marlin2_i2/Marlin/ultralcd.cpp
2017-08-16 02:54:33 -05:00

4848 lines
162 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "ultralcd.h"
#if ENABLED(ULTRA_LCD)
#include "Marlin.h"
#include "language.h"
#include "cardreader.h"
#include "temperature.h"
#include "planner.h"
#include "stepper.h"
#include "configuration_store.h"
#include "utility.h"
#if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
#include "buzzer.h"
#endif
#if ENABLED(PRINTCOUNTER)
#include "printcounter.h"
#include "duration_t.h"
#endif
#if ENABLED(BLTOUCH)
#include "endstops.h"
#endif
#if ENABLED(AUTO_BED_LEVELING_UBL)
#include "ubl.h"
bool ubl_lcd_map_control = false;
#endif
// Initialized by settings.load()
int16_t lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
#if ENABLED(FILAMENT_LCD_DISPLAY) && ENABLED(SDSUPPORT)
millis_t previous_lcd_status_ms = 0;
#endif
#if ENABLED(BABYSTEPPING)
long babysteps_done = 0;
#if ENABLED(BABYSTEP_ZPROBE_OFFSET)
static void lcd_babystep_zoffset();
#else
static void lcd_babystep_z();
#endif
#endif
uint8_t lcd_status_message_level;
char lcd_status_message[3 * (LCD_WIDTH) + 1] = WELCOME_MSG; // worst case is kana with up to 3*LCD_WIDTH+1
#if ENABLED(STATUS_MESSAGE_SCROLLING)
uint8_t status_scroll_pos = 0;
#endif
#if ENABLED(DOGLCD)
#include "ultralcd_impl_DOGM.h"
#include <U8glib.h>
#else
#include "ultralcd_impl_HD44780.h"
#endif
// The main status screen
void lcd_status_screen();
millis_t next_lcd_update_ms;
uint8_t lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW; // Set when the LCD needs to draw, decrements after every draw. Set to 2 in LCD routines so the LCD gets at least 1 full redraw (first redraw is partial)
uint16_t max_display_update_time = 0;
#if ENABLED(DOGLCD)
bool drawing_screen = false;
#endif
#if ENABLED(DAC_STEPPER_CURRENT)
#include "stepper_dac.h" //was dac_mcp4728.h MarlinMain uses stepper dac for the m-codes
uint8_t driverPercent[XYZE];
#endif
#if ENABLED(ULTIPANEL)
#ifndef TALL_FONT_CORRECTION
#define TALL_FONT_CORRECTION 0
#endif
// Function pointer to menu functions.
typedef void (*screenFunc_t)();
#if HAS_POWER_SWITCH
extern bool powersupply_on;
#endif
////////////////////////////////////////////
///////////////// Menu Tree ////////////////
////////////////////////////////////////////
void lcd_main_menu();
void lcd_tune_menu();
void lcd_prepare_menu();
void lcd_move_menu();
void lcd_control_menu();
void lcd_control_temperature_menu();
void lcd_control_temperature_preheat_material1_settings_menu();
void lcd_control_temperature_preheat_material2_settings_menu();
void lcd_control_motion_menu();
void lcd_control_filament_menu();
#if ENABLED(LCD_INFO_MENU)
#if ENABLED(PRINTCOUNTER)
void lcd_info_stats_menu();
#endif
void lcd_info_thermistors_menu();
void lcd_info_board_menu();
void lcd_info_menu();
#endif // LCD_INFO_MENU
#if ENABLED(ADVANCED_PAUSE_FEATURE)
void lcd_advanced_pause_toocold_menu();
void lcd_advanced_pause_option_menu();
void lcd_advanced_pause_init_message();
void lcd_advanced_pause_unload_message();
void lcd_advanced_pause_insert_message();
void lcd_advanced_pause_load_message();
void lcd_advanced_pause_heat_nozzle();
void lcd_advanced_pause_extrude_message();
void lcd_advanced_pause_resume_message();
#endif
#if ENABLED(DAC_STEPPER_CURRENT)
void dac_driver_commit();
void dac_driver_getValues();
void lcd_dac_menu();
void lcd_dac_write_eeprom();
#endif
#if ENABLED(FWRETRACT)
void lcd_control_retract_menu();
#endif
#if ENABLED(DELTA_CALIBRATION_MENU)
void lcd_delta_calibrate_menu();
#endif
#if ENABLED(MESH_BED_LEVELING) && ENABLED(LCD_BED_LEVELING)
#include "mesh_bed_leveling.h"
extern void mesh_probing_done();
#endif
////////////////////////////////////////////
//////////// Menu System Actions ///////////
////////////////////////////////////////////
#define menu_action_back(dummy) _menu_action_back()
void _menu_action_back();
void menu_action_submenu(screenFunc_t data);
void menu_action_gcode(const char* pgcode);
void menu_action_function(screenFunc_t data);
#define DECLARE_MENU_EDIT_TYPE(_type, _name) \
bool _menu_edit_ ## _name(); \
void menu_edit_ ## _name(); \
void menu_edit_callback_ ## _name(); \
void _menu_action_setting_edit_ ## _name(const char * const pstr, _type* const ptr, const _type minValue, const _type maxValue); \
void menu_action_setting_edit_ ## _name(const char * const pstr, _type * const ptr, const _type minValue, const _type maxValue); \
void menu_action_setting_edit_callback_ ## _name(const char * const pstr, _type * const ptr, const _type minValue, const _type maxValue, const screenFunc_t callback, const bool live=false); \
typedef void _name##_void
DECLARE_MENU_EDIT_TYPE(int16_t, int3);
DECLARE_MENU_EDIT_TYPE(uint8_t, int8);
DECLARE_MENU_EDIT_TYPE(float, float3);
DECLARE_MENU_EDIT_TYPE(float, float32);
DECLARE_MENU_EDIT_TYPE(float, float43);
DECLARE_MENU_EDIT_TYPE(float, float5);
DECLARE_MENU_EDIT_TYPE(float, float51);
DECLARE_MENU_EDIT_TYPE(float, float52);
DECLARE_MENU_EDIT_TYPE(float, float62);
DECLARE_MENU_EDIT_TYPE(uint32_t, long5);
void menu_action_setting_edit_bool(const char* pstr, bool* ptr);
void menu_action_setting_edit_callback_bool(const char* pstr, bool* ptr, screenFunc_t callbackFunc);
#if ENABLED(SDSUPPORT)
void lcd_sdcard_menu();
void menu_action_sdfile(const char* filename, char* longFilename);
void menu_action_sddirectory(const char* filename, char* longFilename);
#endif
////////////////////////////////////////////
//////////// Menu System Macros ////////////
////////////////////////////////////////////
#ifndef ENCODER_FEEDRATE_DEADZONE
#define ENCODER_FEEDRATE_DEADZONE 10
#endif
#ifndef ENCODER_STEPS_PER_MENU_ITEM
#define ENCODER_STEPS_PER_MENU_ITEM 5
#endif
#ifndef ENCODER_PULSES_PER_STEP
#define ENCODER_PULSES_PER_STEP 1
#endif
/**
* MENU_ITEM generates draw & handler code for a menu item, potentially calling:
*
* lcd_implementation_drawmenu_[type](sel, row, label, arg3...)
* menu_action_[type](arg3...)
*
* Examples:
* MENU_ITEM(back, MSG_WATCH, 0 [dummy parameter] )
* or
* MENU_BACK(MSG_WATCH)
* lcd_implementation_drawmenu_back(sel, row, PSTR(MSG_WATCH))
* menu_action_back()
*
* MENU_ITEM(function, MSG_PAUSE_PRINT, lcd_sdcard_pause)
* lcd_implementation_drawmenu_function(sel, row, PSTR(MSG_PAUSE_PRINT), lcd_sdcard_pause)
* menu_action_function(lcd_sdcard_pause)
*
* MENU_ITEM_EDIT(int3, MSG_SPEED, &feedrate_percentage, 10, 999)
* MENU_ITEM(setting_edit_int3, MSG_SPEED, PSTR(MSG_SPEED), &feedrate_percentage, 10, 999)
* lcd_implementation_drawmenu_setting_edit_int3(sel, row, PSTR(MSG_SPEED), PSTR(MSG_SPEED), &feedrate_percentage, 10, 999)
* menu_action_setting_edit_int3(PSTR(MSG_SPEED), &feedrate_percentage, 10, 999)
*
*/
#define _MENU_ITEM_PART_1(TYPE, ...) \
if (_menuLineNr == _thisItemNr) { \
if (lcd_clicked && encoderLine == _thisItemNr) {
#define _MENU_ITEM_PART_2(TYPE, LABEL, ...) \
menu_action_ ## TYPE(__VA_ARGS__); \
if (screen_changed) return; \
} \
if (lcdDrawUpdate) \
lcd_implementation_drawmenu_ ## TYPE(encoderLine == _thisItemNr, _lcdLineNr, PSTR(LABEL), ## __VA_ARGS__); \
} \
++_thisItemNr
#define MENU_ITEM(TYPE, LABEL, ...) do { \
_skipStatic = false; \
_MENU_ITEM_PART_1(TYPE, ## __VA_ARGS__); \
_MENU_ITEM_PART_2(TYPE, LABEL, ## __VA_ARGS__); \
}while(0)
#define MENU_BACK(LABEL) MENU_ITEM(back, LABEL, 0)
// Used to print static text with no visible cursor.
// Parameters: label [, bool center [, bool invert [, char *value] ] ]
#define STATIC_ITEM(LABEL, ...) \
if (_menuLineNr == _thisItemNr) { \
if (_skipStatic && encoderLine <= _thisItemNr) { \
encoderPosition += ENCODER_STEPS_PER_MENU_ITEM; \
++encoderLine; \
} \
if (lcdDrawUpdate) \
lcd_implementation_drawmenu_static(_lcdLineNr, PSTR(LABEL), ## __VA_ARGS__); \
} \
++_thisItemNr
#if ENABLED(ENCODER_RATE_MULTIPLIER)
bool encoderRateMultiplierEnabled;
#define ENCODER_RATE_MULTIPLY(F) (encoderRateMultiplierEnabled = F)
//#define ENCODER_RATE_MULTIPLIER_DEBUG // If defined, output the encoder steps per second value
/**
* MENU_MULTIPLIER_ITEM generates drawing and handling code for a multiplier menu item
*/
#define MENU_MULTIPLIER_ITEM(type, label, ...) do { \
_MENU_ITEM_PART_1(type, ## __VA_ARGS__); \
encoderRateMultiplierEnabled = true; \
lastEncoderMovementMillis = 0; \
_MENU_ITEM_PART_2(type, label, ## __VA_ARGS__); \
}while(0)
#else // !ENCODER_RATE_MULTIPLIER
#define ENCODER_RATE_MULTIPLY(F) NOOP
#endif // !ENCODER_RATE_MULTIPLIER
#define MENU_ITEM_DUMMY() do { _thisItemNr++; }while(0)
#define MENU_ITEM_EDIT(type, label, ...) MENU_ITEM(setting_edit_ ## type, label, PSTR(label), ## __VA_ARGS__)
#define MENU_ITEM_EDIT_CALLBACK(type, label, ...) MENU_ITEM(setting_edit_callback_ ## type, label, PSTR(label), ## __VA_ARGS__)
#if ENABLED(ENCODER_RATE_MULTIPLIER)
#define MENU_MULTIPLIER_ITEM_EDIT(type, label, ...) MENU_MULTIPLIER_ITEM(setting_edit_ ## type, label, PSTR(label), ## __VA_ARGS__)
#define MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(type, label, ...) MENU_MULTIPLIER_ITEM(setting_edit_callback_ ## type, label, PSTR(label), ## __VA_ARGS__)
#else // !ENCODER_RATE_MULTIPLIER
#define MENU_MULTIPLIER_ITEM_EDIT(type, label, ...) MENU_ITEM(setting_edit_ ## type, label, PSTR(label), ## __VA_ARGS__)
#define MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(type, label, ...) MENU_ITEM(setting_edit_callback_ ## type, label, PSTR(label), ## __VA_ARGS__)
#endif // !ENCODER_RATE_MULTIPLIER
/**
* START_SCREEN_OR_MENU generates init code for a screen or menu
*
* encoderLine is the position based on the encoder
* encoderTopLine is the top menu line to display
* _lcdLineNr is the index of the LCD line (e.g., 0-3)
* _menuLineNr is the menu item to draw and process
* _thisItemNr is the index of each MENU_ITEM or STATIC_ITEM
* _countedItems is the total number of items in the menu (after one call)
*/
#define START_SCREEN_OR_MENU(LIMIT) \
ENCODER_DIRECTION_MENUS(); \
ENCODER_RATE_MULTIPLY(false); \
if (encoderPosition > 0x8000) encoderPosition = 0; \
static int8_t _countedItems = 0; \
int8_t encoderLine = encoderPosition / (ENCODER_STEPS_PER_MENU_ITEM); \
if (_countedItems > 0 && encoderLine >= _countedItems - (LIMIT)) { \
encoderLine = max(0, _countedItems - (LIMIT)); \
encoderPosition = encoderLine * (ENCODER_STEPS_PER_MENU_ITEM); \
}
#define SCREEN_OR_MENU_LOOP() \
int8_t _menuLineNr = encoderTopLine, _thisItemNr; \
for (int8_t _lcdLineNr = 0; _lcdLineNr < LCD_HEIGHT - (TALL_FONT_CORRECTION); _lcdLineNr++, _menuLineNr++) { \
_thisItemNr = 0
/**
* START_SCREEN Opening code for a screen having only static items.
