marlin2_i2/Marlin/planner.cpp
2015-11-12 00:03:21 -06:00

1051 lines
43 KiB
C++

/**
* planner.cpp - Buffer movement commands and manage the acceleration profile plan
* Part of Grbl
*
* Copyright (c) 2009-2011 Simen Svale Skogsrud
*
* Grbl is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Grbl is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*
*
* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis.
*
*
* Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
*
* s == speed, a == acceleration, t == time, d == distance
*
* Basic definitions:
* Speed[s_, a_, t_] := s + (a*t)
* Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
*
* Distance to reach a specific speed with a constant acceleration:
* Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
* d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
*
* Speed after a given distance of travel with constant acceleration:
* Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
* m -> Sqrt[2 a d + s^2]
*
* DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
*
* When to start braking (di) to reach a specified destination speed (s2) after accelerating
* from initial speed s1 without ever stopping at a plateau:
* Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
* di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
*
* IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
*
*/
#include "Marlin.h"
#include "planner.h"
#include "stepper.h"
#include "temperature.h"
#include "ultralcd.h"
#include "language.h"
#if ENABLED(MESH_BED_LEVELING)
#include "mesh_bed_leveling.h"
#endif
//===========================================================================
//============================= public variables ============================
//===========================================================================
millis_t minsegmenttime;
float max_feedrate[NUM_AXIS]; // Max speeds in mm per minute
float axis_steps_per_unit[NUM_AXIS];
unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software
float minimumfeedrate;
float acceleration; // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
float retract_acceleration; // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
float travel_acceleration; // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
float max_xy_jerk; // The largest speed change requiring no acceleration
float max_z_jerk;
float max_e_jerk;
float mintravelfeedrate;
unsigned long axis_steps_per_sqr_second[NUM_AXIS];
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
// Transform required to compensate for bed level
matrix_3x3 plan_bed_level_matrix = {
1.0, 0.0, 0.0,
0.0, 1.0, 0.0,
0.0, 0.0, 1.0
};
#endif // AUTO_BED_LEVELING_FEATURE
#if ENABLED(AUTOTEMP)
float autotemp_max = 250;
float autotemp_min = 210;
float autotemp_factor = 0.1;
bool autotemp_enabled = false;
#endif
//===========================================================================
//============ semi-private variables, used in inline functions =============
//===========================================================================
block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
volatile unsigned char block_buffer_head; // Index of the next block to be pushed
volatile unsigned char block_buffer_tail; // Index of the block to process now
//===========================================================================
//============================ private variables ============================
//===========================================================================
// The current position of the tool in absolute steps
long position[NUM_AXIS]; // Rescaled from extern when axis_steps_per_unit are changed by gcode
static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
static float previous_nominal_speed; // Nominal speed of previous path line segment
uint8_t g_uc_extruder_last_move[EXTRUDERS] = { 0 };
#ifdef XY_FREQUENCY_LIMIT
// Used for the frequency limit
#define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
// Old direction bits. Used for speed calculations
static unsigned char old_direction_bits = 0;
// Segment times (in µs). Used for speed calculations
static long axis_segment_time[2][3] = { {MAX_FREQ_TIME + 1, 0, 0}, {MAX_FREQ_TIME + 1, 0, 0} };
#endif
#if ENABLED(FILAMENT_SENSOR)
static char meas_sample; //temporary variable to hold filament measurement sample
#endif
#if ENABLED(DUAL_X_CARRIAGE)
extern bool extruder_duplication_enabled;
#endif
//===========================================================================
//================================ functions ================================
//===========================================================================
// Get the next / previous index of the next block in the ring buffer
// NOTE: Using & here (not %) because BLOCK_BUFFER_SIZE is always a power of 2
FORCE_INLINE int8_t next_block_index(int8_t block_index) { return BLOCK_MOD(block_index + 1); }
FORCE_INLINE int8_t prev_block_index(int8_t block_index) { return BLOCK_MOD(block_index - 1); }
// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
// given acceleration:
FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) {
if (acceleration == 0) return 0; // acceleration was 0, set acceleration distance to 0
return (target_rate * target_rate - initial_rate * initial_rate) / (acceleration * 2);
}
// This function gives you the point at which you must start braking (at the rate of -acceleration) if
// you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
// a total travel of distance. This can be used to compute the intersection point between acceleration and
// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) {
if (acceleration == 0) return 0; // acceleration was 0, set intersection distance to 0
return (acceleration * 2 * distance - initial_rate * initial_rate + final_rate * final_rate) / (acceleration * 4);
}
// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
void calculate_trapezoid_for_block(block_t* block, float entry_factor, float exit_factor) {
unsigned long initial_rate = ceil(block->nominal_rate * entry_factor); // (step/min)
unsigned long final_rate = ceil(block->nominal_rate * exit_factor); // (step/min)
// Limit minimal step rate (Otherwise the timer will overflow.)
