/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
/**
* stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors
* Derived from Grbl
*
* Copyright (c) 2009-2011 Simen Svale Skogsrud
*
* Grbl is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Grbl is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Grbl. If not, see .
*/
#ifndef STEPPER_H
#define STEPPER_H
#include "stepper_indirection.h"
#ifdef __AVR__
#include "speed_lookuptable.h"
#endif
#include "../inc/MarlinConfig.h"
#include "../module/planner.h"
#include "../core/language.h"
class Stepper;
extern Stepper stepper;
class Stepper {
public:
static block_t* current_block; // A pointer to the block currently being traced
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
static bool abort_on_endstop_hit;
#endif
#if ENABLED(Z_DUAL_ENDSTOPS)
static bool performing_homing;
#endif
#if HAS_MOTOR_CURRENT_PWM
#ifndef PWM_MOTOR_CURRENT
#define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT
#endif
static uint32_t motor_current_setting[3];
#endif
private:
static uint8_t last_direction_bits; // The next stepping-bits to be output
static uint16_t cleaning_buffer_counter;
#if ENABLED(Z_DUAL_ENDSTOPS)
static bool locked_z_motor, locked_z2_motor;
#endif
// Counter variables for the Bresenham line tracer
static long counter_X, counter_Y, counter_Z, counter_E;
static volatile uint32_t step_events_completed; // The number of step events executed in the current block
#if ENABLED(LIN_ADVANCE)
static HAL_TIMER_TYPE nextMainISR, nextAdvanceISR, eISR_Rate;
#define _NEXT_ISR(T) nextMainISR = T
static volatile int e_steps[E_STEPPERS];
static int final_estep_rate;
static int current_estep_rate[E_STEPPERS]; // Actual extruder speed [steps/s]
static int current_adv_steps[E_STEPPERS]; // The amount of current added esteps due to advance.
// i.e., the current amount of pressure applied
// to the spring (=filament).
#else
#define _NEXT_ISR(T) HAL_timer_set_count(STEP_TIMER_NUM, T);
#endif // LIN_ADVANCE
static long acceleration_time, deceleration_time;
//unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
static HAL_TIMER_TYPE acc_step_rate; // needed for deceleration start point
static uint8_t step_loops, step_loops_nominal;
static HAL_TIMER_TYPE OCR1A_nominal;
static volatile long endstops_trigsteps[XYZ];
static volatile long endstops_stepsTotal, endstops_stepsDone;
//
// Positions of stepper motors, in step units
//
static volatile long count_position[NUM_AXIS];
//
// Current direction of stepper motors (+1 or -1)
//
static volatile signed char count_direction[NUM_AXIS];
//
// Mixing extruder mix counters
//
#if ENABLED(MIXING_EXTRUDER)
static long counter_m[MIXING_STEPPERS];
#define MIXING_STEPPERS_LOOP(VAR) \
for (uint8_t VAR = 0; VAR < MIXING_STEPPERS; VAR++) \
if (current_block->mix_event_count[VAR])
#endif
public:
//
// Constructor / initializer
//
Stepper() { };
//
// Initialize stepper hardware
//
static void init();
//
// Interrupt Service Routines
//
static void isr();
#if ENABLED(LIN_ADVANCE)
static void advance_isr();
static void advance_isr_scheduler();
#endif
//
// Block until all buffered steps are executed
//
static void synchronize();
//
// Set the current position in steps
//
static void set_position(const long &a, const long &b, const long &c, const long &e);
static void set_position(const AxisEnum &a, const long &v);
static void set_e_position(const long &e);
//
// Set direction bits for all steppers
//
static void set_directions();
//
// Get the position of a stepper, in steps
//
static long position(AxisEnum axis);
//
// Report the positions of the steppers, in steps
//
static void report_positions();
//
// Get the position (mm) of an axis based on stepper position(s)
//
static float get_axis_position_mm(AxisEnum axis);
//
// SCARA AB axes are in degrees, not mm
//
#if IS_SCARA
static FORCE_INLINE float get_axis_position_degrees(AxisEnum axis) { return get_axis_position_mm(axis); }
#endif
//
// The stepper subsystem goes to sleep when it runs out of things to execute. Call this
// to notify the subsystem that it is time to go to work.