* Do simplified scrolling of the entire screen.
*
* START_MENU Opening code for a screen with menu items.
* Scroll as-needed to keep the selected line in view.
*/
#define START_SCREEN() \
START_SCREEN_OR_MENU(LCD_HEIGHT - (TALL_FONT_CORRECTION)); \
encoderTopLine = encoderLine; \
bool _skipStatic = false; \
SCREEN_OR_MENU_LOOP()
#define START_MENU() \
START_SCREEN_OR_MENU(1); \
screen_changed = false; \
NOMORE(encoderTopLine, encoderLine); \
if (encoderLine >= encoderTopLine + LCD_HEIGHT - (TALL_FONT_CORRECTION)) { \
encoderTopLine = encoderLine - (LCD_HEIGHT - (TALL_FONT_CORRECTION) - 1); \
} \
bool _skipStatic = true; \
SCREEN_OR_MENU_LOOP()
#define END_SCREEN() \
} \
_countedItems = _thisItemNr
#define END_MENU() \
} \
_countedItems = _thisItemNr; \
UNUSED(_skipStatic)
////////////////////////////////////////////
///////////// Global Variables /////////////
////////////////////////////////////////////
/**
* REVERSE_MENU_DIRECTION
*
* To reverse the menu direction we need a general way to reverse
* the direction of the encoder everywhere. So encoderDirection is
* added to allow the encoder to go the other way.
*
* This behavior is limited to scrolling Menus and SD card listings,
* and is disabled in other contexts.
*/
#if ENABLED(REVERSE_MENU_DIRECTION)
int8_t encoderDirection = 1;
#define ENCODER_DIRECTION_NORMAL() (encoderDirection = 1)
#define ENCODER_DIRECTION_MENUS() (encoderDirection = -1)
#else
#define ENCODER_DIRECTION_NORMAL() ;
#define ENCODER_DIRECTION_MENUS() ;
#endif
// Encoder Movement
volatile int8_t encoderDiff; // Updated in lcd_buttons_update, added to encoderPosition every LCD update
uint32_t encoderPosition;
millis_t lastEncoderMovementMillis = 0;
// Button States
bool lcd_clicked, wait_for_unclick;
volatile uint8_t buttons;
millis_t next_button_update_ms;
#if ENABLED(REPRAPWORLD_KEYPAD)
volatile uint8_t buttons_reprapworld_keypad;
#endif
#if ENABLED(LCD_HAS_SLOW_BUTTONS)
volatile uint8_t slow_buttons;
#endif
// Menu System Navigation
screenFunc_t currentScreen = lcd_status_screen;
int8_t encoderTopLine;
typedef struct {
screenFunc_t menu_function;
uint32_t encoder_position;
} menuPosition;
menuPosition screen_history[6];
uint8_t screen_history_depth = 0;
bool screen_changed, defer_return_to_status;
// Value Editing
const char *editLabel;
void *editValue;
int32_t minEditValue, maxEditValue;
screenFunc_t callbackFunc;
bool liveEdit;
// Manual Moves
const float manual_feedrate_mm_m[] = MANUAL_FEEDRATE;
millis_t manual_move_start_time = 0;
int8_t manual_move_axis = (int8_t)NO_AXIS;
#if EXTRUDERS > 1
int8_t manual_move_e_index = 0;
#else
#define manual_move_e_index 0
#endif
#if PIN_EXISTS(SD_DETECT)
uint8_t lcd_sd_status;
#endif
#if ENABLED(PIDTEMP)
float raw_Ki, raw_Kd; // place-holders for Ki and Kd edits
#endif
/**
* General function to go directly to a screen
*/
void lcd_goto_screen(screenFunc_t screen, const uint32_t encoder = 0) {
if (currentScreen != screen) {
#if ENABLED(DOUBLECLICK_FOR_Z_BABYSTEPPING) && ENABLED(BABYSTEPPING)
static millis_t doubleclick_expire_ms = 0;
// Going to lcd_main_menu from status screen? Remember first click time.
// Going back to status screen within a very short time? Go to Z babystepping.
if (screen == lcd_main_menu) {
if (currentScreen == lcd_status_screen)
doubleclick_expire_ms = millis() + DOUBLECLICK_MAX_INTERVAL;
}
else if (screen == lcd_status_screen && currentScreen == lcd_main_menu && PENDING(millis(), doubleclick_expire_ms))
screen =
#if ENABLED(BABYSTEP_ZPROBE_OFFSET)
lcd_babystep_zoffset
#else
lcd_babystep_z
#endif
;
#endif
currentScreen = screen;
encoderPosition = encoder;
if (screen == lcd_status_screen) {
defer_return_to_status = false;
#if ENABLED(AUTO_BED_LEVELING_UBL)
ubl_lcd_map_control = false;
#endif
screen_history_depth = 0;
}
lcd_implementation_clear();
// Re-initialize custom characters that may be re-used
#if DISABLED(DOGLCD) && ENABLED(AUTO_BED_LEVELING_UBL)
if (!ubl_lcd_map_control) lcd_set_custom_characters(
#if ENABLED(LCD_PROGRESS_BAR)
screen == lcd_status_screen
#endif
);
#elif ENABLED(LCD_PROGRESS_BAR)
lcd_set_custom_characters(screen == lcd_status_screen);
#endif
lcdDrawUpdate = LCDVIEW_CALL_REDRAW_NEXT;
screen_changed = true;
#if ENABLED(DOGLCD)
drawing_screen = false;
#endif
}
}
/**
* Show "Moving..." till moves are done, then revert to previous display.
*/
static const char moving[] PROGMEM = MSG_MOVING;
static const char *sync_message = moving;
//
// Display the synchronize screen until moves are
// finished, and don't return to the caller until
// done. ** This blocks the command queue! **
//
void _lcd_synchronize() {
static bool no_reentry = false;
if (lcdDrawUpdate) lcd_implementation_drawmenu_static(LCD_HEIGHT >= 4 ? 1 : 0, sync_message);
if (no_reentry) return;
// Make this the current handler till all moves are done
no_reentry = true;
screenFunc_t old_screen = currentScreen;
lcd_goto_screen(_lcd_synchronize);
stepper.synchronize();
no_reentry = false;
lcd_goto_screen(old_screen);
}
// Display the synchronize screen with a custom message
// ** This blocks the command queue! **
void lcd_synchronize(const char * const msg=NULL) {
sync_message = msg ? msg : moving;
_lcd_synchronize();
}
void lcd_return_to_status() { lcd_goto_screen(lcd_status_screen); }
void lcd_save_previous_screen() {
if (screen_history_depth < COUNT(screen_history)) {
screen_history[screen_history_depth].menu_function = currentScreen;
screen_history[screen_history_depth].encoder_position = encoderPosition;
++screen_history_depth;
}
}
void lcd_goto_previous_menu() {
if (screen_history_depth > 0) {
--screen_history_depth;
lcd_goto_screen(
screen_history[screen_history_depth].menu_function,
screen_history[screen_history_depth].encoder_position
);
}
else
lcd_return_to_status();
}
void lcd_goto_previous_menu_no_defer() {
defer_return_to_status = false;
lcd_goto_previous_menu();
}
#endif // ULTIPANEL
/**
*
* "Info Screen"
*
* This is very display-dependent, so the lcd implementation draws this.
*/
void lcd_status_screen() {
#if ENABLED(ULTIPANEL)
ENCODER_DIRECTION_NORMAL();
ENCODER_RATE_MULTIPLY(false);
#endif
#if ENABLED(LCD_PROGRESS_BAR)
millis_t ms = millis();
#if DISABLED(PROGRESS_MSG_ONCE)
if (ELAPSED(ms, progress_bar_ms + PROGRESS_BAR_MSG_TIME + PROGRESS_BAR_BAR_TIME)) {
progress_bar_ms = ms;
}
#endif
#if PROGRESS_MSG_EXPIRE > 0
// Handle message expire
if (expire_status_ms > 0) {
#if ENABLED(SDSUPPORT)
if (card.isFileOpen()) {
// Expire the message when printing is active
if (IS_SD_PRINTING) {
if (ELAPSED(ms, expire_status_ms)) {
lcd_status_message[0] = '\0';
expire_status_ms = 0;
}
}
else {
expire_status_ms += LCD_UPDATE_INTERVAL;
}
}
else {
expire_status_ms = 0;
}
#else
expire_status_ms = 0;
#endif // SDSUPPORT
}
#endif
#endif // LCD_PROGRESS_BAR
#if ENABLED(ULTIPANEL)
if (lcd_clicked) {
#if ENABLED(FILAMENT_LCD_DISPLAY) && ENABLED(SDSUPPORT)
previous_lcd_status_ms = millis(); // get status message to show up for a while
#endif
lcd_implementation_init( // to maybe revive the LCD if static electricity killed it.
#if ENABLED(LCD_PROGRESS_BAR)
false
#endif
);
lcd_goto_screen(lcd_main_menu);
return;
}
#if ENABLED(ULTIPANEL_FEEDMULTIPLY)
const int16_t new_frm = feedrate_percentage + (int32_t)encoderPosition;
// Dead zone at 100% feedrate
if ((feedrate_percentage < 100 && new_frm > 100) || (feedrate_percentage > 100 && new_frm < 100)) {
feedrate_percentage = 100;
encoderPosition = 0;
}
else if (feedrate_percentage == 100) {
if ((int32_t)encoderPosition > ENCODER_FEEDRATE_DEADZONE) {
feedrate_percentage += (int32_t)encoderPosition - (ENCODER_FEEDRATE_DEADZONE);
encoderPosition = 0;
}
else if ((int32_t)encoderPosition < -(ENCODER_FEEDRATE_DEADZONE)) {
feedrate_percentage += (int32_t)encoderPosition + ENCODER_FEEDRATE_DEADZONE;
encoderPosition = 0;
}
}
else {
feedrate_percentage = new_frm;
encoderPosition = 0;
}
#endif // ULTIPANEL_FEEDMULTIPLY
feedrate_percentage = constrain(feedrate_percentage, 10, 999);
#endif // ULTIPANEL
lcd_implementation_status_screen();
}
void lcd_reset_status() { lcd_setstatusPGM(PSTR(""), -1); }
/**
*
* draw the kill screen
*
*/
void kill_screen(const char* lcd_msg) {
lcd_init();
lcd_setalertstatusPGM(lcd_msg);
#if ENABLED(DOGLCD)
u8g.firstPage();
do {
lcd_kill_screen();
} while (u8g.nextPage());
#else
lcd_kill_screen();
#endif
}
#if ENABLED(ULTIPANEL)
/**
*
* Audio feedback for controller clicks
*
*/
void lcd_buzz(long duration, uint16_t freq) {
#if ENABLED(LCD_USE_I2C_BUZZER)
lcd.buzz(duration, freq);
#elif PIN_EXISTS(BEEPER)
buzzer.tone(duration, freq);
#else
UNUSED(duration); UNUSED(freq);
#endif
}
void lcd_quick_feedback() {
lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW;
buttons = 0;
next_button_update_ms = millis() + 500;
// Buzz and wait. The delay is needed for buttons to settle!
lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
#if ENABLED(LCD_USE_I2C_BUZZER)
delay(10);
#elif PIN_EXISTS(BEEPER)
for (int8_t i = 5; i--;) { buzzer.tick(); delay(2); }
#endif
}
void lcd_completion_feedback(const bool good/*=true*/) {
if (good) {
lcd_buzz(100, 659);
lcd_buzz(100, 698);
}
else lcd_buzz(20, 440);
}
inline void line_to_current_z() {
planner.buffer_line_kinematic(current_position, MMM_TO_MMS(manual_feedrate_mm_m[Z_AXIS]), active_extruder);
}
inline void line_to_z(const float &z) {
current_position[Z_AXIS] = z;
line_to_current_z();
}
#if ENABLED(SDSUPPORT)
void lcd_sdcard_pause() {
card.pauseSDPrint();
print_job_timer.pause();
#if ENABLED(PARK_HEAD_ON_PAUSE)
enqueue_and_echo_commands_P(PSTR("M125"));
#endif
lcd_setstatusPGM(PSTR(MSG_PRINT_PAUSED), -1);
}
void lcd_sdcard_resume() {
#if ENABLED(PARK_HEAD_ON_PAUSE)
enqueue_and_echo_commands_P(PSTR("M24"));
#else
card.startFileprint();
print_job_timer.start();
#endif
lcd_reset_status();
}
void lcd_sdcard_stop() {
card.stopSDPrint();
clear_command_queue();
quickstop_stepper();
print_job_timer.stop();
thermalManager.disable_all_heaters();
#if FAN_COUNT > 0
for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
#endif
wait_for_heatup = false;
lcd_setstatusPGM(PSTR(MSG_PRINT_ABORTED), -1);
lcd_return_to_status();
}
#endif // SDSUPPORT
#if ENABLED(MENU_ITEM_CASE_LIGHT)
extern int case_light_brightness;
extern bool case_light_on;
extern void update_case_light();
void case_light_menu() {
START_MENU();
//
// ^ Main
//
MENU_BACK(MSG_MAIN);
MENU_ITEM_EDIT_CALLBACK(int3, MSG_CASE_LIGHT_BRIGHTNESS, &case_light_brightness, 0, 255, update_case_light, true);
MENU_ITEM_EDIT_CALLBACK(bool, MSG_CASE_LIGHT, (bool*)&case_light_on, update_case_light);
END_MENU();
}
#endif // MENU_ITEM_CASE_LIGHT
#if ENABLED(BLTOUCH)
/**
*
* "BLTouch" submenu
*
*/
static void bltouch_menu() {
START_MENU();
//
// ^ Main
//
MENU_BACK(MSG_MAIN);
MENU_ITEM(gcode, MSG_BLTOUCH_RESET, PSTR("M280 P" STRINGIFY(Z_ENDSTOP_SERVO_NR) " S" STRINGIFY(BLTOUCH_RESET)));
MENU_ITEM(gcode, MSG_BLTOUCH_SELFTEST, PSTR("M280 P" STRINGIFY(Z_ENDSTOP_SERVO_NR) " S" STRINGIFY(BLTOUCH_SELFTEST)));
MENU_ITEM(gcode, MSG_BLTOUCH_DEPLOY, PSTR("M280 P" STRINGIFY(Z_ENDSTOP_SERVO_NR) " S" STRINGIFY(BLTOUCH_DEPLOY)));
MENU_ITEM(gcode, MSG_BLTOUCH_STOW, PSTR("M280 P" STRINGIFY(Z_ENDSTOP_SERVO_NR) " S" STRINGIFY(BLTOUCH_STOW)));
END_MENU();
}
#endif // BLTOUCH
#if ENABLED(LCD_PROGRESS_BAR_TEST)
static void progress_bar_test() {
static int8_t bar_percent = 0;
if (lcd_clicked) {
lcd_goto_previous_menu();
lcd_set_custom_characters(false);
return;
}
bar_percent += (int8_t)encoderPosition;
bar_percent = constrain(bar_percent, 0, 100);
encoderPosition = 0;
lcd_implementation_drawmenu_static(0, PSTR(MSG_PROGRESS_BAR_TEST), true, true);
lcd.setCursor((LCD_WIDTH) / 2 - 2, LCD_HEIGHT - 2);
lcd.print(itostr3(bar_percent)); lcd.write('%');
lcd.setCursor(0, LCD_HEIGHT - 1); lcd_draw_progress_bar(bar_percent);
}
void _progress_bar_test() {
lcd_goto_screen(progress_bar_test);
lcd_set_custom_characters();
}
#endif // LCD_PROGRESS_BAR_TEST
#if HAS_DEBUG_MENU
void lcd_debug_menu() {
START_MENU();
MENU_BACK(MSG_MAIN); // ^ Main
#if ENABLED(LCD_PROGRESS_BAR_TEST)
MENU_ITEM(submenu, MSG_PROGRESS_BAR_TEST, _progress_bar_test);
#endif
END_MENU();
}
#endif // HAS_DEBUG_MENU
#if ENABLED(CUSTOM_USER_MENUS)
#ifdef USER_SCRIPT_DONE
#define _DONE_SCRIPT "\n" USER_SCRIPT_DONE
#else
#define _DONE_SCRIPT ""
#endif
void _lcd_user_gcode(const char * const cmd) {
enqueue_and_echo_commands_P(cmd);
#if ENABLED(USER_SCRIPT_AUDIBLE_FEEDBACK)
lcd_completion_feedback();
#endif
}
#if defined(USER_DESC_1) && defined(USER_GCODE_1)
void lcd_user_gcode_1() { _lcd_user_gcode(PSTR(USER_GCODE_1 _DONE_SCRIPT)); }
#endif
#if defined(USER_DESC_2) && defined(USER_GCODE_2)
void lcd_user_gcode_2() { _lcd_user_gcode(PSTR(USER_GCODE_2 _DONE_SCRIPT)); }
#endif
#if defined(USER_DESC_3) && defined(USER_GCODE_3)
void lcd_user_gcode_3() { _lcd_user_gcode(PSTR(USER_GCODE_3 _DONE_SCRIPT)); }
#endif
#if defined(USER_DESC_4) && defined(USER_GCODE_4)
void lcd_user_gcode_4() { _lcd_user_gcode(PSTR(USER_GCODE_4 _DONE_SCRIPT)); }
#endif
#if defined(USER_DESC_5) && defined(USER_GCODE_5)
void lcd_user_gcode_5() { _lcd_user_gcode(PSTR(USER_GCODE_5 _DONE_SCRIPT)); }
#endif
void _lcd_user_menu() {
START_MENU();
MENU_BACK(MSG_MAIN);
#if defined(USER_DESC_1) && defined(USER_GCODE_1)
MENU_ITEM(function, USER_DESC_1, lcd_user_gcode_1);
#endif
#if defined(USER_DESC_2) && defined(USER_GCODE_2)
MENU_ITEM(function, USER_DESC_2, lcd_user_gcode_2);
#endif
#if defined(USER_DESC_3) && defined(USER_GCODE_3)
MENU_ITEM(function, USER_DESC_3, lcd_user_gcode_3);
#endif
#if defined(USER_DESC_4) && defined(USER_GCODE_4)
MENU_ITEM(function, USER_DESC_4, lcd_user_gcode_4);
#endif
#if defined(USER_DESC_5) && defined(USER_GCODE_5)
MENU_ITEM(function, USER_DESC_5, lcd_user_gcode_5);
#endif
END_MENU();
}
#endif
/**
*
* "Main" menu
*
*/
void lcd_main_menu() {
START_MENU();
MENU_BACK(MSG_WATCH);
#if ENABLED(CUSTOM_USER_MENUS)
MENU_ITEM(submenu, MSG_USER_MENU, _lcd_user_menu);
#endif
//
// Debug Menu when certain options are enabled
//
#if HAS_DEBUG_MENU
MENU_ITEM(submenu, MSG_DEBUG_MENU, lcd_debug_menu);
#endif
//
// Set Case light on/off/brightness
//
#if ENABLED(MENU_ITEM_CASE_LIGHT)
if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) {
MENU_ITEM(submenu, MSG_CASE_LIGHT, case_light_menu);
}
else
MENU_ITEM_EDIT_CALLBACK(bool, MSG_CASE_LIGHT, (bool*)&case_light_on, update_case_light);
#endif
if (planner.movesplanned() || IS_SD_PRINTING) {
MENU_ITEM(submenu, MSG_TUNE, lcd_tune_menu);
}
else {
MENU_ITEM(submenu, MSG_PREPARE, lcd_prepare_menu);
}
MENU_ITEM(submenu, MSG_CONTROL, lcd_control_menu);
#if ENABLED(SDSUPPORT)
if (card.cardOK) {
if (card.isFileOpen()) {
if (card.sdprinting)
MENU_ITEM(function, MSG_PAUSE_PRINT, lcd_sdcard_pause);
else
MENU_ITEM(function, MSG_RESUME_PRINT, lcd_sdcard_resume);
MENU_ITEM(function, MSG_STOP_PRINT, lcd_sdcard_stop);
}
else {
MENU_ITEM(submenu, MSG_CARD_MENU, lcd_sdcard_menu);
#if !PIN_EXISTS(SD_DETECT)
MENU_ITEM(gcode, MSG_CNG_SDCARD, PSTR("M21")); // SD-card changed by user
#endif
}
}
else {
MENU_ITEM(submenu, MSG_NO_CARD, lcd_sdcard_menu);
#if !PIN_EXISTS(SD_DETECT)
MENU_ITEM(gcode, MSG_INIT_SDCARD, PSTR("M21")); // Manually initialize the SD-card via user interface
#endif
}
#endif // SDSUPPORT
#if ENABLED(LCD_INFO_MENU)
MENU_ITEM(submenu, MSG_INFO_MENU, lcd_info_menu);
#endif
END_MENU();
}
/**
*
* "Tune" submenu items
*
*/
#if HAS_M206_COMMAND
/**
* Set the home offset based on the current_position
*/
void lcd_set_home_offsets() {
// M428 Command
enqueue_and_echo_commands_P(PSTR("M428"));
lcd_return_to_status();
}
#endif
#if ENABLED(BABYSTEPPING)
void _lcd_babystep(const AxisEnum axis, const char* msg) {
if (lcd_clicked) { return lcd_goto_previous_menu_no_defer(); }
ENCODER_DIRECTION_NORMAL();
if (encoderPosition) {
const int16_t babystep_increment = (int32_t)encoderPosition * (BABYSTEP_MULTIPLICATOR);
encoderPosition = 0;
lcdDrawUpdate = LCDVIEW_REDRAW_NOW;
thermalManager.babystep_axis(axis, babystep_increment);
babysteps_done += babystep_increment;
}
if (lcdDrawUpdate)
lcd_implementation_drawedit(msg, ftostr43sign(planner.steps_to_mm[axis] * babysteps_done));
}
#if ENABLED(BABYSTEP_XY)
void _lcd_babystep_x() { _lcd_babystep(X_AXIS, PSTR(MSG_BABYSTEPPING_X)); }
void _lcd_babystep_y() { _lcd_babystep(Y_AXIS, PSTR(MSG_BABYSTEPPING_Y)); }
void lcd_babystep_x() { lcd_goto_screen(_lcd_babystep_x); babysteps_done = 0; defer_return_to_status = true; }
void lcd_babystep_y() { lcd_goto_screen(_lcd_babystep_y); babysteps_done = 0; defer_return_to_status = true; }
#endif
#if ENABLED(BABYSTEP_ZPROBE_OFFSET)
void lcd_babystep_zoffset() {
if (lcd_clicked) { return lcd_goto_previous_menu_no_defer(); }
defer_return_to_status = true;
ENCODER_DIRECTION_NORMAL();
if (encoderPosition) {
const int16_t babystep_increment = (int32_t)encoderPosition * (BABYSTEP_MULTIPLICATOR);
encoderPosition = 0;
const float new_zoffset = zprobe_zoffset + planner.steps_to_mm[Z_AXIS] * babystep_increment;
if (WITHIN(new_zoffset, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
if (planner.abl_enabled)
thermalManager.babystep_axis(Z_AXIS, babystep_increment);
zprobe_zoffset = new_zoffset;
refresh_zprobe_zoffset(true);
lcdDrawUpdate = LCDVIEW_CALL_REDRAW_NEXT;
}
}
if (lcdDrawUpdate)
lcd_implementation_drawedit(PSTR(MSG_ZPROBE_ZOFFSET), ftostr43sign(zprobe_zoffset));
}
#else // !BABYSTEP_ZPROBE_OFFSET
void _lcd_babystep_z() { _lcd_babystep(Z_AXIS, PSTR(MSG_BABYSTEPPING_Z)); }
void lcd_babystep_z() { lcd_goto_screen(_lcd_babystep_z); babysteps_done = 0; defer_return_to_status = true; }
#endif // !BABYSTEP_ZPROBE_OFFSET
#endif // BABYSTEPPING
#if ENABLED(AUTO_BED_LEVELING_UBL)
float mesh_edit_value, mesh_edit_accumulator; // We round mesh_edit_value to 2.5 decimal places. So we keep a
// separate value that doesn't lose precision.