NOLESS(initial_rate, 120);
NOLESS(final_rate, 120);
long acceleration = block->acceleration_st;
int32_t accelerate_steps = ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
int32_t decelerate_steps = floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
// Calculate the size of Plateau of Nominal Rate.
int32_t plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps;
// Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
// have to use intersection_distance() to calculate when to abort acceleration and start braking
// in order to reach the final_rate exactly at the end of this block.
if (plateau_steps < 0) {
accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
accelerate_steps = max(accelerate_steps, 0); // Check limits due to numerical round-off
accelerate_steps = min((uint32_t)accelerate_steps, block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)
plateau_steps = 0;
}
#if ENABLED(ADVANCE)
volatile long initial_advance = block->advance * entry_factor * entry_factor;
volatile long final_advance = block->advance * exit_factor * exit_factor;
#endif // ADVANCE
// block->accelerate_until = accelerate_steps;
// block->decelerate_after = accelerate_steps+plateau_steps;
CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
if (!block->busy) { // Don't update variables if block is busy.
block->accelerate_until = accelerate_steps;
block->decelerate_after = accelerate_steps + plateau_steps;
block->initial_rate = initial_rate;
block->final_rate = final_rate;
#if ENABLED(ADVANCE)
block->initial_advance = initial_advance;
block->final_advance = final_advance;
#endif
}
CRITICAL_SECTION_END;
}
// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
// acceleration within the allotted distance.
FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) {
return sqrt(target_velocity * target_velocity - 2 * acceleration * distance);
}
// "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
// This method will calculate the junction jerk as the euclidean distance between the nominal
// velocities of the respective blocks.
//inline float junction_jerk(block_t *before, block_t *after) {
// return sqrt(
// pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
//}
// The kernel called by planner_recalculate() when scanning the plan from last to first entry.
void planner_reverse_pass_kernel(block_t* previous, block_t* current, block_t* next) {
if (!current) return;
UNUSED(previous);
if (next) {
// If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
// If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
// check for maximum allowable speed reductions to ensure maximum possible planned speed.
if (current->entry_speed != current->max_entry_speed) {
// If nominal length true, max junction speed is guaranteed to be reached. Only compute
// for max allowable speed if block is decelerating and nominal length is false.
if (!current->nominal_length_flag && current->max_entry_speed > next->entry_speed) {
current->entry_speed = min(current->max_entry_speed,
max_allowable_speed(-current->acceleration, next->entry_speed, current->millimeters));
}
else {
current->entry_speed = current->max_entry_speed;
}
current->recalculate_flag = true;
}
} // Skip last block. Already initialized and set for recalculation.
}
// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
// implements the reverse pass.
void planner_reverse_pass() {
uint8_t block_index = block_buffer_head;
//Make a local copy of block_buffer_tail, because the interrupt can alter it
CRITICAL_SECTION_START;
unsigned char tail = block_buffer_tail;
CRITICAL_SECTION_END
if (BLOCK_MOD(block_buffer_head - tail + BLOCK_BUFFER_SIZE) > 3) { // moves queued
block_index = BLOCK_MOD(block_buffer_head - 3);
block_t* block[3] = { NULL, NULL, NULL };
while (block_index != tail) {
block_index = prev_block_index(block_index);
block[2] = block[1];
block[1] = block[0];
block[0] = &block_buffer[block_index];
planner_reverse_pass_kernel(block[0], block[1], block[2]);
}
}
}
// The kernel called by planner_recalculate() when scanning the plan from first to last entry.
void planner_forward_pass_kernel(block_t* previous, block_t* current, block_t* next) {
if (!previous) return;
UNUSED(next);
// If the previous block is an acceleration block, but it is not long enough to complete the
// full speed change within the block, we need to adjust the entry speed accordingly. Entry
// speeds have already been reset, maximized, and reverse planned by reverse planner.
