2901 lines
114 KiB
C++
2901 lines
114 KiB
C++
/**
|
|
* Marlin 3D Printer Firmware
|
|
* Copyright (C) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
*
|
|
* Based on Sprinter and grbl.
|
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* planner.cpp
|
|
*
|
|
* Buffer movement commands and manage the acceleration profile plan
|
|
*
|
|
* Derived from Grbl
|
|
* Copyright (c) 2009-2011 Simen Svale Skogsrud
|
|
*
|
|
* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis.
|
|
*
|
|
*
|
|
* Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
|
|
*
|
|
* s == speed, a == acceleration, t == time, d == distance
|
|
*
|
|
* Basic definitions:
|
|
* Speed[s_, a_, t_] := s + (a*t)
|
|
* Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
|
|
*
|
|
* Distance to reach a specific speed with a constant acceleration:
|
|
* Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
|
|
* d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
|
|
*
|
|
* Speed after a given distance of travel with constant acceleration:
|
|
* Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
|
|
* m -> Sqrt[2 a d + s^2]
|
|
*
|
|
* DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
|
|
*
|
|
* When to start braking (di) to reach a specified destination speed (s2) after accelerating
|
|
* from initial speed s1 without ever stopping at a plateau:
|
|
* Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
|
|
* di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
|
|
*
|
|
* IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
|
|
*
|
|
* --
|
|
*
|
|
* The fast inverse function needed for Bézier interpolation for AVR
|
|
* was designed, written and tested by Eduardo José Tagle on April/2018
|
|
*/
|
|
|
|
#include "planner.h"
|
|
#include "stepper.h"
|
|
#include "motion.h"
|
|
#include "temperature.h"
|
|
#include "../lcd/ultralcd.h"
|
|
#include "../core/language.h"
|
|
#include "../gcode/parser.h"
|
|
|
|
#include "../Marlin.h"
|
|
|
|
#if HAS_LEVELING
|
|
#include "../feature/bedlevel/bedlevel.h"
|
|
#endif
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
#include "../feature/filwidth.h"
|
|
#endif
|
|
|
|
#if ENABLED(BARICUDA)
|
|
#include "../feature/baricuda.h"
|
|
#endif
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
#include "../feature/mixing.h"
|
|
#endif
|
|
|
|
#if ENABLED(AUTO_POWER_CONTROL)
|
|
#include "../feature/power.h"
|
|
#endif
|
|
|
|
// Delay for delivery of first block to the stepper ISR, if the queue contains 2 or
|
|
// fewer movements. The delay is measured in milliseconds, and must be less than 250ms
|
|
#define BLOCK_DELAY_FOR_1ST_MOVE 100
|
|
|
|
Planner planner;
|
|
|
|
// public:
|
|
|
|
/**
|
|
* A ring buffer of moves described in steps
|
|
*/
|
|
block_t Planner::block_buffer[BLOCK_BUFFER_SIZE];
|
|
volatile uint8_t Planner::block_buffer_head, // Index of the next block to be pushed
|
|
Planner::block_buffer_nonbusy, // Index of the first non-busy block
|
|
Planner::block_buffer_planned, // Index of the optimally planned block
|
|
Planner::block_buffer_tail; // Index of the busy block, if any
|
|
uint16_t Planner::cleaning_buffer_counter; // A counter to disable queuing of blocks
|
|
uint8_t Planner::delay_before_delivering; // This counter delays delivery of blocks when queue becomes empty to allow the opportunity of merging blocks
|
|
|
|
planner_settings_t Planner::settings; // Initialized by settings.load()
|
|
|
|
uint32_t Planner::max_acceleration_steps_per_s2[XYZE_N]; // (steps/s^2) Derived from mm_per_s2
|
|
|
|
float Planner::steps_to_mm[XYZE_N]; // (mm) Millimeters per step
|
|
|
|
#if ENABLED(JUNCTION_DEVIATION)
|
|
float Planner::junction_deviation_mm; // (mm) M205 J
|
|
#if ENABLED(LIN_ADVANCE)
|
|
#if ENABLED(DISTINCT_E_FACTORS)
|
|
float Planner::max_e_jerk[EXTRUDERS]; // Calculated from junction_deviation_mm
|
|
#else
|
|
float Planner::max_e_jerk;
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#if HAS_CLASSIC_JERK
|
|
#if ENABLED(JUNCTION_DEVIATION) && ENABLED(LIN_ADVANCE)
|
|
float Planner::max_jerk[XYZ]; // (mm/s^2) M205 XYZ - The largest speed change requiring no acceleration.
|
|
#else
|
|
float Planner::max_jerk[XYZE]; // (mm/s^2) M205 XYZE - The largest speed change requiring no acceleration.
|
|
#endif
|
|
#endif
|
|
|
|
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
|
|
bool Planner::abort_on_endstop_hit = false;
|
|
#endif
|
|
|
|
#if ENABLED(DISTINCT_E_FACTORS)
|
|
uint8_t Planner::last_extruder = 0; // Respond to extruder change
|
|
#endif
|
|
|
|
int16_t Planner::flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100); // Extrusion factor for each extruder
|
|
|
|
float Planner::e_factor[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0f); // The flow percentage and volumetric multiplier combine to scale E movement
|
|
|
|
#if DISABLED(NO_VOLUMETRICS)
|
|
float Planner::filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
|
|
Planner::volumetric_area_nominal = CIRCLE_AREA(float(DEFAULT_NOMINAL_FILAMENT_DIA) * 0.5f), // Nominal cross-sectional area
|
|
Planner::volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
|
|
#endif
|
|
|
|
#if HAS_LEVELING
|
|
bool Planner::leveling_active = false; // Flag that auto bed leveling is enabled
|
|
#if ABL_PLANAR
|
|
matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level
|
|
#endif
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
float Planner::z_fade_height, // Initialized by settings.load()
|
|
Planner::inverse_z_fade_height,
|
|
Planner::last_fade_z;
|
|
#endif
|
|
#else
|
|
constexpr bool Planner::leveling_active;
|
|
#endif
|
|
|
|
skew_factor_t Planner::skew_factor; // Initialized by settings.load()
|
|
|
|
#if ENABLED(AUTOTEMP)
|
|
float Planner::autotemp_max = 250,
|
|
Planner::autotemp_min = 210,
|
|
Planner::autotemp_factor = 0.1f;
|
|
bool Planner::autotemp_enabled = false;
|
|
#endif
|
|
|
|
// private:
|
|
|
|
int32_t Planner::position[NUM_AXIS] = { 0 };
|
|
|
|
uint32_t Planner::cutoff_long;
|
|
|
|
float Planner::previous_speed[NUM_AXIS],
|
|
Planner::previous_nominal_speed_sqr;
|
|
|
|
#if ENABLED(DISABLE_INACTIVE_EXTRUDER)
|
|
uint8_t Planner::g_uc_extruder_last_move[EXTRUDERS] = { 0 };
|
|
#endif
|
|
|
|
#ifdef XY_FREQUENCY_LIMIT
|
|
// Old direction bits. Used for speed calculations
|
|
unsigned char Planner::old_direction_bits = 0;
|
|
// Segment times (in µs). Used for speed calculations
|
|
uint32_t Planner::axis_segment_time_us[2][3] = { { MAX_FREQ_TIME_US + 1, 0, 0 }, { MAX_FREQ_TIME_US + 1, 0, 0 } };
|
|
#endif
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
float Planner::extruder_advance_K[EXTRUDERS]; // Initialized by settings.load()
|
|
#endif
|
|
|
|
#if HAS_POSITION_FLOAT
|
|
float Planner::position_float[XYZE]; // Needed for accurate maths. Steps cannot be used!
|
|
#endif
|
|
|
|
#if IS_KINEMATIC
|
|
float Planner::position_cart[XYZE];
|
|
#endif
|
|
|
|
#if ENABLED(ULTRA_LCD)
|
|
volatile uint32_t Planner::block_buffer_runtime_us = 0;
|
|
#endif
|
|
|
|
/**
|
|
* Class and Instance Methods
|
|
*/
|
|
|
|
Planner::Planner() { init(); }
|
|
|
|
void Planner::init() {
|
|
ZERO(position);
|
|
#if HAS_POSITION_FLOAT
|
|
ZERO(position_float);
|
|
#endif
|
|
#if IS_KINEMATIC
|
|
ZERO(position_cart);
|
|
#endif
|
|
ZERO(previous_speed);
|
|
previous_nominal_speed_sqr = 0;
|
|
#if ABL_PLANAR
|
|
bed_level_matrix.set_to_identity();
|
|
#endif
|
|
clear_block_buffer();
|
|
delay_before_delivering = 0;
|
|
}
|
|
|
|
#if ENABLED(S_CURVE_ACCELERATION)
|
|
#ifdef __AVR__
|
|
/**
|
|
* This routine returns 0x1000000 / d, getting the inverse as fast as possible.
|
|
* A fast-converging iterative Newton-Raphson method can reach full precision in
|
|
* just 1 iteration, and takes 211 cycles (worst case; the mean case is less, up
|
|
* to 30 cycles for small divisors), instead of the 500 cycles a normal division
|
|
* would take.
|
|
*
|
|
* Inspired by the following page:
|
|
* https://stackoverflow.com/questions/27801397/newton-raphson-division-with-big-integers
|
|
*
|
|
* Suppose we want to calculate floor(2 ^ k / B) where B is a positive integer
|
|
* Then, B must be <= 2^k, otherwise, the quotient is 0.
|
|
*
|
|
* The Newton - Raphson iteration for x = B / 2 ^ k yields:
|
|
* q[n + 1] = q[n] * (2 - q[n] * B / 2 ^ k)
|
|
*
|
|
* This can be rearranged to:
|
|
* q[n + 1] = q[n] * (2 ^ (k + 1) - q[n] * B) >> k
|
|
*
|
|
* Each iteration requires only integer multiplications and bit shifts.
|
|
* It doesn't necessarily converge to floor(2 ^ k / B) but in the worst case
|
|
* it eventually alternates between floor(2 ^ k / B) and ceil(2 ^ k / B).
|
|
* So it checks for this case and extracts floor(2 ^ k / B).
|
|
*
|
|
* A simple but important optimization for this approach is to truncate
|
|
* multiplications (i.e., calculate only the higher bits of the product) in the
|
|
* early iterations of the Newton - Raphson method. This is done so the results
|
|
* of the early iterations are far from the quotient. Then it doesn't matter if
|
|
* they are done inaccurately.
|
|
* It's important to pick a good starting value for x. Knowing how many
|
|
* digits the divisor has, it can be estimated:
|
|
*
|
|
* 2^k / x = 2 ^ log2(2^k / x)
|
|
* 2^k / x = 2 ^(log2(2^k)-log2(x))
|
|
* 2^k / x = 2 ^(k*log2(2)-log2(x))
|
|
* 2^k / x = 2 ^ (k-log2(x))
|
|
* 2^k / x >= 2 ^ (k-floor(log2(x)))
|
|
* floor(log2(x)) is simply the index of the most significant bit set.
|
|
*
|
|
* If this estimation can be improved even further the number of iterations can be
|
|
* reduced a lot, saving valuable execution time.
|
|
* The paper "Software Integer Division" by Thomas L.Rodeheffer, Microsoft
|
|
* Research, Silicon Valley,August 26, 2008, available at
|
|
* https://www.microsoft.com/en-us/research/wp-content/uploads/2008/08/tr-2008-141.pdf
|
|
* suggests, for its integer division algorithm, using a table to supply the first
|
|
* 8 bits of precision, then, due to the quadratic convergence nature of the
|
|
* Newton-Raphon iteration, just 2 iterations should be enough to get maximum
|
|
* precision of the division.
|
|
* By precomputing values of inverses for small denominator values, just one
|
|
* Newton-Raphson iteration is enough to reach full precision.
|
|
* This code uses the top 9 bits of the denominator as index.
|
|
*
|
|
* The AVR assembly function implements this C code using the data below:
|
|
*
|
|
* // For small divisors, it is best to directly retrieve the results
|
|
* if (d <= 110) return pgm_read_dword(&small_inv_tab[d]);
|
|
*
|
|
* // Compute initial estimation of 0x1000000/x -
|
|
* // Get most significant bit set on divider
|
|
* uint8_t idx = 0;
|
|
* uint32_t nr = d;
|
|
* if (!(nr & 0xFF0000)) {
|
|
* nr <<= 8; idx += 8;
|
|
* if (!(nr & 0xFF0000)) { nr <<= 8; idx += 8; }
|
|
* }
|
|
* if (!(nr & 0xF00000)) { nr <<= 4; idx += 4; }
|
|
* if (!(nr & 0xC00000)) { nr <<= 2; idx += 2; }
|
|
* if (!(nr & 0x800000)) { nr <<= 1; idx += 1; }
|
|
*
|
|
* // Isolate top 9 bits of the denominator, to be used as index into the initial estimation table
|
|
* uint32_t tidx = nr >> 15, // top 9 bits. bit8 is always set
|
|
* ie = inv_tab[tidx & 0xFF] + 256, // Get the table value. bit9 is always set
|
|
* x = idx <= 8 ? (ie >> (8 - idx)) : (ie << (idx - 8)); // Position the estimation at the proper place
|
|
*
|
|
* x = uint32_t((x * uint64_t(_BV(25) - x * d)) >> 24); // Refine estimation by newton-raphson. 1 iteration is enough
|
|
* const uint32_t r = _BV(24) - x * d; // Estimate remainder
|
|
* if (r >= d) x++; // Check whether to adjust result
|
|
* return uint32_t(x); // x holds the proper estimation
|
|
*
|
|
*/
|
|
static uint32_t get_period_inverse(uint32_t d) {
|
|
|
|
static const uint8_t inv_tab[256] PROGMEM = {
|
|
255,253,252,250,248,246,244,242,240,238,236,234,233,231,229,227,
|
|
225,224,222,220,218,217,215,213,212,210,208,207,205,203,202,200,
|
|
199,197,195,194,192,191,189,188,186,185,183,182,180,179,178,176,
|
|
175,173,172,170,169,168,166,165,164,162,161,160,158,157,156,154,
|
|
153,152,151,149,148,147,146,144,143,142,141,139,138,137,136,135,
|
|
134,132,131,130,129,128,127,126,125,123,122,121,120,119,118,117,
|
|
116,115,114,113,112,111,110,109,108,107,106,105,104,103,102,101,
|
|
100,99,98,97,96,95,94,93,92,91,90,89,88,88,87,86,
|
|
85,84,83,82,81,80,80,79,78,77,76,75,74,74,73,72,
|
|
71,70,70,69,68,67,66,66,65,64,63,62,62,61,60,59,
|
|
59,58,57,56,56,55,54,53,53,52,51,50,50,49,48,48,
|
|
47,46,46,45,44,43,43,42,41,41,40,39,39,38,37,37,
|
|
36,35,35,34,33,33,32,32,31,30,30,29,28,28,27,27,
|
|
26,25,25,24,24,23,22,22,21,21,20,19,19,18,18,17,
|
|
17,16,15,15,14,14,13,13,12,12,11,10,10,9,9,8,
|
|
8,7,7,6,6,5,5,4,4,3,3,2,2,1,0,0
|
|
};
|
|
|
|
// For small denominators, it is cheaper to directly store the result.
|
|
// For bigger ones, just ONE Newton-Raphson iteration is enough to get
|
|
// maximum precision we need
|
|
static const uint32_t small_inv_tab[111] PROGMEM = {
|
|
16777216,16777216,8388608,5592405,4194304,3355443,2796202,2396745,2097152,1864135,1677721,1525201,1398101,1290555,1198372,1118481,
|
|
1048576,986895,932067,883011,838860,798915,762600,729444,699050,671088,645277,621378,599186,578524,559240,541200,
|
|
524288,508400,493447,479349,466033,453438,441505,430185,419430,409200,399457,390167,381300,372827,364722,356962,
|
|
349525,342392,335544,328965,322638,316551,310689,305040,299593,294337,289262,284359,279620,275036,270600,266305,
|
|
262144,258111,254200,250406,246723,243148,239674,236298,233016,229824,226719,223696,220752,217885,215092,212369,
|
|
209715,207126,204600,202135,199728,197379,195083,192841,190650,188508,186413,184365,182361,180400,178481,176602,
|
|
174762,172960,171196,169466,167772,166111,164482,162885,161319,159783,158275,156796,155344,153919,152520
|
|
};
|
|
|
|
// For small divisors, it is best to directly retrieve the results
|
|
if (d <= 110) return pgm_read_dword(&small_inv_tab[d]);
|
|
|
|
uint8_t r8 = d & 0xFF,
|
|
r9 = (d >> 8) & 0xFF,
|
|
r10 = (d >> 16) & 0xFF,
|
|
r2,r3,r4,r5,r6,r7,r11,r12,r13,r14,r15,r16,r17,r18;
|
|
const uint8_t* ptab = inv_tab;
|
|
|
|
__asm__ __volatile__(
|
|
// %8:%7:%6 = interval
|
|
// r31:r30: MUST be those registers, and they must point to the inv_tab
|
|
|
|
A("clr %13") // %13 = 0
|
|
|
|
// Now we must compute
|
|
// result = 0xFFFFFF / d
|
|
// %8:%7:%6 = interval
|
|
// %16:%15:%14 = nr
|
|
// %13 = 0
|
|
|
|
// A plain division of 24x24 bits should take 388 cycles to complete. We will
|
|
// use Newton-Raphson for the calculation, and will strive to get way less cycles
|
|
// for the same result - Using C division, it takes 500cycles to complete .
