marlin2_i2/Marlin/EEPROMwrite.h
2011-11-05 14:13:20 +01:00

129 lines
5.4 KiB
C++

#ifndef __EEPROMH
#define __EEPROMH
#include "planner.h"
#include "temperature.h"
#include <EEPROM.h>
#include "Marlin.h"
#include "streaming.h"
//======================================================================================
template <class T> int EEPROM_writeAnything(int &ee, const T& value)
{
const byte* p = (const byte*)(const void*)&value;
int i;
for (i = 0; i < (int)sizeof(value); i++)
EEPROM.write(ee++, *p++);
return i;
}
//======================================================================================
template <class T> int EEPROM_readAnything(int &ee, T& value)
{
byte* p = (byte*)(void*)&value;
int i;
for (i = 0; i < (int)sizeof(value); i++)
*p++ = EEPROM.read(ee++);
return i;
}
//======================================================================================
#define EEPROM_OFFSET 100
#define EEPROM_VERSION "V04" // IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
// in the functions below, also increment the version number. This makes sure that
// the default values are used whenever there is a change to the data, to prevent
// wrong data being written to the variables.
// ALSO: always make sure the variables in the Store and retrieve sections are in the same order.
void StoreSettings() {
char ver[4]= "000";
int i=EEPROM_OFFSET;
EEPROM_writeAnything(i,ver); // invalidate data first
EEPROM_writeAnything(i,axis_steps_per_unit);
EEPROM_writeAnything(i,max_feedrate);
EEPROM_writeAnything(i,max_acceleration_units_per_sq_second);
EEPROM_writeAnything(i,acceleration);
EEPROM_writeAnything(i,retract_acceleration);
EEPROM_writeAnything(i,minimumfeedrate);
EEPROM_writeAnything(i,mintravelfeedrate);
EEPROM_writeAnything(i,minsegmenttime);
EEPROM_writeAnything(i,max_xy_jerk);
EEPROM_writeAnything(i,max_z_jerk);
#ifdef PIDTEMP
EEPROM_writeAnything(i,Kp);
EEPROM_writeAnything(i,Ki);
EEPROM_writeAnything(i,Kd);
#else
EEPROM_writeAnything(i,3000);
EEPROM_writeAnything(i,0);
EEPROM_writeAnything(i,0);
#endif
char ver2[4]=EEPROM_VERSION;
i=EEPROM_OFFSET;
EEPROM_writeAnything(i,ver2); // validate data
ECHOLN("Settings Stored");
}
void RetrieveSettings(bool def=false){ // if def=true, the default values will be used
int i=EEPROM_OFFSET;
char stored_ver[4];
char ver[4]=EEPROM_VERSION;
EEPROM_readAnything(i,stored_ver); //read stored version
// ECHOLN("Version: [" << ver << "] Stored version: [" << stored_ver << "]");
if ((!def)&&(strncmp(ver,stored_ver,3)==0)) { // version number match
EEPROM_readAnything(i,axis_steps_per_unit);
EEPROM_readAnything(i,max_feedrate);
EEPROM_readAnything(i,max_acceleration_units_per_sq_second);
EEPROM_readAnything(i,acceleration);
EEPROM_readAnything(i,retract_acceleration);
EEPROM_readAnything(i,minimumfeedrate);
EEPROM_readAnything(i,mintravelfeedrate);
EEPROM_readAnything(i,minsegmenttime);
EEPROM_readAnything(i,max_xy_jerk);
EEPROM_readAnything(i,max_z_jerk);
#ifndef PIDTEMP
float Kp,Ki,Kd;
#endif
EEPROM_readAnything(i,Kp);
EEPROM_readAnything(i,Ki);
EEPROM_readAnything(i,Kd);
ECHOLN("Stored settings retreived:");
}
else {
float tmp1[]=DEFAULT_AXIS_STEPS_PER_UNIT;
float tmp2[]=DEFAULT_MAX_FEEDRATE;
long tmp3[]=DEFAULT_MAX_ACCELERATION;
for (int i=0;i<4;i++) {
axis_steps_per_unit[i]=tmp1[i];
max_feedrate[i]=tmp2[i];
max_acceleration_units_per_sq_second[i]=tmp3[i];
}
acceleration=DEFAULT_ACCELERATION;
retract_acceleration=DEFAULT_RETRACT_ACCELERATION;
minimumfeedrate=DEFAULT_MINIMUMFEEDRATE;
minsegmenttime=DEFAULT_MINSEGMENTTIME;
mintravelfeedrate=DEFAULT_MINTRAVELFEEDRATE;
max_xy_jerk=DEFAULT_XYJERK;
max_z_jerk=DEFAULT_ZJERK;
ECHOLN("Using Default settings:");
}
ECHOLN("Steps per unit:");
ECHOLN(" M92 X" <<_FLOAT(axis_steps_per_unit[0],3) << " Y" << _FLOAT(axis_steps_per_unit[1],3) << " Z" << _FLOAT(axis_steps_per_unit[2],3) << " E" << _FLOAT(axis_steps_per_unit[3],3));
ECHOLN("Maximum feedrates (mm/s):");
ECHOLN(" M203 X" <<_FLOAT(max_feedrate[0]/60,2)<<" Y" << _FLOAT(max_feedrate[1]/60,2) << " Z" << _FLOAT(max_feedrate[2]/60,2) << " E" << _FLOAT(max_feedrate[3]/60,2));
ECHOLN("Maximum Acceleration (mm/s2):");
ECHOLN(" M201 X" <<_FLOAT(max_acceleration_units_per_sq_second[0],0) << " Y" << _FLOAT(max_acceleration_units_per_sq_second[1],0) << " Z" << _FLOAT(max_acceleration_units_per_sq_second[2],0) << " E" << _FLOAT(max_acceleration_units_per_sq_second[3],0));
ECHOLN("Acceleration: S=acceleration, T=retract acceleration");
ECHOLN(" M204 S" <<_FLOAT(acceleration,2) << " T" << _FLOAT(retract_acceleration,2));
ECHOLN("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum xY jerk (mm/s), Z=maximum Z jerk (mm/s)");
ECHOLN(" M205 S" <<_FLOAT(minimumfeedrate/60,2) << " T" << _FLOAT(mintravelfeedrate/60,2) << " B" << _FLOAT(minsegmenttime,2) << " X" << _FLOAT(max_xy_jerk/60,2) << " Z" << _FLOAT(max_z_jerk/60,2));
#ifdef PIDTEMP
ECHOLN("PID settings:");
ECHOLN(" M301 P" << _FLOAT(Kp,3) << " I" << _FLOAT(Ki,3) << " D" << _FLOAT(Kd,3));
#endif
}
#endif