marlin2_i2/Marlin/temperature.cpp
Christopher Pepper 4b16fa3272 Implement HAL and apply macros across code-base
Implement AVR Platform
2017-08-31 18:14:31 -05:00

2122 lines
66 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* temperature.cpp - temperature control
*/
#include "Marlin.h"
#include "temperature.h"
#include "thermistortables.h"
#include "ultralcd.h"
#include "planner.h"
#include "language.h"
#if ENABLED(HEATER_0_USES_MAX6675)
#include "private_spi.h"
#endif
#if ENABLED(BABYSTEPPING)
#include "stepper.h"
#endif
#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
#include "endstops.h"
#endif
#ifdef K1 // Defined in Configuration.h in the PID settings
#define K2 (1.0-K1)
#endif
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
static void* heater_ttbl_map[2] = { (void*)HEATER_0_TEMPTABLE, (void*)HEATER_1_TEMPTABLE };
static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
#else
static void* heater_ttbl_map[HOTENDS] = ARRAY_BY_HOTENDS((void*)HEATER_0_TEMPTABLE, (void*)HEATER_1_TEMPTABLE, (void*)HEATER_2_TEMPTABLE, (void*)HEATER_3_TEMPTABLE, (void*)HEATER_4_TEMPTABLE);
static uint8_t heater_ttbllen_map[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN, HEATER_3_TEMPTABLE_LEN, HEATER_4_TEMPTABLE_LEN);
#endif
Temperature thermalManager;
// public:
float Temperature::current_temperature[HOTENDS] = { 0.0 },
Temperature::current_temperature_bed = 0.0;
int16_t Temperature::current_temperature_raw[HOTENDS] = { 0 },
Temperature::target_temperature[HOTENDS] = { 0 },
Temperature::current_temperature_bed_raw = 0;
#if HAS_HEATER_BED
int16_t Temperature::target_temperature_bed = 0;
#endif
// Initialized by settings.load()
#if ENABLED(PIDTEMP)
#if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
float Temperature::Kp[HOTENDS], Temperature::Ki[HOTENDS], Temperature::Kd[HOTENDS];
#if ENABLED(PID_EXTRUSION_SCALING)
float Temperature::Kc[HOTENDS];
#endif
#else
float Temperature::Kp, Temperature::Ki, Temperature::Kd;
#if ENABLED(PID_EXTRUSION_SCALING)
float Temperature::Kc;
#endif
#endif
#endif
// Initialized by settings.load()
#if ENABLED(PIDTEMPBED)
float Temperature::bedKp, Temperature::bedKi, Temperature::bedKd;
#endif
#if ENABLED(BABYSTEPPING)
volatile int Temperature::babystepsTodo[XYZ] = { 0 };
#endif
#if WATCH_HOTENDS
uint16_t Temperature::watch_target_temp[HOTENDS] = { 0 };
millis_t Temperature::watch_heater_next_ms[HOTENDS] = { 0 };
#endif
#if WATCH_THE_BED
uint16_t Temperature::watch_target_bed_temp = 0;
millis_t Temperature::watch_bed_next_ms = 0;
#endif
#if ENABLED(PREVENT_COLD_EXTRUSION)
bool Temperature::allow_cold_extrude = false;
int16_t Temperature::extrude_min_temp = EXTRUDE_MINTEMP;
#endif
// private:
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
uint16_t Temperature::redundant_temperature_raw = 0;
float Temperature::redundant_temperature = 0.0;
#endif
volatile bool Temperature::temp_meas_ready = false;
#if ENABLED(PIDTEMP)
float Temperature::temp_iState[HOTENDS] = { 0 },
Temperature::temp_dState[HOTENDS] = { 0 },
Temperature::pTerm[HOTENDS],
Temperature::iTerm[HOTENDS],
Temperature::dTerm[HOTENDS];
#if ENABLED(PID_EXTRUSION_SCALING)
float Temperature::cTerm[HOTENDS];
long Temperature::last_e_position;
long Temperature::lpq[LPQ_MAX_LEN];
int Temperature::lpq_ptr = 0;
#endif
float Temperature::pid_error[HOTENDS];
bool Temperature::pid_reset[HOTENDS];
#endif
#if ENABLED(PIDTEMPBED)
float Temperature::temp_iState_bed = { 0 },
Temperature::temp_dState_bed = { 0 },
Temperature::pTerm_bed,
Temperature::iTerm_bed,
Temperature::dTerm_bed,
Temperature::pid_error_bed;
#else
millis_t Temperature::next_bed_check_ms;
#endif
uint16_t Temperature::raw_temp_value[MAX_EXTRUDERS] = { 0 },
Temperature::raw_temp_bed_value = 0;
// Init min and max temp with extreme values to prevent false errors during startup
int16_t Temperature::minttemp_raw[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP, HEATER_3_RAW_LO_TEMP, HEATER_4_RAW_LO_TEMP),
Temperature::maxttemp_raw[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP, HEATER_3_RAW_HI_TEMP, HEATER_4_RAW_HI_TEMP),
Temperature::minttemp[HOTENDS] = { 0 },
Temperature::maxttemp[HOTENDS] = ARRAY_BY_HOTENDS1(16383);
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
uint8_t Temperature::consecutive_low_temperature_error[HOTENDS] = { 0 };
#endif
#ifdef MILLISECONDS_PREHEAT_TIME
millis_t Temperature::preheat_end_time[HOTENDS] = { 0 };
#endif
#ifdef BED_MINTEMP
int16_t Temperature::bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
#endif
#ifdef BED_MAXTEMP
int16_t Temperature::bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
int8_t Temperature::meas_shift_index; // Index of a delayed sample in buffer
#endif
#if HAS_AUTO_FAN
millis_t Temperature::next_auto_fan_check_ms = 0;
#endif
uint8_t Temperature::soft_pwm_amount[HOTENDS],
Temperature::soft_pwm_amount_bed;
#if ENABLED(FAN_SOFT_PWM)
uint8_t Temperature::soft_pwm_amount_fan[FAN_COUNT],
Temperature::soft_pwm_count_fan[FAN_COUNT];
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
uint16_t Temperature::current_raw_filwidth = 0; // Measured filament diameter - one extruder only
#endif
#if ENABLED(PROBING_HEATERS_OFF)
bool Temperature::paused;
#endif
#if HEATER_IDLE_HANDLER
millis_t Temperature::heater_idle_timeout_ms[HOTENDS] = { 0 };
bool Temperature::heater_idle_timeout_exceeded[HOTENDS] = { false };
#if HAS_TEMP_BED
millis_t Temperature::bed_idle_timeout_ms = 0;
bool Temperature::bed_idle_timeout_exceeded = false;
#endif
#endif
#if ENABLED(ADC_KEYPAD)
uint32_t Temperature::current_ADCKey_raw = 0;
uint8_t Temperature::ADCKey_count = 0;
#endif
#if HAS_PID_HEATING
void Temperature::PID_autotune(float temp, int hotend, int ncycles, bool set_result/*=false*/) {
float input = 0.0;
int cycles = 0;
bool heating = true;
millis_t temp_ms = millis(), t1 = temp_ms, t2 = temp_ms;
long t_high = 0, t_low = 0;
long bias, d;
float Ku, Tu;
float workKp = 0, workKi = 0, workKd = 0;
float max = 0, min = 10000;
#if HAS_AUTO_FAN
next_auto_fan_check_ms = temp_ms + 2500UL;
#endif
if (hotend >=
#if ENABLED(PIDTEMP)
HOTENDS
#else
0
#endif
|| hotend <
#if ENABLED(PIDTEMPBED)
-1
#else
0
#endif
) {
SERIAL_ECHOLN(MSG_PID_BAD_EXTRUDER_NUM);
return;
}
SERIAL_ECHOLN(MSG_PID_AUTOTUNE_START);
disable_all_heaters(); // switch off all heaters.