|
|
|
|
A("clr %3") // idx = 0
|
|
A("mov %14,%6")
|
|
A("mov %15,%7")
|
|
A("mov %16,%8") // nr = interval
|
|
A("tst %16") // nr & 0xFF0000 == 0 ?
|
|
A("brne 2f") // No, skip this
|
|
A("mov %16,%15")
|
|
A("mov %15,%14") // nr <<= 8, %14 not needed
|
|
A("subi %3,-8") // idx += 8
|
|
A("tst %16") // nr & 0xFF0000 == 0 ?
|
|
A("brne 2f") // No, skip this
|
|
A("mov %16,%15") // nr <<= 8, %14 not needed
|
|
A("clr %15") // We clear %14
|
|
A("subi %3,-8") // idx += 8
|
|
|
|
// here %16 != 0 and %16:%15 contains at least 9 MSBits, or both %16:%15 are 0
|
|
L("2")
|
|
A("cpi %16,0x10") // (nr & 0xF00000) == 0 ?
|
|
A("brcc 3f") // No, skip this
|
|
A("swap %15") // Swap nibbles
|
|
A("swap %16") // Swap nibbles. Low nibble is 0
|
|
A("mov %14, %15")
|
|
A("andi %14,0x0F") // Isolate low nibble
|
|
A("andi %15,0xF0") // Keep proper nibble in %15
|
|
A("or %16, %14") // %16:%15 <<= 4
|
|
A("subi %3,-4") // idx += 4
|
|
|
|
L("3")
|
|
A("cpi %16,0x40") // (nr & 0xC00000) == 0 ?
|
|
A("brcc 4f") // No, skip this
|
|
A("add %15,%15")
|
|
A("adc %16,%16")
|
|
A("add %15,%15")
|
|
A("adc %16,%16") // %16:%15 <<= 2
|
|
A("subi %3,-2") // idx += 2
|
|
|
|
L("4")
|
|
A("cpi %16,0x80") // (nr & 0x800000) == 0 ?
|
|
A("brcc 5f") // No, skip this
|
|
A("add %15,%15")
|
|
A("adc %16,%16") // %16:%15 <<= 1
|
|
A("inc %3") // idx += 1
|
|
|
|
// Now %16:%15 contains its MSBit set to 1, or %16:%15 is == 0. We are now absolutely sure
|
|
// we have at least 9 MSBits available to enter the initial estimation table
|
|
L("5")
|
|
A("add %15,%15")
|
|
A("adc %16,%16") // %16:%15 = tidx = (nr <<= 1), we lose the top MSBit (always set to 1, %16 is the index into the inverse table)
|
|
A("add r30,%16") // Only use top 8 bits
|
|
A("adc r31,%13") // r31:r30 = inv_tab + (tidx)
|
|
A("lpm %14, Z") // %14 = inv_tab[tidx]
|
|
A("ldi %15, 1") // %15 = 1 %15:%14 = inv_tab[tidx] + 256
|
|
|
|
// We must scale the approximation to the proper place
|
|
A("clr %16") // %16 will always be 0 here
|
|
A("subi %3,8") // idx == 8 ?
|
|
A("breq 6f") // yes, no need to scale
|
|
A("brcs 7f") // If C=1, means idx < 8, result was negative!
|
|
|
|
// idx > 8, now %3 = idx - 8. We must perform a left shift. idx range:[1-8]
|
|
A("sbrs %3,0") // shift by 1bit position?
|
|
A("rjmp 8f") // No
|
|
A("add %14,%14")
|
|
A("adc %15,%15") // %15:16 <<= 1
|
|
L("8")
|
|
A("sbrs %3,1") // shift by 2bit position?
|
|
A("rjmp 9f") // No
|
|
A("add %14,%14")
|
|
A("adc %15,%15")
|
|
A("add %14,%14")
|
|
A("adc %15,%15") // %15:16 <<= 1
|
|
L("9")
|
|
A("sbrs %3,2") // shift by 4bits position?
|
|
A("rjmp 16f") // No
|
|
A("swap %15") // Swap nibbles. lo nibble of %15 will always be 0
|
|
A("swap %14") // Swap nibbles
|
|
A("mov %12,%14")
|
|
A("andi %12,0x0F") // isolate low nibble
|
|
A("andi %14,0xF0") // and clear it
|
|
A("or %15,%12") // %15:%16 <<= 4
|
|
L("16")
|
|
A("sbrs %3,3") // shift by 8bits position?
|
|
A("rjmp 6f") // No, we are done
|
|
A("mov %16,%15")
|
|
A("mov %15,%14")
|
|
A("clr %14")
|
|
A("jmp 6f")
|
|
|
|
// idx < 8, now %3 = idx - 8. Get the count of bits
|
|
L("7")
|
|
A("neg %3") // %3 = -idx = count of bits to move right. idx range:[1...8]
|
|
A("sbrs %3,0") // shift by 1 bit position ?
|
|
A("rjmp 10f") // No, skip it
|
|
A("asr %15") // (bit7 is always 0 here)
|
|
A("ror %14")
|
|
L("10")
|
|
A("sbrs %3,1") // shift by 2 bit position ?
|
|
A("rjmp 11f") // No, skip it
|
|
A("asr %15") // (bit7 is always 0 here)
|
|
A("ror %14")
|
|
A("asr %15") // (bit7 is always 0 here)
|
|
A("ror %14")
|
|
L("11")
|
|
A("sbrs %3,2") // shift by 4 bit position ?
|
|
A("rjmp 12f") // No, skip it
|
|
A("swap %15") // Swap nibbles
|
|
A("andi %14, 0xF0") // Lose the lowest nibble
|
|
A("swap %14") // Swap nibbles. Upper nibble is 0
|
|
A("or %14,%15") // Pass nibble from upper byte
|
|
A("andi %15, 0x0F") // And get rid of that nibble
|
|
L("12")
|
|
A("sbrs %3,3") // shift by 8 bit position ?
|
|
A("rjmp 6f") // No, skip it
|
|
A("mov %14,%15")
|
|
A("clr %15")
|
|
L("6") // %16:%15:%14 = initial estimation of 0x1000000 / d
|
|
|
|
// Now, we must refine the estimation present on %16:%15:%14 using 1 iteration
|
|
// of Newton-Raphson. As it has a quadratic convergence, 1 iteration is enough
|
|
// to get more than 18bits of precision (the initial table lookup gives 9 bits of
|
|
// precision to start from). 18bits of precision is all what is needed here for result
|
|
|
|
// %8:%7:%6 = d = interval
|
|
// %16:%15:%14 = x = initial estimation of 0x1000000 / d
|
|
// %13 = 0
|
|
// %3:%2:%1:%0 = working accumulator
|
|
|
|
// Compute 1<<25 - x*d. Result should never exceed 25 bits and should always be positive
|
|
A("clr %0")
|
|
A("clr %1")
|
|
A("clr %2")
|
|
A("ldi %3,2") // %3:%2:%1:%0 = 0x2000000
|
|
A("mul %6,%14") // r1:r0 = LO(d) * LO(x)
|
|
A("sub %0,r0")
|
|
A("sbc %1,r1")
|
|
A("sbc %2,%13")
|
|
A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * LO(x)
|
|
A("mul %7,%14") // r1:r0 = MI(d) * LO(x)
|
|
A("sub %1,r0")
|
|
A("sbc %2,r1" )
|
|
A("sbc %3,%13") // %3:%2:%1:%0 -= MI(d) * LO(x) << 8
|
|
A("mul %8,%14") // r1:r0 = HI(d) * LO(x)
|
|
A("sub %2,r0")
|
|
A("sbc %3,r1") // %3:%2:%1:%0 -= MIL(d) * LO(x) << 16
|
|
A("mul %6,%15") // r1:r0 = LO(d) * MI(x)
|
|
A("sub %1,r0")
|
|
A("sbc %2,r1")
|
|
A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * MI(x) << 8
|
|
A("mul %7,%15") // r1:r0 = MI(d) * MI(x)
|
|
A("sub %2,r0")
|
|
A("sbc %3,r1") // %3:%2:%1:%0 -= MI(d) * MI(x) << 16
|
|
A("mul %8,%15") // r1:r0 = HI(d) * MI(x)
|
|
A("sub %3,r0") // %3:%2:%1:%0 -= MIL(d) * MI(x) << 24
|
|
A("mul %6,%16") // r1:r0 = LO(d) * HI(x)
|
|
A("sub %2,r0")
|
|
A("sbc %3,r1") // %3:%2:%1:%0 -= LO(d) * HI(x) << 16
|
|
A("mul %7,%16") // r1:r0 = MI(d) * HI(x)
|
|
A("sub %3,r0") // %3:%2:%1:%0 -= MI(d) * HI(x) << 24
|
|
// %3:%2:%1:%0 = (1<<25) - x*d [169]
|
|
|
|
// We need to multiply that result by x, and we are only interested in the top 24bits of that multiply
|
|
|
|
// %16:%15:%14 = x = initial estimation of 0x1000000 / d
|
|
// %3:%2:%1:%0 = (1<<25) - x*d = acc
|
|
// %13 = 0
|
|
|
|
// result = %11:%10:%9:%5:%4
|
|
A("mul %14,%0") // r1:r0 = LO(x) * LO(acc)
|
|
A("mov %4,r1")
|
|
A("clr %5")
|
|
A("clr %9")
|
|
A("clr %10")
|
|
A("clr %11") // %11:%10:%9:%5:%4 = LO(x) * LO(acc) >> 8
|
|
A("mul %15,%0") // r1:r0 = MI(x) * LO(acc)
|
|
A("add %4,r0")
|
|
A("adc %5,r1")
|
|
A("adc %9,%13")
|
|
A("adc %10,%13")
|
|
A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * LO(acc)
|
|
A("mul %16,%0") // r1:r0 = HI(x) * LO(acc)
|
|
A("add %5,r0")
|
|
A("adc %9,r1")
|
|
A("adc %10,%13")
|
|
A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * LO(acc) << 8
|
|
|
|
A("mul %14,%1") // r1:r0 = LO(x) * MIL(acc)
|
|
A("add %4,r0")
|
|
A("adc %5,r1")
|
|
A("adc %9,%13")
|
|
A("adc %10,%13")
|
|
A("adc %11,%13") // %11:%10:%9:%5:%4 = LO(x) * MIL(acc)
|
|
A("mul %15,%1") // r1:r0 = MI(x) * MIL(acc)
|
|
A("add %5,r0")
|
|
A("adc %9,r1")
|
|
A("adc %10,%13")
|
|
A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * MIL(acc) << 8
|
|
A("mul %16,%1") // r1:r0 = HI(x) * MIL(acc)
|
|
A("add %9,r0")
|
|
A("adc %10,r1")
|
|
A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * MIL(acc) << 16
|
|
|
|
A("mul %14,%2") // r1:r0 = LO(x) * MIH(acc)
|
|
A("add %5,r0")
|
|
A("adc %9,r1")
|
|
A("adc %10,%13")
|
|
A("adc %11,%13") // %11:%10:%9:%5:%4 = LO(x) * MIH(acc) << 8
|
|
A("mul %15,%2") // r1:r0 = MI(x) * MIH(acc)
|
|
A("add %9,r0")
|
|
A("adc %10,r1")
|
|
A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * MIH(acc) << 16
|
|
A("mul %16,%2") // r1:r0 = HI(x) * MIH(acc)
|
|
A("add %10,r0")
|
|
A("adc %11,r1") // %11:%10:%9:%5:%4 += MI(x) * MIH(acc) << 24
|
|
|
|
A("mul %14,%3") // r1:r0 = LO(x) * HI(acc)
|
|
A("add %9,r0")
|
|
A("adc %10,r1")
|
|
A("adc %11,%13") // %11:%10:%9:%5:%4 = LO(x) * HI(acc) << 16
|
|
A("mul %15,%3") // r1:r0 = MI(x) * HI(acc)
|
|
A("add %10,r0")
|
|
A("adc %11,r1") // %11:%10:%9:%5:%4 += MI(x) * HI(acc) << 24
|
|
A("mul %16,%3") // r1:r0 = HI(x) * HI(acc)
|
|
A("add %11,r0") // %11:%10:%9:%5:%4 += MI(x) * HI(acc) << 32
|
|
|
|
// At this point, %11:%10:%9 contains the new estimation of x.
|
|
|
|
// Finally, we must correct the result. Estimate remainder as
|
|
// (1<<24) - x*d
|
|
// %11:%10:%9 = x
|
|
// %8:%7:%6 = d = interval" "\n\t"
|
|
A("ldi %3,1")
|
|
A("clr %2")
|
|
A("clr %1")
|
|
A("clr %0") // %3:%2:%1:%0 = 0x1000000
|
|
A("mul %6,%9") // r1:r0 = LO(d) * LO(x)
|
|
A("sub %0,r0")
|
|
A("sbc %1,r1")
|
|
A("sbc %2,%13")
|
|
A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * LO(x)
|
|
A("mul %7,%9") // r1:r0 = MI(d) * LO(x)
|
|
A("sub %1,r0")
|
|
A("sbc %2,r1")
|
|
A("sbc %3,%13") // %3:%2:%1:%0 -= MI(d) * LO(x) << 8
|
|
A("mul %8,%9") // r1:r0 = HI(d) * LO(x)
|
|
A("sub %2,r0")
|
|
A("sbc %3,r1") // %3:%2:%1:%0 -= MIL(d) * LO(x) << 16
|
|
A("mul %6,%10") // r1:r0 = LO(d) * MI(x)
|
|
A("sub %1,r0")
|
|
A("sbc %2,r1")
|
|
A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * MI(x) << 8
|
|
A("mul %7,%10") // r1:r0 = MI(d) * MI(x)
|
|
A("sub %2,r0")
|
|
A("sbc %3,r1") // %3:%2:%1:%0 -= MI(d) * MI(x) << 16
|
|
A("mul %8,%10") // r1:r0 = HI(d) * MI(x)
|
|
A("sub %3,r0") // %3:%2:%1:%0 -= MIL(d) * MI(x) << 24
|
|
A("mul %6,%11") // r1:r0 = LO(d) * HI(x)
|
|
A("sub %2,r0")
|
|
A("sbc %3,r1") // %3:%2:%1:%0 -= LO(d) * HI(x) << 16
|
|
A("mul %7,%11") // r1:r0 = MI(d) * HI(x)
|
|
A("sub %3,r0") // %3:%2:%1:%0 -= MI(d) * HI(x) << 24
|
|
// %3:%2:%1:%0 = r = (1<<24) - x*d
|
|
// %8:%7:%6 = d = interval
|
|
|
|
// Perform the final correction
|
|
A("sub %0,%6")
|
|
A("sbc %1,%7")
|
|
A("sbc %2,%8") // r -= d
|
|
A("brcs 14f") // if ( r >= d)
|
|
|
|
// %11:%10:%9 = x
|
|
A("ldi %3,1")
|
|
A("add %9,%3")
|
|
A("adc %10,%13")
|
|
A("adc %11,%13") // x++
|
|
L("14")
|
|
|
|
// Estimation is done. %11:%10:%9 = x
|
|
A("clr __zero_reg__") // Make C runtime happy
|
|
// [211 cycles total]
|
|
: "=r" (r2),
|
|
"=r" (r3),
|
|
"=r" (r4),
|
|
"=d" (r5),
|
|
"=r" (r6),
|
|
"=r" (r7),
|
|
"+r" (r8),
|
|
"+r" (r9),
|
|
"+r" (r10),
|
|
"=d" (r11),
|
|
"=r" (r12),
|
|
"=r" (r13),
|
|
"=d" (r14),
|
|
"=d" (r15),
|
|
"=d" (r16),
|
|
"=d" (r17),
|
|
"=d" (r18),
|
|
"+z" (ptab)
|
|
:
|
|
: "r0", "r1", "cc"
|
|
);
|
|
|
|
// Return the result
|
|
return r11 | (uint16_t(r12) << 8) | (uint32_t(r13) << 16);
|
|
}
|
|
#else
|
|
// All other 32-bit MPUs can easily do inverse using hardware division,
|
|
// so we don't need to reduce precision or to use assembly language at all.
|
|
// This routine, for all other archs, returns 0x100000000 / d ~= 0xFFFFFFFF / d
|
|
static FORCE_INLINE uint32_t get_period_inverse(const uint32_t d) {
|
|
return d ? 0xFFFFFFFF / d : 0xFFFFFFFF;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
#define MINIMAL_STEP_RATE 120
|
|
|
|
/**
|
|
* Calculate trapezoid parameters, multiplying the entry- and exit-speeds
|
|
* by the provided factors.
|
|
**
|
|
* ############ VERY IMPORTANT ############
|
|
* NOTE that the PRECONDITION to call this function is that the block is
|
|
* NOT BUSY and it is marked as RECALCULATE. That WARRANTIES the Stepper ISR
|
|
* is not and will not use the block while we modify it, so it is safe to
|
|
* alter its values.
|
|
*/
|
|
void Planner::calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor) {
|
|
|
|
uint32_t initial_rate = CEIL(block->nominal_rate * entry_factor),
|
|
final_rate = CEIL(block->nominal_rate * exit_factor); // (steps per second)
|
|
|
|
// Limit minimal step rate (Otherwise the timer will overflow.)