//
static void wake_up();
//
// Wait for moves to finish and disable all steppers
//
static void finish_and_disable();
//
// Quickly stop all steppers and clear the blocks queue
//
static void quick_stop();
//
// The direction of a single motor
//
static FORCE_INLINE bool motor_direction(AxisEnum axis) { return TEST(last_direction_bits, axis); }
#if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
static void digitalPotWrite(const int16_t address, const int16_t value);
static void digipot_current(const uint8_t driver, const int16_t current);
#endif
#if HAS_MICROSTEPS
static void microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2);
static void microstep_mode(const uint8_t driver, const uint8_t stepping);
static void microstep_readings();
#endif
#if ENABLED(Z_DUAL_ENDSTOPS)
static FORCE_INLINE void set_homing_flag(const bool state) { performing_homing = state; }
static FORCE_INLINE void set_z_lock(const bool state) { locked_z_motor = state; }
static FORCE_INLINE void set_z2_lock(const bool state) { locked_z2_motor = state; }
#endif
#if ENABLED(BABYSTEPPING)
static void babystep(const AxisEnum axis, const bool direction); // perform a short step with a single stepper motor, outside of any convention
#endif
static inline void kill_current_block() {
step_events_completed = current_block->step_event_count;
}
//
// Handle a triggered endstop
//
static void endstop_triggered(AxisEnum axis);
//
// Triggered position of an axis in mm (not core-savvy)
//
static FORCE_INLINE float triggered_position_mm(AxisEnum axis) {
return endstops_trigsteps[axis] * planner.steps_to_mm[axis];
}
#if HAS_MOTOR_CURRENT_PWM
static void refresh_motor_power();
#endif
private:
static FORCE_INLINE HAL_TIMER_TYPE calc_timer(HAL_TIMER_TYPE step_rate) {
HAL_TIMER_TYPE timer;
NOMORE(step_rate, MAX_STEP_FREQUENCY);
// TODO: HAL: tidy this up, use condtionals_post.h
#ifdef CPU_32_BIT
#if ENABLED(DISABLE_MULTI_STEPPING)
step_loops = 1;
#else
if (step_rate > STEP_DOUBLER_FREQUENCY * 2) { // If steprate > (STEP_DOUBLER_FREQUENCY * 2) kHz >> step 4 times
step_rate >>= 2;
step_loops = 4;
}
else if (step_rate > STEP_DOUBLER_FREQUENCY) { // If steprate > STEP_DOUBLER_FREQUENCY kHz >> step 2 times
step_rate >>= 1;
step_loops = 2;
}
else {
step_loops = 1;
}
#endif
#else
if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
step_rate >>= 2;
step_loops = 4;
}
else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
step_rate >>= 1;
step_loops = 2;
}
else {
step_loops = 1;
}
#endif
#ifdef CPU_32_BIT
// In case of high-performance processor, it is able to calculate in real-time
constexpr uint32_t MIN_TIME_PER_STEP = (HAL_STEPPER_TIMER_RATE) / ((STEP_DOUBLER_FREQUENCY) * 2);
timer = uint32_t(HAL_STEPPER_TIMER_RATE) / step_rate;
NOLESS(timer, MIN_TIME_PER_STEP); // (STEP_DOUBLER_FREQUENCY * 2 kHz - this should never happen)
#else
NOLESS(step_rate, F_CPU / 500000);
step_rate -= F_CPU / 500000; // Correct for minimal speed
if (step_rate >= (8 * 256)) { // higher step rate
unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate >> 8)][0];
unsigned char tmp_step_rate = (step_rate & 0x00ff);
unsigned short gain = (unsigned short)pgm_read_word_near(table_address + 2);
MultiU16X8toH16(timer, tmp_step_rate, gain);
timer = (unsigned short)pgm_read_word_near(table_address) - timer;
}
else { // lower step rates
unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
table_address += ((step_rate) >> 1) & 0xfffc;
timer = (unsigned short)pgm_read_word_near(table_address);
timer -= (((unsigned short)pgm_read_word_near(table_address + 2) * (unsigned char)(step_rate & 0x0007)) >> 3);
}
if (timer < 100) { // (20kHz - this should never happen)
timer = 100;
MYSERIAL.print(MSG_STEPPER_TOO_HIGH);
MYSERIAL.println(step_rate);
}
#endif
return timer;
}
// Initialize the trapezoid generator from the current block.
// Called whenever a new block begins.
static FORCE_INLINE void trapezoid_generator_reset() {
static int8_t last_extruder = -1;
if (current_block->direction_bits != last_direction_bits || current_block->active_extruder != last_extruder) {
last_direction_bits = current_block->direction_bits;
last_extruder = current_block->active_extruder;
set_directions();
}
deceleration_time = 0;
// step_rate to timer interval
OCR1A_nominal = calc_timer(current_block->nominal_rate);
// make a note of the number of step loops required at nominal speed
step_loops_nominal = step_loops;
acc_step_rate = current_block->initial_rate;
acceleration_time = calc_timer(acc_step_rate);
_NEXT_ISR(acceleration_time);
#if ENABLED(LIN_ADVANCE)
if (current_block->use_advance_lead) {
current_estep_rate[current_block->active_extruder] = ((unsigned long)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
final_estep_rate = (current_block->nominal_rate * current_block->abs_adv_steps_multiplier8) >> 17;
}
#endif
// SERIAL_ECHO_START();
// SERIAL_ECHOPGM("advance :");
// SERIAL_ECHO(current_block->advance/256.0);
// SERIAL_ECHOPGM("advance rate :");
// SERIAL_ECHO(current_block->advance_rate/256.0);
// SERIAL_ECHOPGM("initial advance :");
// SERIAL_ECHO(current_block->initial_advance/256.0);
// SERIAL_ECHOPGM("final advance :");
// SERIAL_ECHOLN(current_block->final_advance/256.0);
}
#if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
static void digipot_init();
#endif
#if HAS_MICROSTEPS
static void microstep_init();
#endif
};
#endif // STEPPER_H