static int16_t ubl_encoderPosition = 0;
static void _lcd_mesh_fine_tune(const char* msg) {
defer_return_to_status = true;
if (ubl.encoder_diff) {
ubl_encoderPosition = (ubl.encoder_diff > 0) ? 1 : -1;
ubl.encoder_diff = 0;
mesh_edit_accumulator += float(ubl_encoderPosition) * 0.005 / 2.0;
mesh_edit_value = mesh_edit_accumulator;
encoderPosition = 0;
lcdDrawUpdate = LCDVIEW_CALL_REDRAW_NEXT;
const int32_t rounded = (int32_t)(mesh_edit_value * 1000.0);
mesh_edit_value = float(rounded - (rounded % 5L)) / 1000.0;
}
if (lcdDrawUpdate)
lcd_implementation_drawedit(msg, ftostr43sign(mesh_edit_value));
}
void _lcd_mesh_edit_NOP() {
defer_return_to_status = true;
}
float lcd_mesh_edit() {
lcd_goto_screen(_lcd_mesh_edit_NOP);
lcdDrawUpdate = LCDVIEW_CALL_REDRAW_NEXT;
_lcd_mesh_fine_tune(PSTR("Mesh Editor"));
return mesh_edit_value;
}
void lcd_mesh_edit_setup(float initial) {
mesh_edit_value = mesh_edit_accumulator = initial;
lcd_goto_screen(_lcd_mesh_edit_NOP);
}
void _lcd_z_offset_edit() {
_lcd_mesh_fine_tune(PSTR("Z-Offset: "));
}
float lcd_z_offset_edit() {
lcd_goto_screen(_lcd_z_offset_edit);
return mesh_edit_value;
}
void lcd_z_offset_edit_setup(float initial) {
mesh_edit_value = mesh_edit_accumulator = initial;
lcd_goto_screen(_lcd_z_offset_edit);
}
#endif // AUTO_BED_LEVELING_UBL
/**
* Watch temperature callbacks
*/
#if HAS_TEMP_HOTEND
#if WATCH_HOTENDS
#define _WATCH_FUNC(N) thermalManager.start_watching_heater(N)
#else
#define _WATCH_FUNC(N) NOOP
#endif
void watch_temp_callback_E0() { _WATCH_FUNC(0); }
#if HOTENDS > 1
void watch_temp_callback_E1() { _WATCH_FUNC(1); }
#if HOTENDS > 2
void watch_temp_callback_E2() { _WATCH_FUNC(2); }
#if HOTENDS > 3
void watch_temp_callback_E3() { _WATCH_FUNC(3); }
#if HOTENDS > 4
void watch_temp_callback_E4() { _WATCH_FUNC(4); }
#endif // HOTENDS > 4
#endif // HOTENDS > 3
#endif // HOTENDS > 2
#endif // HOTENDS > 1
#endif // HAS_TEMP_HOTEND
void watch_temp_callback_bed() {
#if WATCH_THE_BED
thermalManager.start_watching_bed();
#endif
}
#if ENABLED(ADVANCED_PAUSE_FEATURE)
void lcd_enqueue_filament_change() {
#if ENABLED(PREVENT_COLD_EXTRUSION)
if (!DEBUGGING(DRYRUN) && !thermalManager.allow_cold_extrude &&
thermalManager.degTargetHotend(active_extruder) < thermalManager.extrude_min_temp) {
lcd_save_previous_screen();
lcd_goto_screen(lcd_advanced_pause_toocold_menu);
return;
}
#endif
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INIT);
enqueue_and_echo_commands_P(PSTR("M600 B0"));
}
#endif // ADVANCED_PAUSE_FEATURE
/**
*
* "Tune" submenu
*
*/
void lcd_tune_menu() {
START_MENU();
//
// ^ Main
//
MENU_BACK(MSG_MAIN);
//
// Speed:
//
MENU_ITEM_EDIT(int3, MSG_SPEED, &feedrate_percentage, 10, 999);
// Manual bed leveling, Bed Z:
#if ENABLED(MESH_BED_LEVELING) && ENABLED(LCD_BED_LEVELING)
MENU_ITEM_EDIT(float43, MSG_BED_Z, &mbl.z_offset, -1, 1);
#endif
//
// Nozzle:
// Nozzle [1-4]:
//
#if HOTENDS == 1
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE, &thermalManager.target_temperature[0], 0, HEATER_0_MAXTEMP - 15, watch_temp_callback_E0);
#else // HOTENDS > 1
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N1, &thermalManager.target_temperature[0], 0, HEATER_0_MAXTEMP - 15, watch_temp_callback_E0);
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N2, &thermalManager.target_temperature[1], 0, HEATER_1_MAXTEMP - 15, watch_temp_callback_E1);
#if HOTENDS > 2
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N3, &thermalManager.target_temperature[2], 0, HEATER_2_MAXTEMP - 15, watch_temp_callback_E2);
#if HOTENDS > 3
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N4, &thermalManager.target_temperature[3], 0, HEATER_3_MAXTEMP - 15, watch_temp_callback_E3);
#if HOTENDS > 4
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N5, &thermalManager.target_temperature[4], 0, HEATER_4_MAXTEMP - 15, watch_temp_callback_E4);
#endif // HOTENDS > 4
#endif // HOTENDS > 3
#endif // HOTENDS > 2
#endif // HOTENDS > 1
//
// Bed:
//
#if HAS_TEMP_BED
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_BED, &thermalManager.target_temperature_bed, 0, BED_MAXTEMP - 15, watch_temp_callback_bed);
#endif
//
// Fan Speed:
//
#if FAN_COUNT > 0
#if HAS_FAN0
#if FAN_COUNT > 1
#define MSG_1ST_FAN_SPEED MSG_FAN_SPEED " 1"
#else
#define MSG_1ST_FAN_SPEED MSG_FAN_SPEED
#endif
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_1ST_FAN_SPEED, &fanSpeeds[0], 0, 255);
#endif
#if HAS_FAN1
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_FAN_SPEED " 2", &fanSpeeds[1], 0, 255);
#endif
#if HAS_FAN2
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_FAN_SPEED " 3", &fanSpeeds[2], 0, 255);
#endif
#endif // FAN_COUNT > 0
//
// Flow:
// Flow [1-5]:
//
#if EXTRUDERS == 1
MENU_ITEM_EDIT(int3, MSG_FLOW, &flow_percentage[0], 10, 999);
#else // EXTRUDERS > 1
MENU_ITEM_EDIT(int3, MSG_FLOW, &flow_percentage[active_extruder], 10, 999);
MENU_ITEM_EDIT(int3, MSG_FLOW MSG_N1, &flow_percentage[0], 10, 999);
MENU_ITEM_EDIT(int3, MSG_FLOW MSG_N2, &flow_percentage[1], 10, 999);
#if EXTRUDERS > 2
MENU_ITEM_EDIT(int3, MSG_FLOW MSG_N3, &flow_percentage[2], 10, 999);
#if EXTRUDERS > 3
MENU_ITEM_EDIT(int3, MSG_FLOW MSG_N4, &flow_percentage[3], 10, 999);
#if EXTRUDERS > 4
MENU_ITEM_EDIT(int3, MSG_FLOW MSG_N5, &flow_percentage[4], 10, 999);
#endif // EXTRUDERS > 4
#endif // EXTRUDERS > 3
#endif // EXTRUDERS > 2
#endif // EXTRUDERS > 1
//
// Babystep X:
// Babystep Y:
// Babystep Z:
//
#if ENABLED(BABYSTEPPING)
#if ENABLED(BABYSTEP_XY)
MENU_ITEM(submenu, MSG_BABYSTEP_X, lcd_babystep_x);
MENU_ITEM(submenu, MSG_BABYSTEP_Y, lcd_babystep_y);
#endif
#if ENABLED(BABYSTEP_ZPROBE_OFFSET)
MENU_ITEM(submenu, MSG_ZPROBE_ZOFFSET, lcd_babystep_zoffset);
#else
MENU_ITEM(submenu, MSG_BABYSTEP_Z, lcd_babystep_z);
#endif
#endif
//
// Change filament
//
#if ENABLED(ADVANCED_PAUSE_FEATURE)
if (!thermalManager.tooColdToExtrude(active_extruder))
MENU_ITEM(function, MSG_FILAMENTCHANGE, lcd_enqueue_filament_change);
#endif
END_MENU();
}
/**
*
* "Driver current control" submenu items
*
*/
#if ENABLED(DAC_STEPPER_CURRENT)
void dac_driver_getValues() { LOOP_XYZE(i) driverPercent[i] = dac_current_get_percent((AxisEnum)i); }
void dac_driver_commit() { dac_current_set_percents(driverPercent); }
void dac_driver_eeprom_write() { dac_commit_eeprom(); }
void lcd_dac_menu() {
dac_driver_getValues();
START_MENU();
MENU_BACK(MSG_CONTROL);
MENU_ITEM_EDIT_CALLBACK(int8, MSG_X " " MSG_DAC_PERCENT, &driverPercent[X_AXIS], 0, 100, dac_driver_commit);
MENU_ITEM_EDIT_CALLBACK(int8, MSG_Y " " MSG_DAC_PERCENT, &driverPercent[Y_AXIS], 0, 100, dac_driver_commit);
MENU_ITEM_EDIT_CALLBACK(int8, MSG_Z " " MSG_DAC_PERCENT, &driverPercent[Z_AXIS], 0, 100, dac_driver_commit);
MENU_ITEM_EDIT_CALLBACK(int8, MSG_E " " MSG_DAC_PERCENT, &driverPercent[E_AXIS], 0, 100, dac_driver_commit);
MENU_ITEM(function, MSG_DAC_EEPROM_WRITE, dac_driver_eeprom_write);
END_MENU();
}
#endif // DAC_STEPPER_CURRENT
#if HAS_MOTOR_CURRENT_PWM
void lcd_pwm_menu() {
START_MENU();
MENU_BACK(MSG_CONTROL);
#if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
MENU_ITEM_EDIT_CALLBACK(long5, MSG_X MSG_Y, &stepper.motor_current_setting[0], 100, 2000, Stepper::refresh_motor_power);
#endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
MENU_ITEM_EDIT_CALLBACK(long5, MSG_Z, &stepper.motor_current_setting[1], 100, 2000, Stepper::refresh_motor_power);
#endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
MENU_ITEM_EDIT_CALLBACK(long5, MSG_E, &stepper.motor_current_setting[2], 100, 2000, Stepper::refresh_motor_power);
#endif
END_MENU();
}
#endif // HAS_MOTOR_CURRENT_PWM
constexpr int16_t heater_maxtemp[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_MAXTEMP, HEATER_1_MAXTEMP, HEATER_2_MAXTEMP, HEATER_3_MAXTEMP, HEATER_4_MAXTEMP);
/**
*
* "Prepare" submenu items
*
*/
void _lcd_preheat(const int16_t endnum, const int16_t temph, const int16_t tempb, const int16_t fan) {
if (temph > 0) thermalManager.setTargetHotend(min(heater_maxtemp[endnum], temph), endnum);
#if TEMP_SENSOR_BED != 0
if (tempb >= 0) thermalManager.setTargetBed(tempb);
#else
UNUSED(tempb);
#endif
#if FAN_COUNT > 0
#if FAN_COUNT > 1
fanSpeeds[active_extruder < FAN_COUNT ? active_extruder : 0] = fan;
#else
fanSpeeds[0] = fan;
#endif
#else
UNUSED(fan);
#endif
lcd_return_to_status();
}
#if TEMP_SENSOR_0 != 0
void lcd_preheat_m1_e0_only() { _lcd_preheat(0, lcd_preheat_hotend_temp[0], -1, lcd_preheat_fan_speed[0]); }
void lcd_preheat_m2_e0_only() { _lcd_preheat(0, lcd_preheat_hotend_temp[1], -1, lcd_preheat_fan_speed[1]); }
#if TEMP_SENSOR_BED != 0
void lcd_preheat_m1_e0() { _lcd_preheat(0, lcd_preheat_hotend_temp[0], lcd_preheat_bed_temp[0], lcd_preheat_fan_speed[0]); }
void lcd_preheat_m2_e0() { _lcd_preheat(0, lcd_preheat_hotend_temp[1], lcd_preheat_bed_temp[1], lcd_preheat_fan_speed[1]); }
#endif
#endif
#if HOTENDS > 1
void lcd_preheat_m1_e1_only() { _lcd_preheat(1, lcd_preheat_hotend_temp[0], -1, lcd_preheat_fan_speed[0]); }
void lcd_preheat_m2_e1_only() { _lcd_preheat(1, lcd_preheat_hotend_temp[1], -1, lcd_preheat_fan_speed[1]); }
#if TEMP_SENSOR_BED != 0
void lcd_preheat_m1_e1() { _lcd_preheat(1, lcd_preheat_hotend_temp[0], lcd_preheat_bed_temp[0], lcd_preheat_fan_speed[0]); }
void lcd_preheat_m2_e1() { _lcd_preheat(1, lcd_preheat_hotend_temp[1], lcd_preheat_bed_temp[1], lcd_preheat_fan_speed[1]); }
#endif
#if HOTENDS > 2
void lcd_preheat_m1_e2_only() { _lcd_preheat(2, lcd_preheat_hotend_temp[0], -1, lcd_preheat_fan_speed[0]); }
void lcd_preheat_m2_e2_only() { _lcd_preheat(2, lcd_preheat_hotend_temp[1], -1, lcd_preheat_fan_speed[1]); }
#if TEMP_SENSOR_BED != 0
void lcd_preheat_m1_e2() { _lcd_preheat(2, lcd_preheat_hotend_temp[0], lcd_preheat_bed_temp[0], lcd_preheat_fan_speed[0]); }