#if HAS_PID_FOR_BOTH
if (hotend < 0)
soft_pwm_amount_bed = bias = d = (MAX_BED_POWER) >> 1;
else
soft_pwm_amount[hotend] = bias = d = (PID_MAX) >> 1;
#elif ENABLED(PIDTEMP)
soft_pwm_amount[hotend] = bias = d = (PID_MAX) >> 1;
#else
soft_pwm_amount_bed = bias = d = (MAX_BED_POWER) >> 1;
#endif
wait_for_heatup = true;
// PID Tuning loop
while (wait_for_heatup) {
millis_t ms = millis();
if (temp_meas_ready) { // temp sample ready
updateTemperaturesFromRawValues();
input =
#if HAS_PID_FOR_BOTH
hotend < 0 ? current_temperature_bed : current_temperature[hotend]
#elif ENABLED(PIDTEMP)
current_temperature[hotend]
#else
current_temperature_bed
#endif
;
NOLESS(max, input);
NOMORE(min, input);
#if HAS_AUTO_FAN
if (ELAPSED(ms, next_auto_fan_check_ms)) {
checkExtruderAutoFans();
next_auto_fan_check_ms = ms + 2500UL;
}
#endif
if (heating && input > temp) {
if (ELAPSED(ms, t2 + 5000UL)) {
heating = false;
#if HAS_PID_FOR_BOTH
if (hotend < 0)
soft_pwm_amount_bed = (bias - d) >> 1;
else
soft_pwm_amount[hotend] = (bias - d) >> 1;
#elif ENABLED(PIDTEMP)
soft_pwm_amount[hotend] = (bias - d) >> 1;
#elif ENABLED(PIDTEMPBED)
soft_pwm_amount_bed = (bias - d) >> 1;
#endif
t1 = ms;
t_high = t1 - t2;
max = temp;
}
}
if (!heating && input < temp) {
if (ELAPSED(ms, t1 + 5000UL)) {
heating = true;
t2 = ms;
t_low = t2 - t1;
if (cycles > 0) {
long max_pow =
#if HAS_PID_FOR_BOTH
hotend < 0 ? MAX_BED_POWER : PID_MAX
#elif ENABLED(PIDTEMP)
PID_MAX
#else
MAX_BED_POWER
#endif
;
bias += (d * (t_high - t_low)) / (t_low + t_high);
bias = constrain(bias, 20, max_pow - 20);
d = (bias > max_pow / 2) ? max_pow - 1 - bias : bias;
SERIAL_PROTOCOLPAIR(MSG_BIAS, bias);
SERIAL_PROTOCOLPAIR(MSG_D, d);
SERIAL_PROTOCOLPAIR(MSG_T_MIN, min);
SERIAL_PROTOCOLPAIR(MSG_T_MAX, max);
if (cycles > 2) {
Ku = (4.0 * d) / (M_PI * (max - min) * 0.5);
Tu = ((float)(t_low + t_high) * 0.001);
SERIAL_PROTOCOLPAIR(MSG_KU, Ku);
SERIAL_PROTOCOLPAIR(MSG_TU, Tu);
workKp = 0.6 * Ku;
workKi = 2 * workKp / Tu;
workKd = workKp * Tu * 0.125;
SERIAL_PROTOCOLLNPGM("\n" MSG_CLASSIC_PID);
SERIAL_PROTOCOLPAIR(MSG_KP, workKp);
SERIAL_PROTOCOLPAIR(MSG_KI, workKi);
SERIAL_PROTOCOLLNPAIR(MSG_KD, workKd);
/**
workKp = 0.33*Ku;
workKi = workKp/Tu;
workKd = workKp*Tu/3;
SERIAL_PROTOCOLLNPGM(" Some overshoot");
SERIAL_PROTOCOLPAIR(" Kp: ", workKp);
SERIAL_PROTOCOLPAIR(" Ki: ", workKi);
SERIAL_PROTOCOLPAIR(" Kd: ", workKd);
workKp = 0.2*Ku;
workKi = 2*workKp/Tu;
workKd = workKp*Tu/3;
SERIAL_PROTOCOLLNPGM(" No overshoot");
SERIAL_PROTOCOLPAIR(" Kp: ", workKp);
SERIAL_PROTOCOLPAIR(" Ki: ", workKi);
SERIAL_PROTOCOLPAIR(" Kd: ", workKd);
*/
}
}
#if HAS_PID_FOR_BOTH
if (hotend < 0)
soft_pwm_amount_bed = (bias + d) >> 1;
else
soft_pwm_amount[hotend] = (bias + d) >> 1;
#elif ENABLED(PIDTEMP)
soft_pwm_amount[hotend] = (bias + d) >> 1;
#else
soft_pwm_amount_bed = (bias + d) >> 1;
#endif
cycles++;
min = temp;
}
}
}
#define MAX_OVERSHOOT_PID_AUTOTUNE 20
if (input > temp + MAX_OVERSHOOT_PID_AUTOTUNE) {
SERIAL_PROTOCOLLNPGM(MSG_PID_TEMP_TOO_HIGH);
return;
}
// Every 2 seconds...
if (ELAPSED(ms, temp_ms + 2000UL)) {
#if HAS_TEMP_HOTEND || HAS_TEMP_BED
print_heaterstates();
SERIAL_EOL();
#endif
temp_ms = ms;
} // every 2 seconds
// Over 2 minutes?
if (((ms - t1) + (ms - t2)) > (10L * 60L * 1000L * 2L)) {
SERIAL_PROTOCOLLNPGM(MSG_PID_TIMEOUT);
return;
}
if (cycles > ncycles) {
SERIAL_PROTOCOLLNPGM(MSG_PID_AUTOTUNE_FINISHED);
#if HAS_PID_FOR_BOTH
const char* estring = hotend < 0 ? "bed" : "";
SERIAL_PROTOCOLPAIR("#define DEFAULT_", estring); SERIAL_PROTOCOLPAIR("Kp ", workKp); SERIAL_EOL();
SERIAL_PROTOCOLPAIR("#define DEFAULT_", estring); SERIAL_PROTOCOLPAIR("Ki ", workKi); SERIAL_EOL();
SERIAL_PROTOCOLPAIR("#define DEFAULT_", estring); SERIAL_PROTOCOLPAIR("Kd ", workKd); SERIAL_EOL();
#elif ENABLED(PIDTEMP)
SERIAL_PROTOCOLPAIR("#define DEFAULT_Kp ", workKp); SERIAL_EOL();
SERIAL_PROTOCOLPAIR("#define DEFAULT_Ki ", workKi); SERIAL_EOL();
SERIAL_PROTOCOLPAIR("#define DEFAULT_Kd ", workKd); SERIAL_EOL();
#else
SERIAL_PROTOCOLPAIR("#define DEFAULT_bedKp ", workKp); SERIAL_EOL();
SERIAL_PROTOCOLPAIR("#define DEFAULT_bedKi ", workKi); SERIAL_EOL();
SERIAL_PROTOCOLPAIR("#define DEFAULT_bedKd ", workKd); SERIAL_EOL();
#endif
#define _SET_BED_PID() do { \
bedKp = workKp; \
bedKi = scalePID_i(workKi); \
bedKd = scalePID_d(workKd); \
updatePID(); }while(0)
#define _SET_EXTRUDER_PID() do { \
PID_PARAM(Kp, hotend) = workKp; \
PID_PARAM(Ki, hotend) = scalePID_i(workKi); \
PID_PARAM(Kd, hotend) = scalePID_d(workKd); \
updatePID(); }while(0)
// Use the result? (As with "M303 U1")
if (set_result) {
#if HAS_PID_FOR_BOTH
if (hotend < 0)
_SET_BED_PID();
else
_SET_EXTRUDER_PID();
#elif ENABLED(PIDTEMP)
_SET_EXTRUDER_PID();
#else
_SET_BED_PID();
#endif
}
return;
}
lcd_update();
}
if (!wait_for_heatup) disable_all_heaters();
}
#endif // HAS_PID_HEATING
/**
* Class and Instance Methods
*/
Temperature::Temperature() { }
void Temperature::updatePID() {
#if ENABLED(PIDTEMP)
#if ENABLED(PID_EXTRUSION_SCALING)
last_e_position = 0;
#endif
#endif
}
int Temperature::getHeaterPower(int heater) {
return heater < 0 ? soft_pwm_amount_bed : soft_pwm_amount[heater];
}
#if HAS_AUTO_FAN
void Temperature::checkExtruderAutoFans() {
static const int8_t fanPin[] PROGMEM = { E0_AUTO_FAN_PIN, E1_AUTO_FAN_PIN, E2_AUTO_FAN_PIN, E3_AUTO_FAN_PIN, E4_AUTO_FAN_PIN };
static const uint8_t fanBit[] PROGMEM = {
0,
AUTO_1_IS_0 ? 0 : 1,
AUTO_2_IS_0 ? 0 : AUTO_2_IS_1 ? 1 : 2,
AUTO_3_IS_0 ? 0 : AUTO_3_IS_1 ? 1 : AUTO_3_IS_2 ? 2 : 3,
AUTO_4_IS_0 ? 0 : AUTO_4_IS_1 ? 1 : AUTO_4_IS_2 ? 2 : AUTO_4_IS_3 ? 3 : 4
};
uint8_t fanState = 0;
HOTEND_LOOP()
if (current_temperature[e] > EXTRUDER_AUTO_FAN_TEMPERATURE)
SBI(fanState, pgm_read_byte(&fanBit[e]));
uint8_t fanDone = 0;
for (uint8_t f = 0; f < COUNT(fanPin); f++) {
int8_t pin = pgm_read_byte(&fanPin[f]);
const uint8_t bit = pgm_read_byte(&fanBit[f]);
if (pin >= 0 && !TEST(fanDone, bit)) {
uint8_t newFanSpeed = TEST(fanState, bit) ? EXTRUDER_AUTO_FAN_SPEED : 0;
// this idiom allows both digital and PWM fan outputs (see M42 handling).