|
|
NOLESS(initial_rate, uint32_t(MINIMAL_STEP_RATE));
|
|
NOLESS(final_rate, uint32_t(MINIMAL_STEP_RATE));
|
|
|
|
#if ENABLED(S_CURVE_ACCELERATION)
|
|
uint32_t cruise_rate = initial_rate;
|
|
#endif
|
|
|
|
const int32_t accel = block->acceleration_steps_per_s2;
|
|
|
|
// Steps required for acceleration, deceleration to/from nominal rate
|
|
uint32_t accelerate_steps = CEIL(estimate_acceleration_distance(initial_rate, block->nominal_rate, accel)),
|
|
decelerate_steps = FLOOR(estimate_acceleration_distance(block->nominal_rate, final_rate, -accel));
|
|
// Steps between acceleration and deceleration, if any
|
|
int32_t plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps;
|
|
|
|
// Does accelerate_steps + decelerate_steps exceed step_event_count?
|
|
// Then we can't possibly reach the nominal rate, there will be no cruising.
|
|
// Use intersection_distance() to calculate accel / braking time in order to
|
|
// reach the final_rate exactly at the end of this block.
|
|
if (plateau_steps < 0) {
|
|
const float accelerate_steps_float = CEIL(intersection_distance(initial_rate, final_rate, accel, block->step_event_count));
|
|
accelerate_steps = MIN(uint32_t(MAX(accelerate_steps_float, 0)), block->step_event_count);
|
|
plateau_steps = 0;
|
|
|
|
#if ENABLED(S_CURVE_ACCELERATION)
|
|
// We won't reach the cruising rate. Let's calculate the speed we will reach
|
|
cruise_rate = final_speed(initial_rate, accel, accelerate_steps);
|
|
#endif
|
|
}
|
|
#if ENABLED(S_CURVE_ACCELERATION)
|
|
else // We have some plateau time, so the cruise rate will be the nominal rate
|
|
cruise_rate = block->nominal_rate;
|
|
#endif
|
|
|
|
#if ENABLED(S_CURVE_ACCELERATION)
|
|
// Jerk controlled speed requires to express speed versus time, NOT steps
|
|
uint32_t acceleration_time = ((float)(cruise_rate - initial_rate) / accel) * (STEPPER_TIMER_RATE),
|
|
deceleration_time = ((float)(cruise_rate - final_rate) / accel) * (STEPPER_TIMER_RATE);
|
|
|
|
// And to offload calculations from the ISR, we also calculate the inverse of those times here
|
|
uint32_t acceleration_time_inverse = get_period_inverse(acceleration_time);
|
|
uint32_t deceleration_time_inverse = get_period_inverse(deceleration_time);
|
|
#endif
|
|
|
|
// Store new block parameters
|
|
block->accelerate_until = accelerate_steps;
|
|
block->decelerate_after = accelerate_steps + plateau_steps;
|
|
block->initial_rate = initial_rate;
|
|
#if ENABLED(S_CURVE_ACCELERATION)
|
|
block->acceleration_time = acceleration_time;
|
|
block->deceleration_time = deceleration_time;
|
|
block->acceleration_time_inverse = acceleration_time_inverse;
|
|
block->deceleration_time_inverse = deceleration_time_inverse;
|
|
block->cruise_rate = cruise_rate;
|
|
#endif
|
|
block->final_rate = final_rate;
|
|
}
|
|
|
|
/* PLANNER SPEED DEFINITION
|
|
+--------+ <- current->nominal_speed
|
|
/ \
|
|
current->entry_speed -> + \
|
|
| + <- next->entry_speed (aka exit speed)
|
|
+-------------+
|
|
time -->
|
|
|
|
Recalculates the motion plan according to the following basic guidelines:
|
|
|
|
1. Go over every feasible block sequentially in reverse order and calculate the junction speeds
|
|
(i.e. current->entry_speed) such that:
|
|
a. No junction speed exceeds the pre-computed maximum junction speed limit or nominal speeds of
|
|
neighboring blocks.
|
|
b. A block entry speed cannot exceed one reverse-computed from its exit speed (next->entry_speed)
|
|
with a maximum allowable deceleration over the block travel distance.
|
|
c. The last (or newest appended) block is planned from a complete stop (an exit speed of zero).
|
|
2. Go over every block in chronological (forward) order and dial down junction speed values if
|
|
a. The exit speed exceeds the one forward-computed from its entry speed with the maximum allowable
|
|
acceleration over the block travel distance.
|
|
|
|
When these stages are complete, the planner will have maximized the velocity profiles throughout the all
|
|
of the planner blocks, where every block is operating at its maximum allowable acceleration limits. In
|
|
other words, for all of the blocks in the planner, the plan is optimal and no further speed improvements
|
|
are possible. If a new block is added to the buffer, the plan is recomputed according to the said
|
|
guidelines for a new optimal plan.
|
|
|
|
To increase computational efficiency of these guidelines, a set of planner block pointers have been
|
|
created to indicate stop-compute points for when the planner guidelines cannot logically make any further
|
|
changes or improvements to the plan when in normal operation and new blocks are streamed and added to the
|
|
planner buffer. For example, if a subset of sequential blocks in the planner have been planned and are
|
|
bracketed by junction velocities at their maximums (or by the first planner block as well), no new block
|
|
added to the planner buffer will alter the velocity profiles within them. So we no longer have to compute
|
|
them. Or, if a set of sequential blocks from the first block in the planner (or a optimal stop-compute
|
|
point) are all accelerating, they are all optimal and can not be altered by a new block added to the
|
|
planner buffer, as this will only further increase the plan speed to chronological blocks until a maximum
|
|
junction velocity is reached. However, if the operational conditions of the plan changes from infrequently
|
|
used feed holds or feedrate overrides, the stop-compute pointers will be reset and the entire plan is
|
|
recomputed as stated in the general guidelines.
|
|
|
|
Planner buffer index mapping:
|
|
- block_buffer_tail: Points to the beginning of the planner buffer. First to be executed or being executed.
|
|
- block_buffer_head: Points to the buffer block after the last block in the buffer. Used to indicate whether
|
|
the buffer is full or empty. As described for standard ring buffers, this block is always empty.
|
|
- block_buffer_planned: Points to the first buffer block after the last optimally planned block for normal
|
|
streaming operating conditions. Use for planning optimizations by avoiding recomputing parts of the
|
|
planner buffer that don't change with the addition of a new block, as describe above. In addition,
|
|
this block can never be less than block_buffer_tail and will always be pushed forward and maintain
|
|
this requirement when encountered by the Planner::discard_current_block() routine during a cycle.
|
|
|
|
NOTE: Since the planner only computes on what's in the planner buffer, some motions with lots of short
|
|
line segments, like G2/3 arcs or complex curves, may seem to move slow. This is because there simply isn't
|
|
enough combined distance traveled in the entire buffer to accelerate up to the nominal speed and then
|
|
decelerate to a complete stop at the end of the buffer, as stated by the guidelines. If this happens and
|
|
becomes an annoyance, there are a few simple solutions: (1) Maximize the machine acceleration. The planner
|
|
will be able to compute higher velocity profiles within the same combined distance. (2) Maximize line
|
|
motion(s) distance per block to a desired tolerance. The more combined distance the planner has to use,
|
|
the faster it can go. (3) Maximize the planner buffer size. This also will increase the combined distance
|
|
for the planner to compute over. It also increases the number of computations the planner has to perform
|
|
to compute an optimal plan, so select carefully.
|
|
*/
|
|
|
|
// The kernel called by recalculate() when scanning the plan from last to first entry.
|
|
void Planner::reverse_pass_kernel(block_t* const current, const block_t * const next) {
|
|
if (current) {
|
|
// If entry speed is already at the maximum entry speed, and there was no change of speed
|
|
// in the next block, there is no need to recheck. Block is cruising and there is no need to
|
|
// compute anything for this block,
|
|
// If not, block entry speed needs to be recalculated to ensure maximum possible planned speed.
|
|
const float max_entry_speed_sqr = current->max_entry_speed_sqr;
|
|
|
|
// Compute maximum entry speed decelerating over the current block from its exit speed.
|
|
// If not at the maximum entry speed, or the previous block entry speed changed
|
|
if (current->entry_speed_sqr != max_entry_speed_sqr || (next && TEST(next->flag, BLOCK_BIT_RECALCULATE))) {
|
|
|
|
// If nominal length true, max junction speed is guaranteed to be reached.
|
|
// If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
|
|
// the current block and next block junction speeds are guaranteed to always be at their maximum
|
|
// junction speeds in deceleration and acceleration, respectively. This is due to how the current
|
|
// block nominal speed limits both the current and next maximum junction speeds. Hence, in both
|
|
// the reverse and forward planners, the corresponding block junction speed will always be at the
|
|
// the maximum junction speed and may always be ignored for any speed reduction checks.
|
|
|
|
const float new_entry_speed_sqr = TEST(current->flag, BLOCK_BIT_NOMINAL_LENGTH)
|
|
? max_entry_speed_sqr
|
|
: MIN(max_entry_speed_sqr, max_allowable_speed_sqr(-current->acceleration, next ? next->entry_speed_sqr : sq(float(MINIMUM_PLANNER_SPEED)), current->millimeters));
|
|
if (current->entry_speed_sqr != new_entry_speed_sqr) {
|
|
|
|
// Need to recalculate the block speed - Mark it now, so the stepper
|
|
// ISR does not consume the block before being recalculated
|
|
SBI(current->flag, BLOCK_BIT_RECALCULATE);
|
|
|
|
// But there is an inherent race condition here, as the block may have
|
|
// become BUSY just before being marked RECALCULATE, so check for that!
|
|
if (stepper.is_block_busy(current)) {
|
|
// Block became busy. Clear the RECALCULATE flag (no point in
|
|
// recalculating BUSY blocks). And don't set its speed, as it can't
|
|
// be updated at this time.
|
|
CBI(current->flag, BLOCK_BIT_RECALCULATE);
|
|
}
|
|
else {
|
|
// Block is not BUSY so this is ahead of the Stepper ISR:
|
|
// Just Set the new entry speed.
|
|
current->entry_speed_sqr = new_entry_speed_sqr;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* recalculate() needs to go over the current plan twice.
|
|
* Once in reverse and once forward. This implements the reverse pass.
|
|
*/
|
|
void Planner::reverse_pass() {
|
|
// Initialize block index to the last block in the planner buffer.
|
|
uint8_t block_index = prev_block_index(block_buffer_head);
|
|
|
|
// Read the index of the last buffer planned block.
|
|
// The ISR may change it so get a stable local copy.
|
|
uint8_t planned_block_index = block_buffer_planned;
|
|
|
|
// If there was a race condition and block_buffer_planned was incremented
|
|
// or was pointing at the head (queue empty) break loop now and avoid
|
|
// planning already consumed blocks
|
|
if (planned_block_index == block_buffer_head) return;
|
|
|
|
// Reverse Pass: Coarsely maximize all possible deceleration curves back-planning from the last
|
|
// block in buffer. Cease planning when the last optimal planned or tail pointer is reached.
|
|
// NOTE: Forward pass will later refine and correct the reverse pass to create an optimal plan.
|
|
const block_t *next = NULL;
|
|
while (block_index != planned_block_index) {
|
|
|
|
// Perform the reverse pass
|
|
block_t *current = &block_buffer[block_index];
|
|
|
|
// Only consider non sync blocks
|
|
if (!TEST(current->flag, BLOCK_BIT_SYNC_POSITION)) {
|
|
reverse_pass_kernel(current, next);
|
|
next = current;
|
|
}
|
|
|
|
// Advance to the next
|
|
block_index = prev_block_index(block_index);
|
|
|
|
// The ISR could advance the block_buffer_planned while we were doing the reverse pass.
|
|
// We must try to avoid using an already consumed block as the last one - So follow
|
|
// changes to the pointer and make sure to limit the loop to the currently busy block
|
|
while (planned_block_index != block_buffer_planned) {
|
|
|
|
// If we reached the busy block or an already processed block, break the loop now
|
|
if (block_index == planned_block_index) return;
|
|
|
|
// Advance the pointer, following the busy block
|
|
planned_block_index = next_block_index(planned_block_index);
|
|
}
|
|
}
|
|
}
|
|
|
|
// The kernel called by recalculate() when scanning the plan from first to last entry.
|
|
void Planner::forward_pass_kernel(const block_t* const previous, block_t* const current, const uint8_t block_index) {
|
|
if (previous) {
|
|
// If the previous block is an acceleration block, too short to complete the full speed
|
|
// change, adjust the entry speed accordingly. Entry speeds have already been reset,
|
|
// maximized, and reverse-planned. If nominal length is set, max junction speed is
|
|
// guaranteed to be reached. No need to recheck.
|
|
if (!TEST(previous->flag, BLOCK_BIT_NOMINAL_LENGTH) &&
|
|
previous->entry_speed_sqr < current->entry_speed_sqr) {
|
|
|
|
// Compute the maximum allowable speed
|
|
const float new_entry_speed_sqr = max_allowable_speed_sqr(-previous->acceleration, previous->entry_speed_sqr, previous->millimeters);
|
|
|
|
// If true, current block is full-acceleration and we can move the planned pointer forward.
|
|
if (new_entry_speed_sqr < current->entry_speed_sqr) {
|
|
|
|
// Mark we need to recompute the trapezoidal shape, and do it now,
|
|
// so the stepper ISR does not consume the block before being recalculated
|
|
SBI(current->flag, BLOCK_BIT_RECALCULATE);
|
|
|
|
// But there is an inherent race condition here, as the block maybe
|
|
// became BUSY, just before it was marked as RECALCULATE, so check
|
|
// if that is the case!
|
|
if (stepper.is_block_busy(current)) {
|
|
// Block became busy. Clear the RECALCULATE flag (no point in
|
|
// recalculating BUSY blocks and don't set its speed, as it can't
|
|
// be updated at this time.
|
|
CBI(current->flag, BLOCK_BIT_RECALCULATE);
|
|
}
|
|
else {
|
|
// Block is not BUSY, we won the race against the Stepper ISR:
|
|
|
|
// Always <= max_entry_speed_sqr. Backward pass sets this.
|
|
current->entry_speed_sqr = new_entry_speed_sqr; // Always <= max_entry_speed_sqr. Backward pass sets this.
|
|
|
|
// Set optimal plan pointer.
|
|
block_buffer_planned = block_index;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Any block set at its maximum entry speed also creates an optimal plan up to this
|
|
// point in the buffer. When the plan is bracketed by either the beginning of the
|
|
// buffer and a maximum entry speed or two maximum entry speeds, every block in between
|
|
// cannot logically be further improved. Hence, we don't have to recompute them anymore.
|
|
if (current->entry_speed_sqr == current->max_entry_speed_sqr)
|
|
block_buffer_planned = block_index;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* recalculate() needs to go over the current plan twice.
|
|
* Once in reverse and once forward. This implements the forward pass.
|
|
*/
|
|
void Planner::forward_pass() {
|
|
|
|
// Forward Pass: Forward plan the acceleration curve from the planned pointer onward.
|
|
// Also scans for optimal plan breakpoints and appropriately updates the planned pointer.
|
|
|
|
// Begin at buffer planned pointer. Note that block_buffer_planned can be modified
|
|
// by the stepper ISR, so read it ONCE. It it guaranteed that block_buffer_planned
|
|
// will never lead head, so the loop is safe to execute. Also note that the forward
|
|
// pass will never modify the values at the tail.
|
|
uint8_t block_index = block_buffer_planned;
|
|
|
|
block_t *current;
|
|
const block_t * previous = NULL;
|
|
while (block_index != block_buffer_head) {
|
|
|
|
// Perform the forward pass
|
|
current = &block_buffer[block_index];
|
|
|
|
// Skip SYNC blocks
|
|
if (!TEST(current->flag, BLOCK_BIT_SYNC_POSITION)) {
|
|
// If there's no previous block or the previous block is not
|
|
// BUSY (thus, modifiable) run the forward_pass_kernel. Otherwise,
|
|
// the previous block became BUSY, so assume the current block's
|
|
// entry speed can't be altered (since that would also require
|
|
// updating the exit speed of the previous block).
|
|
if (!previous || !stepper.is_block_busy(previous))
|
|
forward_pass_kernel(previous, current, block_index);
|
|
previous = current;
|
|
}
|
|
// Advance to the previous
|
|
block_index = next_block_index(block_index);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Recalculate the trapezoid speed profiles for all blocks in the plan
|
|
* according to the entry_factor for each junction. Must be called by
|
|
* recalculate() after updating the blocks.
|
|
*/
|
|
void Planner::recalculate_trapezoids() {
|
|
// The tail may be changed by the ISR so get a local copy.
|
|
uint8_t block_index = block_buffer_tail,
|
|
head_block_index = block_buffer_head;
|
|
// Since there could be a sync block in the head of the queue, and the
|
|
// next loop must not recalculate the head block (as it needs to be
|
|
// specially handled), scan backwards to the first non-SYNC block.
