marlin2_i2/Marlin/temperature.cpp
Bernhard Kubicek a9c7da06e3 and changed ultipanel to have the mm/sec and not mm/min
Merge branch 'Marlin_v1' of https://github.com/ErikZalm/Marlin into Marlin_v1

Conflicts:
	Marlin/Marlin.pde
	Marlin/ultralcd.h
2011-11-15 22:50:43 +01:00

580 lines
16 KiB
C++

/*
temperature.c - temperature control
Part of Marlin
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
This firmware is a mashup between Sprinter and grbl.
(https://github.com/kliment/Sprinter)
(https://github.com/simen/grbl/tree)
It has preliminary support for Matthew Roberts advance algorithm
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
This firmware is optimized for gen6 electronics.
*/
#include <avr/pgmspace.h>
#include "fastio.h"
#include "Configuration.h"
#include "pins.h"
#include "Marlin.h"
#include "ultralcd.h"
#include "temperature.h"
#include "watchdog.h"
//===========================================================================
//=============================public variables============================
//===========================================================================
int target_raw[3] = {0, 0, 0};
int current_raw[3] = {0, 0, 0};
#ifdef PIDTEMP
// probably used external
float HeaterPower;
float pid_setpoint = 0.0;
float Kp=DEFAULT_Kp;
float Ki=DEFAULT_Ki;
float Kd=DEFAULT_Kd;
#ifdef PID_ADD_EXTRUSION_RATE
float Kc=DEFAULT_Kc;
#endif
#endif //PIDTEMP
//===========================================================================
//=============================private variables============================
//===========================================================================
static bool temp_meas_ready = false;
static unsigned long previous_millis_heater, previous_millis_bed_heater;
#ifdef PIDTEMP
//static cannot be external:
static float temp_iState = 0;
static float temp_dState = 0;
static float pTerm;
static float iTerm;
static float dTerm;
//int output;
static float pid_error;
static float temp_iState_min;
static float temp_iState_max;
static float pid_input;
static float pid_output;
static bool pid_reset;
#endif //PIDTEMP
#ifdef WATCHPERIOD
static int watch_raw[3] = {-1000,-1000,-1000};
static unsigned long watchmillis = 0;
#endif //WATCHPERIOD
#ifdef HEATER_0_MINTEMP
static int minttemp_0 = temp2analog(HEATER_0_MINTEMP);
#endif //MINTEMP
#ifdef HEATER_0_MAXTEMP
static int maxttemp_0 = temp2analog(HEATER_0_MAXTEMP);
#endif //MAXTEMP
#ifdef HEATER_1_MINTEMP
static int minttemp_1 = temp2analog(HEATER_1_MINTEMP);
#endif //MINTEMP
#ifdef HEATER_1_MAXTEMP
static int maxttemp_1 = temp2analog(HEATER_1_MAXTEMP);
#endif //MAXTEMP
#ifdef BED_MINTEMP
static int bed_minttemp = temp2analog(BED_MINTEMP);
#endif //BED_MINTEMP
#ifdef BED_MAXTEMP
static int bed_maxttemp = temp2analog(BED_MAXTEMP);
#endif //BED_MAXTEMP
//===========================================================================
//=============================functions ============================
//===========================================================================
void updatePID()
{
#ifdef PIDTEMP
temp_iState_max = PID_INTEGRAL_DRIVE_MAX / Ki;
#endif
}
void manage_heater()
{
#ifdef USE_WATCHDOG
wd_reset();
#endif
float pid_input;
float pid_output;
if(temp_meas_ready != true) //better readability
return;
CRITICAL_SECTION_START;
temp_meas_ready = false;
CRITICAL_SECTION_END;
#ifdef PIDTEMP
pid_input = analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);
#ifndef PID_OPENLOOP
pid_error = pid_setpoint - pid_input;
if(pid_error > 10){
pid_output = PID_MAX;
pid_reset = true;
}
else if(pid_error < -10) {
pid_output = 0;
pid_reset = true;
}
else {
if(pid_reset == true) {
temp_iState = 0.0;
pid_reset = false;
}
pTerm = Kp * pid_error;
temp_iState += pid_error;
