marlin2_i2/Marlin/ubl.cpp
2017-04-30 20:14:42 -05:00

228 lines
7.2 KiB
C++
Executable file

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "Marlin.h"
#include "math.h"
#if ENABLED(AUTO_BED_LEVELING_UBL)
#include "ubl.h"
#include "hex_print_routines.h"
#include "temperature.h"
/**
* These support functions allow the use of large bit arrays of flags that take very
* little RAM. Currently they are limited to being 16x16 in size. Changing the declaration
* to unsigned long will allow us to go to 32x32 if higher resolution Mesh's are needed
* in the future.
*/
void bit_clear(uint16_t bits[16], uint8_t x, uint8_t y) { CBI(bits[y], x); }
void bit_set(uint16_t bits[16], uint8_t x, uint8_t y) { SBI(bits[y], x); }
bool is_bit_set(uint16_t bits[16], uint8_t x, uint8_t y) { return TEST(bits[y], x); }
int ubl_cnt=0;
static void serial_echo_xy(const uint16_t x, const uint16_t y) {
SERIAL_CHAR('(');
SERIAL_ECHO(x);
SERIAL_CHAR(',');
SERIAL_ECHO(y);
SERIAL_CHAR(')');
safe_delay(10);
}
static void serial_echo_12x_spaces() {
for (uint8_t i = GRID_MAX_POINTS_X - 1; --i;) {
SERIAL_ECHO_SP(12);
safe_delay(10);
}
}
ubl_state unified_bed_leveling::state;
float unified_bed_leveling::z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y],
unified_bed_leveling::last_specified_z;
// 15 is the maximum nubmer of grid points supported + 1 safety margin for now,
// until determinism prevails
constexpr float unified_bed_leveling::mesh_index_to_xpos[16],
unified_bed_leveling::mesh_index_to_ypos[16];
bool unified_bed_leveling::g26_debug_flag = false,
unified_bed_leveling::has_control_of_lcd_panel = false;
int16_t unified_bed_leveling::eeprom_start = -1; // Please stop changing this to 8 bits in size
// It needs to hold values bigger than this.
volatile int unified_bed_leveling::encoder_diff;
unified_bed_leveling::unified_bed_leveling() {
ubl_cnt++; // Debug counter to insure we only have one UBL object present in memory.
reset();
}
void unified_bed_leveling::load_mesh(const int16_t slot) {
int16_t j = (UBL_LAST_EEPROM_INDEX - eeprom_start) / sizeof(z_values);
if (slot == -1) {
SERIAL_PROTOCOLLNPGM("?No mesh saved in EEPROM. Zeroing mesh in memory.\n");
reset();
return;
}
if (!WITHIN(slot, 0, j - 1) || eeprom_start <= 0) {
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n");
return;
}
j = UBL_LAST_EEPROM_INDEX - (slot + 1) * sizeof(z_values);
eeprom_read_block((void *)&z_values, (void *)j, sizeof(z_values));
SERIAL_PROTOCOLPAIR("Mesh loaded from slot ", slot);
SERIAL_PROTOCOLLNPAIR(" at offset ", hex_address((void*)j));
}
void unified_bed_leveling::store_mesh(const int16_t slot) {
int16_t j = (UBL_LAST_EEPROM_INDEX - eeprom_start) / sizeof(z_values);
if (!WITHIN(slot, 0, j - 1) || eeprom_start <= 0) {
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n");
SERIAL_PROTOCOL(slot);
SERIAL_PROTOCOLLNPGM(" mesh slots available.\n");