|
|
while (head_block_index != block_index) {
|
|
|
|
// Go back (head always point to the first free block)
|
|
const uint8_t prev_index = prev_block_index(head_block_index);
|
|
|
|
// Get the pointer to the block
|
|
block_t *prev = &block_buffer[prev_index];
|
|
|
|
// If not dealing with a sync block, we are done. The last block is not a SYNC block
|
|
if (!TEST(prev->flag, BLOCK_BIT_SYNC_POSITION)) break;
|
|
|
|
// Examine the previous block. This and all following are SYNC blocks
|
|
head_block_index = prev_index;
|
|
}
|
|
|
|
// Go from the tail (currently executed block) to the first block, without including it)
|
|
block_t *current = NULL, *next = NULL;
|
|
float current_entry_speed = 0.0, next_entry_speed = 0.0;
|
|
while (block_index != head_block_index) {
|
|
|
|
next = &block_buffer[block_index];
|
|
|
|
// Skip sync blocks
|
|
if (!TEST(next->flag, BLOCK_BIT_SYNC_POSITION)) {
|
|
next_entry_speed = SQRT(next->entry_speed_sqr);
|
|
|
|
if (current) {
|
|
// Recalculate if current block entry or exit junction speed has changed.
|
|
if (TEST(current->flag, BLOCK_BIT_RECALCULATE) || TEST(next->flag, BLOCK_BIT_RECALCULATE)) {
|
|
|
|
// Mark the current block as RECALCULATE, to protect it from the Stepper ISR running it.
|
|
// Note that due to the above condition, there's a chance the current block isn't marked as
|
|
// RECALCULATE yet, but the next one is. That's the reason for the following line.
|
|
SBI(current->flag, BLOCK_BIT_RECALCULATE);
|
|
|
|
// But there is an inherent race condition here, as the block maybe
|
|
// became BUSY, just before it was marked as RECALCULATE, so check
|
|
// if that is the case!
|
|
if (!stepper.is_block_busy(current)) {
|
|
// Block is not BUSY, we won the race against the Stepper ISR:
|
|
|
|
// NOTE: Entry and exit factors always > 0 by all previous logic operations.
|
|
const float current_nominal_speed = SQRT(current->nominal_speed_sqr),
|
|
nomr = 1.0f / current_nominal_speed;
|
|
calculate_trapezoid_for_block(current, current_entry_speed * nomr, next_entry_speed * nomr);
|
|
#if ENABLED(LIN_ADVANCE)
|
|
if (current->use_advance_lead) {
|
|
const float comp = current->e_D_ratio * extruder_advance_K[active_extruder] * settings.axis_steps_per_mm[E_AXIS];
|
|
current->max_adv_steps = current_nominal_speed * comp;
|
|
current->final_adv_steps = next_entry_speed * comp;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// Reset current only to ensure next trapezoid is computed - The
|
|
// stepper is free to use the block from now on.
|
|
CBI(current->flag, BLOCK_BIT_RECALCULATE);
|
|
}
|
|
}
|
|
|
|
current = next;
|
|
current_entry_speed = next_entry_speed;
|
|
}
|
|
|
|
block_index = next_block_index(block_index);
|
|
}
|
|
|
|
// Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
|
|
if (next) {
|
|
|
|
// Mark the next(last) block as RECALCULATE, to prevent the Stepper ISR running it.
|
|
// As the last block is always recalculated here, there is a chance the block isn't
|
|
// marked as RECALCULATE yet. That's the reason for the following line.
|
|
SBI(next->flag, BLOCK_BIT_RECALCULATE);
|
|
|
|
// But there is an inherent race condition here, as the block maybe
|
|
// became BUSY, just before it was marked as RECALCULATE, so check
|
|
// if that is the case!
|
|
if (!stepper.is_block_busy(current)) {
|
|
// Block is not BUSY, we won the race against the Stepper ISR:
|
|
|
|
const float next_nominal_speed = SQRT(next->nominal_speed_sqr),
|
|
nomr = 1.0f / next_nominal_speed;
|
|
calculate_trapezoid_for_block(next, next_entry_speed * nomr, float(MINIMUM_PLANNER_SPEED) * nomr);
|
|
#if ENABLED(LIN_ADVANCE)
|
|
if (next->use_advance_lead) {
|
|
const float comp = next->e_D_ratio * extruder_advance_K[active_extruder] * settings.axis_steps_per_mm[E_AXIS];
|
|
next->max_adv_steps = next_nominal_speed * comp;
|
|
next->final_adv_steps = (MINIMUM_PLANNER_SPEED) * comp;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// Reset next only to ensure its trapezoid is computed - The stepper is free to use
|
|
// the block from now on.
|
|
CBI(next->flag, BLOCK_BIT_RECALCULATE);
|
|
}
|
|
}
|
|
|
|
void Planner::recalculate() {
|
|
// Initialize block index to the last block in the planner buffer.
|
|
const uint8_t block_index = prev_block_index(block_buffer_head);
|
|
// If there is just one block, no planning can be done. Avoid it!
|
|
if (block_index != block_buffer_planned) {
|
|
reverse_pass();
|
|
forward_pass();
|
|
}
|
|
recalculate_trapezoids();
|
|
}
|
|
|
|
#if ENABLED(AUTOTEMP)
|
|
|
|
void Planner::getHighESpeed() {
|
|
static float oldt = 0;
|
|
|
|
if (!autotemp_enabled) return;
|
|
if (thermalManager.degTargetHotend(0) + 2 < autotemp_min) return; // probably temperature set to zero.
|
|
|
|
float high = 0.0;
|
|
for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
|
|
block_t* block = &block_buffer[b];
|
|
if (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS]) {
|
|
const float se = (float)block->steps[E_AXIS] / block->step_event_count * SQRT(block->nominal_speed_sqr); // mm/sec;
|
|
NOLESS(high, se);
|
|
}
|
|
}
|
|
|
|
float t = autotemp_min + high * autotemp_factor;
|
|
t = constrain(t, autotemp_min, autotemp_max);
|
|
if (t < oldt) t = t * (1 - float(AUTOTEMP_OLDWEIGHT)) + oldt * float(AUTOTEMP_OLDWEIGHT);
|
|
oldt = t;
|
|
thermalManager.setTargetHotend(t, 0);
|
|
}
|
|
|
|
#endif // AUTOTEMP
|
|
|
|
/**
|
|
* Maintain fans, paste extruder pressure,
|
|
*/
|
|
void Planner::check_axes_activity() {
|
|
uint8_t axis_active[NUM_AXIS] = { 0 },
|
|
tail_fan_speed[FAN_COUNT];
|
|
|
|
#if ENABLED(BARICUDA)
|
|
#if HAS_HEATER_1
|
|
uint8_t tail_valve_pressure;
|
|
#endif
|
|
#if HAS_HEATER_2
|
|
uint8_t tail_e_to_p_pressure;
|
|
#endif
|
|
#endif
|
|
|
|
if (has_blocks_queued()) {
|
|
#if FAN_COUNT > 0
|
|
FANS_LOOP(i)
|
|
tail_fan_speed[i] = (block_buffer[block_buffer_tail].fan_speed[i] * uint16_t(thermalManager.fan_speed_scaler[i])) >> 7;
|
|
#endif
|
|
|
|
block_t* block;
|
|
|
|
#if ENABLED(BARICUDA)
|
|
block = &block_buffer[block_buffer_tail];
|
|
#if HAS_HEATER_1
|
|
tail_valve_pressure = block->valve_pressure;
|
|
#endif
|
|
#if HAS_HEATER_2
|
|
tail_e_to_p_pressure = block->e_to_p_pressure;
|
|
#endif
|
|
#endif
|
|
|
|
for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
|
|
block = &block_buffer[b];
|
|
LOOP_XYZE(i) if (block->steps[i]) axis_active[i]++;
|
|
}
|
|
}
|
|
else {
|
|
#if FAN_COUNT > 0
|
|
FANS_LOOP(i)
|
|
tail_fan_speed[i] = (thermalManager.fan_speed[i] * uint16_t(thermalManager.fan_speed_scaler[i])) >> 7;
|
|
#endif
|
|
|
|
#if ENABLED(BARICUDA)
|
|
#if HAS_HEATER_1
|
|
tail_valve_pressure = baricuda_valve_pressure;
|
|
#endif
|
|
#if HAS_HEATER_2
|
|
tail_e_to_p_pressure = baricuda_e_to_p_pressure;
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
#if ENABLED(DISABLE_X)
|
|
if (!axis_active[X_AXIS]) disable_X();
|
|
#endif
|
|
#if ENABLED(DISABLE_Y)
|
|
if (!axis_active[Y_AXIS]) disable_Y();
|
|
#endif
|
|
#if ENABLED(DISABLE_Z)
|
|
if (!axis_active[Z_AXIS]) disable_Z();
|
|
#endif
|
|
#if ENABLED(DISABLE_E)
|
|
if (!axis_active[E_AXIS]) disable_e_steppers();
|
|
#endif
|
|
|
|
#if FAN_COUNT > 0
|
|
|
|
#if FAN_KICKSTART_TIME > 0
|
|
|
|
static millis_t fan_kick_end[FAN_COUNT] = { 0 };
|
|
|
|
#define KICKSTART_FAN(f) \
|
|
if (tail_fan_speed[f]) { \
|
|
millis_t ms = millis(); \
|
|
if (fan_kick_end[f] == 0) { \
|
|
fan_kick_end[f] = ms + FAN_KICKSTART_TIME; \
|
|
tail_fan_speed[f] = 255; \
|
|
} else if (PENDING(ms, fan_kick_end[f])) \
|
|
tail_fan_speed[f] = 255; \
|
|
} else fan_kick_end[f] = 0
|
|
|
|
#if HAS_FAN0
|
|
KICKSTART_FAN(0);
|
|
#endif
|
|
#if HAS_FAN1
|
|
KICKSTART_FAN(1);
|
|
#endif
|
|
#if HAS_FAN2
|
|
KICKSTART_FAN(2);
|
|
#endif
|
|
|
|
#endif // FAN_KICKSTART_TIME > 0
|
|
|
|
#if FAN_MIN_PWM != 0 || FAN_MAX_PWM != 255
|
|
#define CALC_FAN_SPEED(f) (tail_fan_speed[f] ? map(tail_fan_speed[f], 1, 255, FAN_MIN_PWM, FAN_MAX_PWM) : 0)
|
|
#else
|
|
#define CALC_FAN_SPEED(f) tail_fan_speed[f]
|
|
#endif
|
|
|
|
#if ENABLED(FAN_SOFT_PWM)
|
|
#if HAS_FAN0
|
|
thermalManager.soft_pwm_amount_fan[0] = CALC_FAN_SPEED(0);
|
|
#endif
|
|
#if HAS_FAN1
|
|
thermalManager.soft_pwm_amount_fan[1] = CALC_FAN_SPEED(1);
|
|
#endif
|
|
#if HAS_FAN2
|
|
thermalManager.soft_pwm_amount_fan[2] = CALC_FAN_SPEED(2);
|
|
#endif
|
|
#else
|
|
#if HAS_FAN0
|
|
analogWrite(FAN_PIN, CALC_FAN_SPEED(0));
|
|
#endif
|
|
#if HAS_FAN1
|
|
analogWrite(FAN1_PIN, CALC_FAN_SPEED(1));
|
|
#endif
|
|
#if HAS_FAN2
|
|
analogWrite(FAN2_PIN, CALC_FAN_SPEED(2));
|
|
#endif
|
|
#endif
|
|
|
|
#endif // FAN_COUNT > 0
|
|
|
|
#if ENABLED(AUTOTEMP)
|
|
getHighESpeed();
|
|
#endif
|
|
|
|
#if ENABLED(BARICUDA)
|
|
#if HAS_HEATER_1
|
|
analogWrite(HEATER_1_PIN, tail_valve_pressure);
|
|
#endif
|
|
#if HAS_HEATER_2
|
|
analogWrite(HEATER_2_PIN, tail_e_to_p_pressure);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
#if DISABLED(NO_VOLUMETRICS)
|
|
|
|
/**
|
|
* Get a volumetric multiplier from a filament diameter.
|
|
* This is the reciprocal of the circular cross-section area.
|
|
* Return 1.0 with volumetric off or a diameter of 0.0.
|
|
*/
|
|
inline float calculate_volumetric_multiplier(const float &diameter) {
|
|
return (parser.volumetric_enabled && diameter) ? 1.0f / CIRCLE_AREA(diameter * 0.5f) : 1;
|
|
}
|
|
|
|
/**
|
|
* Convert the filament sizes into volumetric multipliers.
|
|
* The multiplier converts a given E value into a length.
|
|
*/
|
|
void Planner::calculate_volumetric_multipliers() {
|
|
for (uint8_t i = 0; i < COUNT(filament_size); i++) {
|
|
volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
|
|
refresh_e_factor(i);
|
|
}
|
|
}
|
|
|
|
#endif // !NO_VOLUMETRICS
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
/**
|
|
* Convert the ratio value given by the filament width sensor
|
|
* into a volumetric multiplier. Conversion differs when using
|
|
* linear extrusion vs volumetric extrusion.
|
|
*/
|
|
void Planner::calculate_volumetric_for_width_sensor(const int8_t encoded_ratio) {
|
|
// Reconstitute the nominal/measured ratio
|
|
const float nom_meas_ratio = 1 + 0.01f * encoded_ratio,
|
|
ratio_2 = sq(nom_meas_ratio);
|
|
|
|
volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = parser.volumetric_enabled
|
|
? ratio_2 / CIRCLE_AREA(filament_width_nominal * 0.5f) // Volumetric uses a true volumetric multiplier
|
|
: ratio_2; // Linear squares the ratio, which scales the volume
|
|
|
|
refresh_e_factor(FILAMENT_SENSOR_EXTRUDER_NUM);
|
|
}
|
|
#endif
|
|
|
|
#if HAS_LEVELING
|
|
/**
|
|
* rx, ry, rz - Cartesian positions in mm
|
|
* Leveled XYZ on completion
|
|
*/
|
|
void Planner::apply_leveling(float &rx, float &ry, float &rz) {
|
|
if (!leveling_active) return;
|
|
|
|
#if ABL_PLANAR
|
|
|
|
float dx = rx - (X_TILT_FULCRUM),
|
|
dy = ry - (Y_TILT_FULCRUM);
|
|
|
|
apply_rotation_xyz(bed_level_matrix, dx, dy, rz);
|
|
|
|
rx = dx + X_TILT_FULCRUM;
|
|
ry = dy + Y_TILT_FULCRUM;
|
|
|
|
#elif HAS_MESH
|
|
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
const float fade_scaling_factor = fade_scaling_factor_for_z(rz);
|
|
#else
|
|
constexpr float fade_scaling_factor = 1.0;
|
|
#endif
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
const float raw[XYZ] = { rx, ry, 0 };
|
|
#endif
|
|
|
|
rz += (
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
mbl.get_z(rx, ry
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
, fade_scaling_factor
|
|
#endif
|
|
)
|
|
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
|
fade_scaling_factor ? fade_scaling_factor * ubl.get_z_correction(rx, ry) : 0.0
|
|
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
fade_scaling_factor ? fade_scaling_factor * bilinear_z_offset(raw) : 0.0
|
|
#endif
|
|
);
|
|
|
|
#endif
|
|
}
|
|
|
|
void Planner::unapply_leveling(float raw[XYZ]) {
|
|
|
|
if (leveling_active) {
|
|
|
|
#if ABL_PLANAR
|
|
|
|
matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix);
|
|
|
|
float dx = raw[X_AXIS] - (X_TILT_FULCRUM),
|
|
dy = raw[Y_AXIS] - (Y_TILT_FULCRUM);
|
|
|
|
apply_rotation_xyz(inverse, dx, dy, raw[Z_AXIS]);
|
|
|
|
raw[X_AXIS] = dx + X_TILT_FULCRUM;
|
|
raw[Y_AXIS] = dy + Y_TILT_FULCRUM;
|
|
|
|
#elif HAS_MESH
|
|
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
const float fade_scaling_factor = fade_scaling_factor_for_z(raw[Z_AXIS]);
|
|
#else
|
|
constexpr float fade_scaling_factor = 1.0;
|
|
#endif
|
|
|
|
raw[Z_AXIS] -= (
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
mbl.get_z(raw[X_AXIS], raw[Y_AXIS]
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
, fade_scaling_factor
|
|
#endif
|
|
)
|
|
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
|
fade_scaling_factor ? fade_scaling_factor * ubl.get_z_correction(raw[X_AXIS], raw[Y_AXIS]) : 0.0
|
|
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
fade_scaling_factor ? fade_scaling_factor * bilinear_z_offset(raw) : 0.0
|
|
#endif
|
|
);
|
|
|
|
#endif
|
|
}
|
|
|
|
#if ENABLED(SKEW_CORRECTION)
|
|
unskew(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]);
|
|
#endif
|
|
}
|
|
|
|
#endif // HAS_LEVELING
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
/**
|
|
* rz, e - Cartesian positions in mm
|
|
*/
|
|
void Planner::apply_retract(float &rz, float &e) {
|
|
rz += fwretract.current_hop;
|
|
e -= fwretract.current_retract[active_extruder];
|
|
}
|
|
|
|
void Planner::unapply_retract(float &rz, float &e) {
|
|
rz -= fwretract.current_hop;
|
|
e += fwretract.current_retract[active_extruder];
|
|
}
|
|
|
|
#endif
|
|
|
|
void Planner::quick_stop() {
|
|
|
|
// Remove all the queued blocks. Note that this function is NOT
|
|
// called from the Stepper ISR, so we must consider tail as readonly!