// If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
if (!previous->nominal_length_flag) {
if (previous->entry_speed < current->entry_speed) {
double entry_speed = min(current->entry_speed,
max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters));
// Check for junction speed change
if (current->entry_speed != entry_speed) {
current->entry_speed = entry_speed;
current->recalculate_flag = true;
}
}
}
}
// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
// implements the forward pass.
void planner_forward_pass() {
uint8_t block_index = block_buffer_tail;
block_t* block[3] = { NULL, NULL, NULL };
while (block_index != block_buffer_head) {
block[0] = block[1];
block[1] = block[2];
block[2] = &block_buffer[block_index];
planner_forward_pass_kernel(block[0], block[1], block[2]);
block_index = next_block_index(block_index);
}
planner_forward_pass_kernel(block[1], block[2], NULL);
}
// Recalculates the trapezoid speed profiles for all blocks in the plan according to the
// entry_factor for each junction. Must be called by planner_recalculate() after
// updating the blocks.
void planner_recalculate_trapezoids() {
int8_t block_index = block_buffer_tail;
block_t* current;
block_t* next = NULL;
while (block_index != block_buffer_head) {
current = next;
next = &block_buffer[block_index];
if (current) {
// Recalculate if current block entry or exit junction speed has changed.
if (current->recalculate_flag || next->recalculate_flag) {
// NOTE: Entry and exit factors always > 0 by all previous logic operations.
float nom = current->nominal_speed;
calculate_trapezoid_for_block(current, current->entry_speed / nom, next->entry_speed / nom);
current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
}
}
block_index = next_block_index(block_index);
}
// Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
if (next) {
float nom = next->nominal_speed;
calculate_trapezoid_for_block(next, next->entry_speed / nom, MINIMUM_PLANNER_SPEED / nom);
next->recalculate_flag = false;
}
}
// Recalculates the motion plan according to the following algorithm:
//
// 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
// so that:
// a. The junction jerk is within the set limit
// b. No speed reduction within one block requires faster deceleration than the one, true constant
// acceleration.
// 2. Go over every block in chronological order and dial down junction speed reduction values if
// a. The speed increase within one block would require faster acceleration than the one, true
// constant acceleration.
//
// When these stages are complete all blocks have an entry_factor that will allow all speed changes to
// be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
// the set limit. Finally it will:
//
// 3. Recalculate trapezoids for all blocks.
void planner_recalculate() {
planner_reverse_pass();
planner_forward_pass();
planner_recalculate_trapezoids();
}
void plan_init() {
block_buffer_head = block_buffer_tail = 0;
memset(position, 0, sizeof(position)); // clear position
for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = 0.0;
previous_nominal_speed = 0.0;
}
#if ENABLED(AUTOTEMP)
void getHighESpeed() {
static float oldt = 0;
if (!autotemp_enabled) return;
if (degTargetHotend0() + 2 < autotemp_min) return; // probably temperature set to zero.
float high = 0.0;
uint8_t block_index = block_buffer_tail;
while (block_index != block_buffer_head) {
block_t* block = &block_buffer[block_index];
if (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS]) {
float se = (float)block->steps[E_AXIS] / block->step_event_count * block->nominal_speed; // mm/sec;
if (se > high) high = se;
}
block_index = next_block_index(block_index);
}
float t = autotemp_min + high * autotemp_factor;
t = constrain(t, autotemp_min, autotemp_max);
if (oldt > t) {
t *= (1 - AUTOTEMP_OLDWEIGHT);
t += AUTOTEMP_OLDWEIGHT * oldt;
}
oldt = t;
setTargetHotend0(t);
}
#endif //AUTOTEMP
void check_axes_activity() {
unsigned char axis_active[NUM_AXIS] = { 0 },
tail_fan_speed = fanSpeed;
#if ENABLED(BARICUDA)
unsigned char tail_valve_pressure = ValvePressure,
tail_e_to_p_pressure = EtoPPressure;
#endif
block_t* block;
if (blocks_queued()) {
uint8_t block_index = block_buffer_tail;
tail_fan_speed = block_buffer[block_index].fan_speed;
#if ENABLED(BARICUDA)
block = &block_buffer[block_index];
tail_valve_pressure = block->valve_pressure;
tail_e_to_p_pressure = block->e_to_p_pressure;
#endif
while (block_index != block_buffer_head) {
block = &block_buffer[block_index];
for (int i = 0; i < NUM_AXIS; i++) if (block->steps[i]) axis_active[i]++;
block_index = next_block_index(block_index);
}
}
if (DISABLE_X && !axis_active[X_AXIS]) disable_x();
if (DISABLE_Y && !axis_active[Y_AXIS]) disable_y();
if (DISABLE_Z && !axis_active[Z_AXIS]) disable_z();
if (DISABLE_E && !axis_active[E_AXIS]) {
disable_e0();
disable_e1();
disable_e2();
disable_e3();
}
#if HAS_FAN
#ifdef FAN_KICKSTART_TIME
static millis_t fan_kick_end;
if (tail_fan_speed) {
millis_t ms = millis();
if (fan_kick_end == 0) {
// Just starting up fan - run at full power.
