
#else
#define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
#endif
float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
#if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
#endif
@ -693,6 +700,11 @@ XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
#error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
#endif
#define DXC_FULL_CONTROL_MODE 0
#define DXC_AUTO_PARK_MODE 1
#define DXC_DUPLICATION_MODE 2
static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
static float x_home_pos(int extruder) {
if (extruder == 0)
return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
@ -708,16 +720,31 @@ static int x_home_dir(int extruder) {
return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
}
static float inactive_x_carriage_pos = X2_MAX_POS;
#endif
static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
static bool active_extruder_parked = false; // used in mode 1 & 2
static float raised_parked_position[NUM_AXIS]; // used in mode 1
static unsigned long delayed_move_time = 0; // used in mode 1
static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
static float duplicate_extruder_temp_offset = 0; // used in mode 2
bool extruder_duplication_enabled = false; // used in mode 2
#endif //DUAL_X_CARRIAGE
static void axis_is_at_home(int axis) {
#ifdef DUAL_X_CARRIAGE
if (axis == X_AXIS && active_extruder != 0) {
current_position[X_AXIS] = x_home_pos(active_extruder);
min_pos[X_AXIS] = X2_MIN_POS;
max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
return;
if (axis == X_AXIS) {
if (active_extruder != 0) {
current_position[X_AXIS] = x_home_pos(active_extruder);
min_pos[X_AXIS] = X2_MIN_POS;
max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
return;
}
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
return;
}
}
#endif
current_position[axis] = base_home_pos(axis) + add_homeing[axis];
@ -869,7 +896,7 @@ void process_commands()
for(int8_t i=0; i < NUM_AXIS; i++) {
destination[i] = current_position[i];
}
feedrate = 0.0;
feedrate = 0.0;
#ifdef DELTA
// A delta can only safely home all axis at the same time
@ -920,6 +947,7 @@ void process_commands()
int x_axis_home_dir = home_dir(X_AXIS);
#else
int x_axis_home_dir = x_home_dir(active_extruder);
extruder_duplication_enabled = false;
#endif
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
@ -950,12 +978,19 @@ void process_commands()
{
#ifdef DUAL_X_CARRIAGE
int tmp_extruder = active_extruder;
extruder_duplication_enabled = false;
active_extruder = !active_extruder;
HOMEAXIS(X);
inactive_x_carriage_pos = current_position[X_AXIS];
inactive_extruder_x_pos = current_position[X_AXIS];
active_extruder = tmp_extruder;
#endif
HOMEAXIS(X);
// reset state used by the different modes
memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
delayed_move_time = 0;
active_extruder_parked = true;
#else
HOMEAXIS(X);
#endif
}
if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
@ -1199,6 +1234,10 @@ void process_commands()
break;
}
if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
#ifdef DUAL_X_CARRIAGE
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
#endif
setWatch();
break;
case 140: // M140 set bed temp
@ -1252,9 +1291,17 @@ void process_commands()
#endif
if (code_seen('S')) {
setTargetHotend(code_value(), tmp_extruder);
#ifdef DUAL_X_CARRIAGE
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
#endif
CooldownNoWait = true;
} else if (code_seen('R')) {
setTargetHotend(code_value(), tmp_extruder);
#ifdef DUAL_X_CARRIAGE
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
#endif
CooldownNoWait = false;
}
#ifdef AUTOTEMP
@ -1671,6 +1718,12 @@ void process_commands()
{
extruder_offset[Y_AXIS][tmp_extruder] = code_value();
}
#ifdef DUAL_X_CARRIAGE
if(code_seen('Z'))
{
extruder_offset[Z_AXIS][tmp_extruder] = code_value();
}
#endif
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
@ -1679,6 +1732,10 @@ void process_commands()
SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
SERIAL_ECHO(",");
SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
#ifdef DUAL_X_CARRIAGE
SERIAL_ECHO(",");
SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
#endif
}
SERIAL_ECHOLN("");
}break;
@ -2013,6 +2070,53 @@ void process_commands()
}
break;
#endif //FILAMENTCHANGEENABLE
#ifdef DUAL_X_CARRIAGE
case 605: // Set dual x-carriage movement mode:
// M605 S0: Full control mode. The slicer has full control over x-carriage movement
// M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
// M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
// millimeters x-offset and an optional differential hotend temperature of
// mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
// the first with a spacing of 100mm in the x direction and 2 degrees hotter.