void lcd_preheat_m2_e2() { _lcd_preheat(2, lcd_preheat_hotend_temp[1], lcd_preheat_bed_temp[1], lcd_preheat_fan_speed[1]); }
#endif
#if HOTENDS > 3
void lcd_preheat_m1_e3_only() { _lcd_preheat(3, lcd_preheat_hotend_temp[0], -1, lcd_preheat_fan_speed[0]); }
void lcd_preheat_m2_e3_only() { _lcd_preheat(3, lcd_preheat_hotend_temp[1], -1, lcd_preheat_fan_speed[1]); }
#if TEMP_SENSOR_BED != 0
void lcd_preheat_m1_e3() { _lcd_preheat(3, lcd_preheat_hotend_temp[0], lcd_preheat_bed_temp[0], lcd_preheat_fan_speed[0]); }
void lcd_preheat_m2_e3() { _lcd_preheat(3, lcd_preheat_hotend_temp[1], lcd_preheat_bed_temp[1], lcd_preheat_fan_speed[1]); }
#endif
#if HOTENDS > 4
void lcd_preheat_m1_e4_only() { _lcd_preheat(4, lcd_preheat_hotend_temp[0], -1, lcd_preheat_fan_speed[0]); }
void lcd_preheat_m2_e4_only() { _lcd_preheat(4, lcd_preheat_hotend_temp[1], -1, lcd_preheat_fan_speed[1]); }
#if TEMP_SENSOR_BED != 0
void lcd_preheat_m1_e4() { _lcd_preheat(4, lcd_preheat_hotend_temp[0], lcd_preheat_bed_temp[0], lcd_preheat_fan_speed[0]); }
void lcd_preheat_m2_e4() { _lcd_preheat(4, lcd_preheat_hotend_temp[1], lcd_preheat_bed_temp[1], lcd_preheat_fan_speed[1]); }
#endif
#endif // HOTENDS > 4
#endif // HOTENDS > 3
#endif // HOTENDS > 2
void lcd_preheat_m1_all() {
#if HOTENDS > 1
thermalManager.setTargetHotend(lcd_preheat_hotend_temp[0], 1);
#if HOTENDS > 2
thermalManager.setTargetHotend(lcd_preheat_hotend_temp[0], 2);
#if HOTENDS > 3
thermalManager.setTargetHotend(lcd_preheat_hotend_temp[0], 3);
#if HOTENDS > 4
thermalManager.setTargetHotend(lcd_preheat_hotend_temp[0], 4);
#endif // HOTENDS > 4
#endif // HOTENDS > 3
#endif // HOTENDS > 2
#endif // HOTENDS > 1
#if TEMP_SENSOR_BED != 0
lcd_preheat_m1_e0();
#else
lcd_preheat_m1_e0_only();
#endif
}
void lcd_preheat_m2_all() {
#if HOTENDS > 1
thermalManager.setTargetHotend(lcd_preheat_hotend_temp[1], 1);
#if HOTENDS > 2
thermalManager.setTargetHotend(lcd_preheat_hotend_temp[1], 2);
#if HOTENDS > 3
thermalManager.setTargetHotend(lcd_preheat_hotend_temp[1], 3);
#if HOTENDS > 4
thermalManager.setTargetHotend(lcd_preheat_hotend_temp[1], 4);
#endif // HOTENDS > 4
#endif // HOTENDS > 3
#endif // HOTENDS > 2
#endif // HOTENDS > 1
#if TEMP_SENSOR_BED != 0
lcd_preheat_m2_e0();
#else
lcd_preheat_m2_e0_only();
#endif
}
#endif // HOTENDS > 1
#if TEMP_SENSOR_BED != 0
void lcd_preheat_m1_bedonly() { _lcd_preheat(0, 0, lcd_preheat_bed_temp[0], lcd_preheat_fan_speed[0]); }
void lcd_preheat_m2_bedonly() { _lcd_preheat(0, 0, lcd_preheat_bed_temp[1], lcd_preheat_fan_speed[1]); }
#endif
#if TEMP_SENSOR_0 != 0 && (TEMP_SENSOR_1 != 0 || TEMP_SENSOR_2 != 0 || TEMP_SENSOR_3 != 0 || TEMP_SENSOR_4 != 0 || TEMP_SENSOR_BED != 0)
void lcd_preheat_m1_menu() {
START_MENU();
MENU_BACK(MSG_PREPARE);
#if HOTENDS == 1
#if TEMP_SENSOR_BED != 0
MENU_ITEM(function, MSG_PREHEAT_1, lcd_preheat_m1_e0);
MENU_ITEM(function, MSG_PREHEAT_1_END, lcd_preheat_m1_e0_only);
#else
MENU_ITEM(function, MSG_PREHEAT_1, lcd_preheat_m1_e0_only);
#endif
#else
#if TEMP_SENSOR_BED != 0
MENU_ITEM(function, MSG_PREHEAT_1_N MSG_H1, lcd_preheat_m1_e0);
MENU_ITEM(function, MSG_PREHEAT_1_END " " MSG_E1, lcd_preheat_m1_e0_only);
MENU_ITEM(function, MSG_PREHEAT_1_N MSG_H2, lcd_preheat_m1_e1);
MENU_ITEM(function, MSG_PREHEAT_1_END " " MSG_E2, lcd_preheat_m1_e1_only);
#else
MENU_ITEM(function, MSG_PREHEAT_1_N MSG_H1, lcd_preheat_m1_e0_only);
MENU_ITEM(function, MSG_PREHEAT_1_N MSG_H2, lcd_preheat_m1_e1_only);
#endif
#if HOTENDS > 2
#if TEMP_SENSOR_BED != 0
MENU_ITEM(function, MSG_PREHEAT_1_N MSG_H3, lcd_preheat_m1_e2);
MENU_ITEM(function, MSG_PREHEAT_1_END " " MSG_E3, lcd_preheat_m1_e2_only);
#else
MENU_ITEM(function, MSG_PREHEAT_1_N MSG_H3, lcd_preheat_m1_e2_only);
#endif
#if HOTENDS > 3
#if TEMP_SENSOR_BED != 0
MENU_ITEM(function, MSG_PREHEAT_1_N MSG_H4, lcd_preheat_m1_e3);
MENU_ITEM(function, MSG_PREHEAT_1_END " " MSG_E4, lcd_preheat_m1_e3_only);
#else
MENU_ITEM(function, MSG_PREHEAT_1_N MSG_H4, lcd_preheat_m1_e3_only);
#endif
#if HOTENDS > 4
#if TEMP_SENSOR_BED != 0
MENU_ITEM(function, MSG_PREHEAT_1_N MSG_H5, lcd_preheat_m1_e4);
MENU_ITEM(function, MSG_PREHEAT_1_END " " MSG_E5, lcd_preheat_m1_e4_only);
#else
MENU_ITEM(function, MSG_PREHEAT_1_N MSG_H5, lcd_preheat_m1_e4_only);
#endif
#endif // HOTENDS > 4
#endif // HOTENDS > 3
#endif // HOTENDS > 2
MENU_ITEM(function, MSG_PREHEAT_1_ALL, lcd_preheat_m1_all);
#endif // HOTENDS > 1
#if TEMP_SENSOR_BED != 0
MENU_ITEM(function, MSG_PREHEAT_1_BEDONLY, lcd_preheat_m1_bedonly);
#endif
END_MENU();
}
void lcd_preheat_m2_menu() {
START_MENU();
MENU_BACK(MSG_PREPARE);
#if HOTENDS == 1
#if TEMP_SENSOR_BED != 0
MENU_ITEM(function, MSG_PREHEAT_2, lcd_preheat_m2_e0);
MENU_ITEM(function, MSG_PREHEAT_2_END, lcd_preheat_m2_e0_only);
#else
MENU_ITEM(function, MSG_PREHEAT_2, lcd_preheat_m2_e0_only);
#endif
#else
#if TEMP_SENSOR_BED != 0
MENU_ITEM(function, MSG_PREHEAT_2_N MSG_H1, lcd_preheat_m2_e0);
MENU_ITEM(function, MSG_PREHEAT_2_END " " MSG_E1, lcd_preheat_m2_e0_only);
MENU_ITEM(function, MSG_PREHEAT_2_N MSG_H2, lcd_preheat_m2_e1);
MENU_ITEM(function, MSG_PREHEAT_2_END " " MSG_E2, lcd_preheat_m2_e1_only);
#else
MENU_ITEM(function, MSG_PREHEAT_2_N MSG_H1, lcd_preheat_m2_e0_only);
MENU_ITEM(function, MSG_PREHEAT_2_N MSG_H2, lcd_preheat_m2_e1_only);
#endif
#if HOTENDS > 2
#if TEMP_SENSOR_BED != 0
MENU_ITEM(function, MSG_PREHEAT_2_N MSG_H3, lcd_preheat_m2_e2);
MENU_ITEM(function, MSG_PREHEAT_2_END " " MSG_E3, lcd_preheat_m2_e2_only);
#else
MENU_ITEM(function, MSG_PREHEAT_2_N MSG_H3, lcd_preheat_m2_e2_only);
#endif
#if HOTENDS > 3
#if TEMP_SENSOR_BED != 0
MENU_ITEM(function, MSG_PREHEAT_2_N MSG_H4, lcd_preheat_m2_e3);
MENU_ITEM(function, MSG_PREHEAT_2_END " " MSG_E4, lcd_preheat_m2_e3_only);
#else
MENU_ITEM(function, MSG_PREHEAT_2_N MSG_H4, lcd_preheat_m2_e3_only);
#endif
#if HOTENDS > 4
#if TEMP_SENSOR_BED != 0
MENU_ITEM(function, MSG_PREHEAT_2_N MSG_H5, lcd_preheat_m2_e4);
MENU_ITEM(function, MSG_PREHEAT_2_END " " MSG_E5, lcd_preheat_m2_e4_only);
#else
MENU_ITEM(function, MSG_PREHEAT_2_N MSG_H5, lcd_preheat_m2_e4_only);
#endif
#endif // HOTENDS > 4
#endif // HOTENDS > 3
#endif // HOTENDS > 2
MENU_ITEM(function, MSG_PREHEAT_2_ALL, lcd_preheat_m2_all);
#endif // HOTENDS > 1
#if TEMP_SENSOR_BED != 0
MENU_ITEM(function, MSG_PREHEAT_2_BEDONLY, lcd_preheat_m2_bedonly);
#endif
END_MENU();
}
#endif // TEMP_SENSOR_0 && (TEMP_SENSOR_1 || TEMP_SENSOR_2 || TEMP_SENSOR_3 || TEMP_SENSOR_4 || TEMP_SENSOR_BED)
void lcd_cooldown() {
#if FAN_COUNT > 0
for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
#endif
thermalManager.disable_all_heaters();
lcd_return_to_status();
}
#if ENABLED(SDSUPPORT) && ENABLED(MENU_ADDAUTOSTART)
void lcd_autostart_sd() {
card.autostart_index = 0;
card.setroot();
card.checkautostart(true);
}
#endif
#if ENABLED(EEPROM_SETTINGS)
static void lcd_store_settings() { lcd_completion_feedback(settings.save()); }
static void lcd_load_settings() { lcd_completion_feedback(settings.load()); }
#endif
#if HAS_BED_PROBE && DISABLED(BABYSTEP_ZPROBE_OFFSET)
static void lcd_refresh_zprobe_zoffset() { refresh_zprobe_zoffset(); }
#endif
#if ENABLED(LEVEL_BED_CORNERS)
/**
* Level corners, starting in the front-left corner.
*/
static int8_t bed_corner;
void _lcd_goto_next_corner() {
line_to_z(LOGICAL_Z_POSITION(4.0));
switch (bed_corner) {
case 0:
current_position[X_AXIS] = X_MIN_BED + 10;
current_position[Y_AXIS] = Y_MIN_BED + 10;
break;
case 1:
current_position[X_AXIS] = X_MAX_BED - 10;
break;
case 2:
current_position[Y_AXIS] = Y_MAX_BED - 10;
break;
case 3:
current_position[X_AXIS] = X_MIN_BED + 10;
break;
}
planner.buffer_line_kinematic(current_position, MMM_TO_MMS(manual_feedrate_mm_m[X_AXIS]), active_extruder);
line_to_z(LOGICAL_Z_POSITION(0.0));
if (++bed_corner > 3) bed_corner = 0;
}
void _lcd_corner_submenu() {
START_MENU();
MENU_ITEM(function, MSG_NEXT_CORNER, _lcd_goto_next_corner);
MENU_ITEM(function, MSG_BACK, lcd_goto_previous_menu_no_defer);
END_MENU();
}
void _lcd_level_bed_corners() {
defer_return_to_status = true;
lcd_goto_screen(_lcd_corner_submenu);
bed_corner = 0;
_lcd_goto_next_corner();
}
#endif // LEVEL_BED_CORNERS
#if ENABLED(LCD_BED_LEVELING)
/**
*
* "Prepare" > "Level Bed" handlers
*
*/
static uint8_t manual_probe_index;
// LCD probed points are from defaults
constexpr uint8_t total_probe_points = (
#if ENABLED(AUTO_BED_LEVELING_3POINT)
3
#elif ABL_GRID || ENABLED(MESH_BED_LEVELING)
GRID_MAX_POINTS
#endif
);
//
// Raise Z to the "manual probe height"
// Don't return until done.
// ** This blocks the command queue! **
//
void _lcd_after_probing() {
#if MANUAL_PROBE_HEIGHT > 0
line_to_z(LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT);
#endif
// Display "Done" screen and wait for moves to complete
#if MANUAL_PROBE_HEIGHT > 0 || ENABLED(MESH_BED_LEVELING)
lcd_synchronize(PSTR(MSG_LEVEL_BED_DONE));
#endif
lcd_goto_previous_menu();
lcd_completion_feedback();
defer_return_to_status = false;
//LCD_MESSAGEPGM(MSG_LEVEL_BED_DONE);
}
#if ENABLED(MESH_BED_LEVELING)
// Utility to go to the next mesh point
inline void _manual_probe_goto_xy(float x, float y) {
#if MANUAL_PROBE_HEIGHT > 0
const float prev_z = current_position[Z_AXIS];
line_to_z(LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT);
#endif
current_position[X_AXIS] = LOGICAL_X_POSITION(x);
current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
planner.buffer_line_kinematic(current_position, MMM_TO_MMS(XY_PROBE_SPEED), active_extruder);
#if MANUAL_PROBE_HEIGHT > 0
line_to_z(prev_z);
#endif
lcd_synchronize();
}
#elif ENABLED(PROBE_MANUALLY)
bool lcd_wait_for_move;
//
// Bed leveling is done. Wait for G29 to complete.