fan_kick_end = ms + FAN_KICKSTART_TIME;
tail_fan_speed = 255;
}
else if (fan_kick_end > ms)
// Fan still spinning up.
tail_fan_speed = 255;
}
else {
fan_kick_end = 0;
}
#endif //FAN_KICKSTART_TIME
#if ENABLED(FAN_MIN_PWM)
#define CALC_FAN_SPEED (tail_fan_speed ? ( FAN_MIN_PWM + (tail_fan_speed * (255 - FAN_MIN_PWM)) / 255 ) : 0)
#else
#define CALC_FAN_SPEED tail_fan_speed
#endif // FAN_MIN_PWM
#if ENABLED(FAN_SOFT_PWM)
fanSpeedSoftPwm = CALC_FAN_SPEED;
#else
analogWrite(FAN_PIN, CALC_FAN_SPEED);
#endif // FAN_SOFT_PWM
#endif // HAS_FAN
#if ENABLED(AUTOTEMP)
getHighESpeed();
#endif
#if ENABLED(BARICUDA)
#if HAS_HEATER_1
analogWrite(HEATER_1_PIN, tail_valve_pressure);
#endif
#if HAS_HEATER_2
analogWrite(HEATER_2_PIN, tail_e_to_p_pressure);
#endif
#endif
}
float junction_deviation = 0.1;
// Add a new linear movement to the buffer. steps[X_AXIS], _y and _z is the absolute position in
// mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
// calculation the caller must also provide the physical length of the line in millimeters.
#if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
void plan_buffer_line(float x, float y, float z, const float& e, float feed_rate, const uint8_t extruder)
#else
void plan_buffer_line(const float& x, const float& y, const float& z, const float& e, float feed_rate, const uint8_t extruder)
#endif // AUTO_BED_LEVELING_FEATURE
{
// Calculate the buffer head after we push this byte
int next_buffer_head = next_block_index(block_buffer_head);
// If the buffer is full: good! That means we are well ahead of the robot.
// Rest here until there is room in the buffer.
while (block_buffer_tail == next_buffer_head) idle();
#if ENABLED(MESH_BED_LEVELING)
if (mbl.active) z += mbl.get_z(x, y);
#elif ENABLED(AUTO_BED_LEVELING_FEATURE)
apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
#endif
// The target position of the tool in absolute steps
// Calculate target position in absolute steps
//this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
long target[NUM_AXIS];
target[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]);
target[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]);
target[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]);
target[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
float dx = target[X_AXIS] - position[X_AXIS],
dy = target[Y_AXIS] - position[Y_AXIS],
dz = target[Z_AXIS] - position[Z_AXIS];
// DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
if (marlin_debug_flags & DEBUG_DRYRUN)
position[E_AXIS] = target[E_AXIS];
float de = target[E_AXIS] - position[E_AXIS];
#if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
if (de) {
if (degHotend(extruder) < extrude_min_temp) {
position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
de = 0; // no difference
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
}
#if ENABLED(PREVENT_LENGTHY_EXTRUDE)
if (labs(de) > axis_steps_per_unit[E_AXIS] * EXTRUDE_MAXLENGTH) {
position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
de = 0; // no difference
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
}
#endif
}
#endif
// Prepare to set up new block
block_t* block = &block_buffer[block_buffer_head];
// Mark block as not busy (Not executed by the stepper interrupt)
block->busy = false;
// Number of steps for each axis
#if ENABLED(COREXY)
// corexy planning
// these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
block->steps[A_AXIS] = labs(dx + dy);
block->steps[B_AXIS] = labs(dx - dy);
block->steps[Z_AXIS] = labs(dz);
#elif ENABLED(COREXZ)
// corexz planning
block->steps[A_AXIS] = labs(dx + dz);
block->steps[Y_AXIS] = labs(dy);
block->steps[C_AXIS] = labs(dx - dz);
#else
// default non-h-bot planning
block->steps[X_AXIS] = labs(dx);
block->steps[Y_AXIS] = labs(dy);