//
// Note: the X axis should be homed after changing dual x-carriage mode.
{
st_synchronize();
if (code_seen('S'))
dual_x_carriage_mode = code_value();
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
{
if (code_seen('X'))
duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
if (code_seen('R'))
duplicate_extruder_temp_offset = code_value();
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
SERIAL_ECHO(" ");
SERIAL_ECHO(extruder_offset[X_AXIS][0]);
SERIAL_ECHO(",");
SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
SERIAL_ECHO(" ");
SERIAL_ECHO(duplicate_extruder_x_offset);
SERIAL_ECHO(",");
SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
}
else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
{
dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
}
active_extruder_parked = false;
extruder_duplication_enabled = false;
delayed_move_time = 0;
}
break;
#endif //DUAL_X_CARRIAGE
case 907: // M907 Set digital trimpot motor current using axis codes.
{
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
@ -2092,18 +2196,55 @@ void process_commands()
// Save current position to return to after applying extruder offset
memcpy(destination, current_position, sizeof(destination));
#ifdef DUAL_X_CARRIAGE
// only apply Y extruder offset in dual x carriage mode (x offset is already used in determining home pos)
if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
(delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
{
// Park old head: 1) raise 2) move to park position 3) lower
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
st_synchronize();
}
// apply Y & Z extruder offset (x offset is already used in determining home pos)
current_position[Y_AXIS] = current_position[Y_AXIS] -
extruder_offset[Y_AXIS][active_extruder] +
extruder_offset[Y_AXIS][tmp_extruder];
current_position[Z_AXIS] = current_position[Z_AXIS] -
extruder_offset[Z_AXIS][active_extruder] +
extruder_offset[Z_AXIS][tmp_extruder];
float tmp_x_pos = current_position[X_AXIS];
// Set the new active extruder and position
active_extruder = tmp_extruder;
axis_is_at_home(X_AXIS); //this function updates X min/max values.
current_position[X_AXIS] = inactive_x_carriage_pos;
inactive_x_carriage_pos = tmp_x_pos;
// This function resets the max/min values - the current position may be overwritten below.
axis_is_at_home(X_AXIS);
if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
{
current_position[X_AXIS] = inactive_extruder_x_pos;
inactive_extruder_x_pos = destination[X_AXIS];
}
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
{
active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
if (active_extruder == 0 || active_extruder_parked)
current_position[X_AXIS] = inactive_extruder_x_pos;
else
current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
inactive_extruder_x_pos = destination[X_AXIS];
extruder_duplication_enabled = false;
}
else
{
// record raised toolhead position for use by unpark
memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
active_extruder_parked = true;
delayed_move_time = 0;
}
#else
// Offset extruder (only by XY)
int i;
@ -2309,6 +2450,48 @@ void prepare_move()
active_extruder);
}
#else
#ifdef DUAL_X_CARRIAGE
if (active_extruder_parked)
{
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
{
// move duplicate extruder into correct duplication position.
plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
current_position[E_AXIS], max_feedrate[X_AXIS], 1);
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
st_synchronize();
extruder_duplication_enabled = true;
active_extruder_parked = false;
}
else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
{
if (current_position[E_AXIS] == destination[E_AXIS])
{
// this is a travel move - skit it but keep track of current position (so that it can later
// be used as start of first non-travel move)
if (delayed_move_time != 0xFFFFFFFFUL)
{
memcpy(current_position, destination, sizeof(current_position));
if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
raised_parked_position[Z_AXIS] = destination[Z_AXIS];
delayed_move_time = millis();
return;
}
}
delayed_move_time = 0;
// unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
active_extruder_parked = false;
}
}
#endif //DUAL_X_CARRIAGE
// Do not use feedmultiply for E or Z only moves
if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
@ -2316,7 +2499,7 @@ void prepare_move()
else {
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
}
#endif
#endif //else DELTA
for(int8_t i=0; i < NUM_AXIS; i++) {
current_position[i] = destination[i];
}
@ -2428,6 +2611,16 @@ void manage_inactivity()
WRITE(E0_ENABLE_PIN,oldstatus);
}
#endif
#if defined(DUAL_X_CARRIAGE)
// handle delayed move timeout
if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
{
// travel moves have been received so enact them
delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
memcpy(destination,current_position,sizeof(destination));
prepare_move();
}
#endif
check_axes_activity();
}

View file

@ -349,20 +349,36 @@ ISR(TIMER1_COMPA_vect)
// Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
if((out_bits & (1<<X_AXIS))!=0){
#ifdef DUAL_X_CARRIAGE
if (active_extruder != 0)
WRITE(X2_DIR_PIN,INVERT_X_DIR);
else
#endif
if (extruder_duplication_enabled){
WRITE(X_DIR_PIN, INVERT_X_DIR);
WRITE(X2_DIR_PIN, INVERT_X_DIR);
}
else{
if (current_block->active_extruder != 0)
WRITE(X2_DIR_PIN, INVERT_X_DIR);
else
WRITE(X_DIR_PIN, INVERT_X_DIR);
}
#else
WRITE(X_DIR_PIN, INVERT_X_DIR);
#endif
count_direction[X_AXIS]=-1;
}
else{
#ifdef DUAL_X_CARRIAGE
if (active_extruder != 0)
WRITE(X2_DIR_PIN,!INVERT_X_DIR);
else
#endif
if (extruder_duplication_enabled){
WRITE(X_DIR_PIN, !INVERT_X_DIR);
WRITE(X2_DIR_PIN, !INVERT_X_DIR);
}
else{
if (current_block->active_extruder != 0)
WRITE(X2_DIR_PIN, !INVERT_X_DIR);
else
WRITE(X_DIR_PIN, !INVERT_X_DIR);
}
#else
WRITE(X_DIR_PIN, !INVERT_X_DIR);
#endif
count_direction[X_AXIS]=1;
}
if((out_bits & (1<<Y_AXIS))!=0){
@ -384,7 +400,8 @@ ISR(TIMER1_COMPA_vect)
{
#ifdef DUAL_X_CARRIAGE
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if ((active_extruder == 0 && X_HOME_DIR == -1) || (active_extruder != 0 && X2_HOME_DIR == -1))
if ((current_block->active_extruder == 0 && X_HOME_DIR == -1)
|| (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
#endif
{
#if defined(X_MIN_PIN) && X_MIN_PIN > -1
@ -404,7 +421,8 @@ ISR(TIMER1_COMPA_vect)
{
#ifdef DUAL_X_CARRIAGE
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if ((active_extruder == 0 && X_HOME_DIR == 1) || (active_extruder != 0 && X2_HOME_DIR == 1))
if ((current_block->active_extruder == 0 && X_HOME_DIR == 1)
|| (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
#endif
{
#if defined(X_MAX_PIN) && X_MAX_PIN > -1
@ -456,7 +474,7 @@ ISR(TIMER1_COMPA_vect)
if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
WRITE(Z_DIR_PIN,INVERT_Z_DIR);
#ifdef Z_DUAL_STEPPER_DRIVERS
#ifdef Z_DUAL_STEPPER_DRIVERS
WRITE(Z2_DIR_PIN,INVERT_Z_DIR);
#endif
@ -477,7 +495,7 @@ ISR(TIMER1_COMPA_vect)
else { // +direction
WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
#ifdef Z_DUAL_STEPPER_DRIVERS
#ifdef Z_DUAL_STEPPER_DRIVERS
WRITE(Z2_DIR_PIN,!INVERT_Z_DIR);
#endif
@ -529,20 +547,36 @@ ISR(TIMER1_COMPA_vect)
counter_x += current_block->steps_x;
if (counter_x > 0) {
#ifdef DUAL_X_CARRIAGE