digitalWrite(pin, newFanSpeed);
analogWrite(pin, newFanSpeed);
SBI(fanDone, bit);
}
}
}
#endif // HAS_AUTO_FAN
//
// Temperature Error Handlers
//
void Temperature::_temp_error(const int8_t e, const char * const serial_msg, const char * const lcd_msg) {
static bool killed = false;
if (IsRunning()) {
SERIAL_ERROR_START();
serialprintPGM(serial_msg);
SERIAL_ERRORPGM(MSG_STOPPED_HEATER);
if (e >= 0) SERIAL_ERRORLN((int)e); else SERIAL_ERRORLNPGM(MSG_HEATER_BED);
}
#if DISABLED(BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE)
if (!killed) {
Running = false;
killed = true;
kill(lcd_msg);
}
else
disable_all_heaters(); // paranoia
#endif
}
void Temperature::max_temp_error(const int8_t e) {
#if HAS_TEMP_BED
_temp_error(e, PSTR(MSG_T_MAXTEMP), e >= 0 ? PSTR(MSG_ERR_MAXTEMP) : PSTR(MSG_ERR_MAXTEMP_BED));
#else
_temp_error(HOTEND_INDEX, PSTR(MSG_T_MAXTEMP), PSTR(MSG_ERR_MAXTEMP));
#if HOTENDS == 1
UNUSED(e);
#endif
#endif
}
void Temperature::min_temp_error(const int8_t e) {
#if HAS_TEMP_BED
_temp_error(e, PSTR(MSG_T_MINTEMP), e >= 0 ? PSTR(MSG_ERR_MINTEMP) : PSTR(MSG_ERR_MINTEMP_BED));
#else
_temp_error(HOTEND_INDEX, PSTR(MSG_T_MINTEMP), PSTR(MSG_ERR_MINTEMP));
#if HOTENDS == 1
UNUSED(e);
#endif
#endif
}
float Temperature::get_pid_output(const int8_t e) {
#if HOTENDS == 1
UNUSED(e);
#define _HOTEND_TEST true
#else
#define _HOTEND_TEST e == active_extruder
#endif
float pid_output;
#if ENABLED(PIDTEMP)
#if DISABLED(PID_OPENLOOP)
pid_error[HOTEND_INDEX] = target_temperature[HOTEND_INDEX] - current_temperature[HOTEND_INDEX];
dTerm[HOTEND_INDEX] = K2 * PID_PARAM(Kd, HOTEND_INDEX) * (current_temperature[HOTEND_INDEX] - temp_dState[HOTEND_INDEX]) + K1 * dTerm[HOTEND_INDEX];
temp_dState[HOTEND_INDEX] = current_temperature[HOTEND_INDEX];
#if HEATER_IDLE_HANDLER
if (heater_idle_timeout_exceeded[HOTEND_INDEX]) {
pid_output = 0;
pid_reset[HOTEND_INDEX] = true;
}
else
#endif
if (pid_error[HOTEND_INDEX] > PID_FUNCTIONAL_RANGE) {
pid_output = BANG_MAX;
pid_reset[HOTEND_INDEX] = true;
}
else if (pid_error[HOTEND_INDEX] < -(PID_FUNCTIONAL_RANGE) || target_temperature[HOTEND_INDEX] == 0
#if HEATER_IDLE_HANDLER
|| heater_idle_timeout_exceeded[HOTEND_INDEX]
#endif
) {
pid_output = 0;
pid_reset[HOTEND_INDEX] = true;
}
else {
if (pid_reset[HOTEND_INDEX]) {
temp_iState[HOTEND_INDEX] = 0.0;
pid_reset[HOTEND_INDEX] = false;
}
pTerm[HOTEND_INDEX] = PID_PARAM(Kp, HOTEND_INDEX) * pid_error[HOTEND_INDEX];
temp_iState[HOTEND_INDEX] += pid_error[HOTEND_INDEX];
iTerm[HOTEND_INDEX] = PID_PARAM(Ki, HOTEND_INDEX) * temp_iState[HOTEND_INDEX];
pid_output = pTerm[HOTEND_INDEX] + iTerm[HOTEND_INDEX] - dTerm[HOTEND_INDEX];
#if ENABLED(PID_EXTRUSION_SCALING)
cTerm[HOTEND_INDEX] = 0;
if (_HOTEND_TEST) {
long e_position = stepper.position(E_AXIS);
if (e_position > last_e_position) {
lpq[lpq_ptr] = e_position - last_e_position;
last_e_position = e_position;
}
else {
lpq[lpq_ptr] = 0;
}
if (++lpq_ptr >= lpq_len) lpq_ptr = 0;
cTerm[HOTEND_INDEX] = (lpq[lpq_ptr] * planner.steps_to_mm[E_AXIS]) * PID_PARAM(Kc, HOTEND_INDEX);
pid_output += cTerm[HOTEND_INDEX];
}
#endif // PID_EXTRUSION_SCALING
if (pid_output > PID_MAX) {
if (pid_error[HOTEND_INDEX] > 0) temp_iState[HOTEND_INDEX] -= pid_error[HOTEND_INDEX]; // conditional un-integration
pid_output = PID_MAX;
}
else if (pid_output < 0) {
if (pid_error[HOTEND_INDEX] < 0) temp_iState[HOTEND_INDEX] -= pid_error[HOTEND_INDEX]; // conditional un-integration
pid_output = 0;
}
}
#else
pid_output = constrain(target_temperature[HOTEND_INDEX], 0, PID_MAX);
#endif // PID_OPENLOOP
#if ENABLED(PID_DEBUG)
SERIAL_ECHO_START();
SERIAL_ECHOPAIR(MSG_PID_DEBUG, HOTEND_INDEX);
SERIAL_ECHOPAIR(MSG_PID_DEBUG_INPUT, current_temperature[HOTEND_INDEX]);
SERIAL_ECHOPAIR(MSG_PID_DEBUG_OUTPUT, pid_output);
SERIAL_ECHOPAIR(MSG_PID_DEBUG_PTERM, pTerm[HOTEND_INDEX]);
SERIAL_ECHOPAIR(MSG_PID_DEBUG_ITERM, iTerm[HOTEND_INDEX]);
SERIAL_ECHOPAIR(MSG_PID_DEBUG_DTERM, dTerm[HOTEND_INDEX]);
#if ENABLED(PID_EXTRUSION_SCALING)
SERIAL_ECHOPAIR(MSG_PID_DEBUG_CTERM, cTerm[HOTEND_INDEX]);
#endif
SERIAL_EOL();
#endif // PID_DEBUG
#else /* PID off */
#if HEATER_IDLE_HANDLER
if (heater_idle_timeout_exceeded[HOTEND_INDEX])
pid_output = 0;
else
#endif
pid_output = (current_temperature[HOTEND_INDEX] < target_temperature[HOTEND_INDEX]) ? PID_MAX : 0;
#endif
return pid_output;
}
#if ENABLED(PIDTEMPBED)
float Temperature::get_pid_output_bed() {
float pid_output;
#if DISABLED(PID_OPENLOOP)
pid_error_bed = target_temperature_bed - current_temperature_bed;
pTerm_bed = bedKp * pid_error_bed;
temp_iState_bed += pid_error_bed;
iTerm_bed = bedKi * temp_iState_bed;
dTerm_bed = K2 * bedKd * (current_temperature_bed - temp_dState_bed) + K1 * dTerm_bed;
temp_dState_bed = current_temperature_bed;
pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
if (pid_output > MAX_BED_POWER) {
if (pid_error_bed > 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
pid_output = MAX_BED_POWER;
}
else if (pid_output < 0) {
if (pid_error_bed < 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
pid_output = 0;
}
#else
pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
#endif // PID_OPENLOOP
#if ENABLED(PID_BED_DEBUG)
SERIAL_ECHO_START();
SERIAL_ECHOPGM(" PID_BED_DEBUG ");
SERIAL_ECHOPGM(": Input ");
SERIAL_ECHO(current_temperature_bed);
SERIAL_ECHOPGM(" Output ");
SERIAL_ECHO(pid_output);
SERIAL_ECHOPGM(" pTerm ");
SERIAL_ECHO(pTerm_bed);
SERIAL_ECHOPGM(" iTerm ");
SERIAL_ECHO(iTerm_bed);
SERIAL_ECHOPGM(" dTerm ");
SERIAL_ECHOLN(dTerm_bed);
#endif // PID_BED_DEBUG
return pid_output;
}
#endif // PIDTEMPBED
/**
* Manage heating activities for extruder hot-ends and a heated bed
* - Acquire updated temperature readings
* - Also resets the watchdog timer
* - Invoke thermal runaway protection
* - Manage extruder auto-fan
* - Apply filament width to the extrusion rate (may move)
* - Update the heated bed PID output value
*/
/**
* The following line SOMETIMES results in the dreaded "unable to find a register to spill in class 'POINTER_REGS'"
* compile error.
* thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);
*
* This is due to a bug in the C++ compiler used by the Arduino IDE from 1.6.10 to at least 1.8.1.
*
* The work around is to add the compiler flag "__attribute__((__optimize__("O2")))" to the declaration for manage_heater()
*/
//void Temperature::manage_heater() __attribute__((__optimize__("O2")));
void Temperature::manage_heater() {
if (!temp_meas_ready) return;
updateTemperaturesFromRawValues(); // also resets the watchdog
#if ENABLED(HEATER_0_USES_MAX6675)
if (current_temperature[0] > min(HEATER_0_MAXTEMP, MAX6675_TMAX - 1.0)) max_temp_error(0);
if (current_temperature[0] < max(HEATER_0_MINTEMP, MAX6675_TMIN + .01)) min_temp_error(0);
#endif
#if WATCH_HOTENDS || WATCH_THE_BED || DISABLED(PIDTEMPBED) || HAS_AUTO_FAN || HEATER_IDLE_HANDLER
millis_t ms = millis();
#endif
HOTEND_LOOP() {
#if HEATER_IDLE_HANDLER
if (!heater_idle_timeout_exceeded[e] && heater_idle_timeout_ms[e] && ELAPSED(ms, heater_idle_timeout_ms[e]))
heater_idle_timeout_exceeded[e] = true;
#endif
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
// Check for thermal runaway
thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);
#endif
soft_pwm_amount[e] = (current_temperature[e] > minttemp[e] || is_preheating(e)) && current_temperature[e] < maxttemp[e] ? (int)get_pid_output(e) >> 1 : 0;
#if WATCH_HOTENDS
// Make sure temperature is increasing
if (watch_heater_next_ms[e] && ELAPSED(ms, watch_heater_next_ms[e])) { // Time to check this extruder?
if (degHotend(e) < watch_target_temp[e]) // Failed to increase enough?
_temp_error(e, PSTR(MSG_T_HEATING_FAILED), PSTR(MSG_HEATING_FAILED_LCD));
else // Start again if the target is still far off
start_watching_heater(e);
}
#endif
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
// Make sure measured temperatures are close together
if (FABS(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF)
_temp_error(0, PSTR(MSG_REDUNDANCY), PSTR(MSG_ERR_REDUNDANT_TEMP));
#endif
} // HOTEND_LOOP
#if HAS_AUTO_FAN
if (ELAPSED(ms, next_auto_fan_check_ms)) { // only need to check fan state very infrequently
checkExtruderAutoFans();
next_auto_fan_check_ms = ms + 2500UL;
}
#endif
// Control the extruder rate based on the width sensor
#if ENABLED(FILAMENT_WIDTH_SENSOR)
if (filament_sensor) {
meas_shift_index = filwidth_delay_index[0] - meas_delay_cm;
if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed
meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
// Get the delayed info and add 100 to reconstitute to a percent of
// the nominal filament diameter then square it to get an area
const float vmroot = measurement_delay[meas_shift_index] * 0.01 + 1.0;
volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vmroot <= 0.1 ? 0.01 : sq(vmroot);
}
#endif // FILAMENT_WIDTH_SENSOR
#if WATCH_THE_BED
// Make sure temperature is increasing
if (watch_bed_next_ms && ELAPSED(ms, watch_bed_next_ms)) { // Time to check the bed?
if (degBed() < watch_target_bed_temp) // Failed to increase enough?