block->steps[Z_AXIS] = labs(dz);
#endif
block->steps[E_AXIS] = labs(de);
block->steps[E_AXIS] *= volumetric_multiplier[extruder];
block->steps[E_AXIS] *= extruder_multiplier[extruder];
block->steps[E_AXIS] /= 100;
block->step_event_count = max(block->steps[X_AXIS], max(block->steps[Y_AXIS], max(block->steps[Z_AXIS], block->steps[E_AXIS])));
// Bail if this is a zero-length block
if (block->step_event_count <= dropsegments) return;
block->fan_speed = fanSpeed;
#if ENABLED(BARICUDA)
block->valve_pressure = ValvePressure;
block->e_to_p_pressure = EtoPPressure;
#endif
// Compute direction bits for this block
uint8_t db = 0;
#if ENABLED(COREXY)
if (dx < 0) db |= BIT(X_HEAD); // Save the real Extruder (head) direction in X Axis
if (dy < 0) db |= BIT(Y_HEAD); // ...and Y
if (dz < 0) db |= BIT(Z_AXIS);
if (dx + dy < 0) db |= BIT(A_AXIS); // Motor A direction
if (dx - dy < 0) db |= BIT(B_AXIS); // Motor B direction
#elif ENABLED(COREXZ)
if (dx < 0) db |= BIT(X_HEAD); // Save the real Extruder (head) direction in X Axis
if (dy < 0) db |= BIT(Y_AXIS);
if (dz < 0) db |= BIT(Z_HEAD); // ...and Z
if (dx + dz < 0) db |= BIT(A_AXIS); // Motor A direction
if (dx - dz < 0) db |= BIT(C_AXIS); // Motor B direction
#else
if (dx < 0) db |= BIT(X_AXIS);
if (dy < 0) db |= BIT(Y_AXIS);
if (dz < 0) db |= BIT(Z_AXIS);
#endif
if (de < 0) db |= BIT(E_AXIS);
block->direction_bits = db;
block->active_extruder = extruder;
//enable active axes
#if ENABLED(COREXY)
if (block->steps[A_AXIS] || block->steps[B_AXIS]) {
enable_x();
enable_y();
}
#if DISABLED(Z_LATE_ENABLE)
if (block->steps[Z_AXIS]) enable_z();
#endif
#elif ENABLED(COREXZ)
if (block->steps[A_AXIS] || block->steps[C_AXIS]) {
enable_x();
enable_z();
}
if (block->steps[Y_AXIS]) enable_y();
#else
if (block->steps[X_AXIS]) enable_x();
if (block->steps[Y_AXIS]) enable_y();
#if DISABLED(Z_LATE_ENABLE)
if (block->steps[Z_AXIS]) enable_z();
#endif
#endif
// Enable extruder(s)
if (block->steps[E_AXIS]) {
if (DISABLE_INACTIVE_EXTRUDER) { //enable only selected extruder
for (int i = 0; i < EXTRUDERS; i++)
if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--;
switch(extruder) {
case 0:
enable_e0();
#if ENABLED(DUAL_X_CARRIAGE)
if (extruder_duplication_enabled) {
enable_e1();
g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE * 2;
}
#endif
g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE * 2;
#if EXTRUDERS > 1
if (g_uc_extruder_last_move[1] == 0) disable_e1();
#if EXTRUDERS > 2
if (g_uc_extruder_last_move[2] == 0) disable_e2();
#if EXTRUDERS > 3
if (g_uc_extruder_last_move[3] == 0) disable_e3();
#endif
#endif
#endif
break;
#if EXTRUDERS > 1
case 1:
enable_e1();
g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE * 2;
if (g_uc_extruder_last_move[0] == 0) disable_e0();
#if EXTRUDERS > 2
if (g_uc_extruder_last_move[2] == 0) disable_e2();
#if EXTRUDERS > 3
if (g_uc_extruder_last_move[3] == 0) disable_e3();
#endif
#endif
break;
#if EXTRUDERS > 2
case 2:
enable_e2();
g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE * 2;
if (g_uc_extruder_last_move[0] == 0) disable_e0();
if (g_uc_extruder_last_move[1] == 0) disable_e1();
#if EXTRUDERS > 3
if (g_uc_extruder_last_move[3] == 0) disable_e3();
#endif
break;
#if EXTRUDERS > 3
case 3:
enable_e3();
g_uc_extruder_last_move[3] = BLOCK_BUFFER_SIZE * 2;
if (g_uc_extruder_last_move[0] == 0) disable_e0();
if (g_uc_extruder_last_move[1] == 0) disable_e1();
if (g_uc_extruder_last_move[2] == 0) disable_e2();
break;
#endif // EXTRUDERS > 3
#endif // EXTRUDERS > 2
#endif // EXTRUDERS > 1
}
}
else { // enable all
enable_e0();
enable_e1();
enable_e2();
enable_e3();
}
}
if (block->steps[E_AXIS])
NOLESS(feed_rate, minimumfeedrate);
else
NOLESS(feed_rate, mintravelfeedrate);
/**
* This part of the code calculates the total length of the movement.