temp_iState = constrain(temp_iState, temp_iState_min, temp_iState_max);
iTerm = Ki * temp_iState;
//K1 defined in Configuration.h in the PID settings
#define K2 (1.0-K1)
dTerm = (Kd * (pid_input - temp_dState))*K2 + (K1 * dTerm);
temp_dState = pid_input;
// #ifdef PID_ADD_EXTRUSION_RATE
// pTerm+=Kc*current_block->speed_e; //additional heating if extrusion speed is high
// #endif
pid_output = constrain(pTerm + iTerm - dTerm, 0, PID_MAX);
}
#endif //PID_OPENLOOP
#ifdef PID_DEBUG
//SERIAL_ECHOLN(" PIDDEBUG Input "<<pid_input<<" Output "<<pid_output" pTerm "<<pTerm<<" iTerm "<<iTerm<<" dTerm "<<dTerm);
#endif //PID_DEBUG
HeaterPower=pid_output;
analogWrite(HEATER_0_PIN, pid_output);
#endif //PIDTEMP
#ifndef PIDTEMP
if(current_raw[0] >= target_raw[0])
{
WRITE(HEATER_0_PIN,LOW);
}
else
{
WRITE(HEATER_0_PIN,HIGH);
}
#endif
if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
return;
previous_millis_bed_heater = millis();
#if TEMP_1_PIN > -1
if(current_raw[TEMPSENSOR_BED] >= target_raw[TEMPSENSOR_BED])
{
WRITE(HEATER_1_PIN,LOW);
}
else
{
WRITE(HEATER_1_PIN,HIGH);
}
#endif
}
#define PGM_RD_W(x) (short)pgm_read_word(&x)
// Takes hot end temperature value as input and returns corresponding raw value.
// For a thermistor, it uses the RepRap thermistor temp table.
// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
int temp2analog(int celsius) {
#ifdef HEATER_0_USES_THERMISTOR
int raw = 0;
byte i;
for (i=1; i<NUMTEMPS_HEATER_0; i++)
{
if (PGM_RD_W(heater_0_temptable[i][1]) < celsius)
{
raw = PGM_RD_W(heater_0_temptable[i-1][0]) +
(celsius - PGM_RD_W(heater_0_temptable[i-1][1])) *
(PGM_RD_W(heater_0_temptable[i][0]) - PGM_RD_W(heater_0_temptable[i-1][0])) /
(PGM_RD_W(heater_0_temptable[i][1]) - PGM_RD_W(heater_0_temptable[i-1][1]));
break;
}
}
// Overflow: Set to last value in the table
if (i == NUMTEMPS_HEATER_0) raw = PGM_RD_W(heater_0_temptable[i-1][0]);
return (1023 * OVERSAMPLENR) - raw;
#elif defined HEATER_0_USES_AD595
return celsius * (1024.0 / (5.0 * 100.0) ) * OVERSAMPLENR;
#endif
}
// Takes bed temperature value as input and returns corresponding raw value.
// For a thermistor, it uses the RepRap thermistor temp table.
// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
int temp2analogBed(int celsius) {
#ifdef BED_USES_THERMISTOR
int raw = 0;
byte i;
for (i=1; i<BNUMTEMPS; i++)
{
if (PGM_RD_W(bedtemptable[i][1]) < celsius)
{
raw = PGM_RD_W(bedtemptable[i-1][0]) +
(celsius - PGM_RD_W(bedtemptable[i-1][1])) *
(PGM_RD_W(bedtemptable[i][0]) - PGM_RD_W(bedtemptable[i-1][0])) /
(PGM_RD_W(bedtemptable[i][1]) - PGM_RD_W(bedtemptable[i-1][1]));
break;
}
}
// Overflow: Set to last value in the table
if (i == BNUMTEMPS) raw = PGM_RD_W(bedtemptable[i-1][0]);
return (1023 * OVERSAMPLENR) - raw;
#elif defined BED_USES_AD595
return lround(celsius * (1024.0 * OVERSAMPLENR/ (5.0 * 100.0) ) );
#endif
}
// Derived from RepRap FiveD extruder::getTemperature()
// For hot end temperature measurement.
float analog2temp(int raw) {
#ifdef HEATER_0_USES_THERMISTOR
float celsius = 0;
byte i;
raw = (1023 * OVERSAMPLENR) - raw;
for (i=1; i<NUMTEMPS_HEATER_0; i++)
{
if (PGM_RD_W(heater_0_temptable[i][0]) > raw)
{
celsius = PGM_RD_W(heater_0_temptable[i-1][1]) +
(raw - PGM_RD_W(heater_0_temptable[i-1][0])) *
(float)(PGM_RD_W(heater_0_temptable[i][1]) - PGM_RD_W(heater_0_temptable[i-1][1])) /
(float)(PGM_RD_W(heater_0_temptable[i][0]) - PGM_RD_W(heater_0_temptable[i-1][0]));
break;
}
}
// Overflow: Set to last value in the table
if (i == NUMTEMPS_HEATER_0) celsius = PGM_RD_W(heater_0_temptable[i-1][1]);
return celsius;
#elif defined HEATER_0_USES_AD595
return raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR;
#endif
}
// Derived from RepRap FiveD extruder::getTemperature()
// For bed temperature measurement.