if (active_extruder != 0)
WRITE(X2_STEP_PIN,!INVERT_X_STEP_PIN);
else
#endif
#ifdef DUAL_X_CARRIAGE
if (extruder_duplication_enabled){
WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
WRITE(X2_STEP_PIN, !INVERT_X_STEP_PIN);
}
else {
if (current_block->active_extruder != 0)
WRITE(X2_STEP_PIN, !INVERT_X_STEP_PIN);
else
WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
}
#else
WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
#endif
counter_x -= current_block->step_event_count;
count_position[X_AXIS]+=count_direction[X_AXIS];
#ifdef DUAL_X_CARRIAGE
if (active_extruder != 0)
WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
else
#endif
#ifdef DUAL_X_CARRIAGE
if (extruder_duplication_enabled){
WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
WRITE(X2_STEP_PIN, INVERT_X_STEP_PIN);
}
else {
if (current_block->active_extruder != 0)
WRITE(X2_STEP_PIN, INVERT_X_STEP_PIN);
else
WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
}
#else
WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
#endif
}
counter_y += current_block->steps_y;
@ -557,7 +591,7 @@ ISR(TIMER1_COMPA_vect)
if (counter_z > 0) {
WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
#ifdef Z_DUAL_STEPPER_DRIVERS
#ifdef Z_DUAL_STEPPER_DRIVERS
WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
#endif
@ -565,7 +599,7 @@ ISR(TIMER1_COMPA_vect)
count_position[Z_AXIS]+=count_direction[Z_AXIS];
WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
#ifdef Z_DUAL_STEPPER_DRIVERS
#ifdef Z_DUAL_STEPPER_DRIVERS
WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
#endif
}

View file

@ -28,9 +28,16 @@
#define NORM_E_DIR() { if(current_block->active_extruder == 2) { WRITE(E2_DIR_PIN, !INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { WRITE(E1_DIR_PIN, !INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, !INVERT_E0_DIR); }}}
#define REV_E_DIR() { if(current_block->active_extruder == 2) { WRITE(E2_DIR_PIN, INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { WRITE(E1_DIR_PIN, INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, INVERT_E0_DIR); }}}
#elif EXTRUDERS > 1
#define WRITE_E_STEP(v) { if(current_block->active_extruder == 1) { WRITE(E1_STEP_PIN, v); } else { WRITE(E0_STEP_PIN, v); }}
#define NORM_E_DIR() { if(current_block->active_extruder == 1) { WRITE(E1_DIR_PIN, !INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, !INVERT_E0_DIR); }}
#define REV_E_DIR() { if(current_block->active_extruder == 1) { WRITE(E1_DIR_PIN, INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, INVERT_E0_DIR); }}
#ifndef DUAL_X_CARRIAGE
#define WRITE_E_STEP(v) { if(current_block->active_extruder == 1) { WRITE(E1_STEP_PIN, v); } else { WRITE(E0_STEP_PIN, v); }}
#define NORM_E_DIR() { if(current_block->active_extruder == 1) { WRITE(E1_DIR_PIN, !INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, !INVERT_E0_DIR); }}
#define REV_E_DIR() { if(current_block->active_extruder == 1) { WRITE(E1_DIR_PIN, INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, INVERT_E0_DIR); }}
#else
extern bool extruder_duplication_enabled;
#define WRITE_E_STEP(v) { if(extruder_duplication_enabled) { WRITE(E0_STEP_PIN, v); WRITE(E1_STEP_PIN, v); } else if(current_block->active_extruder == 1) { WRITE(E1_STEP_PIN, v); } else { WRITE(E0_STEP_PIN, v); }}
#define NORM_E_DIR() { if(extruder_duplication_enabled) { WRITE(E0_DIR_PIN, !INVERT_E0_DIR); WRITE(E1_DIR_PIN, !INVERT_E1_DIR); } else if(current_block->active_extruder == 1) { WRITE(E1_DIR_PIN, !INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, !INVERT_E0_DIR); }}
#define REV_E_DIR() { if(extruder_duplication_enabled) { WRITE(E0_DIR_PIN, INVERT_E0_DIR); WRITE(E1_DIR_PIN, INVERT_E1_DIR); } else if(current_block->active_extruder == 1) { WRITE(E1_DIR_PIN, INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, INVERT_E0_DIR); }}
#endif
#else
#define WRITE_E_STEP(v) WRITE(E0_STEP_PIN, v)
#define NORM_E_DIR() WRITE(E0_DIR_PIN, !INVERT_E0_DIR)