|
|
// that is why we set head to tail - But there is a race condition that
|
|
// must be handled: The tail could change between the read and the assignment
|
|
// so this must be enclosed in a critical section
|
|
|
|
const bool was_enabled = STEPPER_ISR_ENABLED();
|
|
if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
|
|
|
|
// Drop all queue entries
|
|
block_buffer_nonbusy = block_buffer_planned = block_buffer_head = block_buffer_tail;
|
|
|
|
// Restart the block delay for the first movement - As the queue was
|
|
// forced to empty, there's no risk the ISR will touch this.
|
|
delay_before_delivering = BLOCK_DELAY_FOR_1ST_MOVE;
|
|
|
|
#if ENABLED(ULTRA_LCD)
|
|
// Clear the accumulated runtime
|
|
clear_block_buffer_runtime();
|
|
#endif
|
|
|
|
// Make sure to drop any attempt of queuing moves for at least 1 second
|
|
cleaning_buffer_counter = 1000;
|
|
|
|
// Reenable Stepper ISR
|
|
if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
|
|
|
|
// And stop the stepper ISR
|
|
stepper.quick_stop();
|
|
}
|
|
|
|
void Planner::endstop_triggered(const AxisEnum axis) {
|
|
// Record stepper position and discard the current block
|
|
stepper.endstop_triggered(axis);
|
|
}
|
|
|
|
float Planner::triggered_position_mm(const AxisEnum axis) {
|
|
return stepper.triggered_position(axis) * steps_to_mm[axis];
|
|
}
|
|
|
|
void Planner::finish_and_disable() {
|
|
while (has_blocks_queued() || cleaning_buffer_counter) idle();
|
|
disable_all_steppers();
|
|
}
|
|
|
|
/**
|
|
* Get an axis position according to stepper position(s)
|
|
* For CORE machines apply translation from ABC to XYZ.
|
|
*/
|
|
float Planner::get_axis_position_mm(const AxisEnum axis) {
|
|
float axis_steps;
|
|
#if IS_CORE
|
|
// Requesting one of the "core" axes?
|
|
if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
|
|
|
|
// Protect the access to the position.
|
|
const bool was_enabled = STEPPER_ISR_ENABLED();
|
|
if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
|
|
|
|
// ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
|
|
// ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
|
|
axis_steps = 0.5f * (
|
|
axis == CORE_AXIS_2 ? CORESIGN(stepper.position(CORE_AXIS_1) - stepper.position(CORE_AXIS_2))
|
|
: stepper.position(CORE_AXIS_1) + stepper.position(CORE_AXIS_2)
|
|
);
|
|
|
|
if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
|
|
}
|
|
else
|
|
axis_steps = stepper.position(axis);
|
|
#else
|
|
axis_steps = stepper.position(axis);
|
|
#endif
|
|
return axis_steps * steps_to_mm[axis];
|
|
}
|
|
|
|
/**
|
|
* Block until all buffered steps are executed / cleaned
|
|
*/
|
|
void Planner::synchronize() {
|
|
while (
|
|
has_blocks_queued() || cleaning_buffer_counter
|
|
#if ENABLED(EXTERNAL_CLOSED_LOOP_CONTROLLER)
|
|
|| (READ(CLOSED_LOOP_ENABLE_PIN) && !READ(CLOSED_LOOP_MOVE_COMPLETE_PIN))
|
|
#endif
|
|
) idle();
|
|
}
|
|
|
|
/**
|
|
* The following implements axis backlash correction. To minimize seams
|
|
* on the printed part, the backlash correction only adds steps to the
|
|
* current segment (instead of creating a new segment, which causes
|
|
* discontinuities and print artifacts).
|
|
*
|
|
* When BACKLASH_SMOOTHING_MM is enabled and non-zero, the backlash
|
|
* correction is spread over multiple segments, smoothing out print
|
|
* artifacts even more.
|
|
*/
|
|
#if ENABLED(BACKLASH_COMPENSATION)
|
|
#if ENABLED(BACKLASH_GCODE)
|
|
extern float backlash_distance_mm[], backlash_correction;
|
|
#ifdef BACKLASH_SMOOTHING_MM
|
|
extern float backlash_smoothing_mm;
|
|
#endif
|
|
#else
|
|
constexpr float backlash_distance_mm[XYZ] = BACKLASH_DISTANCE_MM,
|
|
backlash_correction = BACKLASH_CORRECTION;
|
|
#ifdef BACKLASH_SMOOTHING_MM
|
|
constexpr float backlash_smoothing_mm = BACKLASH_SMOOTHING_MM;
|
|
#endif
|
|
#endif
|
|
|
|
void Planner::add_backlash_correction_steps(const int32_t da, const int32_t db, const int32_t dc, const uint8_t dm, block_t * const block) {
|
|
static uint8_t last_direction_bits;
|
|
uint8_t changed_dir = last_direction_bits ^ dm;
|
|
// Ignore direction change if no steps are taken in that direction
|
|
if (da == 0) CBI(changed_dir, X_AXIS);
|
|
if (db == 0) CBI(changed_dir, Y_AXIS);
|
|
if (dc == 0) CBI(changed_dir, Z_AXIS);
|
|
last_direction_bits ^= changed_dir;
|
|
|
|
if (backlash_correction == 0) return;
|
|
|
|
#ifdef BACKLASH_SMOOTHING_MM
|
|
// The segment proportion is a value greater than 0.0 indicating how much residual_error
|
|
// is corrected for in this segment. The contribution is based on segment length and the
|
|
// smoothing distance. Since the computation of this proportion involves a floating point
|
|
// division, defer computation until needed.
|
|
float segment_proportion = 0;
|
|
|
|
// Residual error carried forward across multiple segments, so correction can be applied
|
|
// to segments where there is no direction change.
|
|
static int32_t residual_error[XYZ] = { 0 };
|
|
#else
|
|
// No leftover residual error from segment to segment
|
|
int32_t residual_error[XYZ] = { 0 };
|
|
// No direction change, no correction.
|
|
if (!changed_dir) return;
|
|
#endif
|
|
|
|
LOOP_XYZ(axis) {
|
|
if (backlash_distance_mm[axis]) {
|
|
const bool reversing = TEST(dm,axis);
|
|
|
|
// When an axis changes direction, add axis backlash to the residual error
|
|
if (TEST(changed_dir, axis))
|
|
residual_error[axis] += backlash_correction * (reversing ? -1.0f : 1.0f) * backlash_distance_mm[axis] * planner.settings.axis_steps_per_mm[axis];
|
|
|
|
// Decide how much of the residual error to correct in this segment
|
|
int32_t error_correction = residual_error[axis];
|
|
#ifdef BACKLASH_SMOOTHING_MM
|
|
if (error_correction && backlash_smoothing_mm != 0) {
|
|
// Take up a portion of the residual_error in this segment, but only when
|
|
// the current segment travels in the same direction as the correction
|
|
if (reversing == (error_correction < 0)) {
|
|
if (segment_proportion == 0)
|
|
segment_proportion = MIN(1.0f, block->millimeters / backlash_smoothing_mm);
|
|
error_correction *= segment_proportion;
|
|
}
|
|
else
|
|
error_correction = 0; // Don't take up any backlash in this segment, as it would subtract steps
|
|
}
|
|
#endif
|
|
// Making a correction reduces the residual error and modifies delta_mm
|
|
if (error_correction) {
|
|
block->steps[axis] += ABS(error_correction);
|
|
residual_error[axis] -= error_correction;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif // BACKLASH_COMPENSATION
|
|
|
|
/**
|
|
* Planner::_buffer_steps
|
|
*
|
|
* Add a new linear movement to the planner queue (in terms of steps).
|
|
*
|
|
* target - target position in steps units
|
|
* target_float - target position in direct (mm, degrees) units. optional
|
|
* fr_mm_s - (target) speed of the move
|
|
* extruder - target extruder
|
|
* millimeters - the length of the movement, if known
|
|
*
|
|
* Returns true if movement was properly queued, false otherwise
|
|
*/
|
|
bool Planner::_buffer_steps(const int32_t (&target)[XYZE]
|
|
#if HAS_POSITION_FLOAT
|
|
, const float (&target_float)[ABCE]
|
|
#endif
|
|
#if IS_KINEMATIC && ENABLED(JUNCTION_DEVIATION)
|
|
, const float (&delta_mm_cart)[XYZE]
|
|
#endif
|
|
, float fr_mm_s, const uint8_t extruder, const float &millimeters
|
|
) {
|
|
|
|
// If we are cleaning, do not accept queuing of movements
|
|
if (cleaning_buffer_counter) return false;
|
|
|
|
// Wait for the next available block
|
|
uint8_t next_buffer_head;
|
|
block_t * const block = get_next_free_block(next_buffer_head);
|
|
|
|
// Fill the block with the specified movement
|
|
if (!_populate_block(block, false, target
|
|
#if HAS_POSITION_FLOAT
|
|
, target_float
|
|
#endif
|
|
#if IS_KINEMATIC && ENABLED(JUNCTION_DEVIATION)
|
|
, delta_mm_cart
|
|
#endif
|
|
, fr_mm_s, extruder, millimeters
|
|
)) {
|
|
// Movement was not queued, probably because it was too short.
|
|
// Simply accept that as movement queued and done
|
|
return true;
|
|
}
|
|
|
|
// If this is the first added movement, reload the delay, otherwise, cancel it.
|
|
if (block_buffer_head == block_buffer_tail) {
|
|
// If it was the first queued block, restart the 1st block delivery delay, to
|
|
// give the planner an opportunity to queue more movements and plan them
|
|
// As there are no queued movements, the Stepper ISR will not touch this
|
|
// variable, so there is no risk setting this here (but it MUST be done
|
|
// before the following line!!)
|
|
delay_before_delivering = BLOCK_DELAY_FOR_1ST_MOVE;
|
|
}
|
|
|
|
// Move buffer head
|
|
block_buffer_head = next_buffer_head;
|
|
|
|
// Recalculate and optimize trapezoidal speed profiles
|
|
recalculate();
|
|
|
|
// Movement successfully queued!
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Planner::_populate_block
|
|
*
|
|
* Fills a new linear movement in the block (in terms of steps).
|
|
*
|
|
* target - target position in steps units
|
|
* fr_mm_s - (target) speed of the move
|
|
* extruder - target extruder
|
|
*
|
|
* Returns true is movement is acceptable, false otherwise
|
|
*/
|
|
bool Planner::_populate_block(block_t * const block, bool split_move,
|
|
const int32_t (&target)[ABCE]
|
|
#if HAS_POSITION_FLOAT
|
|
, const float (&target_float)[ABCE]
|
|
#endif
|
|
#if IS_KINEMATIC && ENABLED(JUNCTION_DEVIATION)
|
|
, const float (&delta_mm_cart)[XYZE]
|
|
#endif
|
|
, float fr_mm_s, const uint8_t extruder, const float &millimeters/*=0.0*/
|
|
) {
|
|
|
|
const int32_t da = target[A_AXIS] - position[A_AXIS],
|
|
db = target[B_AXIS] - position[B_AXIS],
|
|
dc = target[C_AXIS] - position[C_AXIS];
|
|
|
|
int32_t de = target[E_AXIS] - position[E_AXIS];
|
|
|
|
/* <-- add a slash to enable
|
|
SERIAL_ECHOPAIR(" _populate_block FR:", fr_mm_s);
|
|
SERIAL_ECHOPAIR(" A:", target[A_AXIS]);
|
|
SERIAL_ECHOPAIR(" (", da);
|
|
SERIAL_ECHOPAIR(" steps) B:", target[B_AXIS]);
|
|
SERIAL_ECHOPAIR(" (", db);
|
|
SERIAL_ECHOPAIR(" steps) C:", target[C_AXIS]);
|
|
SERIAL_ECHOPAIR(" (", dc);
|
|
SERIAL_ECHOPAIR(" steps) E:", target[E_AXIS]);
|
|
SERIAL_ECHOPAIR(" (", de);
|
|
SERIAL_ECHOLNPGM(" steps)");
|
|
//*/
|
|
|
|
#if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE)
|
|
if (de) {
|
|
#if ENABLED(PREVENT_COLD_EXTRUSION)
|
|
if (thermalManager.tooColdToExtrude(extruder)) {
|
|
position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
|
|
#if HAS_POSITION_FLOAT
|
|
position_float[E_AXIS] = target_float[E_AXIS];
|
|
#endif
|
|
de = 0; // no difference
|
|
SERIAL_ECHO_MSG(MSG_ERR_COLD_EXTRUDE_STOP);
|
|
}
|
|
#endif // PREVENT_COLD_EXTRUSION
|
|
#if ENABLED(PREVENT_LENGTHY_EXTRUDE)
|
|
if (ABS(de * e_factor[extruder]) > (int32_t)settings.axis_steps_per_mm[E_AXIS_N(extruder)] * (EXTRUDE_MAXLENGTH)) { // It's not important to get max. extrusion length in a precision < 1mm, so save some cycles and cast to int
|
|
position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
|
|
#if HAS_POSITION_FLOAT
|
|
position_float[E_AXIS] = target_float[E_AXIS];
|
|
#endif
|
|
de = 0; // no difference
|
|
SERIAL_ECHO_MSG(MSG_ERR_LONG_EXTRUDE_STOP);
|
|
}
|
|
#endif // PREVENT_LENGTHY_EXTRUDE
|
|
}
|
|
#endif // PREVENT_COLD_EXTRUSION || PREVENT_LENGTHY_EXTRUDE
|
|
|
|
// Compute direction bit-mask for this block
|
|
uint8_t dm = 0;
|
|
#if CORE_IS_XY
|
|
if (da < 0) SBI(dm, X_HEAD); // Save the real Extruder (head) direction in X Axis
|
|
if (db < 0) SBI(dm, Y_HEAD); // ...and Y
|
|
if (dc < 0) SBI(dm, Z_AXIS);
|
|
if (da + db < 0) SBI(dm, A_AXIS); // Motor A direction
|
|
if (CORESIGN(da - db) < 0) SBI(dm, B_AXIS); // Motor B direction
|
|
#elif CORE_IS_XZ
|
|
if (da < 0) SBI(dm, X_HEAD); // Save the real Extruder (head) direction in X Axis
|
|
if (db < 0) SBI(dm, Y_AXIS);
|
|
if (dc < 0) SBI(dm, Z_HEAD); // ...and Z
|
|
if (da + dc < 0) SBI(dm, A_AXIS); // Motor A direction
|
|
if (CORESIGN(da - dc) < 0) SBI(dm, C_AXIS); // Motor C direction
|
|
#elif CORE_IS_YZ
|
|
if (da < 0) SBI(dm, X_AXIS);
|
|
if (db < 0) SBI(dm, Y_HEAD); // Save the real Extruder (head) direction in Y Axis
|
|
if (dc < 0) SBI(dm, Z_HEAD); // ...and Z
|
|
if (db + dc < 0) SBI(dm, B_AXIS); // Motor B direction
|
|
if (CORESIGN(db - dc) < 0) SBI(dm, C_AXIS); // Motor C direction
|
|
#else
|
|
if (da < 0) SBI(dm, X_AXIS);
|
|
if (db < 0) SBI(dm, Y_AXIS);
|
|
if (dc < 0) SBI(dm, Z_AXIS);
|
|
#endif
|
|
if (de < 0) SBI(dm, E_AXIS);
|
|
|
|
const float esteps_float = de * e_factor[extruder];
|
|
const uint32_t esteps = ABS(esteps_float) + 0.5f;
|
|
|
|
// Clear all flags, including the "busy" bit
|
|
block->flag = 0x00;
|
|
|
|
// Set direction bits
|
|
block->direction_bits = dm;
|
|
|
|
// Number of steps for each axis
|
|
// See http://www.corexy.com/theory.html
|
|
#if CORE_IS_XY
|
|
block->steps[A_AXIS] = ABS(da + db);
|
|
block->steps[B_AXIS] = ABS(da - db);
|
|
block->steps[Z_AXIS] = ABS(dc);
|
|
#elif CORE_IS_XZ
|
|
block->steps[A_AXIS] = ABS(da + dc);
|
|
block->steps[Y_AXIS] = ABS(db);
|
|
block->steps[C_AXIS] = ABS(da - dc);
|
|
#elif CORE_IS_YZ
|
|
block->steps[X_AXIS] = ABS(da);
|
|
block->steps[B_AXIS] = ABS(db + dc);
|
|
block->steps[C_AXIS] = ABS(db - dc);
|
|
#elif IS_SCARA
|
|
block->steps[A_AXIS] = ABS(da);
|
|
block->steps[B_AXIS] = ABS(db);
|
|
block->steps[Z_AXIS] = ABS(dc);
|
|
#else
|
|
// default non-h-bot planning
|
|
block->steps[A_AXIS] = ABS(da);
|
|
block->steps[B_AXIS] = ABS(db);
|
|
block->steps[C_AXIS] = ABS(dc);
|
|
#endif
|
|
|
|
/**
|
|
* This part of the code calculates the total length of the movement.
