/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "../../../inc/MarlinConfig.h" #if ENABLED(AUTO_BED_LEVELING_UBL) #include "ubl.h" unified_bed_leveling ubl; #include "../../../module/configuration_store.h" #include "../../../module/planner.h" #include "../../../module/motion.h" #include "../../bedlevel/bedlevel.h" #include "math.h" /** * These support functions allow the use of large bit arrays of flags that take very * little RAM. Currently they are limited to being 16x16 in size. Changing the declaration * to unsigned long will allow us to go to 32x32 if higher resolution Mesh's are needed * in the future. */ void bit_clear(uint16_t bits[16], const uint8_t x, const uint8_t y) { CBI(bits[y], x); } void bit_set(uint16_t bits[16], const uint8_t x, const uint8_t y) { SBI(bits[y], x); } bool is_bit_set(uint16_t bits[16], const uint8_t x, const uint8_t y) { return TEST(bits[y], x); } uint8_t ubl_cnt = 0; void unified_bed_leveling::echo_name() { SERIAL_PROTOCOLPGM("Unified Bed Leveling"); } void unified_bed_leveling::report_state() { echo_name(); SERIAL_PROTOCOLPGM(" System v" UBL_VERSION " "); if (!planner.leveling_active) SERIAL_PROTOCOLPGM("in"); SERIAL_PROTOCOLLNPGM("active."); safe_delay(50); } static void serial_echo_xy(const int16_t x, const int16_t y) { SERIAL_CHAR('('); SERIAL_ECHO(x); SERIAL_CHAR(','); SERIAL_ECHO(y); SERIAL_CHAR(')'); safe_delay(10); } int8_t unified_bed_leveling::storage_slot; float unified_bed_leveling::z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // 15 is the maximum nubmer of grid points supported + 1 safety margin for now, // until determinism prevails constexpr float unified_bed_leveling::_mesh_index_to_xpos[16], unified_bed_leveling::_mesh_index_to_ypos[16]; bool unified_bed_leveling::g26_debug_flag = false, unified_bed_leveling::has_control_of_lcd_panel = false; #if ENABLED(ULTRA_LCD) bool unified_bed_leveling::lcd_map_control = false; #endif volatile int unified_bed_leveling::encoder_diff; unified_bed_leveling::unified_bed_leveling() { ubl_cnt++; // Debug counter to insure we only have one UBL object present in memory. We can eliminate this (and all references to ubl_cnt) very soon. reset(); } void unified_bed_leveling::reset() { set_bed_leveling_enabled(false); storage_slot = -1; #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) planner.set_z_fade_height(10.0); #endif ZERO(z_values); } void unified_bed_leveling::invalidate() { set_bed_leveling_enabled(false); set_all_mesh_points_to_value(NAN); } void unified_bed_leveling::set_all_mesh_points_to_value(const float value) { for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) { z_values[x][y] = value; } } } // display_map() currently produces three different mesh map types // 0 : suitable for PronterFace and Repetier's serial console // 1 : .CSV file suitable for importation into various spread sheets // 2 : disply of the map data on a RepRap Graphical LCD Panel void unified_bed_leveling::display_map(const int map_type) { constexpr uint8_t spaces = 8 * (GRID_MAX_POINTS_X - 2); SERIAL_PROTOCOLPGM("\nBed Topography Report"); if (map_type == 0) { SERIAL_PROTOCOLPGM(":\n\n"); serial_echo_xy(0, GRID_MAX_POINTS_Y - 1); SERIAL_ECHO_SP(spaces + 3); serial_echo_xy(GRID_MAX_POINTS_X - 1, GRID_MAX_POINTS_Y - 1); SERIAL_EOL(); serial_echo_xy(MESH_MIN_X, MESH_MAX_Y); SERIAL_ECHO_SP(spaces); serial_echo_xy(MESH_MAX_X, MESH_MAX_Y); SERIAL_EOL(); } else { SERIAL_PROTOCOLPGM(" for "); serialprintPGM(map_type == 1 ? PSTR("CSV:\n\n") : PSTR("LCD:\n\n")); } const float current_xi = get_cell_index_x(current_position[X_AXIS] + (MESH_X_DIST) / 2.0), current_yi = get_cell_index_y(current_position[Y_AXIS] + (MESH_Y_DIST) / 2.0); for (int8_t j = GRID_MAX_POINTS_Y - 1; j >= 0; j--) { for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) { const bool is_current = i == current_xi && j == current_yi; // is the nozzle here? then mark the number if (map_type == 0) SERIAL_CHAR(is_current ? '[' : ' '); const float f = z_values[i][j]; if (isnan(f)) { serialprintPGM(map_type == 0 ? PSTR(" . ") : PSTR("NAN")); } else if (map_type <= 1) { // if we don't do this, the columns won't line up nicely if (map_type == 0 && f >= 0.0) SERIAL_CHAR(' '); SERIAL_PROTOCOL_F(f, 3); } idle(); if (map_type == 1 && i < GRID_MAX_POINTS_X - 1) SERIAL_CHAR(','); #if TX_BUFFER_SIZE > 0 MYSERIAL.flushTX(); #endif safe_delay(15); if (map_type == 0) { SERIAL_CHAR(is_current ? ']' : ' '); SERIAL_CHAR(' '); } } SERIAL_EOL(); if (j && map_type == 0) { // we want the (0,0) up tight against the block of numbers SERIAL_CHAR(' '); SERIAL_EOL(); } } if (map_type == 0) { serial_echo_xy(MESH_MIN_X, MESH_MIN_Y); SERIAL_ECHO_SP(spaces + 4); serial_echo_xy(MESH_MAX_X, MESH_MIN_Y); SERIAL_EOL(); serial_echo_xy(0, 0); SERIAL_ECHO_SP(spaces + 5); serial_echo_xy(GRID_MAX_POINTS_X - 1, 0); SERIAL_EOL(); } } bool unified_bed_leveling::sanity_check() { uint8_t error_flag = 0; if (settings.calc_num_meshes() < 1) { SERIAL_PROTOCOLLNPGM("?Insufficient EEPROM storage for a mesh of this size."); error_flag++; } return !!error_flag; } #endif // AUTO_BED_LEVELING_UBL