// A flag is used so that this can release control
// and allow the command queue to be processed.
//
void _lcd_level_bed_done() {
if (!lcd_wait_for_move) _lcd_after_probing();
if (lcdDrawUpdate) lcd_implementation_drawedit(PSTR(MSG_LEVEL_BED_DONE));
lcdDrawUpdate = LCDVIEW_CALL_REDRAW_NEXT;
}
#endif
void _lcd_level_goto_next_point();
/**
* Step 7: Get the Z coordinate, click goes to the next point or exits
*/
void _lcd_level_bed_get_z() {
ENCODER_DIRECTION_NORMAL();
if (lcd_clicked) {
//
// Save the current Z position
//
#if ENABLED(MESH_BED_LEVELING)
//
// MBL records the position but doesn't move to the next one
//
mbl.set_zigzag_z(manual_probe_index, current_position[Z_AXIS]);
#endif
// If done...
if (++manual_probe_index >= total_probe_points) {
#if ENABLED(PROBE_MANUALLY)
//
// The last G29 will record and enable but not move.
//
lcd_wait_for_move = true;
enqueue_and_echo_commands_P(PSTR("G29 V1"));
lcd_goto_screen(_lcd_level_bed_done);
#elif ENABLED(MESH_BED_LEVELING)
_lcd_after_probing();
mbl.set_has_mesh(true);
mesh_probing_done();
#endif
}
else {
// MESH_BED_LEVELING: Z already stored, just move
// PROBE_MANUALLY: Send G29 to record Z, then move
_lcd_level_goto_next_point();
}
return;
}
//
// Encoder knob or keypad buttons adjust the Z position
//
if (encoderPosition) {
refresh_cmd_timeout();
const float z = current_position[Z_AXIS] + float((int32_t)encoderPosition) * (MBL_Z_STEP);
line_to_z(constrain(z, -(LCD_PROBE_Z_RANGE) * 0.5, (LCD_PROBE_Z_RANGE) * 0.5));
lcdDrawUpdate = LCDVIEW_CALL_REDRAW_NEXT;
encoderPosition = 0;
}
//
// Draw on first display, then only on Z change
//
if (lcdDrawUpdate) {
const float v = current_position[Z_AXIS];
lcd_implementation_drawedit(PSTR(MSG_MOVE_Z), ftostr43sign(v + (v < 0 ? -0.0001 : 0.0001), '+'));
}
}
/**
* Step 6: Display "Next point: 1 / 9" while waiting for move to finish
*/
void _lcd_level_bed_moving() {
if (lcdDrawUpdate) {
char msg[10];
sprintf_P(msg, PSTR("%i / %u"), (int)(manual_probe_index + 1), total_probe_points);
lcd_implementation_drawedit(PSTR(MSG_LEVEL_BED_NEXT_POINT), msg);
}
lcdDrawUpdate = LCDVIEW_CALL_NO_REDRAW;
#if ENABLED(PROBE_MANUALLY)
if (!lcd_wait_for_move) lcd_goto_screen(_lcd_level_bed_get_z);
#endif
}
/**
* Step 5: Initiate a move to the next point
*/
void _lcd_level_goto_next_point() {
// Set the menu to display ahead of blocking call
lcd_goto_screen(_lcd_level_bed_moving);
#if ENABLED(MESH_BED_LEVELING)
int8_t px, py;
mbl.zigzag(manual_probe_index, px, py);
// Controls the loop until the move is done
_manual_probe_goto_xy(
LOGICAL_X_POSITION(mbl.index_to_xpos[px]),
LOGICAL_Y_POSITION(mbl.index_to_ypos[py])
);
// After the blocking function returns, change menus
lcd_goto_screen(_lcd_level_bed_get_z);
#elif ENABLED(PROBE_MANUALLY)
// G29 Records Z, moves, and signals when it pauses
lcd_wait_for_move = true;
enqueue_and_echo_commands_P(PSTR("G29 V1"));
#endif
}
/**
* Step 4: Display "Click to Begin", wait for click
* Move to the first probe position
*/
void _lcd_level_bed_homing_done() {
if (lcdDrawUpdate) lcd_implementation_drawedit(PSTR(MSG_LEVEL_BED_WAITING));
if (lcd_clicked) {
manual_probe_index = 0;
_lcd_level_goto_next_point();
}
}
/**
* Step 3: Display "Homing XYZ" - Wait for homing to finish
*/
void _lcd_level_bed_homing() {
if (lcdDrawUpdate) lcd_implementation_drawedit(PSTR(MSG_LEVEL_BED_HOMING), NULL);
lcdDrawUpdate = LCDVIEW_CALL_NO_REDRAW;
if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS])
lcd_goto_screen(_lcd_level_bed_homing_done);
}
#if ENABLED(PROBE_MANUALLY)
extern bool g29_in_progress;
#endif
/**
* Step 2: Continue Bed Leveling...
*/
void _lcd_level_bed_continue() {
defer_return_to_status = true;
axis_homed[X_AXIS] = axis_homed[Y_AXIS] = axis_homed[Z_AXIS] = false;
lcd_goto_screen(_lcd_level_bed_homing);
enqueue_and_echo_commands_P(PSTR("G28"));
}
static bool _level_state;
void _lcd_toggle_bed_leveling() { set_bed_leveling_enabled(_level_state); }
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
void _lcd_set_z_fade_height() { set_z_fade_height(planner.z_fade_height); }
#endif
/**
* Step 1: Bed Level entry-point
*
* << Prepare
* Auto Home (if homing needed)
* Leveling On/Off (if data exists, and homed)
* Fade Height: --- (Req: ENABLE_LEVELING_FADE_HEIGHT)
* Mesh Z Offset: --- (Req: MESH_BED_LEVELING)
* Z Probe Offset: --- (Req: HAS_BED_PROBE, Opt: BABYSTEP_ZPROBE_OFFSET)
* Level Bed >
* Level Corners > (if homed)
* Load Settings (Req: EEPROM_SETTINGS)
* Save Settings (Req: EEPROM_SETTINGS)
*/
void lcd_bed_leveling() {
START_MENU();
MENU_BACK(MSG_PREPARE);
if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
MENU_ITEM(gcode, MSG_AUTO_HOME, PSTR("G28"));
else if (leveling_is_valid()) {
_level_state = leveling_is_active();
MENU_ITEM_EDIT_CALLBACK(bool, MSG_BED_LEVELING, &_level_state, _lcd_toggle_bed_leveling);
}
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
set_z_fade_height(planner.z_fade_height);
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float62, MSG_Z_FADE_HEIGHT, &planner.z_fade_height, 0.0, 100.0, _lcd_set_z_fade_height);
#endif
//
// MBL Z Offset
//
#if ENABLED(MESH_BED_LEVELING)
MENU_ITEM_EDIT(float43, MSG_BED_Z, &mbl.z_offset, -1, 1);
#endif
#if ENABLED(BABYSTEP_ZPROBE_OFFSET)
MENU_ITEM(submenu, MSG_ZPROBE_ZOFFSET, lcd_babystep_zoffset);
#elif HAS_BED_PROBE
MENU_ITEM_EDIT_CALLBACK(float32, MSG_ZPROBE_ZOFFSET, &zprobe_zoffset, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX, lcd_refresh_zprobe_zoffset);
#endif
MENU_ITEM(submenu, MSG_LEVEL_BED, _lcd_level_bed_continue);
#if ENABLED(LEVEL_BED_CORNERS)
// Move to the next corner for leveling
if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS])
MENU_ITEM(function, MSG_LEVEL_CORNERS, _lcd_level_bed_corners);
#endif
#if ENABLED(EEPROM_SETTINGS)
MENU_ITEM(function, MSG_LOAD_EEPROM, lcd_load_settings);
MENU_ITEM(function, MSG_STORE_EEPROM, lcd_store_settings);
#endif
END_MENU();
}
#elif ENABLED(AUTO_BED_LEVELING_UBL)
void _lcd_ubl_level_bed();
static int16_t ubl_storage_slot = 0,
custom_hotend_temp = 190,
side_points = 3,
ubl_fillin_amount = 5,
ubl_height_amount = 1,
n_edit_pts = 1,
x_plot = 0,
y_plot = 0;
#if HAS_TEMP_BED
static int16_t custom_bed_temp = 50;
#endif
/**
* UBL Build Custom Mesh Command
*/
void _lcd_ubl_build_custom_mesh() {
char UBL_LCD_GCODE[20];
enqueue_and_echo_commands_P(PSTR("G28"));
#if HAS_TEMP_BED
sprintf_P(UBL_LCD_GCODE, PSTR("M190 S%i"), custom_bed_temp);
enqueue_and_echo_command(UBL_LCD_GCODE);
#endif
sprintf_P(UBL_LCD_GCODE, PSTR("M109 S%i"), custom_hotend_temp);
enqueue_and_echo_command(UBL_LCD_GCODE);
enqueue_and_echo_commands_P(PSTR("G29 P1"));
}
/**
* UBL Custom Mesh submenu
*
* << Build Mesh
* Hotend Temp: ---
* Bed Temp: ---
* Build Custom Mesh
*/
void _lcd_ubl_custom_mesh() {
START_MENU();
MENU_BACK(MSG_UBL_BUILD_MESH_MENU);
MENU_ITEM_EDIT(int3, MSG_UBL_CUSTOM_HOTEND_TEMP, &custom_hotend_temp, EXTRUDE_MINTEMP, (HEATER_0_MAXTEMP - 10));
#if HAS_TEMP_BED
MENU_ITEM_EDIT(int3, MSG_UBL_CUSTOM_BED_TEMP, &custom_bed_temp, BED_MINTEMP, (BED_MAXTEMP - 5));
#endif
MENU_ITEM(function, MSG_UBL_BUILD_CUSTOM_MESH, _lcd_ubl_build_custom_mesh);
END_MENU();
}
/**
* UBL Adjust Mesh Height Command
*/
void _lcd_ubl_adjust_height_cmd() {
char UBL_LCD_GCODE[16];
const int ind = ubl_height_amount < 0 ? 6 : 7;
strcpy_P(UBL_LCD_GCODE, PSTR("G29 P6-"));
sprintf_P(&UBL_LCD_GCODE[ind], PSTR(".%i"), abs(ubl_height_amount));
enqueue_and_echo_command(UBL_LCD_GCODE);
}
/**
* UBL Adjust Mesh Height submenu
*
* << Edit Mesh
* Height Amount: ---
* Adjust Mesh Height
* << Info Screen
*/
void _lcd_ubl_height_adjust_menu() {
START_MENU();
MENU_BACK(MSG_UBL_EDIT_MESH_MENU);
MENU_ITEM_EDIT(int3, MSG_UBL_MESH_HEIGHT_AMOUNT, &ubl_height_amount, -9, 9);
MENU_ITEM(function, MSG_UBL_MESH_HEIGHT_ADJUST, _lcd_ubl_adjust_height_cmd);
MENU_ITEM(function, MSG_WATCH, lcd_return_to_status);
END_MENU();
}
/**
* UBL Edit Mesh submenu
*
* << UBL Tools
* Fine Tune All
* Fine Tune Closest
* - Adjust Mesh Height >>
* << Info Screen
*/
void _lcd_ubl_edit_mesh() {
START_MENU();
MENU_BACK(MSG_UBL_TOOLS);
MENU_ITEM(gcode, MSG_UBL_FINE_TUNE_ALL, PSTR("G29 P4 R999 T"));
MENU_ITEM(gcode, MSG_UBL_FINE_TUNE_CLOSEST, PSTR("G29 P4 T"));
MENU_ITEM(submenu, MSG_UBL_MESH_HEIGHT_ADJUST, _lcd_ubl_height_adjust_menu);
MENU_ITEM(function, MSG_WATCH, lcd_return_to_status);
END_MENU();
}
/**
* UBL Validate Custom Mesh Command
*/
void _lcd_ubl_validate_custom_mesh() {
char UBL_LCD_GCODE[24];
const int temp =
#if HAS_TEMP_BED
custom_bed_temp
#else
0
#endif
;
sprintf_P(UBL_LCD_GCODE, PSTR("G28\nG26 C B%i H%i P"), temp, custom_hotend_temp);