|
|
* For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
|
|
* But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
|
|
* and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
|
|
* So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
|
|
* Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
|
|
*/
|
|
#if IS_CORE
|
|
float delta_mm[Z_HEAD + 1];
|
|
#if CORE_IS_XY
|
|
delta_mm[X_HEAD] = da * steps_to_mm[A_AXIS];
|
|
delta_mm[Y_HEAD] = db * steps_to_mm[B_AXIS];
|
|
delta_mm[Z_AXIS] = dc * steps_to_mm[Z_AXIS];
|
|
delta_mm[A_AXIS] = (da + db) * steps_to_mm[A_AXIS];
|
|
delta_mm[B_AXIS] = CORESIGN(da - db) * steps_to_mm[B_AXIS];
|
|
#elif CORE_IS_XZ
|
|
delta_mm[X_HEAD] = da * steps_to_mm[A_AXIS];
|
|
delta_mm[Y_AXIS] = db * steps_to_mm[Y_AXIS];
|
|
delta_mm[Z_HEAD] = dc * steps_to_mm[C_AXIS];
|
|
delta_mm[A_AXIS] = (da + dc) * steps_to_mm[A_AXIS];
|
|
delta_mm[C_AXIS] = CORESIGN(da - dc) * steps_to_mm[C_AXIS];
|
|
#elif CORE_IS_YZ
|
|
delta_mm[X_AXIS] = da * steps_to_mm[X_AXIS];
|
|
delta_mm[Y_HEAD] = db * steps_to_mm[B_AXIS];
|
|
delta_mm[Z_HEAD] = dc * steps_to_mm[C_AXIS];
|
|
delta_mm[B_AXIS] = (db + dc) * steps_to_mm[B_AXIS];
|
|
delta_mm[C_AXIS] = CORESIGN(db - dc) * steps_to_mm[C_AXIS];
|
|
#endif
|
|
#else
|
|
float delta_mm[ABCE];
|
|
delta_mm[A_AXIS] = da * steps_to_mm[A_AXIS];
|
|
delta_mm[B_AXIS] = db * steps_to_mm[B_AXIS];
|
|
delta_mm[C_AXIS] = dc * steps_to_mm[C_AXIS];
|
|
#endif
|
|
delta_mm[E_AXIS] = esteps_float * steps_to_mm[E_AXIS_N(extruder)];
|
|
|
|
if (block->steps[A_AXIS] < MIN_STEPS_PER_SEGMENT && block->steps[B_AXIS] < MIN_STEPS_PER_SEGMENT && block->steps[C_AXIS] < MIN_STEPS_PER_SEGMENT) {
|
|
block->millimeters = ABS(delta_mm[E_AXIS]);
|
|
}
|
|
else {
|
|
if (millimeters)
|
|
block->millimeters = millimeters;
|
|
else
|
|
block->millimeters = SQRT(
|
|
#if CORE_IS_XY
|
|
sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_AXIS])
|
|
#elif CORE_IS_XZ
|
|
sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_HEAD])
|
|
#elif CORE_IS_YZ
|
|
sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_HEAD])
|
|
#else
|
|
sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_AXIS])
|
|
#endif
|
|
);
|
|
|
|
/**
|
|
* At this point at least one of the axes has more steps than
|
|
* MIN_STEPS_PER_SEGMENT, ensuring the segment won't get dropped as
|
|
* zero-length. It's important to not apply corrections
|
|
* to blocks that would get dropped!
|
|
*
|
|
* A correction function is permitted to add steps to an axis, it
|
|
* should *never* remove steps!
|
|
*/
|
|
#if ENABLED(BACKLASH_COMPENSATION)
|
|
add_backlash_correction_steps(da, db, dc, dm, block);
|
|
#endif
|
|
}
|
|
|
|
block->steps[E_AXIS] = esteps;
|
|
block->step_event_count = MAX(block->steps[A_AXIS], block->steps[B_AXIS], block->steps[C_AXIS], esteps);
|
|
|
|
// Bail if this is a zero-length block
|
|
if (block->step_event_count < MIN_STEPS_PER_SEGMENT) return false;
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
MIXER_POPULATE_BLOCK();
|
|
#endif
|
|
|
|
#if FAN_COUNT > 0
|
|
FANS_LOOP(i) block->fan_speed[i] = thermalManager.fan_speed[i];
|
|
#endif
|
|
|
|
#if ENABLED(BARICUDA)
|
|
block->valve_pressure = baricuda_valve_pressure;
|
|
block->e_to_p_pressure = baricuda_e_to_p_pressure;
|
|
#endif
|
|
|
|
#if EXTRUDERS > 1
|
|
block->extruder = extruder;
|
|
#endif
|
|
|
|
#if ENABLED(AUTO_POWER_CONTROL)
|
|
if (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS])
|
|
powerManager.power_on();
|
|
#endif
|
|
|
|
// Enable active axes
|
|
#if CORE_IS_XY
|
|
if (block->steps[A_AXIS] || block->steps[B_AXIS]) {
|
|
enable_X();
|
|
enable_Y();
|
|
}
|
|
#if DISABLED(Z_LATE_ENABLE)
|
|
if (block->steps[Z_AXIS]) enable_Z();
|
|
#endif
|
|
#elif CORE_IS_XZ
|
|
if (block->steps[A_AXIS] || block->steps[C_AXIS]) {
|
|
enable_X();
|
|
enable_Z();
|
|
}
|
|
if (block->steps[Y_AXIS]) enable_Y();
|
|
#elif CORE_IS_YZ
|
|
if (block->steps[B_AXIS] || block->steps[C_AXIS]) {
|
|
enable_Y();
|
|
enable_Z();
|
|
}
|
|
if (block->steps[X_AXIS]) enable_X();
|
|
#else
|
|
if (block->steps[X_AXIS]) enable_X();
|
|
if (block->steps[Y_AXIS]) enable_Y();
|
|
#if DISABLED(Z_LATE_ENABLE)
|
|
if (block->steps[Z_AXIS]) enable_Z();
|
|
#endif
|
|
#endif
|
|
|
|
// Enable extruder(s)
|
|
if (esteps) {
|
|
#if ENABLED(AUTO_POWER_CONTROL)
|
|
powerManager.power_on();
|
|
#endif
|
|
|
|
#if ENABLED(DISABLE_INACTIVE_EXTRUDER) // Enable only the selected extruder
|
|
|
|
#define DISABLE_IDLE_E(N) if (!g_uc_extruder_last_move[N]) disable_E##N();
|
|
|
|
for (uint8_t i = 0; i < EXTRUDERS; i++)
|
|
if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--;
|
|
|
|
switch (extruder) {
|
|
case 0:
|
|
#if EXTRUDERS > 1
|
|
DISABLE_IDLE_E(1);
|
|
#if EXTRUDERS > 2
|
|
DISABLE_IDLE_E(2);
|
|
#if EXTRUDERS > 3
|
|
DISABLE_IDLE_E(3);
|
|
#if EXTRUDERS > 4
|
|
DISABLE_IDLE_E(4);
|
|
#if EXTRUDERS > 5
|
|
DISABLE_IDLE_E(5);
|
|
#endif // EXTRUDERS > 5
|
|
#endif // EXTRUDERS > 4
|
|
#endif // EXTRUDERS > 3
|
|
#endif // EXTRUDERS > 2
|
|
#endif // EXTRUDERS > 1
|
|
enable_E0();
|
|
g_uc_extruder_last_move[0] = (BLOCK_BUFFER_SIZE) * 2;
|
|
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
|
|
if (extruder_duplication_enabled) {
|
|
enable_E1();
|
|
g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2;
|
|
}
|
|
#endif
|
|
break;
|
|
#if EXTRUDERS > 1
|
|
case 1:
|
|
DISABLE_IDLE_E(0);
|
|
#if EXTRUDERS > 2
|
|
DISABLE_IDLE_E(2);
|
|
#if EXTRUDERS > 3
|
|
DISABLE_IDLE_E(3);
|
|
#if EXTRUDERS > 4
|
|
DISABLE_IDLE_E(4);
|
|
#if EXTRUDERS > 5
|
|
DISABLE_IDLE_E(5);
|
|
#endif // EXTRUDERS > 5
|
|
#endif // EXTRUDERS > 4
|
|
#endif // EXTRUDERS > 3
|
|
#endif // EXTRUDERS > 2
|
|
enable_E1();
|
|
g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2;
|
|
break;
|
|
#if EXTRUDERS > 2
|
|
case 2:
|
|
DISABLE_IDLE_E(0);
|
|
DISABLE_IDLE_E(1);
|
|
#if EXTRUDERS > 3
|
|
DISABLE_IDLE_E(3);
|
|
#if EXTRUDERS > 4
|
|
DISABLE_IDLE_E(4);
|
|
#if EXTRUDERS > 5
|
|
DISABLE_IDLE_E(5);
|
|
#endif
|
|
#endif
|
|
#endif
|
|
enable_E2();
|
|
g_uc_extruder_last_move[2] = (BLOCK_BUFFER_SIZE) * 2;
|
|
break;
|
|
#if EXTRUDERS > 3
|
|
case 3:
|
|
DISABLE_IDLE_E(0);
|
|
DISABLE_IDLE_E(1);
|
|
DISABLE_IDLE_E(2);
|
|
#if EXTRUDERS > 4
|
|
DISABLE_IDLE_E(4);
|
|
#if EXTRUDERS > 5
|
|
DISABLE_IDLE_E(5);
|
|
#endif
|
|
#endif
|
|
enable_E3();
|
|
g_uc_extruder_last_move[3] = (BLOCK_BUFFER_SIZE) * 2;
|
|
break;
|
|
#if EXTRUDERS > 4
|
|
case 4:
|
|
DISABLE_IDLE_E(0);
|
|
DISABLE_IDLE_E(1);
|
|
DISABLE_IDLE_E(2);
|
|
DISABLE_IDLE_E(3);
|
|
#if EXTRUDERS > 5
|
|
DISABLE_IDLE_E(5);
|
|
#endif
|
|
enable_E4();
|
|
g_uc_extruder_last_move[4] = (BLOCK_BUFFER_SIZE) * 2;
|
|
break;
|
|
#if EXTRUDERS > 5
|
|
case 5:
|
|
DISABLE_IDLE_E(0);
|
|
DISABLE_IDLE_E(1);
|
|
DISABLE_IDLE_E(2);
|
|
DISABLE_IDLE_E(3);
|
|
DISABLE_IDLE_E(4);
|
|
enable_E5();
|
|
g_uc_extruder_last_move[5] = (BLOCK_BUFFER_SIZE) * 2;
|
|
break;
|
|
#endif // EXTRUDERS > 5
|
|
#endif // EXTRUDERS > 4
|
|
#endif // EXTRUDERS > 3
|
|
#endif // EXTRUDERS > 2
|
|
#endif // EXTRUDERS > 1
|
|
}
|
|
#else
|
|
enable_E0();
|
|
enable_E1();
|
|
enable_E2();
|
|
enable_E3();
|
|
enable_E4();
|
|
enable_E5();
|
|
#endif
|
|
}
|
|
|
|
if (esteps)
|
|
NOLESS(fr_mm_s, settings.min_feedrate_mm_s);
|
|
else
|
|
NOLESS(fr_mm_s, settings.min_travel_feedrate_mm_s);
|
|
|
|
const float inverse_millimeters = 1.0f / block->millimeters; // Inverse millimeters to remove multiple divides
|
|
|
|
// Calculate inverse time for this move. No divide by zero due to previous checks.
|
|
// Example: At 120mm/s a 60mm move takes 0.5s. So this will give 2.0.
|
|
float inverse_secs = fr_mm_s * inverse_millimeters;
|
|
|
|
// Get the number of non busy movements in queue (non busy means that they can be altered)
|
|
const uint8_t moves_queued = nonbusy_movesplanned();
|
|
|
|
// Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill
|
|
#if ENABLED(SLOWDOWN) || ENABLED(ULTRA_LCD) || defined(XY_FREQUENCY_LIMIT)
|
|
// Segment time im micro seconds
|
|
uint32_t segment_time_us = LROUND(1000000.0f / inverse_secs);
|
|
#endif
|
|
|
|
#if ENABLED(SLOWDOWN)
|
|
if (WITHIN(moves_queued, 2, (BLOCK_BUFFER_SIZE) / 2 - 1)) {
|
|
if (segment_time_us < settings.min_segment_time_us) {
|
|
// buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
|
|
const uint32_t nst = segment_time_us + LROUND(2 * (settings.min_segment_time_us - segment_time_us) / moves_queued);
|
|
inverse_secs = 1000000.0f / nst;
|
|
#if defined(XY_FREQUENCY_LIMIT) || ENABLED(ULTRA_LCD)
|
|
segment_time_us = nst;
|
|
#endif
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(ULTRA_LCD)
|
|
// Protect the access to the position.
|
|
const bool was_enabled = STEPPER_ISR_ENABLED();
|
|
if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
|
|
|
|
block_buffer_runtime_us += segment_time_us;
|
|
|
|
if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
|
|
#endif
|
|
|
|
block->nominal_speed_sqr = sq(block->millimeters * inverse_secs); // (mm/sec)^2 Always > 0
|
|
block->nominal_rate = CEIL(block->step_event_count * inverse_secs); // (step/sec) Always > 0
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
static float filwidth_e_count = 0, filwidth_delay_dist = 0;
|
|
|
|
//FMM update ring buffer used for delay with filament measurements
|
|
if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && filwidth_delay_index[1] >= 0) { //only for extruder with filament sensor and if ring buffer is initialized
|
|
|
|
constexpr int MMD_CM = MAX_MEASUREMENT_DELAY + 1, MMD_MM = MMD_CM * 10;
|
|
|
|
// increment counters with next move in e axis
|
|
filwidth_e_count += delta_mm[E_AXIS];
|
|
filwidth_delay_dist += delta_mm[E_AXIS];
|
|
|
|
// Only get new measurements on forward E movement
|
|
if (!UNEAR_ZERO(filwidth_e_count)) {
|
|
|
|
// Loop the delay distance counter (modulus by the mm length)
|
|
while (filwidth_delay_dist >= MMD_MM) filwidth_delay_dist -= MMD_MM;
|
|
|
|
// Convert into an index into the measurement array
|
|
filwidth_delay_index[0] = int8_t(filwidth_delay_dist * 0.1f);
|
|
|
|
// If the index has changed (must have gone forward)...
|
|
if (filwidth_delay_index[0] != filwidth_delay_index[1]) {
|
|
filwidth_e_count = 0; // Reset the E movement counter
|
|
const int8_t meas_sample = thermalManager.widthFil_to_size_ratio();
|
|
do {
|
|
filwidth_delay_index[1] = (filwidth_delay_index[1] + 1) % MMD_CM; // The next unused slot
|
|
measurement_delay[filwidth_delay_index[1]] = meas_sample; // Store the measurement
|
|
} while (filwidth_delay_index[0] != filwidth_delay_index[1]); // More slots to fill?
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Calculate and limit speed in mm/sec for each axis
|
|
float current_speed[NUM_AXIS], speed_factor = 1.0f; // factor <1 decreases speed
|
|
LOOP_XYZE(i) {
|
|
#if ENABLED(MIXING_EXTRUDER) && ENABLED(RETRACT_SYNC_MIXING)
|
|
// In worst case, only one extruder running, no change is needed.
|
|
// In best case, all extruders run the same amount, we can divide by MIXING_STEPPERS
|
|
float delta_mm_i = 0;
|
|
if (i == E_AXIS && mixer.get_current_vtool() == MIXER_AUTORETRACT_TOOL)
|
|
delta_mm_i = delta_mm[i] / MIXING_STEPPERS;
|
|
else
|
|
delta_mm_i = delta_mm[i];
|
|
#else
|
|
const float delta_mm_i = delta_mm[i];
|
|
#endif
|
|
const float cs = ABS(current_speed[i] = delta_mm_i * inverse_secs);
|
|
#if ENABLED(DISTINCT_E_FACTORS)
|
|
if (i == E_AXIS) i += extruder;
|
|
#endif
|
|
if (cs > settings.max_feedrate_mm_s[i]) NOMORE(speed_factor, settings.max_feedrate_mm_s[i] / cs);
|
|
}
|
|
|
|
// Max segment time in µs.
|
|
#ifdef XY_FREQUENCY_LIMIT
|
|
|
|
// Check and limit the xy direction change frequency
|
|
const unsigned char direction_change = block->direction_bits ^ old_direction_bits;
|
|
old_direction_bits = block->direction_bits;
|
|
segment_time_us = LROUND((float)segment_time_us / speed_factor);
|
|
|
|
uint32_t xs0 = axis_segment_time_us[X_AXIS][0],
|
|
xs1 = axis_segment_time_us[X_AXIS][1],
|
|
xs2 = axis_segment_time_us[X_AXIS][2],
|
|
ys0 = axis_segment_time_us[Y_AXIS][0],
|
|
ys1 = axis_segment_time_us[Y_AXIS][1],
|
|
ys2 = axis_segment_time_us[Y_AXIS][2];
|
|
|
|
if (TEST(direction_change, X_AXIS)) {
|
|
xs2 = axis_segment_time_us[X_AXIS][2] = xs1;
|
|
xs1 = axis_segment_time_us[X_AXIS][1] = xs0;
|
|
xs0 = 0;
|
|
}
|
|
xs0 = axis_segment_time_us[X_AXIS][0] = xs0 + segment_time_us;
|
|
|
|
if (TEST(direction_change, Y_AXIS)) {
|
|
ys2 = axis_segment_time_us[Y_AXIS][2] = axis_segment_time_us[Y_AXIS][1];
|
|
ys1 = axis_segment_time_us[Y_AXIS][1] = axis_segment_time_us[Y_AXIS][0];
|
|
ys0 = 0;
|
|
}
|
|
ys0 = axis_segment_time_us[Y_AXIS][0] = ys0 + segment_time_us;
|
|
|
|
const uint32_t max_x_segment_time = MAX(xs0, xs1, xs2),
|
|
max_y_segment_time = MAX(ys0, ys1, ys2),
|
|
min_xy_segment_time = MIN(max_x_segment_time, max_y_segment_time);
|
|
if (min_xy_segment_time < MAX_FREQ_TIME_US) {
|
|
const float low_sf = speed_factor * min_xy_segment_time / (MAX_FREQ_TIME_US);
|
|
NOMORE(speed_factor, low_sf);
|
|
}
|
|
#endif // XY_FREQUENCY_LIMIT
|
|
|
|
// Correct the speed
|
|
if (speed_factor < 1.0f) {
|
|
LOOP_XYZE(i) current_speed[i] *= speed_factor;
|
|
block->nominal_rate *= speed_factor;
|
|
block->nominal_speed_sqr = block->nominal_speed_sqr * sq(speed_factor);
|
|
}
|
|
|
|
// Compute and limit the acceleration rate for the trapezoid generator.