* For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
* But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
* and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
* So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
* Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
*/
#if ENABLED(COREXY)
float delta_mm[6];
delta_mm[X_HEAD] = dx / axis_steps_per_unit[A_AXIS];
delta_mm[Y_HEAD] = dy / axis_steps_per_unit[B_AXIS];
delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS];
delta_mm[A_AXIS] = (dx + dy) / axis_steps_per_unit[A_AXIS];
delta_mm[B_AXIS] = (dx - dy) / axis_steps_per_unit[B_AXIS];
#elif ENABLED(COREXZ)
float delta_mm[6];
delta_mm[X_HEAD] = dx / axis_steps_per_unit[A_AXIS];
delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS];
delta_mm[Z_HEAD] = dz / axis_steps_per_unit[C_AXIS];
delta_mm[A_AXIS] = (dx + dz) / axis_steps_per_unit[A_AXIS];
delta_mm[C_AXIS] = (dx - dz) / axis_steps_per_unit[C_AXIS];
#else
float delta_mm[4];
delta_mm[X_AXIS] = dx / axis_steps_per_unit[X_AXIS];
delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS];
delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS];
#endif
delta_mm[E_AXIS] = (de / axis_steps_per_unit[E_AXIS]) * volumetric_multiplier[extruder] * extruder_multiplier[extruder] / 100.0;
if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) {
block->millimeters = fabs(delta_mm[E_AXIS]);
}
else {
block->millimeters = sqrt(
#if ENABLED(COREXY)
square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS])
#elif ENABLED(COREXZ)
square(delta_mm[X_HEAD]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_HEAD])
#else
square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS])
#endif
);
}
float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides
// Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
float inverse_second = feed_rate * inverse_millimeters;
int moves_queued = movesplanned();
// Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill
#if ENABLED(OLD_SLOWDOWN) || ENABLED(SLOWDOWN)
bool mq = moves_queued > 1 && moves_queued < BLOCK_BUFFER_SIZE / 2;
#if ENABLED(OLD_SLOWDOWN)
if (mq) feed_rate *= 2.0 * moves_queued / BLOCK_BUFFER_SIZE;
#endif
#if ENABLED(SLOWDOWN)
// segment time im micro seconds
unsigned long segment_time = lround(1000000.0/inverse_second);
if (mq) {
if (segment_time < minsegmenttime) {
// buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
inverse_second = 1000000.0 / (segment_time + lround(2 * (minsegmenttime - segment_time) / moves_queued));
#ifdef XY_FREQUENCY_LIMIT
segment_time = lround(1000000.0 / inverse_second);
#endif
}
}
#endif
#endif
block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
#if ENABLED(FILAMENT_SENSOR)
//FMM update ring buffer used for delay with filament measurements
if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && delay_index2 > -1) { //only for extruder with filament sensor and if ring buffer is initialized
const int MMD = MAX_MEASUREMENT_DELAY + 1, MMD10 = MMD * 10;
delay_dist += delta_mm[E_AXIS]; // increment counter with next move in e axis
while (delay_dist >= MMD10) delay_dist -= MMD10; // loop around the buffer
while (delay_dist < 0) delay_dist += MMD10;
delay_index1 = delay_dist / 10.0; // calculate index
delay_index1 = constrain(delay_index1, 0, MAX_MEASUREMENT_DELAY); // (already constrained above)
if (delay_index1 != delay_index2) { // moved index
meas_sample = widthFil_to_size_ratio() - 100; // Subtract 100 to reduce magnitude - to store in a signed char
while (delay_index1 != delay_index2) {
// Increment and loop around buffer
if (++delay_index2 >= MMD) delay_index2 -= MMD;
delay_index2 = constrain(delay_index2, 0, MAX_MEASUREMENT_DELAY);
measurement_delay[delay_index2] = meas_sample;
}
}
}
#endif
// Calculate and limit speed in mm/sec for each axis
float current_speed[NUM_AXIS];
float speed_factor = 1.0; //factor <=1 do decrease speed
for (int i = 0; i < NUM_AXIS; i++) {
current_speed[i] = delta_mm[i] * inverse_second;
float cs = fabs(current_speed[i]), mf = max_feedrate[i];
if (cs > mf) speed_factor = min(speed_factor, mf / cs);
}
// Max segement time in us.