_temp_error(-1, PSTR(MSG_T_HEATING_FAILED), PSTR(MSG_HEATING_FAILED_LCD));
else // Start again if the target is still far off
start_watching_bed();
}
#endif // WATCH_THE_BED
#if DISABLED(PIDTEMPBED)
if (PENDING(ms, next_bed_check_ms)) return;
next_bed_check_ms = ms + BED_CHECK_INTERVAL;
#endif
#if HAS_TEMP_BED
#if HEATER_IDLE_HANDLER
if (!bed_idle_timeout_exceeded && bed_idle_timeout_ms && ELAPSED(ms, bed_idle_timeout_ms))
bed_idle_timeout_exceeded = true;
#endif
#if HAS_THERMALLY_PROTECTED_BED
thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, -1, THERMAL_PROTECTION_BED_PERIOD, THERMAL_PROTECTION_BED_HYSTERESIS);
#endif
#if HEATER_IDLE_HANDLER
if (bed_idle_timeout_exceeded)
{
soft_pwm_amount_bed = 0;
#if DISABLED(PIDTEMPBED)
WRITE_HEATER_BED(LOW);
#endif
}
else
#endif
{
#if ENABLED(PIDTEMPBED)
soft_pwm_amount_bed = WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP) ? (int)get_pid_output_bed() >> 1 : 0;
#elif ENABLED(BED_LIMIT_SWITCHING)
// Check if temperature is within the correct band
if (WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP)) {
if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS)
soft_pwm_amount_bed = 0;
else if (current_temperature_bed <= target_temperature_bed - (BED_HYSTERESIS))
soft_pwm_amount_bed = MAX_BED_POWER >> 1;
}
else {
soft_pwm_amount_bed = 0;
WRITE_HEATER_BED(LOW);
}
#else // !PIDTEMPBED && !BED_LIMIT_SWITCHING
// Check if temperature is within the correct range
if (WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP)) {
soft_pwm_amount_bed = current_temperature_bed < target_temperature_bed ? MAX_BED_POWER >> 1 : 0;
}
else {
soft_pwm_amount_bed = 0;
WRITE_HEATER_BED(LOW);
}
#endif
}
#endif // HAS_TEMP_BED
}
#define PGM_RD_W(x) (short)pgm_read_word(&x)
// Derived from RepRap FiveD extruder::getTemperature()
// For hot end temperature measurement.
float Temperature::analog2temp(int raw, uint8_t e) {
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
if (e > HOTENDS)
#else
if (e >= HOTENDS)
#endif
{
SERIAL_ERROR_START();
SERIAL_ERROR((int)e);
SERIAL_ERRORLNPGM(MSG_INVALID_EXTRUDER_NUM);
kill(PSTR(MSG_KILLED));
return 0.0;
}
#if ENABLED(HEATER_0_USES_MAX6675)
if (e == 0) return 0.25 * raw;
#endif
if (heater_ttbl_map[e] != NULL) {
float celsius = 0;
uint8_t i;
short(*tt)[][2] = (short(*)[][2])(heater_ttbl_map[e]);
for (i = 1; i < heater_ttbllen_map[e]; i++) {
if (PGM_RD_W((*tt)[i][0]) > raw) {
celsius = PGM_RD_W((*tt)[i - 1][1]) +
(raw - PGM_RD_W((*tt)[i - 1][0])) *
(float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i - 1][1])) /
(float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i - 1][0]));
break;
}
}
// Overflow: Set to last value in the table
if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i - 1][1]);
return celsius;
}
return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * (TEMP_SENSOR_AD595_GAIN)) + TEMP_SENSOR_AD595_OFFSET;
}
// Derived from RepRap FiveD extruder::getTemperature()
// For bed temperature measurement.
float Temperature::analog2tempBed(const int raw) {
#if ENABLED(BED_USES_THERMISTOR)
float celsius = 0;
byte i;
for (i = 1; i < BEDTEMPTABLE_LEN; i++) {
if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw) {
celsius = PGM_RD_W(BEDTEMPTABLE[i - 1][1]) +
(raw - PGM_RD_W(BEDTEMPTABLE[i - 1][0])) *
(float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i - 1][1])) /
(float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i - 1][0]));
break;
}
}
// Overflow: Set to last value in the table
if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i - 1][1]);
return celsius;
#elif defined(BED_USES_AD595)
return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * (TEMP_SENSOR_AD595_GAIN)) + TEMP_SENSOR_AD595_OFFSET;
#else
UNUSED(raw);
return 0;
#endif
}
/**
* Get the raw values into the actual temperatures.
* The raw values are created in interrupt context,
* and this function is called from normal context
* as it would block the stepper routine.
*/
void Temperature::updateTemperaturesFromRawValues() {
#if ENABLED(HEATER_0_USES_MAX6675)
current_temperature_raw[0] = read_max6675();
#endif
HOTEND_LOOP()
current_temperature[e] = Temperature::analog2temp(current_temperature_raw[e], e);
current_temperature_bed = Temperature::analog2tempBed(current_temperature_bed_raw);
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
redundant_temperature = Temperature::analog2temp(redundant_temperature_raw, 1);
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
filament_width_meas = analog2widthFil();
#endif
#if ENABLED(USE_WATCHDOG)
// Reset the watchdog after we know we have a temperature measurement.
watchdog_reset();
#endif
CRITICAL_SECTION_START;
temp_meas_ready = false;
CRITICAL_SECTION_END;
}
#if ENABLED(FILAMENT_WIDTH_SENSOR)
// Convert raw Filament Width to millimeters
float Temperature::analog2widthFil() {
return current_raw_filwidth * 5.0 * (1.0 / 16383.0);
//return current_raw_filwidth;
}
// Convert raw Filament Width to a ratio
int Temperature::widthFil_to_size_ratio() {
float temp = filament_width_meas;
if (temp < MEASURED_LOWER_LIMIT) temp = filament_width_nominal; //assume sensor cut out
else NOMORE(temp, MEASURED_UPPER_LIMIT);
return filament_width_nominal / temp * 100;
}
#endif
#if ENABLED(HEATER_0_USES_MAX6675)
#ifndef MAX6675_SCK_PIN
#define MAX6675_SCK_PIN SCK_PIN
#endif
#ifndef MAX6675_DO_PIN
#define MAX6675_DO_PIN MISO_PIN
#endif
SPI<MAX6675_DO_PIN, MOSI_PIN, MAX6675_SCK_PIN> max6675_spi;
#endif
/**
* Initialize the temperature manager
* The manager is implemented by periodic calls to manage_heater()
*/
void Temperature::init() {
#if MB(RUMBA) && (TEMP_SENSOR_0 == -1 || TEMP_SENSOR_1 == -1 || TEMP_SENSOR_2 == -1 || TEMP_SENSOR_BED == -1)
// Disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
MCUCR = _BV(JTD);
MCUCR = _BV(JTD);
#endif
// Finish init of mult hotend arrays
HOTEND_LOOP() maxttemp[e] = maxttemp[0];
#if ENABLED(PIDTEMP) && ENABLED(PID_EXTRUSION_SCALING)
last_e_position = 0;
#endif
#if HAS_HEATER_0
SET_OUTPUT(HEATER_0_PIN);
#endif
#if HAS_HEATER_1
SET_OUTPUT(HEATER_1_PIN);
#endif
#if HAS_HEATER_2
SET_OUTPUT(HEATER_2_PIN);
#endif
#if HAS_HEATER_3
SET_OUTPUT(HEATER_3_PIN);
#endif
#if HAS_HEATER_4
SET_OUTPUT(HEATER_3_PIN);
#endif
#if HAS_HEATER_BED
SET_OUTPUT(HEATER_BED_PIN);
#endif
#if HAS_FAN0
SET_OUTPUT(FAN_PIN);
#if ENABLED(FAST_PWM_FAN)
setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
#endif
#endif
#if HAS_FAN1
SET_OUTPUT(FAN1_PIN);
#if ENABLED(FAST_PWM_FAN)
setPwmFrequency(FAN1_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
#endif
#endif
#if HAS_FAN2
SET_OUTPUT(FAN2_PIN);
#if ENABLED(FAST_PWM_FAN)
setPwmFrequency(FAN2_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
#endif
#endif
#if ENABLED(HEATER_0_USES_MAX6675)
OUT_WRITE(SCK_PIN, LOW);
OUT_WRITE(MOSI_PIN, HIGH);
SET_INPUT_PULLUP(MISO_PIN);
max6675_spi.init();
OUT_WRITE(SS_PIN, HIGH);
OUT_WRITE(MAX6675_SS, HIGH);
#endif // HEATER_0_USES_MAX6675
HAL_adc_init();
#if HAS_TEMP_0