float analog2tempBed(int raw) {
#ifdef BED_USES_THERMISTOR
int celsius = 0;
byte i;
raw = (1023 * OVERSAMPLENR) - raw;
for (i=1; i<BNUMTEMPS; i++)
{
if (PGM_RD_W(bedtemptable[i][0]) > raw)
{
celsius = PGM_RD_W(bedtemptable[i-1][1]) +
(raw - PGM_RD_W(bedtemptable[i-1][0])) *
(PGM_RD_W(bedtemptable[i][1]) - PGM_RD_W(bedtemptable[i-1][1])) /
(PGM_RD_W(bedtemptable[i][0]) - PGM_RD_W(bedtemptable[i-1][0]));
break;
}
}
// Overflow: Set to last value in the table
if (i == BNUMTEMPS) celsius = PGM_RD_W(bedtemptable[i-1][1]);
return celsius;
#elif defined BED_USES_AD595
return raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR;
#endif
}
void tp_init()
{
#if (HEATER_0_PIN > -1)
SET_OUTPUT(HEATER_0_PIN);
#endif
#if (HEATER_1_PIN > -1)
SET_OUTPUT(HEATER_1_PIN);
#endif
#if (HEATER_2_PIN > -1)
SET_OUTPUT(HEATER_2_PIN);
#endif
#ifdef PIDTEMP
temp_iState_min = 0.0;
temp_iState_max = PID_INTEGRAL_DRIVE_MAX / Ki;
#endif //PIDTEMP
// Set analog inputs
ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07;
// Use timer0 for temperature measurement
// Interleave temperature interrupt with millies interrupt
OCR0B = 128;
TIMSK0 |= (1<<OCIE0B);
}
void setWatch()
{
#ifdef WATCHPERIOD
if(isHeatingHotend0())
{
watchmillis = max(1,millis());
watch_raw[TEMPSENSOR_HOTEND_0] = current_raw[TEMPSENSOR_HOTEND_0];
}
else
{
watchmillis = 0;
}
#endif
}
void disable_heater()
{
#if TEMP_0_PIN > -1
target_raw[0]=0;
#if HEATER_0_PIN > -1
WRITE(HEATER_0_PIN,LOW);
#endif
#endif
#if TEMP_1_PIN > -1
target_raw[1]=0;
#if HEATER_1_PIN > -1
WRITE(HEATER_1_PIN,LOW);
#endif
#endif
#if TEMP_2_PIN > -1
target_raw[2]=0;
#if HEATER_2_PIN > -1
WRITE(HEATER_2_PIN,LOW);
#endif
#endif
}
// Timer 0 is shared with millies
ISR(TIMER0_COMPB_vect)
{
//these variables are only accesible from the ISR, but static, so they don't loose their value
static unsigned char temp_count = 0;
static unsigned long raw_temp_0_value = 0;
static unsigned long raw_temp_1_value = 0;
static unsigned long raw_temp_2_value = 0;
static unsigned char temp_state = 0;
switch(temp_state) {
case 0: // Prepare TEMP_0
#if (TEMP_0_PIN > -1)
#if TEMP_0_PIN < 8
DIDR0 = 1 << TEMP_0_PIN;
#else
DIDR2 = 1<<(TEMP_0_PIN - 8);
ADCSRB = 1<<MUX5;
#endif
ADMUX = ((1 << REFS0) | (TEMP_0_PIN & 0x07));
ADCSRA |= 1<<ADSC; // Start conversion
#endif
#ifdef ULTIPANEL
buttons_check();
#endif
temp_state = 1;
break;
case 1: // Measure TEMP_0
#if (TEMP_0_PIN > -1)
raw_temp_0_value += ADC;
#endif
temp_state = 2;
break;
case 2: // Prepare TEMP_1
#if (TEMP_1_PIN > -1)
#if TEMP_1_PIN < 7
DIDR0 = 1<<TEMP_1_PIN;
#else
DIDR2 = 1<<(TEMP_1_PIN - 8);
ADCSRB = 1<<MUX5;
#endif
ADMUX = ((1 << REFS0) | (TEMP_1_PIN & 0x07));
ADCSRA |= 1<<ADSC; // Start conversion
#endif
#ifdef ULTIPANEL
buttons_check();
#endif
temp_state = 3;
break;
case 3: // Measure TEMP_1
#if (TEMP_1_PIN > -1)