enqueue_and_echo_command(UBL_LCD_GCODE);
}
/**
* UBL Validate Mesh submenu
*
* << UBL Tools
* PLA Mesh Validation
* ABS Mesh Validation
* Validate Custom Mesh
* << Info Screen
*/
void _lcd_ubl_validate_mesh() {
START_MENU();
MENU_BACK(MSG_UBL_TOOLS);
#if HAS_TEMP_BED
MENU_ITEM(gcode, MSG_UBL_VALIDATE_PLA_MESH, PSTR("G28\nG26 C B" STRINGIFY(PREHEAT_1_TEMP_BED) " H" STRINGIFY(PREHEAT_1_TEMP_HOTEND) " P"));
MENU_ITEM(gcode, MSG_UBL_VALIDATE_ABS_MESH, PSTR("G28\nG26 C B" STRINGIFY(PREHEAT_2_TEMP_BED) " H" STRINGIFY(PREHEAT_2_TEMP_HOTEND) " P"));
#else
MENU_ITEM(gcode, MSG_UBL_VALIDATE_PLA_MESH, PSTR("G28\nG26 C B0 H" STRINGIFY(PREHEAT_1_TEMP_HOTEND) " P"));
MENU_ITEM(gcode, MSG_UBL_VALIDATE_ABS_MESH, PSTR("G28\nG26 C B0 H" STRINGIFY(PREHEAT_2_TEMP_HOTEND) " P"));
#endif
MENU_ITEM(function, MSG_UBL_VALIDATE_CUSTOM_MESH, _lcd_ubl_validate_custom_mesh);
MENU_ITEM(function, MSG_WATCH, lcd_return_to_status);
END_MENU();
}
/**
* UBL Grid Leveling Command
*/
void _lcd_ubl_grid_level_cmd() {
char UBL_LCD_GCODE[10];
sprintf_P(UBL_LCD_GCODE, PSTR("G29 J%i"), side_points);
enqueue_and_echo_command(UBL_LCD_GCODE);
}
/**
* UBL Grid Leveling submenu
*
* << UBL Tools
* Side points: ---
* Level Mesh
*/
void _lcd_ubl_grid_level() {
START_MENU();
MENU_BACK(MSG_UBL_TOOLS);
MENU_ITEM_EDIT(int3, MSG_UBL_SIDE_POINTS, &side_points, 2, 6);
MENU_ITEM(function, MSG_UBL_MESH_LEVEL, _lcd_ubl_grid_level_cmd);
END_MENU();
}
/**
* UBL Mesh Leveling submenu
*
* << UBL Tools
* 3-Point Mesh Leveling
* - Grid Mesh Leveling >>
* << Info Screen
*/
void _lcd_ubl_mesh_leveling() {
START_MENU();
MENU_BACK(MSG_UBL_TOOLS);
MENU_ITEM(gcode, MSG_UBL_3POINT_MESH_LEVELING, PSTR("G29 J0"));
MENU_ITEM(submenu, MSG_UBL_GRID_MESH_LEVELING, _lcd_ubl_grid_level);
MENU_ITEM(function, MSG_WATCH, lcd_return_to_status);
END_MENU();
}
/**
* UBL Fill-in Amount Mesh Command
*/
void _lcd_ubl_fillin_amount_cmd() {
char UBL_LCD_GCODE[16];
sprintf_P(UBL_LCD_GCODE, PSTR("G29 P3 R C.%i"), ubl_fillin_amount);
enqueue_and_echo_command(UBL_LCD_GCODE);
}
/**
* UBL Smart Fill-in Command
*/
void _lcd_ubl_smart_fillin_cmd() {
char UBL_LCD_GCODE[12];
sprintf_P(UBL_LCD_GCODE, PSTR("G29 P3 T0"));
enqueue_and_echo_command(UBL_LCD_GCODE);
}
/**
* UBL Fill-in Mesh submenu
*
* << Build Mesh
* Fill-in Amount: ---
* Fill-in Mesh
* Smart Fill-in
* Manual Fill-in
* << Info Screen
*/
void _lcd_ubl_fillin_menu() {
START_MENU();
MENU_BACK(MSG_UBL_BUILD_MESH_MENU);
MENU_ITEM_EDIT(int3, MSG_UBL_FILLIN_AMOUNT, &ubl_fillin_amount, 0, 9);
MENU_ITEM(function, MSG_UBL_FILLIN_MESH, _lcd_ubl_fillin_amount_cmd);
MENU_ITEM(function, MSG_UBL_SMART_FILLIN, _lcd_ubl_smart_fillin_cmd);
MENU_ITEM(gcode, MSG_UBL_MANUAL_FILLIN, PSTR("G29 P2 B T0"));
MENU_ITEM(function, MSG_WATCH, lcd_return_to_status);
END_MENU();
}
void _lcd_ubl_invalidate() {
ubl.invalidate();
SERIAL_PROTOCOLLNPGM("Mesh invalidated.");
}
/**
* UBL Build Mesh submenu
*
* << UBL Tools
* Build PLA Mesh
* Build ABS Mesh
* - Build Custom Mesh >>
* Build Cold Mesh
* - Fill-in Mesh >>
* Continue Bed Mesh
* Invalidate All
* Invalidate Closest
* << Info Screen
*/
void _lcd_ubl_build_mesh() {
START_MENU();
MENU_BACK(MSG_UBL_TOOLS);
#if HAS_TEMP_BED
MENU_ITEM(gcode, MSG_UBL_BUILD_PLA_MESH, PSTR(
"G28\n"
"M190 S" STRINGIFY(PREHEAT_1_TEMP_BED) "\n"
"M109 S" STRINGIFY(PREHEAT_1_TEMP_HOTEND) "\n"
"G29 P1\n"
"M104 S0\n"
"M140 S0"
));
MENU_ITEM(gcode, MSG_UBL_BUILD_ABS_MESH, PSTR(
"G28\n"
"M190 S" STRINGIFY(PREHEAT_2_TEMP_BED) "\n"
"M109 S" STRINGIFY(PREHEAT_2_TEMP_HOTEND) "\n"
"G29 P1\n"
"M104 S0\n"
"M140 S0"
));
#else
MENU_ITEM(gcode, MSG_UBL_BUILD_PLA_MESH, PSTR(
"G28\n"
"M109 S" STRINGIFY(PREHEAT_1_TEMP_HOTEND) "\n"
"G29 P1\n"
"M104 S0"
));
MENU_ITEM(gcode, MSG_UBL_BUILD_ABS_MESH, PSTR(
"G28\n"
"M109 S" STRINGIFY(PREHEAT_2_TEMP_HOTEND) "\n"
"G29 P1\n"
"M104 S0"
));
#endif
MENU_ITEM(submenu, MSG_UBL_BUILD_CUSTOM_MESH, _lcd_ubl_custom_mesh);
MENU_ITEM(gcode, MSG_UBL_BUILD_COLD_MESH, PSTR("G28\nG29 P1"));
MENU_ITEM(submenu, MSG_UBL_FILLIN_MESH, _lcd_ubl_fillin_menu);
MENU_ITEM(gcode, MSG_UBL_CONTINUE_MESH, PSTR("G29 P1 C"));
MENU_ITEM(function, MSG_UBL_INVALIDATE_ALL, _lcd_ubl_invalidate);
MENU_ITEM(gcode, MSG_UBL_INVALIDATE_CLOSEST, PSTR("G29 I"));
MENU_ITEM(function, MSG_WATCH, lcd_return_to_status);
END_MENU();
}
/**
* UBL Load Mesh Command
*/
void _lcd_ubl_load_mesh_cmd() {
char UBL_LCD_GCODE[25];
sprintf_P(UBL_LCD_GCODE, PSTR("G29 L%i"), ubl_storage_slot);
enqueue_and_echo_command(UBL_LCD_GCODE);
sprintf_P(UBL_LCD_GCODE, PSTR("M117 Map %i loaded."), ubl_storage_slot);
enqueue_and_echo_command(UBL_LCD_GCODE);
}
/**
* UBL Save Mesh Command
*/
void _lcd_ubl_save_mesh_cmd() {
char UBL_LCD_GCODE[25];
sprintf_P(UBL_LCD_GCODE, PSTR("G29 S%i"), ubl_storage_slot);
enqueue_and_echo_command(UBL_LCD_GCODE);
sprintf_P(UBL_LCD_GCODE, PSTR("M117 Map %i saved."), ubl_storage_slot);
enqueue_and_echo_command(UBL_LCD_GCODE);
}
/**
* UBL Mesh Storage submenu
*
* << Unified Bed Leveling
* Memory Slot: ---
* Load Bed Mesh
* Save Bed Mesh
*/
void _lcd_ubl_storage_mesh() {
int16_t a = settings.calc_num_meshes();
START_MENU();
MENU_BACK(MSG_UBL_LEVEL_BED);
if (!WITHIN(ubl_storage_slot, 0, a - 1)) {
STATIC_ITEM("No storage");
STATIC_ITEM("Initialize EEPROM");
}
else {
MENU_ITEM_EDIT(int3, MSG_UBL_STORAGE_SLOT, &ubl_storage_slot, 0, a - 1);
MENU_ITEM(function, MSG_UBL_LOAD_MESH, _lcd_ubl_load_mesh_cmd);
MENU_ITEM(function, MSG_UBL_SAVE_MESH, _lcd_ubl_save_mesh_cmd);
}
END_MENU();
}
/**
* UBL LCD "radar" map homing
*/
void _lcd_ubl_output_map_lcd();
void _lcd_ubl_map_homing() {
defer_return_to_status = true;
ubl_lcd_map_control = true; // Return to the map screen
if (lcdDrawUpdate) lcd_implementation_drawmenu_static(LCD_HEIGHT < 3 ? 0 : (LCD_HEIGHT > 4 ? 2 : 1), PSTR(MSG_LEVEL_BED_HOMING));
lcdDrawUpdate = LCDVIEW_CALL_NO_REDRAW;
if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS])
lcd_goto_screen(_lcd_ubl_output_map_lcd);
}
/**
* UBL LCD "radar" map point editing
*/
void _lcd_ubl_map_lcd_edit_cmd() {
char ubl_lcd_gcode [50], str[10], str2[10];
dtostrf(pgm_read_float(&ubl._mesh_index_to_xpos[x_plot]), 0, 2, str);
dtostrf(pgm_read_float(&ubl._mesh_index_to_ypos[y_plot]), 0, 2, str2);
snprintf_P(ubl_lcd_gcode, sizeof(ubl_lcd_gcode), PSTR("G29 P4 X%s Y%s R%i"), str, str2, n_edit_pts);
enqueue_and_echo_command(ubl_lcd_gcode);
}
/**
* UBL LCD Map Movement
*/
void ubl_map_move_to_xy() {
current_position[X_AXIS] = LOGICAL_X_POSITION(pgm_read_float(&ubl._mesh_index_to_xpos[x_plot]));
current_position[Y_AXIS] = LOGICAL_Y_POSITION(pgm_read_float(&ubl._mesh_index_to_ypos[y_plot]));
planner.buffer_line_kinematic(current_position, MMM_TO_MMS(XY_PROBE_SPEED), active_extruder);
}
/**
* UBL LCD "radar" map
*/
void set_current_from_steppers_for_axis(const AxisEnum axis);
void sync_plan_position();
void _lcd_ubl_output_map_lcd() {
static int16_t step_scaler = 0;
if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
return lcd_goto_screen(_lcd_ubl_map_homing);
if (lcd_clicked) return _lcd_ubl_map_lcd_edit_cmd();
ENCODER_DIRECTION_NORMAL();
if (encoderPosition) {
step_scaler += (int32_t)encoderPosition;
x_plot += step_scaler / (ENCODER_STEPS_PER_MENU_ITEM);
if (abs(step_scaler) >= ENCODER_STEPS_PER_MENU_ITEM)
step_scaler = 0;
refresh_cmd_timeout();
encoderPosition = 0;
lcdDrawUpdate = LCDVIEW_REDRAW_NOW;
}
// Encoder to the right (++)
if (x_plot >= GRID_MAX_POINTS_X) { x_plot = 0; y_plot++; }
if (y_plot >= GRID_MAX_POINTS_Y) y_plot = 0;
// Encoder to the left (--)
if (x_plot <= GRID_MAX_POINTS_X - (GRID_MAX_POINTS_X + 1)) { x_plot = GRID_MAX_POINTS_X - 1; y_plot--; }
if (y_plot <= GRID_MAX_POINTS_Y - (GRID_MAX_POINTS_Y + 1)) y_plot = GRID_MAX_POINTS_Y - 1;
// Prevent underrun/overrun of plot numbers
x_plot = constrain(x_plot, GRID_MAX_POINTS_X - (GRID_MAX_POINTS_X + 1), GRID_MAX_POINTS_X + 1);
y_plot = constrain(y_plot, GRID_MAX_POINTS_Y - (GRID_MAX_POINTS_Y + 1), GRID_MAX_POINTS_Y + 1);
// Determine number of points to edit
#if IS_KINEMATIC
n_edit_pts = 9; //TODO: Delta accessible edit points
#else
const bool xc = WITHIN(x_plot, 1, GRID_MAX_POINTS_X - 2),
yc = WITHIN(y_plot, 1, GRID_MAX_POINTS_Y - 2);
n_edit_pts = yc ? (xc ? 9 : 6) : (xc ? 6 : 4); // Corners
#endif
if (lcdDrawUpdate) {
lcd_implementation_ubl_plot(x_plot, y_plot);
ubl_map_move_to_xy(); // Move to current location
if (planner.movesplanned() > 1) { // if the nozzle is moving, cancel the move. There is a new location
stepper.quick_stop();
set_current_from_steppers_for_axis(ALL_AXES);
sync_plan_position();
ubl_map_move_to_xy(); // Move to new location
refresh_cmd_timeout();
}
}
}
/**
* UBL Homing before LCD map
*/