HAL_ANALOG_SELECT(TEMP_0_PIN);
#endif
#if HAS_TEMP_1
HAL_ANALOG_SELECT(TEMP_1_PIN);
#endif
#if HAS_TEMP_2
HAL_ANALOG_SELECT(TEMP_2_PIN);
#endif
#if HAS_TEMP_3
HAL_ANALOG_SELECT(TEMP_3_PIN);
#endif
#if HAS_TEMP_4
HAL_ANALOG_SELECT(TEMP_4_PIN);
#endif
#if HAS_TEMP_BED
HAL_ANALOG_SELECT(TEMP_BED_PIN);
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
HAL_ANALOG_SELECT(FILWIDTH_PIN);
#endif
// todo: HAL: fix abstraction
#ifdef ARDUINO_ARCH_AVR
// Use timer0 for temperature measurement
// Interleave temperature interrupt with millies interrupt
OCR0B = 128;
SBI(TIMSK0, OCIE0B);
#else
HAL_timer_start (TEMP_TIMER_NUM, TEMP_TIMER_FREQUENCY);
HAL_timer_enable_interrupt (TEMP_TIMER_NUM);
#endif
#if HAS_AUTO_FAN_0
#if E0_AUTO_FAN_PIN == FAN1_PIN
SET_OUTPUT(E0_AUTO_FAN_PIN);
#if ENABLED(FAST_PWM_FAN)
setPwmFrequency(E0_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
#endif
#else
SET_OUTPUT(E0_AUTO_FAN_PIN);
#endif
#endif
#if HAS_AUTO_FAN_1 && !AUTO_1_IS_0
#if E1_AUTO_FAN_PIN == FAN1_PIN
SET_OUTPUT(E1_AUTO_FAN_PIN);
#if ENABLED(FAST_PWM_FAN)
setPwmFrequency(E1_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
#endif
#else
SET_OUTPUT(E1_AUTO_FAN_PIN);
#endif
#endif
#if HAS_AUTO_FAN_2 && !AUTO_2_IS_0 && !AUTO_2_IS_1
#if E2_AUTO_FAN_PIN == FAN1_PIN
SET_OUTPUT(E2_AUTO_FAN_PIN);
#if ENABLED(FAST_PWM_FAN)
setPwmFrequency(E2_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
#endif
#else
SET_OUTPUT(E2_AUTO_FAN_PIN);
#endif
#endif
#if HAS_AUTO_FAN_3 && !AUTO_3_IS_0 && !AUTO_3_IS_1 && !AUTO_3_IS_2
#if E3_AUTO_FAN_PIN == FAN1_PIN
SET_OUTPUT(E3_AUTO_FAN_PIN);
#if ENABLED(FAST_PWM_FAN)
setPwmFrequency(E3_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
#endif
#else
SET_OUTPUT(E3_AUTO_FAN_PIN);
#endif
#endif
#if HAS_AUTO_FAN_4 && !AUTO_4_IS_0 && !AUTO_4_IS_1 && !AUTO_4_IS_2 && !AUTO_4_IS_3
#if E4_AUTO_FAN_PIN == FAN1_PIN
SET_OUTPUT(E4_AUTO_FAN_PIN);
#if ENABLED(FAST_PWM_FAN)
setPwmFrequency(E4_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
#endif
#else
SET_OUTPUT(E4_AUTO_FAN_PIN);
#endif
#endif
// Wait for temperature measurement to settle
delay(250);
#define TEMP_MIN_ROUTINE(NR) \
minttemp[NR] = HEATER_ ##NR## _MINTEMP; \
while (analog2temp(minttemp_raw[NR], NR) < HEATER_ ##NR## _MINTEMP) { \
if (HEATER_ ##NR## _RAW_LO_TEMP < HEATER_ ##NR## _RAW_HI_TEMP) \
minttemp_raw[NR] += OVERSAMPLENR; \
else \
minttemp_raw[NR] -= OVERSAMPLENR; \
}
#define TEMP_MAX_ROUTINE(NR) \
maxttemp[NR] = HEATER_ ##NR## _MAXTEMP; \
while (analog2temp(maxttemp_raw[NR], NR) > HEATER_ ##NR## _MAXTEMP) { \
if (HEATER_ ##NR## _RAW_LO_TEMP < HEATER_ ##NR## _RAW_HI_TEMP) \
maxttemp_raw[NR] -= OVERSAMPLENR; \
else \
maxttemp_raw[NR] += OVERSAMPLENR; \
}
#ifdef HEATER_0_MINTEMP
TEMP_MIN_ROUTINE(0);
#endif
#ifdef HEATER_0_MAXTEMP
TEMP_MAX_ROUTINE(0);
#endif
#if HOTENDS > 1
#ifdef HEATER_1_MINTEMP
TEMP_MIN_ROUTINE(1);
#endif
#ifdef HEATER_1_MAXTEMP
TEMP_MAX_ROUTINE(1);
#endif
#if HOTENDS > 2
#ifdef HEATER_2_MINTEMP
TEMP_MIN_ROUTINE(2);
#endif
#ifdef HEATER_2_MAXTEMP
TEMP_MAX_ROUTINE(2);
#endif
#if HOTENDS > 3
#ifdef HEATER_3_MINTEMP
TEMP_MIN_ROUTINE(3);
#endif
#ifdef HEATER_3_MAXTEMP
TEMP_MAX_ROUTINE(3);
#endif
#if HOTENDS > 4
#ifdef HEATER_4_MINTEMP
TEMP_MIN_ROUTINE(4);
#endif
#ifdef HEATER_4_MAXTEMP
TEMP_MAX_ROUTINE(4);
#endif
#endif // HOTENDS > 4
#endif // HOTENDS > 3
#endif // HOTENDS > 2
#endif // HOTENDS > 1
#ifdef BED_MINTEMP
while (analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
bed_minttemp_raw += OVERSAMPLENR;
#else
bed_minttemp_raw -= OVERSAMPLENR;
#endif
}
#endif // BED_MINTEMP
#ifdef BED_MAXTEMP
while (analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
bed_maxttemp_raw -= OVERSAMPLENR;
#else
bed_maxttemp_raw += OVERSAMPLENR;
#endif
}
#endif // BED_MAXTEMP
#if ENABLED(PROBING_HEATERS_OFF)
paused = false;
#endif
}
#if WATCH_HOTENDS
/**
* Start Heating Sanity Check for hotends that are below
* their target temperature by a configurable margin.
* This is called when the temperature is set. (M104, M109)
*/
void Temperature::start_watching_heater(uint8_t e) {
#if HOTENDS == 1
UNUSED(e);
#endif
if (degHotend(HOTEND_INDEX) < degTargetHotend(HOTEND_INDEX) - (WATCH_TEMP_INCREASE + TEMP_HYSTERESIS + 1)) {
watch_target_temp[HOTEND_INDEX] = degHotend(HOTEND_INDEX) + WATCH_TEMP_INCREASE;
watch_heater_next_ms[HOTEND_INDEX] = millis() + (WATCH_TEMP_PERIOD) * 1000UL;
}
else
watch_heater_next_ms[HOTEND_INDEX] = 0;
}
#endif
#if WATCH_THE_BED
/**
* Start Heating Sanity Check for hotends that are below
* their target temperature by a configurable margin.
* This is called when the temperature is set. (M140, M190)
*/
void Temperature::start_watching_bed() {
if (degBed() < degTargetBed() - (WATCH_BED_TEMP_INCREASE + TEMP_BED_HYSTERESIS + 1)) {
watch_target_bed_temp = degBed() + WATCH_BED_TEMP_INCREASE;
watch_bed_next_ms = millis() + (WATCH_BED_TEMP_PERIOD) * 1000UL;
}
else
watch_bed_next_ms = 0;
}
#endif
#if ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
Temperature::TRState Temperature::thermal_runaway_state_machine[HOTENDS] = { TRInactive };
millis_t Temperature::thermal_runaway_timer[HOTENDS] = { 0 };
#endif
#if HAS_THERMALLY_PROTECTED_BED
Temperature::TRState Temperature::thermal_runaway_bed_state_machine = TRInactive;
millis_t Temperature::thermal_runaway_bed_timer;
#endif
void Temperature::thermal_runaway_protection(Temperature::TRState* state, millis_t* timer, float current, float target, int heater_id, int period_seconds, int hysteresis_degc) {
static float tr_target_temperature[HOTENDS + 1] = { 0.0 };
/**
SERIAL_ECHO_START();
SERIAL_ECHOPGM("Thermal Thermal Runaway Running. Heater ID: ");
if (heater_id < 0) SERIAL_ECHOPGM("bed"); else SERIAL_ECHO(heater_id);
SERIAL_ECHOPAIR(" ; State:", *state);
SERIAL_ECHOPAIR(" ; Timer:", *timer);
SERIAL_ECHOPAIR(" ; Temperature:", current);
SERIAL_ECHOPAIR(" ; Target Temp:", target);
if (heater_id >= 0)
SERIAL_ECHOPAIR(" ; Idle Timeout:", heater_idle_timeout_exceeded[heater_id]);
else
SERIAL_ECHOPAIR(" ; Idle Timeout:", bed_idle_timeout_exceeded);
SERIAL_EOL();
*/
const int heater_index = heater_id >= 0 ? heater_id : HOTENDS;
#if HEATER_IDLE_HANDLER
// If the heater idle timeout expires, restart
if (heater_id >= 0 && heater_idle_timeout_exceeded[heater_id]) {
*state = TRInactive;
tr_target_temperature[heater_index] = 0;
}
#if HAS_TEMP_BED
else if (heater_id < 0 && bed_idle_timeout_exceeded) {
*state = TRInactive;
tr_target_temperature[heater_index] = 0;
}
#endif
else
#endif
// If the target temperature changes, restart
if (tr_target_temperature[heater_index] != target) {
tr_target_temperature[heater_index] = target;
*state = target > 0 ? TRFirstHeating : TRInactive;
}
switch (*state) {
// Inactive state waits for a target temperature to be set
case TRInactive: break;
// When first heating, wait for the temperature to be reached then go to Stable state
case TRFirstHeating:
if (current < tr_target_temperature[heater_index]) break;
*state = TRStable;