|
|
const float steps_per_mm = block->step_event_count * inverse_millimeters;
|
|
uint32_t accel;
|
|
if (!block->steps[A_AXIS] && !block->steps[B_AXIS] && !block->steps[C_AXIS]) {
|
|
// convert to: acceleration steps/sec^2
|
|
accel = CEIL(settings.retract_acceleration * steps_per_mm);
|
|
#if ENABLED(LIN_ADVANCE)
|
|
block->use_advance_lead = false;
|
|
#endif
|
|
}
|
|
else {
|
|
#define LIMIT_ACCEL_LONG(AXIS,INDX) do{ \
|
|
if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \
|
|
const uint32_t comp = max_acceleration_steps_per_s2[AXIS+INDX] * block->step_event_count; \
|
|
if (accel * block->steps[AXIS] > comp) accel = comp / block->steps[AXIS]; \
|
|
} \
|
|
}while(0)
|
|
|
|
#define LIMIT_ACCEL_FLOAT(AXIS,INDX) do{ \
|
|
if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \
|
|
const float comp = (float)max_acceleration_steps_per_s2[AXIS+INDX] * (float)block->step_event_count; \
|
|
if ((float)accel * (float)block->steps[AXIS] > comp) accel = comp / (float)block->steps[AXIS]; \
|
|
} \
|
|
}while(0)
|
|
|
|
// Start with print or travel acceleration
|
|
accel = CEIL((esteps ? settings.acceleration : settings.travel_acceleration) * steps_per_mm);
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
|
|
#if ENABLED(JUNCTION_DEVIATION)
|
|
#if ENABLED(DISTINCT_E_FACTORS)
|
|
#define MAX_E_JERK max_e_jerk[extruder]
|
|
#else
|
|
#define MAX_E_JERK max_e_jerk
|
|
#endif
|
|
#else
|
|
#define MAX_E_JERK max_jerk[E_AXIS]
|
|
#endif
|
|
|
|
/**
|
|
*
|
|
* Use LIN_ADVANCE for blocks if all these are true:
|
|
*
|
|
* esteps : This is a print move, because we checked for A, B, C steps before.
|
|
*
|
|
* extruder_advance_K[active_extruder] : There is an advance factor set for this extruder.
|
|
*
|
|
* de > 0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
|
|
*/
|
|
block->use_advance_lead = esteps
|
|
&& extruder_advance_K[active_extruder]
|
|
&& de > 0;
|
|
|
|
if (block->use_advance_lead) {
|
|
block->e_D_ratio = (target_float[E_AXIS] - position_float[E_AXIS]) /
|
|
#if IS_KINEMATIC
|
|
block->millimeters
|
|
#else
|
|
SQRT(sq(target_float[X_AXIS] - position_float[X_AXIS])
|
|
+ sq(target_float[Y_AXIS] - position_float[Y_AXIS])
|
|
+ sq(target_float[Z_AXIS] - position_float[Z_AXIS]))
|
|
#endif
|
|
;
|
|
|
|
// Check for unusual high e_D ratio to detect if a retract move was combined with the last print move due to min. steps per segment. Never execute this with advance!
|
|
// This assumes no one will use a retract length of 0mm < retr_length < ~0.2mm and no one will print 100mm wide lines using 3mm filament or 35mm wide lines using 1.75mm filament.
|
|
if (block->e_D_ratio > 3.0f)
|
|
block->use_advance_lead = false;
|
|
else {
|
|
const uint32_t max_accel_steps_per_s2 = MAX_E_JERK / (extruder_advance_K[active_extruder] * block->e_D_ratio) * steps_per_mm;
|
|
#if ENABLED(LA_DEBUG)
|
|
if (accel > max_accel_steps_per_s2) SERIAL_ECHOLNPGM("Acceleration limited.");
|
|
#endif
|
|
NOMORE(accel, max_accel_steps_per_s2);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(DISTINCT_E_FACTORS)
|
|
#define ACCEL_IDX extruder
|
|
#else
|
|
#define ACCEL_IDX 0
|
|
#endif
|
|
|
|
// Limit acceleration per axis
|
|
if (block->step_event_count <= cutoff_long) {
|
|
LIMIT_ACCEL_LONG(A_AXIS, 0);
|
|
LIMIT_ACCEL_LONG(B_AXIS, 0);
|
|
LIMIT_ACCEL_LONG(C_AXIS, 0);
|
|
LIMIT_ACCEL_LONG(E_AXIS, ACCEL_IDX);
|
|
}
|
|
else {
|
|
LIMIT_ACCEL_FLOAT(A_AXIS, 0);
|
|
LIMIT_ACCEL_FLOAT(B_AXIS, 0);
|
|
LIMIT_ACCEL_FLOAT(C_AXIS, 0);
|
|
LIMIT_ACCEL_FLOAT(E_AXIS, ACCEL_IDX);
|
|
}
|
|
}
|
|
block->acceleration_steps_per_s2 = accel;
|
|
block->acceleration = accel / steps_per_mm;
|
|
#if DISABLED(S_CURVE_ACCELERATION)
|
|
block->acceleration_rate = (uint32_t)(accel * (4096.0f * 4096.0f / (STEPPER_TIMER_RATE)));
|
|
#endif
|
|
#if ENABLED(LIN_ADVANCE)
|
|
if (block->use_advance_lead) {
|
|
block->advance_speed = (STEPPER_TIMER_RATE) / (extruder_advance_K[active_extruder] * block->e_D_ratio * block->acceleration * settings.axis_steps_per_mm[E_AXIS_N(extruder)]);
|
|
#if ENABLED(LA_DEBUG)
|
|
if (extruder_advance_K[active_extruder] * block->e_D_ratio * block->acceleration * 2 < SQRT(block->nominal_speed_sqr) * block->e_D_ratio)
|
|
SERIAL_ECHOLNPGM("More than 2 steps per eISR loop executed.");
|
|
if (block->advance_speed < 200)
|
|
SERIAL_ECHOLNPGM("eISR running at > 10kHz.");
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
float vmax_junction_sqr; // Initial limit on the segment entry velocity (mm/s)^2
|
|
|
|
#if ENABLED(JUNCTION_DEVIATION)
|
|
/**
|
|
* Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
|
|
* Let a circle be tangent to both previous and current path line segments, where the junction
|
|
* deviation is defined as the distance from the junction to the closest edge of the circle,
|
|
* colinear with the circle center. The circular segment joining the two paths represents the
|
|
* path of centripetal acceleration. Solve for max velocity based on max acceleration about the
|
|
* radius of the circle, defined indirectly by junction deviation. This may be also viewed as
|
|
* path width or max_jerk in the previous Grbl version. This approach does not actually deviate
|
|
* from path, but used as a robust way to compute cornering speeds, as it takes into account the
|
|
* nonlinearities of both the junction angle and junction velocity.
|
|
*
|
|
* NOTE: If the junction deviation value is finite, Grbl executes the motions in an exact path
|
|
* mode (G61). If the junction deviation value is zero, Grbl will execute the motion in an exact
|
|
* stop mode (G61.1) manner. In the future, if continuous mode (G64) is desired, the math here
|
|
* is exactly the same. Instead of motioning all the way to junction point, the machine will
|
|
* just follow the arc circle defined here. The Arduino doesn't have the CPU cycles to perform
|
|
* a continuous mode path, but ARM-based microcontrollers most certainly do.
|
|
*
|
|
* NOTE: The max junction speed is a fixed value, since machine acceleration limits cannot be
|
|
* changed dynamically during operation nor can the line move geometry. This must be kept in
|
|
* memory in the event of a feedrate override changing the nominal speeds of blocks, which can
|
|
* change the overall maximum entry speed conditions of all blocks.
|
|
*
|
|
* #######
|
|
* https://github.com/MarlinFirmware/Marlin/issues/10341#issuecomment-388191754
|
|
*
|
|
* hoffbaked: on May 10 2018 tuned and improved the GRBL algorithm for Marlin:
|
|
Okay! It seems to be working good. I somewhat arbitrarily cut it off at 1mm
|
|
on then on anything with less sides than an octagon. With this, and the
|
|
reverse pass actually recalculating things, a corner acceleration value
|
|
of 1000 junction deviation of .05 are pretty reasonable. If the cycles
|
|
can be spared, a better acos could be used. For all I know, it may be
|
|
already calculated in a different place. */
|
|
|
|
// Unit vector of previous path line segment
|
|
static float previous_unit_vec[XYZE];
|
|
|
|
#if IS_KINEMATIC && ENABLED(JUNCTION_DEVIATION)
|
|
float unit_vec[] = {
|
|
delta_mm_cart[X_AXIS] * inverse_millimeters,
|
|
delta_mm_cart[Y_AXIS] * inverse_millimeters,
|
|
delta_mm_cart[Z_AXIS] * inverse_millimeters,
|
|
delta_mm_cart[E_AXIS] * inverse_millimeters
|
|
};
|
|
#else
|
|
float unit_vec[] = {
|
|
delta_mm[X_AXIS] * inverse_millimeters,
|
|
delta_mm[Y_AXIS] * inverse_millimeters,
|
|
delta_mm[Z_AXIS] * inverse_millimeters,
|
|
delta_mm[E_AXIS] * inverse_millimeters
|
|
};
|
|
#endif
|
|
|
|
#if IS_CORE && ENABLED(JUNCTION_DEVIATION)
|
|
/**
|
|
* On CoreXY the length of the vector [A,B] is SQRT(2) times the length of the head movement vector [X,Y].
|
|
* So taking Z and E into account, we cannot scale to a unit vector with "inverse_millimeters".
|
|
* => normalize the complete junction vector
|
|
*/
|
|
normalize_junction_vector(unit_vec);
|
|
#endif
|
|
|
|
// Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
|
|
if (moves_queued && !UNEAR_ZERO(previous_nominal_speed_sqr)) {
|
|
// Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
|
|
// NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
|
|
float junction_cos_theta = -previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
|
|
-previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
|
|
-previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS]
|
|
-previous_unit_vec[E_AXIS] * unit_vec[E_AXIS]
|
|
;
|
|
|
|
// NOTE: Computed without any expensive trig, sin() or acos(), by trig half angle identity of cos(theta).
|
|
if (junction_cos_theta > 0.999999f) {
|
|
// For a 0 degree acute junction, just set minimum junction speed.
|
|
vmax_junction_sqr = sq(float(MINIMUM_PLANNER_SPEED));
|
|
}
|
|
else {
|
|
NOLESS(junction_cos_theta, -0.999999f); // Check for numerical round-off to avoid divide by zero.
|
|
|
|
// Convert delta vector to unit vector
|
|
float junction_unit_vec[XYZE] = {
|
|
unit_vec[X_AXIS] - previous_unit_vec[X_AXIS],
|
|
unit_vec[Y_AXIS] - previous_unit_vec[Y_AXIS],
|
|
unit_vec[Z_AXIS] - previous_unit_vec[Z_AXIS],
|
|
unit_vec[E_AXIS] - previous_unit_vec[E_AXIS]
|
|
};
|
|
normalize_junction_vector(junction_unit_vec);
|
|
|
|
const float junction_acceleration = limit_value_by_axis_maximum(block->acceleration, junction_unit_vec),
|
|
sin_theta_d2 = SQRT(0.5f * (1.0f - junction_cos_theta)); // Trig half angle identity. Always positive.
|
|
|
|
vmax_junction_sqr = (junction_acceleration * junction_deviation_mm * sin_theta_d2) / (1.0f - sin_theta_d2);
|
|
if (block->millimeters < 1) {
|
|
|
|
// Fast acos approximation, minus the error bar to be safe
|
|
const float junction_theta = (RADIANS(-40) * sq(junction_cos_theta) - RADIANS(50)) * junction_cos_theta + RADIANS(90) - 0.18f;
|
|
|
|
// If angle is greater than 135 degrees (octagon), find speed for approximate arc
|
|
if (junction_theta > RADIANS(135)) {
|
|
const float limit_sqr = block->millimeters / (RADIANS(180) - junction_theta) * junction_acceleration;
|
|
NOMORE(vmax_junction_sqr, limit_sqr);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Get the lowest speed
|
|
vmax_junction_sqr = MIN(vmax_junction_sqr, block->nominal_speed_sqr, previous_nominal_speed_sqr);
|
|
}
|
|
else // Init entry speed to zero. Assume it starts from rest. Planner will correct this later.
|
|
vmax_junction_sqr = 0;
|
|
|
|
COPY(previous_unit_vec, unit_vec);
|
|
|
|
#endif
|
|
|
|
#if HAS_CLASSIC_JERK
|
|
|
|
/**
|
|
* Adapted from Průša MKS firmware
|
|
* https://github.com/prusa3d/Prusa-Firmware
|
|
*/
|
|
const float nominal_speed = SQRT(block->nominal_speed_sqr);
|
|
|
|
// Exit speed limited by a jerk to full halt of a previous last segment
|
|
static float previous_safe_speed;
|
|
|
|
// Start with a safe speed (from which the machine may halt to stop immediately).
|
|
float safe_speed = nominal_speed;
|
|
|
|
uint8_t limited = 0;
|
|
#if ENABLED(JUNCTION_DEVIATION) && ENABLED(LIN_ADVANCE)
|
|
LOOP_XYZ(i)
|
|
#else
|
|
LOOP_XYZE(i)
|
|
#endif
|
|
{
|
|
const float jerk = ABS(current_speed[i]), // cs : Starting from zero, change in speed for this axis
|
|
maxj = max_jerk[i]; // mj : The max jerk setting for this axis
|
|
if (jerk > maxj) { // cs > mj : New current speed too fast?
|
|
if (limited) { // limited already?
|
|
const float mjerk = nominal_speed * maxj; // ns*mj
|
|
if (jerk * safe_speed > mjerk) safe_speed = mjerk / jerk; // ns*mj/cs
|
|
}
|
|
else {
|
|
safe_speed *= maxj / jerk; // Initial limit: ns*mj/cs
|
|
++limited; // Initially limited
|
|
}
|
|
}
|
|
}
|
|
|
|
float vmax_junction;
|
|
if (moves_queued && !UNEAR_ZERO(previous_nominal_speed_sqr)) {
|
|
// Estimate a maximum velocity allowed at a joint of two successive segments.
|
|
// If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
|
|
// then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
|
|
|
|
// Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
|
|
float v_factor = 1;
|
|
limited = 0;
|
|
|
|
// The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
|
|
// Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
|
|
const float previous_nominal_speed = SQRT(previous_nominal_speed_sqr);
|
|
vmax_junction = MIN(nominal_speed, previous_nominal_speed);
|
|
|
|
// Now limit the jerk in all axes.
|
|
const float smaller_speed_factor = vmax_junction / previous_nominal_speed;
|
|
#if ENABLED(JUNCTION_DEVIATION) && ENABLED(LIN_ADVANCE)
|
|
LOOP_XYZ(axis)
|
|
#else
|
|
LOOP_XYZE(axis)
|
|
#endif
|
|
{
|
|
// Limit an axis. We have to differentiate: coasting, reversal of an axis, full stop.
|
|
float v_exit = previous_speed[axis] * smaller_speed_factor,
|
|
v_entry = current_speed[axis];
|
|
if (limited) {
|
|
v_exit *= v_factor;
|
|
v_entry *= v_factor;
|
|
}
|
|
|
|
// Calculate jerk depending on whether the axis is coasting in the same direction or reversing.