#ifdef XY_FREQUENCY_LIMIT
// Check and limit the xy direction change frequency
unsigned char direction_change = block->direction_bits ^ old_direction_bits;
old_direction_bits = block->direction_bits;
segment_time = lround((float)segment_time / speed_factor);
long xs0 = axis_segment_time[X_AXIS][0],
xs1 = axis_segment_time[X_AXIS][1],
xs2 = axis_segment_time[X_AXIS][2],
ys0 = axis_segment_time[Y_AXIS][0],
ys1 = axis_segment_time[Y_AXIS][1],
ys2 = axis_segment_time[Y_AXIS][2];
if ((direction_change & BIT(X_AXIS)) != 0) {
xs2 = axis_segment_time[X_AXIS][2] = xs1;
xs1 = axis_segment_time[X_AXIS][1] = xs0;
xs0 = 0;
}
xs0 = axis_segment_time[X_AXIS][0] = xs0 + segment_time;
if ((direction_change & BIT(Y_AXIS)) != 0) {
ys2 = axis_segment_time[Y_AXIS][2] = axis_segment_time[Y_AXIS][1];
ys1 = axis_segment_time[Y_AXIS][1] = axis_segment_time[Y_AXIS][0];
ys0 = 0;
}
ys0 = axis_segment_time[Y_AXIS][0] = ys0 + segment_time;
long max_x_segment_time = max(xs0, max(xs1, xs2)),
max_y_segment_time = max(ys0, max(ys1, ys2)),
min_xy_segment_time = min(max_x_segment_time, max_y_segment_time);
if (min_xy_segment_time < MAX_FREQ_TIME) {
float low_sf = speed_factor * min_xy_segment_time / MAX_FREQ_TIME;
speed_factor = min(speed_factor, low_sf);
}
#endif // XY_FREQUENCY_LIMIT
// Correct the speed
if (speed_factor < 1.0) {
for (unsigned char i = 0; i < NUM_AXIS; i++) current_speed[i] *= speed_factor;
block->nominal_speed *= speed_factor;
block->nominal_rate *= speed_factor;
}
// Compute and limit the acceleration rate for the trapezoid generator.
float steps_per_mm = block->step_event_count / block->millimeters;
long bsx = block->steps[X_AXIS], bsy = block->steps[Y_AXIS], bsz = block->steps[Z_AXIS], bse = block->steps[E_AXIS];
if (bsx == 0 && bsy == 0 && bsz == 0) {
block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
}
else if (bse == 0) {
block->acceleration_st = ceil(travel_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
}
else {
block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
}
// Limit acceleration per axis
unsigned long acc_st = block->acceleration_st,
xsteps = axis_steps_per_sqr_second[X_AXIS],
ysteps = axis_steps_per_sqr_second[Y_AXIS],
zsteps = axis_steps_per_sqr_second[Z_AXIS],
esteps = axis_steps_per_sqr_second[E_AXIS];
if ((float)acc_st * bsx / block->step_event_count > xsteps) acc_st = xsteps;
if ((float)acc_st * bsy / block->step_event_count > ysteps) acc_st = ysteps;
if ((float)acc_st * bsz / block->step_event_count > zsteps) acc_st = zsteps;
if ((float)acc_st * bse / block->step_event_count > esteps) acc_st = esteps;
block->acceleration_st = acc_st;
block->acceleration = acc_st / steps_per_mm;
block->acceleration_rate = (long)(acc_st * 16777216.0 / (F_CPU / 8.0));
#if 0 // Use old jerk for now
// Compute path unit vector
double unit_vec[3];
unit_vec[X_AXIS] = delta_mm[X_AXIS] * inverse_millimeters;
unit_vec[Y_AXIS] = delta_mm[Y_AXIS] * inverse_millimeters;
unit_vec[Z_AXIS] = delta_mm[Z_AXIS] * inverse_millimeters;
// Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
// Let a circle be tangent to both previous and current path line segments, where the junction
// deviation is defined as the distance from the junction to the closest edge of the circle,
// colinear with the circle center. The circular segment joining the two paths represents the
// path of centripetal acceleration. Solve for max velocity based on max acceleration about the
// radius of the circle, defined indirectly by junction deviation. This may be also viewed as
// path width or max_jerk in the previous grbl version. This approach does not actually deviate
// from path, but used as a robust way to compute cornering speeds, as it takes into account the
// nonlinearities of both the junction angle and junction velocity.
double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
// Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
// Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
// NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
- previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
- previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
// Skip and use default max junction speed for 0 degree acute junction.
if (cos_theta < 0.95) {
vmax_junction = min(previous_nominal_speed, block->nominal_speed);
// Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
if (cos_theta > -0.95) {
// Compute maximum junction velocity based on maximum acceleration and junction deviation
double sin_theta_d2 = sqrt(0.5 * (1.0 - cos_theta)); // Trig half angle identity. Always positive.