// While the temperature is stable watch for a bad temperature
case TRStable:
if (current >= tr_target_temperature[heater_index] - hysteresis_degc) {
*timer = millis() + period_seconds * 1000UL;
break;
}
else if (PENDING(millis(), *timer)) break;
*state = TRRunaway;
case TRRunaway:
_temp_error(heater_id, PSTR(MSG_T_THERMAL_RUNAWAY), PSTR(MSG_THERMAL_RUNAWAY));
}
}
#endif // THERMAL_PROTECTION_HOTENDS || THERMAL_PROTECTION_BED
void Temperature::disable_all_heaters() {
#if ENABLED(AUTOTEMP)
planner.autotemp_enabled = false;
#endif
HOTEND_LOOP() setTargetHotend(0, e);
setTargetBed(0);
// Unpause and reset everything
#if ENABLED(PROBING_HEATERS_OFF)
pause(false);
#endif
// If all heaters go down then for sure our print job has stopped
print_job_timer.stop();
#define DISABLE_HEATER(NR) { \
setTargetHotend(0, NR); \
soft_pwm_amount[NR] = 0; \
WRITE_HEATER_ ##NR (LOW); \
}
#if HAS_TEMP_HOTEND
DISABLE_HEATER(0);
#if HOTENDS > 1
DISABLE_HEATER(1);
#if HOTENDS > 2
DISABLE_HEATER(2);
#if HOTENDS > 3
DISABLE_HEATER(3);
#if HOTENDS > 4
DISABLE_HEATER(4);
#endif // HOTENDS > 4
#endif // HOTENDS > 3
#endif // HOTENDS > 2
#endif // HOTENDS > 1
#endif
#if HAS_TEMP_BED
target_temperature_bed = 0;
soft_pwm_amount_bed = 0;
#if HAS_HEATER_BED
WRITE_HEATER_BED(LOW);
#endif
#endif
}
#if ENABLED(PROBING_HEATERS_OFF)
void Temperature::pause(const bool p) {
if (p != paused) {
paused = p;
if (p) {
HOTEND_LOOP() start_heater_idle_timer(e, 0); // timeout immediately
#if HAS_TEMP_BED
start_bed_idle_timer(0); // timeout immediately
#endif
}
else {
HOTEND_LOOP() reset_heater_idle_timer(e);
#if HAS_TEMP_BED
reset_bed_idle_timer();
#endif
}
}
}
#endif // PROBING_HEATERS_OFF
#if ENABLED(HEATER_0_USES_MAX6675)
#define MAX6675_HEAT_INTERVAL 250u
#if ENABLED(MAX6675_IS_MAX31855)
uint32_t max6675_temp = 2000;
#define MAX6675_ERROR_MASK 7
#define MAX6675_DISCARD_BITS 18
#define MAX6675_SPEED_BITS 3 // (_BV(SPR1)) // clock ÷ 64
#else
uint16_t max6675_temp = 2000;
#define MAX6675_ERROR_MASK 4
#define MAX6675_DISCARD_BITS 3
#define MAX6675_SPEED_BITS 2 // (_BV(SPR0)) // clock ÷ 16
#endif
int Temperature::read_max6675() {
static millis_t next_max6675_ms = 0;
millis_t ms = millis();
if (PENDING(ms, next_max6675_ms)) return (int)max6675_temp;
next_max6675_ms = ms + MAX6675_HEAT_INTERVAL;
spiBegin();
spiInit(MAX6675_SPEED_BITS);
WRITE(MAX6675_SS, 0); // enable TT_MAX6675
// ensure 100ns delay - a bit extra is fine
asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
// Read a big-endian temperature value
max6675_temp = 0;
for (uint8_t i = sizeof(max6675_temp); i--;) {
max6675_temp |= spiRec();
if (i > 0) max6675_temp <<= 8; // shift left if not the last byte
}
WRITE(MAX6675_SS, 1); // disable TT_MAX6675
if (max6675_temp & MAX6675_ERROR_MASK) {
SERIAL_ERROR_START();
SERIAL_ERRORPGM("Temp measurement error! ");
#if MAX6675_ERROR_MASK == 7
SERIAL_ERRORPGM("MAX31855 ");
if (max6675_temp & 1)
SERIAL_ERRORLNPGM("Open Circuit");
else if (max6675_temp & 2)
SERIAL_ERRORLNPGM("Short to GND");
else if (max6675_temp & 4)
SERIAL_ERRORLNPGM("Short to VCC");
#else
SERIAL_ERRORLNPGM("MAX6675");
#endif
max6675_temp = MAX6675_TMAX * 4; // thermocouple open
}
else
max6675_temp >>= MAX6675_DISCARD_BITS;
#if ENABLED(MAX6675_IS_MAX31855)
// Support negative temperature
if (max6675_temp & 0x00002000) max6675_temp |= 0xFFFFC000;
#endif
return (int)max6675_temp;
}
#endif // HEATER_0_USES_MAX6675
/**
* Get raw temperatures
*/
void Temperature::set_current_temp_raw() {
#if HAS_TEMP_0 && DISABLED(HEATER_0_USES_MAX6675)
current_temperature_raw[0] = raw_temp_value[0];
#endif
#if HAS_TEMP_1
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
redundant_temperature_raw = raw_temp_value[1];
#else
current_temperature_raw[1] = raw_temp_value[1];
#endif
#if HAS_TEMP_2
current_temperature_raw[2] = raw_temp_value[2];
#if HAS_TEMP_3
current_temperature_raw[3] = raw_temp_value[3];
#if HAS_TEMP_4
current_temperature_raw[4] = raw_temp_value[4];
#endif
#endif
#endif
#endif
current_temperature_bed_raw = raw_temp_bed_value;
temp_meas_ready = true;
}
#if ENABLED(PINS_DEBUGGING)
/**
* monitors endstops & Z probe for changes
*
* If a change is detected then the LED is toggled and
* a message is sent out the serial port
*
* Yes, we could miss a rapid back & forth change but
* that won't matter because this is all manual.
*
*/
void endstop_monitor() {
static uint16_t old_endstop_bits_local = 0;
static uint8_t local_LED_status = 0;
uint16_t current_endstop_bits_local = 0;
#if HAS_X_MIN
if (READ(X_MIN_PIN)) SBI(current_endstop_bits_local, X_MIN);
#endif
#if HAS_X_MAX
if (READ(X_MAX_PIN)) SBI(current_endstop_bits_local, X_MAX);
#endif
#if HAS_Y_MIN
if (READ(Y_MIN_PIN)) SBI(current_endstop_bits_local, Y_MIN);
#endif
#if HAS_Y_MAX
if (READ(Y_MAX_PIN)) SBI(current_endstop_bits_local, Y_MAX);
#endif
#if HAS_Z_MIN
if (READ(Z_MIN_PIN)) SBI(current_endstop_bits_local, Z_MIN);
#endif
#if HAS_Z_MAX
if (READ(Z_MAX_PIN)) SBI(current_endstop_bits_local, Z_MAX);
#endif
#if HAS_Z_MIN_PROBE_PIN
if (READ(Z_MIN_PROBE_PIN)) SBI(current_endstop_bits_local, Z_MIN_PROBE);
#endif
#if HAS_Z2_MIN
if (READ(Z2_MIN_PIN)) SBI(current_endstop_bits_local, Z2_MIN);
#endif
#if HAS_Z2_MAX
if (READ(Z2_MAX_PIN)) SBI(current_endstop_bits_local, Z2_MAX);
#endif
uint16_t endstop_change = current_endstop_bits_local ^ old_endstop_bits_local;
if (endstop_change) {
#if HAS_X_MIN
if (TEST(endstop_change, X_MIN)) SERIAL_PROTOCOLPAIR(" X_MIN:", !!TEST(current_endstop_bits_local, X_MIN));
#endif
#if HAS_X_MAX
if (TEST(endstop_change, X_MAX)) SERIAL_PROTOCOLPAIR(" X_MAX:", !!TEST(current_endstop_bits_local, X_MAX));
#endif
#if HAS_Y_MIN
if (TEST(endstop_change, Y_MIN)) SERIAL_PROTOCOLPAIR(" Y_MIN:", !!TEST(current_endstop_bits_local, Y_MIN));
#endif
#if HAS_Y_MAX
if (TEST(endstop_change, Y_MAX)) SERIAL_PROTOCOLPAIR(" Y_MAX:", !!TEST(current_endstop_bits_local, Y_MAX));
#endif
#if HAS_Z_MIN
if (TEST(endstop_change, Z_MIN)) SERIAL_PROTOCOLPAIR(" Z_MIN:", !!TEST(current_endstop_bits_local, Z_MIN));
#endif
#if HAS_Z_MAX
if (TEST(endstop_change, Z_MAX)) SERIAL_PROTOCOLPAIR(" Z_MAX:", !!TEST(current_endstop_bits_local, Z_MAX));
#endif
#if HAS_Z_MIN_PROBE_PIN
if (TEST(endstop_change, Z_MIN_PROBE)) SERIAL_PROTOCOLPAIR(" PROBE:", !!TEST(current_endstop_bits_local, Z_MIN_PROBE));
#endif
#if HAS_Z2_MIN
if (TEST(endstop_change, Z2_MIN)) SERIAL_PROTOCOLPAIR(" Z2_MIN:", !!TEST(current_endstop_bits_local, Z2_MIN));
#endif
#if HAS_Z2_MAX
if (TEST(endstop_change, Z2_MAX)) SERIAL_PROTOCOLPAIR(" Z2_MAX:", !!TEST(current_endstop_bits_local, Z2_MAX));
#endif
SERIAL_PROTOCOLPGM("\n\n");
analogWrite(LED_PIN, local_LED_status);
local_LED_status ^= 255;
old_endstop_bits_local = current_endstop_bits_local;
}
}
#endif // PINS_DEBUGGING
/**
* Timer 0 is shared with millies so don't change the prescaler.
*
* This ISR uses the compare method so it runs at the base
* frequency (16 MHz / 64 / 256 = 976.5625 Hz), but at the TCNT0 set
* in OCR0B above (128 or halfway between OVFs).