|
|
const float jerk = (v_exit > v_entry)
|
|
? // coasting axis reversal
|
|
( (v_entry > 0 || v_exit < 0) ? (v_exit - v_entry) : MAX(v_exit, -v_entry) )
|
|
: // v_exit <= v_entry coasting axis reversal
|
|
( (v_entry < 0 || v_exit > 0) ? (v_entry - v_exit) : MAX(-v_exit, v_entry) );
|
|
|
|
if (jerk > max_jerk[axis]) {
|
|
v_factor *= max_jerk[axis] / jerk;
|
|
++limited;
|
|
}
|
|
}
|
|
if (limited) vmax_junction *= v_factor;
|
|
// Now the transition velocity is known, which maximizes the shared exit / entry velocity while
|
|
// respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
|
|
const float vmax_junction_threshold = vmax_junction * 0.99f;
|
|
if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold)
|
|
vmax_junction = safe_speed;
|
|
}
|
|
else
|
|
vmax_junction = safe_speed;
|
|
|
|
previous_safe_speed = safe_speed;
|
|
|
|
#if ENABLED(JUNCTION_DEVIATION)
|
|
vmax_junction_sqr = MIN(vmax_junction_sqr, sq(vmax_junction));
|
|
#else
|
|
vmax_junction_sqr = sq(vmax_junction);
|
|
#endif
|
|
|
|
#endif // Classic Jerk Limiting
|
|
|
|
// Max entry speed of this block equals the max exit speed of the previous block.
|
|
block->max_entry_speed_sqr = vmax_junction_sqr;
|
|
|
|
// Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
|
|
const float v_allowable_sqr = max_allowable_speed_sqr(-block->acceleration, sq(float(MINIMUM_PLANNER_SPEED)), block->millimeters);
|
|
|
|
// If we are trying to add a split block, start with the
|
|
// max. allowed speed to avoid an interrupted first move.
|
|
block->entry_speed_sqr = !split_move ? sq(float(MINIMUM_PLANNER_SPEED)) : MIN(vmax_junction_sqr, v_allowable_sqr);
|
|
|
|
// Initialize planner efficiency flags
|
|
// Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
|
|
// If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
|
|
// the current block and next block junction speeds are guaranteed to always be at their maximum
|
|
// junction speeds in deceleration and acceleration, respectively. This is due to how the current
|
|
// block nominal speed limits both the current and next maximum junction speeds. Hence, in both
|
|
// the reverse and forward planners, the corresponding block junction speed will always be at the
|
|
// the maximum junction speed and may always be ignored for any speed reduction checks.
|
|
block->flag |= block->nominal_speed_sqr <= v_allowable_sqr ? BLOCK_FLAG_RECALCULATE | BLOCK_FLAG_NOMINAL_LENGTH : BLOCK_FLAG_RECALCULATE;
|
|
|
|
// Update previous path unit_vector and nominal speed
|
|
COPY(previous_speed, current_speed);
|
|
previous_nominal_speed_sqr = block->nominal_speed_sqr;
|
|
|
|
// Update the position
|
|
static_assert(COUNT(target) > 1, "Parameter to _buffer_steps must be (&target)[XYZE]!");
|
|
COPY(position, target);
|
|
#if HAS_POSITION_FLOAT
|
|
COPY(position_float, target_float);
|
|
#endif
|
|
|
|
#if ENABLED(GRADIENT_MIX)
|
|
mixer.gradient_control(target_float[Z_AXIS]);
|
|
#endif
|
|
|
|
// Movement was accepted
|
|
return true;
|
|
} // _populate_block()
|
|
|
|
/**
|
|
* Planner::buffer_sync_block
|
|
* Add a block to the buffer that just updates the position
|
|
*/
|
|
void Planner::buffer_sync_block() {
|
|
// Wait for the next available block
|
|
uint8_t next_buffer_head;
|
|
block_t * const block = get_next_free_block(next_buffer_head);
|
|
|
|
// Clear block
|
|
memset(block, 0, sizeof(block_t));
|
|
|
|
block->flag = BLOCK_FLAG_SYNC_POSITION;
|
|
|
|
block->position[A_AXIS] = position[A_AXIS];
|
|
block->position[B_AXIS] = position[B_AXIS];
|
|
block->position[C_AXIS] = position[C_AXIS];
|
|
block->position[E_AXIS] = position[E_AXIS];
|
|
|
|
// If this is the first added movement, reload the delay, otherwise, cancel it.
|
|
if (block_buffer_head == block_buffer_tail) {
|
|
// If it was the first queued block, restart the 1st block delivery delay, to
|
|
// give the planner an opportunity to queue more movements and plan them
|
|
// As there are no queued movements, the Stepper ISR will not touch this
|
|
// variable, so there is no risk setting this here (but it MUST be done
|
|
// before the following line!!)
|
|
delay_before_delivering = BLOCK_DELAY_FOR_1ST_MOVE;
|
|
}
|
|
|
|
block_buffer_head = next_buffer_head;
|
|
|
|
stepper.wake_up();
|
|
} // buffer_sync_block()
|
|
|
|
/**
|
|
* Planner::buffer_segment
|
|
*
|
|
* Add a new linear movement to the buffer in axis units.
|
|
*
|
|
* Leveling and kinematics should be applied ahead of calling this.
|
|
*
|
|
* a,b,c,e - target positions in mm and/or degrees
|
|
* fr_mm_s - (target) speed of the move
|
|
* extruder - target extruder
|
|
* millimeters - the length of the movement, if known
|
|
*/
|
|
bool Planner::buffer_segment(const float &a, const float &b, const float &c, const float &e
|
|
#if IS_KINEMATIC && ENABLED(JUNCTION_DEVIATION)
|
|
, const float (&delta_mm_cart)[XYZE]
|
|
#endif
|
|
, const float &fr_mm_s, const uint8_t extruder, const float &millimeters/*=0.0*/
|
|
) {
|
|
|
|
// If we are cleaning, do not accept queuing of movements
|
|
if (cleaning_buffer_counter) return false;
|
|
|
|
// When changing extruders recalculate steps corresponding to the E position
|
|
#if ENABLED(DISTINCT_E_FACTORS)
|
|
if (last_extruder != extruder && settings.axis_steps_per_mm[E_AXIS_N(extruder)] != settings.axis_steps_per_mm[E_AXIS_N(last_extruder)]) {
|
|
position[E_AXIS] = LROUND(position[E_AXIS] * settings.axis_steps_per_mm[E_AXIS_N(extruder)] * steps_to_mm[E_AXIS_N(last_extruder)]);
|
|
last_extruder = extruder;
|
|
}
|
|
#endif
|
|
|
|
// The target position of the tool in absolute steps
|
|
// Calculate target position in absolute steps
|
|
const int32_t target[ABCE] = {
|
|
LROUND(a * settings.axis_steps_per_mm[A_AXIS]),
|
|
LROUND(b * settings.axis_steps_per_mm[B_AXIS]),
|
|
LROUND(c * settings.axis_steps_per_mm[C_AXIS]),
|
|
LROUND(e * settings.axis_steps_per_mm[E_AXIS_N(extruder)])
|
|
};
|
|
|
|
#if HAS_POSITION_FLOAT
|
|
const float target_float[XYZE] = { a, b, c, e };
|
|
#endif
|
|
|
|
// DRYRUN prevents E moves from taking place
|
|
if (DEBUGGING(DRYRUN)) {
|
|
position[E_AXIS] = target[E_AXIS];
|
|
#if HAS_POSITION_FLOAT
|
|
position_float[E_AXIS] = e;
|
|
#endif
|
|
}
|
|
|
|
/* <-- add a slash to enable
|
|
SERIAL_ECHOPAIR(" buffer_segment FR:", fr_mm_s);
|
|
#if IS_KINEMATIC
|
|
SERIAL_ECHOPAIR(" A:", a);
|
|
SERIAL_ECHOPAIR(" (", position[A_AXIS]);
|
|
SERIAL_ECHOPAIR("->", target[A_AXIS]);
|
|
SERIAL_ECHOPAIR(") B:", b);
|
|
#else
|
|
SERIAL_ECHOPAIR(" X:", a);
|
|
SERIAL_ECHOPAIR(" (", position[X_AXIS]);
|
|
SERIAL_ECHOPAIR("->", target[X_AXIS]);
|
|
SERIAL_ECHOPAIR(") Y:", b);
|
|
#endif
|
|
SERIAL_ECHOPAIR(" (", position[Y_AXIS]);
|
|
SERIAL_ECHOPAIR("->", target[Y_AXIS]);
|
|
#if ENABLED(DELTA)
|
|
SERIAL_ECHOPAIR(") C:", c);
|
|
#else
|
|
SERIAL_ECHOPAIR(") Z:", c);
|
|
#endif
|
|
SERIAL_ECHOPAIR(" (", position[Z_AXIS]);
|
|
SERIAL_ECHOPAIR("->", target[Z_AXIS]);
|
|
SERIAL_ECHOPAIR(") E:", e);
|
|
SERIAL_ECHOPAIR(" (", position[E_AXIS]);
|
|
SERIAL_ECHOPAIR("->", target[E_AXIS]);
|
|
SERIAL_ECHOLNPGM(")");
|
|
//*/
|
|
|
|
// Queue the movement
|
|
if (
|
|
!_buffer_steps(target
|
|
#if HAS_POSITION_FLOAT
|
|
, target_float
|
|
#endif
|
|
#if IS_KINEMATIC && ENABLED(JUNCTION_DEVIATION)
|
|
, delta_mm_cart
|
|
#endif
|
|
, fr_mm_s, extruder, millimeters
|
|
)
|
|
) return false;
|
|
|
|
stepper.wake_up();
|
|
return true;
|
|
} // buffer_segment()
|
|
|
|
/**
|
|
* Add a new linear movement to the buffer.
|
|
* The target is cartesian, it's translated to delta/scara if
|
|
* needed.
|
|
*
|
|
*
|
|
* rx,ry,rz,e - target position in mm or degrees
|
|
* fr_mm_s - (target) speed of the move (mm/s)
|
|
* extruder - target extruder
|
|
* millimeters - the length of the movement, if known
|
|
* inv_duration - the reciprocal if the duration of the movement, if known (kinematic only if feeedrate scaling is enabled)
|
|
*/
|
|
bool Planner::buffer_line(const float &rx, const float &ry, const float &rz, const float &e, const float &fr_mm_s, const uint8_t extruder, const float millimeters
|
|
#if ENABLED(SCARA_FEEDRATE_SCALING)
|
|
, const float &inv_duration
|
|
#endif
|
|
) {
|
|
float raw[XYZE] = { rx, ry, rz, e };
|
|
#if HAS_POSITION_MODIFIERS
|
|
apply_modifiers(raw);
|
|
#endif
|
|
|
|
#if IS_KINEMATIC
|
|
const float delta_mm_cart[] = {
|
|
rx - position_cart[X_AXIS],
|
|
ry - position_cart[Y_AXIS],
|
|
rz - position_cart[Z_AXIS]
|
|
#if ENABLED(JUNCTION_DEVIATION)
|
|
, e - position_cart[E_AXIS]
|
|
#endif
|
|
};
|
|
|
|
float mm = millimeters;
|
|
if (mm == 0.0)
|
|
mm = (delta_mm_cart[X_AXIS] != 0.0 || delta_mm_cart[Y_AXIS] != 0.0) ? SQRT(sq(delta_mm_cart[X_AXIS]) + sq(delta_mm_cart[Y_AXIS]) + sq(delta_mm_cart[Z_AXIS])) : ABS(delta_mm_cart[Z_AXIS]);
|
|
|
|
inverse_kinematics(raw);
|
|
|
|
#if ENABLED(SCARA_FEEDRATE_SCALING)
|
|
// For SCARA scale the feed rate from mm/s to degrees/s
|
|
// i.e., Complete the angular vector in the given time.
|
|
const float duration_recip = inv_duration ? inv_duration : fr_mm_s / mm,
|
|
feedrate = HYPOT(delta[A_AXIS] - position_float[A_AXIS], delta[B_AXIS] - position_float[B_AXIS]) * duration_recip;
|
|
#else
|
|
const float feedrate = fr_mm_s;
|
|
#endif
|
|
if (buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS]
|
|
#if ENABLED(JUNCTION_DEVIATION)
|
|
, delta_mm_cart
|
|
#endif
|
|
, feedrate, extruder, mm
|
|
)) {
|
|
position_cart[X_AXIS] = rx;
|
|
position_cart[Y_AXIS] = ry;
|
|
position_cart[Z_AXIS] = rz;
|
|
position_cart[E_AXIS] = e;
|
|
return true;
|
|
}
|
|
else
|
|
return false;
|
|
#else
|
|
return buffer_segment(raw, fr_mm_s, extruder, millimeters);
|
|
#endif
|
|
} // buffer_line()
|
|
|
|
/**
|
|
* Directly set the planner ABC position (and stepper positions)
|
|
* converting mm (or angles for SCARA) into steps.
|
|
*
|
|
* The provided ABC position is in machine units.
|
|
*/
|
|
|
|
void Planner::set_machine_position_mm(const float &a, const float &b, const float &c, const float &e) {
|
|
#if ENABLED(DISTINCT_E_FACTORS)
|
|
last_extruder = active_extruder;
|
|
#endif
|
|
position[A_AXIS] = LROUND(a * settings.axis_steps_per_mm[A_AXIS]);
|
|
position[B_AXIS] = LROUND(b * settings.axis_steps_per_mm[B_AXIS]);
|
|
position[C_AXIS] = LROUND(c * settings.axis_steps_per_mm[C_AXIS]);
|
|
position[E_AXIS] = LROUND(e * settings.axis_steps_per_mm[E_AXIS_N(active_extruder)]);
|
|
#if HAS_POSITION_FLOAT
|
|
position_float[A_AXIS] = a;
|
|
position_float[B_AXIS] = b;
|
|
position_float[C_AXIS] = c;
|
|
position_float[E_AXIS] = e;
|
|
#endif
|
|
if (has_blocks_queued()) {
|
|
//previous_nominal_speed_sqr = 0.0; // Reset planner junction speeds. Assume start from rest.
|
|
//ZERO(previous_speed);
|
|
buffer_sync_block();
|
|
}
|
|
else
|
|
stepper.set_position(position[A_AXIS], position[B_AXIS], position[C_AXIS], position[E_AXIS]);
|
|
}
|
|
|
|
void Planner::set_position_mm(const float &rx, const float &ry, const float &rz, const float &e) {
|
|
float raw[XYZE] = { rx, ry, rz, e };
|
|
#if HAS_POSITION_MODIFIERS
|
|
apply_modifiers(raw
|
|
#if HAS_LEVELING
|
|
, true
|
|
#endif
|
|
);
|
|
#endif
|
|
#if IS_KINEMATIC
|
|
position_cart[X_AXIS] = rx;
|
|
position_cart[Y_AXIS] = ry;
|
|
position_cart[Z_AXIS] = rz;
|
|
position_cart[E_AXIS] = e;
|
|
|
|
inverse_kinematics(raw);
|
|
set_machine_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS]);
|
|
#else
|
|
set_machine_position_mm(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], raw[E_AXIS]);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Setters for planner position (also setting stepper position).
|
|
*/
|
|
void Planner::set_e_position_mm(const float &e) {
|
|
const uint8_t axis_index = E_AXIS_N(active_extruder);
|
|
#if ENABLED(DISTINCT_E_FACTORS)
|
|
last_extruder = active_extruder;
|
|
#endif
|
|
#if ENABLED(FWRETRACT)
|
|
float e_new = e - fwretract.current_retract[active_extruder];
|
|
#else
|
|
const float e_new = e;
|
|
#endif
|
|
position[E_AXIS] = LROUND(settings.axis_steps_per_mm[axis_index] * e_new);
|
|
#if HAS_POSITION_FLOAT
|
|
position_float[E_AXIS] = e_new;
|
|
#endif
|
|
#if IS_KINEMATIC
|
|
position_cart[E_AXIS] = e;
|
|
#endif
|
|
if (has_blocks_queued())
|
|
buffer_sync_block();
|
|
else
|
|
stepper.set_position(E_AXIS, position[E_AXIS]);
|
|
}
|
|
|
|
// Recalculate the steps/s^2 acceleration rates, based on the mm/s^2
|
|
void Planner::reset_acceleration_rates() {
|
|
#if ENABLED(DISTINCT_E_FACTORS)
|
|
#define AXIS_CONDITION (i < E_AXIS || i == E_AXIS_N(active_extruder))
|
|
#else
|
|
#define AXIS_CONDITION true
|
|
#endif
|
|
uint32_t highest_rate = 1;
|
|
LOOP_XYZE_N(i) {
|
|
max_acceleration_steps_per_s2[i] = settings.max_acceleration_mm_per_s2[i] * settings.axis_steps_per_mm[i];
|
|
if (AXIS_CONDITION) NOLESS(highest_rate, max_acceleration_steps_per_s2[i]);
|
|
}
|
|
cutoff_long = 4294967295UL / highest_rate; // 0xFFFFFFFFUL
|
|
#if ENABLED(JUNCTION_DEVIATION) && ENABLED(LIN_ADVANCE)
|
|
recalculate_max_e_jerk();
|
|
#endif
|
|
}
|
|
|
|
// Recalculate position, steps_to_mm if settings.axis_steps_per_mm changes!
|
|
void Planner::refresh_positioning() {
|
|
LOOP_XYZE_N(i) steps_to_mm[i] = 1.0f / settings.axis_steps_per_mm[i];
|
|
set_position_mm(current_position);
|
|
reset_acceleration_rates();
|
|
}
|
|
|
|
#if ENABLED(AUTOTEMP)
|
|
|
|
void Planner::autotemp_M104_M109() {
|
|
if ((autotemp_enabled = parser.seen('F'))) autotemp_factor = parser.value_float();
|
|
if (parser.seen('S')) autotemp_min = parser.value_celsius();
|
|
if (parser.seen('B')) autotemp_max = parser.value_celsius();
|
|
}
|
|
|
|
#endif
|