vmax_junction = min(vmax_junction,
sqrt(block->acceleration * junction_deviation * sin_theta_d2 / (1.0 - sin_theta_d2)));
}
}
}
#endif
// Start with a safe speed
float vmax_junction = max_xy_jerk / 2;
float vmax_junction_factor = 1.0;
float mz2 = max_z_jerk / 2, me2 = max_e_jerk / 2;
float csz = current_speed[Z_AXIS], cse = current_speed[E_AXIS];
if (fabs(csz) > mz2) vmax_junction = min(vmax_junction, mz2);
if (fabs(cse) > me2) vmax_junction = min(vmax_junction, me2);
vmax_junction = min(vmax_junction, block->nominal_speed);
float safe_speed = vmax_junction;
if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) {
float dx = current_speed[X_AXIS] - previous_speed[X_AXIS],
dy = current_speed[Y_AXIS] - previous_speed[Y_AXIS],
dz = fabs(csz - previous_speed[Z_AXIS]),
de = fabs(cse - previous_speed[E_AXIS]),
jerk = sqrt(dx * dx + dy * dy);
// if ((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
vmax_junction = block->nominal_speed;
// }
if (jerk > max_xy_jerk) vmax_junction_factor = max_xy_jerk / jerk;
if (dz > max_z_jerk) vmax_junction_factor = min(vmax_junction_factor, max_z_jerk / dz);
if (de > max_e_jerk) vmax_junction_factor = min(vmax_junction_factor, max_e_jerk / de);
vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed
}
block->max_entry_speed = vmax_junction;
// Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
double v_allowable = max_allowable_speed(-block->acceleration, MINIMUM_PLANNER_SPEED, block->millimeters);
block->entry_speed = min(vmax_junction, v_allowable);
// Initialize planner efficiency flags
// Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
// If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
// the current block and next block junction speeds are guaranteed to always be at their maximum
// junction speeds in deceleration and acceleration, respectively. This is due to how the current
// block nominal speed limits both the current and next maximum junction speeds. Hence, in both
// the reverse and forward planners, the corresponding block junction speed will always be at the
// the maximum junction speed and may always be ignored for any speed reduction checks.
block->nominal_length_flag = (block->nominal_speed <= v_allowable);
block->recalculate_flag = true; // Always calculate trapezoid for new block
// Update previous path unit_vector and nominal speed
for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = current_speed[i];
previous_nominal_speed = block->nominal_speed;
#if ENABLED(ADVANCE)
// Calculate advance rate
if (!bse || (!bsx && !bsy && !bsz)) {
block->advance_rate = 0;
block->advance = 0;
}
else {
long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) * (cse * cse * EXTRUSION_AREA * EXTRUSION_AREA) * 256;
block->advance = advance;
block->advance_rate = acc_dist ? advance / (float)acc_dist : 0;
}
/*
SERIAL_ECHO_START;
SERIAL_ECHOPGM("advance :");
SERIAL_ECHO(block->advance/256.0);
SERIAL_ECHOPGM("advance rate :");
SERIAL_ECHOLN(block->advance_rate/256.0);
*/
#endif // ADVANCE
calculate_trapezoid_for_block(block, block->entry_speed / block->nominal_speed, safe_speed / block->nominal_speed);
// Move buffer head
block_buffer_head = next_buffer_head;
// Update position
for (int i = 0; i < NUM_AXIS; i++) position[i] = target[i];
planner_recalculate();
st_wake_up();
} // plan_buffer_line()
#if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(DELTA)
vector_3 plan_get_position() {
vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
//position.debug("in plan_get position");
//plan_bed_level_matrix.debug("in plan_get_position");
matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
//inverse.debug("in plan_get inverse");
position.apply_rotation(inverse);
//position.debug("after rotation");
return position;
}
#endif // AUTO_BED_LEVELING_FEATURE && !DELTA
#if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
void plan_set_position(float x, float y, float z, const float& e)
#else
void plan_set_position(const float& x, const float& y, const float& z, const float& e)
#endif // AUTO_BED_LEVELING_FEATURE || MESH_BED_LEVELING
{
#if ENABLED(MESH_BED_LEVELING)
if (mbl.active) z += mbl.get_z(x, y);
#elif ENABLED(AUTO_BED_LEVELING_FEATURE)
apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
#endif
float nx = position[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]),
ny = position[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]),
nz = position[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]),
ne = position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
st_set_position(nx, ny, nz, ne);
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = 0.0;
}
void plan_set_e_position(const float& e) {
position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
st_set_e_position(position[E_AXIS]);
}
// Calculate the steps/s^2 acceleration rates, based on the mm/s^s
void reset_acceleration_rates() {
for (int i = 0; i < NUM_AXIS; i++)
axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
}