*
* - Manage PWM to all the heaters and fan
* - Prepare or Measure one of the raw ADC sensor values
* - Check new temperature values for MIN/MAX errors (kill on error)
* - Step the babysteps value for each axis towards 0
* - For PINS_DEBUGGING, monitor and report endstop pins
* - For ENDSTOP_INTERRUPTS_FEATURE check endstops if flagged
*/
HAL_TEMP_TIMER_ISR {
HAL_timer_isr_prologue (TEMP_TIMER_NUM);
Temperature::isr();
}
volatile bool Temperature::in_temp_isr = false;
void Temperature::isr() {
// The stepper ISR can interrupt this ISR. When it does it re-enables this ISR
// at the end of its run, potentially causing re-entry. This flag prevents it.
if (in_temp_isr) return;
in_temp_isr = true;
// Allow UART and stepper ISRs
DISABLE_TEMPERATURE_INTERRUPT(); //Disable Temperature ISR
#if !defined(CPU_32_BIT)
sei();
#endif
static int8_t temp_count = -1;
static ADCSensorState adc_sensor_state = StartupDelay;
static uint8_t pwm_count = _BV(SOFT_PWM_SCALE);
// avoid multiple loads of pwm_count
uint8_t pwm_count_tmp = pwm_count;
#if ENABLED(ADC_KEYPAD)
static unsigned int raw_ADCKey_value = 0;
#endif
// Static members for each heater
#if ENABLED(SLOW_PWM_HEATERS)
static uint8_t slow_pwm_count = 0;
#define ISR_STATICS(n) \
static uint8_t soft_pwm_count_ ## n, \
state_heater_ ## n = 0, \
state_timer_heater_ ## n = 0
#else
#define ISR_STATICS(n) static uint8_t soft_pwm_count_ ## n = 0
#endif
// Statics per heater
ISR_STATICS(0);
#if HOTENDS > 1
ISR_STATICS(1);
#if HOTENDS > 2
ISR_STATICS(2);
#if HOTENDS > 3
ISR_STATICS(3);
#if HOTENDS > 4
ISR_STATICS(4);
#endif // HOTENDS > 4
#endif // HOTENDS > 3
#endif // HOTENDS > 2
#endif // HOTENDS > 1
#if HAS_HEATER_BED
ISR_STATICS(BED);
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
static unsigned long raw_filwidth_value = 0;
#endif
#if DISABLED(SLOW_PWM_HEATERS)
constexpr uint8_t pwm_mask =
#if ENABLED(SOFT_PWM_DITHER)
_BV(SOFT_PWM_SCALE) - 1
#else
0
#endif
;
/**
* Standard PWM modulation
*/
if (pwm_count_tmp >= 127) {
pwm_count_tmp -= 127;
soft_pwm_count_0 = (soft_pwm_count_0 & pwm_mask) + soft_pwm_amount[0];
WRITE_HEATER_0(soft_pwm_count_0 > pwm_mask ? HIGH : LOW);
#if HOTENDS > 1
soft_pwm_count_1 = (soft_pwm_count_1 & pwm_mask) + soft_pwm_amount[1];
WRITE_HEATER_1(soft_pwm_count_1 > pwm_mask ? HIGH : LOW);
#if HOTENDS > 2
soft_pwm_count_2 = (soft_pwm_count_2 & pwm_mask) + soft_pwm_amount[2];
WRITE_HEATER_2(soft_pwm_count_2 > pwm_mask ? HIGH : LOW);
#if HOTENDS > 3
soft_pwm_count_3 = (soft_pwm_count_3 & pwm_mask) + soft_pwm_amount[3];
WRITE_HEATER_3(soft_pwm_count_3 > pwm_mask ? HIGH : LOW);
#if HOTENDS > 4
soft_pwm_count_4 = (soft_pwm_count_4 & pwm_mask) + soft_pwm_amount[4];
WRITE_HEATER_4(soft_pwm_count_4 > pwm_mask ? HIGH : LOW);
#endif // HOTENDS > 4
#endif // HOTENDS > 3
#endif // HOTENDS > 2
#endif // HOTENDS > 1
#if HAS_HEATER_BED
soft_pwm_count_BED = (soft_pwm_count_BED & pwm_mask) + soft_pwm_amount_bed;
WRITE_HEATER_BED(soft_pwm_count_BED > pwm_mask ? HIGH : LOW);
#endif
#if ENABLED(FAN_SOFT_PWM)
#if HAS_FAN0
soft_pwm_count_fan[0] = (soft_pwm_count_fan[0] & pwm_mask) + soft_pwm_amount_fan[0] >> 1;
WRITE_FAN(soft_pwm_count_fan[0] > pwm_mask ? HIGH : LOW);
#endif
#if HAS_FAN1
soft_pwm_count_fan[1] = (soft_pwm_count_fan[1] & pwm_mask) + soft_pwm_amount_fan[1] >> 1;
WRITE_FAN1(soft_pwm_count_fan[1] > pwm_mask ? HIGH : LOW);
#endif
#if HAS_FAN2
soft_pwm_count_fan[2] = (soft_pwm_count_fan[2] & pwm_mask) + soft_pwm_amount_fan[2] >> 1;
WRITE_FAN2(soft_pwm_count_fan[2] > pwm_mask ? HIGH : LOW);
#endif
#endif
}
else {
if (soft_pwm_count_0 <= pwm_count_tmp) WRITE_HEATER_0(LOW);
#if HOTENDS > 1
if (soft_pwm_count_1 <= pwm_count_tmp) WRITE_HEATER_1(LOW);
#if HOTENDS > 2
if (soft_pwm_count_2 <= pwm_count_tmp) WRITE_HEATER_2(LOW);
#if HOTENDS > 3
if (soft_pwm_count_3 <= pwm_count_tmp) WRITE_HEATER_3(LOW);
#if HOTENDS > 4
if (soft_pwm_count_4 <= pwm_count_tmp) WRITE_HEATER_4(LOW);
#endif // HOTENDS > 4
#endif // HOTENDS > 3
#endif // HOTENDS > 2
#endif // HOTENDS > 1
#if HAS_HEATER_BED
if (soft_pwm_count_BED <= pwm_count_tmp) WRITE_HEATER_BED(LOW);
#endif
#if ENABLED(FAN_SOFT_PWM)
#if HAS_FAN0
if (soft_pwm_count_fan[0] <= pwm_count_tmp) WRITE_FAN(LOW);
#endif
#if HAS_FAN1
if (soft_pwm_count_fan[1] <= pwm_count_tmp) WRITE_FAN1(LOW);
#endif
#if HAS_FAN2
if (soft_pwm_count_fan[2] <= pwm_count_tmp) WRITE_FAN2(LOW);
#endif
#endif
}
// SOFT_PWM_SCALE to frequency:
//
// 0: 16000000/64/256/128 = 7.6294 Hz
// 1: / 64 = 15.2588 Hz
// 2: / 32 = 30.5176 Hz
// 3: / 16 = 61.0352 Hz
// 4: / 8 = 122.0703 Hz
// 5: / 4 = 244.1406 Hz
pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE);
#else // SLOW_PWM_HEATERS
/**
* SLOW PWM HEATERS
*
* For relay-driven heaters
*/
#ifndef MIN_STATE_TIME
#define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
#endif
// Macros for Slow PWM timer logic
#define _SLOW_PWM_ROUTINE(NR, src) \
soft_pwm_ ##NR = src; \
if (soft_pwm_ ##NR > 0) { \
if (state_timer_heater_ ##NR == 0) { \
if (state_heater_ ##NR == 0) state_timer_heater_ ##NR = MIN_STATE_TIME; \
state_heater_ ##NR = 1; \
WRITE_HEATER_ ##NR(1); \
} \
} \
else { \
if (state_timer_heater_ ##NR == 0) { \
if (state_heater_ ##NR == 1) state_timer_heater_ ##NR = MIN_STATE_TIME; \
state_heater_ ##NR = 0; \
WRITE_HEATER_ ##NR(0); \
} \
}
#define SLOW_PWM_ROUTINE(n) _SLOW_PWM_ROUTINE(n, soft_pwm_amount[n])
#define PWM_OFF_ROUTINE(NR) \
if (soft_pwm_ ##NR < slow_pwm_count) { \
if (state_timer_heater_ ##NR == 0) { \
if (state_heater_ ##NR == 1) state_timer_heater_ ##NR = MIN_STATE_TIME; \
state_heater_ ##NR = 0; \
WRITE_HEATER_ ##NR (0); \
} \
}
if (slow_pwm_count == 0) {
SLOW_PWM_ROUTINE(0);
#if HOTENDS > 1
SLOW_PWM_ROUTINE(1);
#if HOTENDS > 2
SLOW_PWM_ROUTINE(2);
#if HOTENDS > 3
SLOW_PWM_ROUTINE(3);
#if HOTENDS > 4
SLOW_PWM_ROUTINE(4);
#endif // HOTENDS > 4
#endif // HOTENDS > 3
#endif // HOTENDS > 2
#endif // HOTENDS > 1
#if HAS_HEATER_BED
_SLOW_PWM_ROUTINE(BED, soft_pwm_amount_bed); // BED
#endif
} // slow_pwm_count == 0
PWM_OFF_ROUTINE(0);
#if HOTENDS > 1
PWM_OFF_ROUTINE(1);
#if HOTENDS > 2
PWM_OFF_ROUTINE(2);
#if HOTENDS > 3
PWM_OFF_ROUTINE(3);
#if HOTENDS > 4
PWM_OFF_ROUTINE(4);
#endif // HOTENDS > 4
#endif // HOTENDS > 3
#endif // HOTENDS > 2
#endif // HOTENDS > 1
#if HAS_HEATER_BED
PWM_OFF_ROUTINE(BED); // BED
#endif
#if ENABLED(FAN_SOFT_PWM)
if (pwm_count_tmp >= 127) {
pwm_count_tmp = 0;
#if HAS_FAN0
soft_pwm_count_fan[0] = soft_pwm_amount_fan[0] >> 1;
WRITE_FAN(soft_pwm_count_fan[0] > 0 ? HIGH : LOW);
#endif
#if HAS_FAN1
soft_pwm_count_fan[1] = soft_pwm_amount_fan[1] >> 1;
WRITE_FAN1(soft_pwm_count_fan[1] > 0 ? HIGH : LOW);
#endif
#if HAS_FAN2
soft_pwm_count_fan[2] = soft_pwm_amount_fan[2] >> 1;
WRITE_FAN2(soft_pwm_count_fan[2] > 0 ? HIGH : LOW);
#endif
}
#if HAS_FAN0
if (soft_pwm_count_fan[0] <= pwm_count_tmp) WRITE_FAN(LOW);
#endif
#if HAS_FAN1
if (soft_pwm_count_fan[1] <= pwm_count_tmp) WRITE_FAN1(LOW);
#endif
#if HAS_FAN2
if (soft_pwm_count_fan[2] <= pwm_count_tmp) WRITE_FAN2(LOW);
#endif
#endif // FAN_SOFT_PWM
// SOFT_PWM_SCALE to frequency:
//
// 0: 16000000/64/256/128 = 7.6294 Hz
// 1: / 64 = 15.2588 Hz
// 2: / 32 = 30.5176 Hz
// 3: / 16 = 61.0352 Hz
// 4: / 8 = 122.0703 Hz
// 5: / 4 = 244.1406 Hz
pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE);
// increment slow_pwm_count only every 64th pwm_count,
// i.e. yielding a PWM frequency of 16/128 Hz (8s).