SERIAL_PROTOCOLLNPAIR("E2END : ", E2END);
SERIAL_PROTOCOLLNPAIR("k : ", (int)UBL_LAST_EEPROM_INDEX);
SERIAL_PROTOCOLLNPAIR("j : ", j);
SERIAL_PROTOCOLLNPAIR("m : ", slot);
SERIAL_EOL;
return;
}
j = UBL_LAST_EEPROM_INDEX - (slot + 1) * sizeof(z_values);
eeprom_write_block((const void *)&z_values, (void *)j, sizeof(z_values));
SERIAL_PROTOCOLPAIR("Mesh saved in slot ", slot);
SERIAL_PROTOCOLLNPAIR(" at offset ", hex_address((void*)j));
}
void unified_bed_leveling::reset() {
state.active = false;
state.z_offset = 0;
state.eeprom_storage_slot = -1;
ZERO(z_values);
last_specified_z = -999.9;
}
void unified_bed_leveling::invalidate() {
state.active = false;
state.z_offset = 0;
for (int x = 0; x < GRID_MAX_POINTS_X; x++)
for (int y = 0; y < GRID_MAX_POINTS_Y; y++)
z_values[x][y] = NAN;
}
void unified_bed_leveling::display_map(const int map_type) {
const bool map0 = map_type == 0;
if (map0) {
SERIAL_PROTOCOLLNPGM("\nBed Topography Report:\n");
serial_echo_xy(0, GRID_MAX_POINTS_Y - 1);
SERIAL_ECHOPGM(" ");
}
if (map0) {
serial_echo_12x_spaces();
serial_echo_xy(GRID_MAX_POINTS_X - 1, GRID_MAX_POINTS_Y - 1);
SERIAL_EOL;
serial_echo_xy(UBL_MESH_MIN_X, UBL_MESH_MIN_Y);
serial_echo_12x_spaces();
serial_echo_xy(UBL_MESH_MAX_X, UBL_MESH_MAX_Y);
SERIAL_EOL;
}
const float current_xi = ubl.get_cell_index_x(current_position[X_AXIS] + (MESH_X_DIST) / 2.0),
current_yi = ubl.get_cell_index_y(current_position[Y_AXIS] + (MESH_Y_DIST) / 2.0);
for (int8_t j = GRID_MAX_POINTS_Y - 1; j >= 0; j--) {
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
const bool is_current = i == current_xi && j == current_yi;
// is the nozzle here? then mark the number
if (map0) SERIAL_CHAR(is_current ? '[' : ' ');
const float f = z_values[i][j];
if (isnan(f)) {
serialprintPGM(map0 ? PSTR(" . ") : PSTR("NAN"));
}
else {
// if we don't do this, the columns won't line up nicely
if (map0 && f >= 0.0) SERIAL_CHAR(' ');
SERIAL_PROTOCOL_F(f, 3);
idle();
}
if (!map0 && i < GRID_MAX_POINTS_X - 1) SERIAL_CHAR(',');
#if TX_BUFFER_SIZE > 0
MYSERIAL.flushTX();
#endif
safe_delay(15);
if (map0) {
SERIAL_CHAR(is_current ? ']' : ' ');
SERIAL_CHAR(' ');
}
}
SERIAL_EOL;
if (j && map0) { // we want the (0,0) up tight against the block of numbers
SERIAL_CHAR(' ');
SERIAL_EOL;
}
}
if (map0) {
serial_echo_xy(UBL_MESH_MIN_X, UBL_MESH_MIN_Y);
SERIAL_ECHO_SP(4);
serial_echo_12x_spaces();
serial_echo_xy(UBL_MESH_MAX_X, UBL_MESH_MIN_Y);
SERIAL_EOL;
serial_echo_xy(0, 0);
SERIAL_ECHO_SP(7);
serial_echo_12x_spaces();
serial_echo_xy(GRID_MAX_POINTS_X - 1, 0);
SERIAL_EOL;
}
}
bool unified_bed_leveling::sanity_check() {
uint8_t error_flag = 0;
const int j = (UBL_LAST_EEPROM_INDEX - eeprom_start) / sizeof(z_values);
if (j < 1) {
SERIAL_PROTOCOLLNPGM("?No EEPROM storage available for a mesh of this size.\n");
error_flag++;
}
return !!error_flag;
}
#endif // AUTO_BED_LEVELING_UBL