raw_temp_1_value += ADC;
#endif
temp_state = 4;
break;
case 4: // Prepare TEMP_2
#if (TEMP_2_PIN > -1)
#if TEMP_2_PIN < 7
DIDR0 = 1 << TEMP_2_PIN;
#else
DIDR2 = 1<<(TEMP_2_PIN - 8);
ADCSRB = 1<<MUX5;
#endif
ADMUX = ((1 << REFS0) | (TEMP_2_PIN & 0x07));
ADCSRA |= 1<<ADSC; // Start conversion
#endif
#ifdef ULTIPANEL
buttons_check();
#endif
temp_state = 5;
break;
case 5: // Measure TEMP_2
#if (TEMP_2_PIN > -1)
raw_temp_2_value += ADC;
#endif
temp_state = 0;
temp_count++;
break;
default:
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Temp measurement error!");
break;
}
if(temp_count >= 16) // 6 ms * 16 = 96ms.
{
#ifdef HEATER_0_USES_AD595
current_raw[0] = raw_temp_0_value;
#else
current_raw[0] = 16383 - raw_temp_0_value;
#endif
#ifdef HEATER_1_USES_AD595
current_raw[2] = raw_temp_2_value;
#else
current_raw[2] = 16383 - raw_temp_2_value;
#endif
#ifdef BED_USES_AD595
current_raw[1] = raw_temp_1_value;
#else
current_raw[1] = 16383 - raw_temp_1_value;
#endif
temp_meas_ready = true;
temp_count = 0;
raw_temp_0_value = 0;
raw_temp_1_value = 0;
raw_temp_2_value = 0;
#ifdef HEATER_0_MAXTEMP
#if (HEATER_0_PIN > -1)
if(current_raw[TEMPSENSOR_HOTEND_0] >= maxttemp_0) {
target_raw[TEMPSENSOR_HOTEND_0] = 0;
analogWrite(HEATER_0_PIN, 0);
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Temperature extruder 0 switched off. MAXTEMP triggered !!");
kill();
}
#endif
#endif
#ifdef HEATER_1_MAXTEMP
#if (HEATER_1_PIN > -1)
if(current_raw[TEMPSENSOR_HOTEND_1] >= maxttemp_1) {
target_raw[TEMPSENSOR_HOTEND_1] = 0;
if(current_raw[2] >= maxttemp_1) {
analogWrite(HEATER_2_PIN, 0);
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Temperature extruder 1 switched off. MAXTEMP triggered !!");
kill()
}
#endif
#endif //MAXTEMP
#ifdef HEATER_0_MINTEMP
#if (HEATER_0_PIN > -1)
if(current_raw[TEMPSENSOR_HOTEND_0] <= minttemp_0) {
target_raw[TEMPSENSOR_HOTEND_0] = 0;
analogWrite(HEATER_0_PIN, 0);
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Temperature extruder 0 switched off. MINTEMP triggered !!");
kill();
}
#endif
#endif
#ifdef HEATER_1_MINTEMP
#if (HEATER_2_PIN > -1)
if(current_raw[TEMPSENSOR_HOTEND_1] <= minttemp_1) {
target_raw[TEMPSENSOR_HOTEND_1] = 0;
analogWrite(HEATER_2_PIN, 0);
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Temperature extruder 1 switched off. MINTEMP triggered !!");
kill();
}
#endif
#endif //MAXTEMP
#ifdef BED_MINTEMP
#if (HEATER_1_PIN > -1)
if(current_raw[1] <= bed_minttemp) {
target_raw[1] = 0;
WRITE(HEATER_1_PIN, 0);
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Temperatur heated bed switched off. MINTEMP triggered !!");
kill();
}
#endif
#endif
#ifdef BED_MAXTEMP
#if (HEATER_1_PIN > -1)
if(current_raw[1] >= bed_maxttemp) {
target_raw[1] = 0;
WRITE(HEATER_1_PIN, 0);
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !!");
kill();
}
#endif
#endif
}
}