if (((pwm_count >> SOFT_PWM_SCALE) & 0x3F) == 0) {
slow_pwm_count++;
slow_pwm_count &= 0x7F;
if (state_timer_heater_0 > 0) state_timer_heater_0--;
#if HOTENDS > 1
if (state_timer_heater_1 > 0) state_timer_heater_1--;
#if HOTENDS > 2
if (state_timer_heater_2 > 0) state_timer_heater_2--;
#if HOTENDS > 3
if (state_timer_heater_3 > 0) state_timer_heater_3--;
#if HOTENDS > 4
if (state_timer_heater_4 > 0) state_timer_heater_4--;
#endif // HOTENDS > 4
#endif // HOTENDS > 3
#endif // HOTENDS > 2
#endif // HOTENDS > 1
#if HAS_HEATER_BED
if (state_timer_heater_BED > 0) state_timer_heater_BED--;
#endif
} // ((pwm_count >> SOFT_PWM_SCALE) & 0x3F) == 0
#endif // SLOW_PWM_HEATERS
//
// Update lcd buttons 488 times per second
//
static bool do_buttons;
if ((do_buttons ^= true)) lcd_buttons_update();
/**
* One sensor is sampled on every other call of the ISR.
* Each sensor is read 16 (OVERSAMPLENR) times, taking the average.
*
* On each Prepare pass, ADC is started for a sensor pin.
* On the next pass, the ADC value is read and accumulated.
*
* This gives each ADC 0.9765ms to charge up.
*/
switch (adc_sensor_state) {
case SensorsReady: {
// All sensors have been read. Stay in this state for a few
// ISRs to save on calls to temp update/checking code below.
constexpr int8_t extra_loops = MIN_ADC_ISR_LOOPS - (int8_t)SensorsReady;
static uint8_t delay_count = 0;
if (extra_loops > 0) {
if (delay_count == 0) delay_count = extra_loops; // Init this delay
if (--delay_count) // While delaying...
adc_sensor_state = (ADCSensorState)(int(SensorsReady) - 1); // retain this state (else, next state will be 0)
break;
}
else
adc_sensor_state = (ADCSensorState)0; // Fall-through to start first sensor now
}
#if HAS_TEMP_0
case PrepareTemp_0:
HAL_START_ADC(TEMP_0_PIN);
break;
case MeasureTemp_0:
raw_temp_value[0] += HAL_READ_ADC;
break;
#endif
#if HAS_TEMP_BED
case PrepareTemp_BED:
HAL_START_ADC(TEMP_BED_PIN);
break;
case MeasureTemp_BED:
raw_temp_bed_value += HAL_READ_ADC;
break;
#endif
#if HAS_TEMP_1
case PrepareTemp_1:
HAL_START_ADC(TEMP_1_PIN);
break;
case MeasureTemp_1:
raw_temp_value[1] += HAL_READ_ADC;
break;
#endif
#if HAS_TEMP_2
case PrepareTemp_2:
HAL_START_ADC(TEMP_2_PIN);
break;
case MeasureTemp_2:
raw_temp_value[2] += HAL_READ_ADC;
break;
#endif
#if HAS_TEMP_3
case PrepareTemp_3:
HAL_START_ADC(TEMP_3_PIN);
break;
case MeasureTemp_3:
raw_temp_value[3] += HAL_READ_ADC;
break;
#endif
#if HAS_TEMP_4
case PrepareTemp_4:
HAL_START_ADC(TEMP_4_PIN);
break;
case MeasureTemp_4:
raw_temp_value[4] += HAL_READ_ADC;
break;
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
case Prepare_FILWIDTH:
HAL_START_ADC(FILWIDTH_PIN);
break;
case Measure_FILWIDTH:
if (HAL_READ_ADC > 102) { // Make sure ADC is reading > 0.5 volts, otherwise don't read.
raw_filwidth_value -= (raw_filwidth_value >> 7); // Subtract 1/128th of the raw_filwidth_value
raw_filwidth_value += ((unsigned long)HAL_READ_ADC << 7); // Add new ADC reading, scaled by 128
}
break;
#endif
#if ENABLED(ADC_KEYPAD)
case Prepare_ADC_KEY:
START_ADC(ADC_KEYPAD_PIN);
break;
case Measure_ADC_KEY:
if (ADCKey_count < 16) {
raw_ADCKey_value = ADC;
if (raw_ADCKey_value > 900) {
//ADC Key release
ADCKey_count = 0;
current_ADCKey_raw = 0;
}
else {
current_ADCKey_raw += raw_ADCKey_value;
ADCKey_count++;
}
}
break;
#endif // ADC_KEYPAD
case StartupDelay: break;
} // switch(adc_sensor_state)
if (!adc_sensor_state && ++temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
temp_count = 0;
// Update the raw values if they've been read. Else we could be updating them during reading.
if (!temp_meas_ready) set_current_temp_raw();
// Filament Sensor - can be read any time since IIR filtering is used
#if ENABLED(FILAMENT_WIDTH_SENSOR)
current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach
#endif
ZERO(raw_temp_value);
raw_temp_bed_value = 0;
#define TEMPDIR(N) ((HEATER_##N##_RAW_LO_TEMP) > (HEATER_##N##_RAW_HI_TEMP) ? -1 : 1)
int constexpr temp_dir[] = {
#if ENABLED(HEATER_0_USES_MAX6675)
0
#else
TEMPDIR(0)
#endif
#if HOTENDS > 1
, TEMPDIR(1)
#if HOTENDS > 2
, TEMPDIR(2)
#if HOTENDS > 3
, TEMPDIR(3)
#if HOTENDS > 4
, TEMPDIR(4)
#endif // HOTENDS > 4
#endif // HOTENDS > 3
#endif // HOTENDS > 2
#endif // HOTENDS > 1
};
for (uint8_t e = 0; e < COUNT(temp_dir); e++) {
const int16_t tdir = temp_dir[e], rawtemp = current_temperature_raw[e] * tdir;
if (rawtemp > maxttemp_raw[e] * tdir && target_temperature[e] > 0) max_temp_error(e);
if (rawtemp < minttemp_raw[e] * tdir && !is_preheating(e) && target_temperature[e] > 0) {
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
if (++consecutive_low_temperature_error[e] >= MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED)
#endif
min_temp_error(e);
}
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
else
consecutive_low_temperature_error[e] = 0;
#endif
}
#if HAS_TEMP_BED
#if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
#define GEBED <=
#else
#define GEBED >=
#endif
if (current_temperature_bed_raw GEBED bed_maxttemp_raw && target_temperature_bed > 0) max_temp_error(-1);
if (bed_minttemp_raw GEBED current_temperature_bed_raw && target_temperature_bed > 0) min_temp_error(-1);
#endif
} // temp_count >= OVERSAMPLENR
// Go to the next state, up to SensorsReady
adc_sensor_state = (ADCSensorState)((int(adc_sensor_state) + 1) % int(StartupDelay));
#if ENABLED(BABYSTEPPING)
LOOP_XYZ(axis) {
const int curTodo = babystepsTodo[axis]; // get rid of volatile for performance
if (curTodo > 0) {
stepper.babystep((AxisEnum)axis, /*fwd*/true);
babystepsTodo[axis]--;
}
else if (curTodo < 0) {
stepper.babystep((AxisEnum)axis, /*fwd*/false);
babystepsTodo[axis]++;
}
}
#endif // BABYSTEPPING
#if ENABLED(PINS_DEBUGGING)
extern bool endstop_monitor_flag;
// run the endstop monitor at 15Hz
static uint8_t endstop_monitor_count = 16; // offset this check from the others
if (endstop_monitor_flag) {
endstop_monitor_count += _BV(1); // 15 Hz
endstop_monitor_count &= 0x7F;
if (!endstop_monitor_count) endstop_monitor(); // report changes in endstop status
}
#endif
#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
extern volatile uint8_t e_hit;
if (e_hit && ENDSTOPS_ENABLED) {
endstops.update(); // call endstop update routine
e_hit--;
}
#endif
#if !defined(CPU_32_BIT)
cli();
#endif
in_temp_isr = false;
ENABLE_TEMPERATURE_INTERRUPT(); //re-enable Temperature ISR
}