void _lcd_ubl_output_map_lcd_cmd() {
if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
axis_homed[X_AXIS] = axis_homed[Y_AXIS] = axis_homed[Z_AXIS] = false;
enqueue_and_echo_commands_P(PSTR("G28"));
}
lcd_goto_screen(_lcd_ubl_map_homing);
}
/**
* UBL Output map submenu
*
* << Unified Bed Leveling
* Output for Host
* Output for CSV
* Off Printer Backup
* Output Mesh Map
*/
void _lcd_ubl_output_map() {
START_MENU();
MENU_BACK(MSG_UBL_LEVEL_BED);
MENU_ITEM(gcode, MSG_UBL_OUTPUT_MAP_HOST, PSTR("G29 T0"));
MENU_ITEM(gcode, MSG_UBL_OUTPUT_MAP_CSV, PSTR("G29 T1"));
MENU_ITEM(gcode, MSG_UBL_OUTPUT_MAP_BACKUP, PSTR("G29 S-1"));
MENU_ITEM(function, MSG_UBL_OUTPUT_MAP, _lcd_ubl_output_map_lcd_cmd);
END_MENU();
}
/**
* UBL Tools submenu
*
* << Unified Bed Leveling
* - Build Mesh >>
* - Validate Mesh >>
* - Edit Mesh >>
* - Mesh Leveling >>
*/
void _lcd_ubl_tools_menu() {
START_MENU();
MENU_BACK(MSG_UBL_LEVEL_BED);
MENU_ITEM(submenu, MSG_UBL_BUILD_MESH_MENU, _lcd_ubl_build_mesh);
MENU_ITEM(gcode, MSG_UBL_MANUAL_MESH, PSTR("G29 I999\nG29 P2 B T0"));
MENU_ITEM(submenu, MSG_UBL_VALIDATE_MESH_MENU, _lcd_ubl_validate_mesh);
MENU_ITEM(submenu, MSG_UBL_EDIT_MESH_MENU, _lcd_ubl_edit_mesh);
MENU_ITEM(submenu, MSG_UBL_MESH_LEVELING, _lcd_ubl_mesh_leveling);
END_MENU();
}
/**
* UBL Step-By-Step submenu
*
* << Unified Bed Leveling
* 1 Build Cold Mesh
* 2 Smart Fill-in
* - 3 Validate Mesh >>
* 4 Fine Tune All
* - 5 Validate Mesh >>
* 6 Fine Tune All
* 7 Save Bed Mesh
*/
void _lcd_ubl_step_by_step() {
START_MENU();
MENU_BACK(MSG_UBL_LEVEL_BED);
MENU_ITEM(gcode, "1 " MSG_UBL_BUILD_COLD_MESH, PSTR("G28\nG29 P1"));
MENU_ITEM(function, "2 " MSG_UBL_SMART_FILLIN, _lcd_ubl_smart_fillin_cmd);
MENU_ITEM(submenu, "3 " MSG_UBL_VALIDATE_MESH_MENU, _lcd_ubl_validate_mesh);
MENU_ITEM(gcode, "4 " MSG_UBL_FINE_TUNE_ALL, PSTR("G29 P4 R999 T"));
MENU_ITEM(submenu, "5 " MSG_UBL_VALIDATE_MESH_MENU, _lcd_ubl_validate_mesh);
MENU_ITEM(gcode, "6 " MSG_UBL_FINE_TUNE_ALL, PSTR("G29 P4 R999 T"));
MENU_ITEM(function, "7 " MSG_UBL_SAVE_MESH, _lcd_ubl_save_mesh_cmd);
END_MENU();
}
/**
* UBL System submenu
*
* << Prepare
* - Manually Build Mesh >>
* - Activate UBL >>
* - Deactivate UBL >>
* - Step-By-Step UBL >>
* - Mesh Storage >>
* - Output Map >>
* - UBL Tools >>
* - Output UBL Info >>
*/
void _lcd_ubl_level_bed() {
START_MENU();
MENU_BACK(MSG_PREPARE);
MENU_ITEM(gcode, MSG_UBL_ACTIVATE_MESH, PSTR("G29 A"));
MENU_ITEM(gcode, MSG_UBL_DEACTIVATE_MESH, PSTR("G29 D"));
MENU_ITEM(submenu, MSG_UBL_STEP_BY_STEP_MENU, _lcd_ubl_step_by_step);
MENU_ITEM(function, MSG_UBL_MESH_EDIT, _lcd_ubl_output_map_lcd_cmd);
MENU_ITEM(submenu, MSG_UBL_STORAGE_MESH_MENU, _lcd_ubl_storage_mesh);
MENU_ITEM(submenu, MSG_UBL_OUTPUT_MAP, _lcd_ubl_output_map);
MENU_ITEM(submenu, MSG_UBL_TOOLS, _lcd_ubl_tools_menu);
MENU_ITEM(gcode, MSG_UBL_INFO_UBL, PSTR("G29 W"));
END_MENU();
}
#endif // AUTO_BED_LEVELING_UBL
/**
*
* "Prepare" submenu
*
*/
void lcd_prepare_menu() {
START_MENU();
//
// ^ Main
//
MENU_BACK(MSG_MAIN);
//
// Move Axis
//
#if ENABLED(DELTA)
if (axis_homed[Z_AXIS])
#endif
MENU_ITEM(submenu, MSG_MOVE_AXIS, lcd_move_menu);
//
// Auto Home
//
MENU_ITEM(gcode, MSG_AUTO_HOME, PSTR("G28"));
#if ENABLED(INDIVIDUAL_AXIS_HOMING_MENU)
MENU_ITEM(gcode, MSG_AUTO_HOME_X, PSTR("G28 X"));
MENU_ITEM(gcode, MSG_AUTO_HOME_Y, PSTR("G28 Y"));
MENU_ITEM(gcode, MSG_AUTO_HOME_Z, PSTR("G28 Z"));
#endif
//
// Level Bed
//
#if ENABLED(AUTO_BED_LEVELING_UBL)
MENU_ITEM(submenu, MSG_UBL_LEVEL_BED, _lcd_ubl_level_bed);
#elif ENABLED(LCD_BED_LEVELING)
#if ENABLED(PROBE_MANUALLY)
if (!g29_in_progress)
#endif
MENU_ITEM(submenu, MSG_BED_LEVELING, lcd_bed_leveling);
#else
#if PLANNER_LEVELING
MENU_ITEM(gcode, MSG_BED_LEVELING, PSTR("G28\nG29"));
#endif
#if ENABLED(LEVEL_BED_CORNERS)
if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS])
MENU_ITEM(function, MSG_LEVEL_CORNERS, _lcd_level_bed_corners);
#endif
#endif
#if HAS_M206_COMMAND
//
// Set Home Offsets
//
MENU_ITEM(function, MSG_SET_HOME_OFFSETS, lcd_set_home_offsets);
//MENU_ITEM(gcode, MSG_SET_ORIGIN, PSTR("G92 X0 Y0 Z0"));
#endif
//
// Disable Steppers
//
MENU_ITEM(gcode, MSG_DISABLE_STEPPERS, PSTR("M84"));
//
// Change filament
//
#if ENABLED(ADVANCED_PAUSE_FEATURE)
if (!thermalManager.tooColdToExtrude(active_extruder) && !IS_SD_FILE_OPEN)
MENU_ITEM(function, MSG_FILAMENTCHANGE, lcd_enqueue_filament_change);
#endif
#if TEMP_SENSOR_0 != 0
//
// Cooldown
//
bool has_heat = false;
HOTEND_LOOP() if (thermalManager.target_temperature[HOTEND_INDEX]) { has_heat = true; break; }
#if HAS_TEMP_BED
if (thermalManager.target_temperature_bed) has_heat = true;
#endif
if (has_heat) MENU_ITEM(function, MSG_COOLDOWN, lcd_cooldown);
//
// Preheat for Material 1 and 2
//
#if TEMP_SENSOR_1 != 0 || TEMP_SENSOR_2 != 0 || TEMP_SENSOR_3 != 0 || TEMP_SENSOR_4 != 0 || TEMP_SENSOR_BED != 0
MENU_ITEM(submenu, MSG_PREHEAT_1, lcd_preheat_m1_menu);
MENU_ITEM(submenu, MSG_PREHEAT_2, lcd_preheat_m2_menu);
#else
MENU_ITEM(function, MSG_PREHEAT_1, lcd_preheat_m1_e0_only);
MENU_ITEM(function, MSG_PREHEAT_2, lcd_preheat_m2_e0_only);
#endif
#endif // TEMP_SENSOR_0 != 0
//
// BLTouch Self-Test and Reset
//
#if ENABLED(BLTOUCH)
MENU_ITEM(gcode, MSG_BLTOUCH_SELFTEST, PSTR("M280 P" STRINGIFY(Z_ENDSTOP_SERVO_NR) " S" STRINGIFY(BLTOUCH_SELFTEST)));
if (!endstops.z_probe_enabled && TEST_BLTOUCH())
MENU_ITEM(gcode, MSG_BLTOUCH_RESET, PSTR("M280 P" STRINGIFY(Z_ENDSTOP_SERVO_NR) " S" STRINGIFY(BLTOUCH_RESET)));
#endif
//
// Switch power on/off
//
#if HAS_POWER_SWITCH
if (powersupply_on)
MENU_ITEM(gcode, MSG_SWITCH_PS_OFF, PSTR("M81"));
else
MENU_ITEM(gcode, MSG_SWITCH_PS_ON, PSTR("M80"));
#endif
//
// Autostart
//
#if ENABLED(SDSUPPORT) && ENABLED(MENU_ADDAUTOSTART)
MENU_ITEM(function, MSG_AUTOSTART, lcd_autostart_sd);
#endif
//
// Delta Calibration
//
#if ENABLED(DELTA_CALIBRATION_MENU)
MENU_ITEM(submenu, MSG_DELTA_CALIBRATE, lcd_delta_calibrate_menu);
#endif
END_MENU();
}
float move_menu_scale;
#if ENABLED(DELTA_CALIBRATION_MENU)
void lcd_move_z();
void lcd_delta_calibrate_menu();
void _lcd_calibrate_homing() {
if (lcdDrawUpdate) lcd_implementation_drawmenu_static(LCD_HEIGHT >= 4 ? 1 : 0, PSTR(MSG_LEVEL_BED_HOMING));
lcdDrawUpdate = LCDVIEW_CALL_REDRAW_NEXT;
if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS])
lcd_goto_previous_menu();
}
void _lcd_delta_calibrate_home() {
#if HAS_LEVELING
reset_bed_level(); // After calibration bed-level data is no longer valid
#endif
enqueue_and_echo_commands_P(PSTR("G28"));
lcd_goto_screen(_lcd_calibrate_homing);
}
void _man_probe_pt(const float &lx, const float &ly) {
#if HAS_LEVELING
reset_bed_level(); // After calibration bed-level data is no longer valid
#endif
float z_dest = LOGICAL_Z_POSITION((Z_CLEARANCE_BETWEEN_PROBES) + (DELTA_PRINTABLE_RADIUS) / 5);
line_to_z(z_dest);
current_position[X_AXIS] = LOGICAL_X_POSITION(lx);
current_position[Y_AXIS] = LOGICAL_Y_POSITION(ly);
line_to_current_z();
z_dest = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
line_to_z(z_dest);
lcd_synchronize();
move_menu_scale = PROBE_MANUALLY_STEP;
lcd_goto_screen(lcd_move_z);
}
float lcd_probe_pt(const float &lx, const float &ly) {
_man_probe_pt(lx, ly);
KEEPALIVE_STATE(PAUSED_FOR_USER);
defer_return_to_status = true;
wait_for_user = true;
while (wait_for_user) idle();
KEEPALIVE_STATE(IN_HANDLER);
lcd_goto_previous_menu_no_defer();
return current_position[Z_AXIS];
}
void _goto_tower_x() { _man_probe_pt(cos(RADIANS(210)) * delta_calibration_radius, sin(RADIANS(210)) * delta_calibration_radius); }
void _goto_tower_y() { _man_probe_pt(cos(RADIANS(330)) * delta_calibration_radius, sin(RADIANS(330)) * delta_calibration_radius); }
void _goto_tower_z() { _man_probe_pt(cos(RADIANS( 90)) * delta_calibration_radius, sin(RADIANS( 90)) * delta_calibration_radius); }
void _goto_center() { _man_probe_pt(0,0); }
static float _delta_height = DELTA_HEIGHT;
void _lcd_set_delta_height() {
home_offset[Z_AXIS] = _delta_height - DELTA_HEIGHT;
update_software_endstops(Z_AXIS);
}
void lcd_delta_settings() {
START_MENU();
MENU_BACK(MSG_DELTA_CALIBRATE);
float Tz = 0.00;
MENU_ITEM_EDIT(float52, MSG_DELTA_DIAG_ROG, &delta_diagonal_rod, DELTA_DIAGONAL_ROD - 5.0, DELTA_DIAGONAL_ROD + 5.0);
_delta_height = DELTA_HEIGHT + home_offset[Z_AXIS];
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float52, MSG_DELTA_HEIGHT, &_delta_height, _delta_height - 10.0, _delta_height + 10.0, _lcd_set_delta_height);
MENU_ITEM_EDIT(float43, "Ex", &endstop_adj[A_AXIS], -5.0, 5.0);
MENU_ITEM_EDIT(float43, "Ey", &endstop_adj[B_AXIS], -5.0, 5.0);
MENU_ITEM_EDIT(float43, "Ez", &endstop_adj[C_AXIS], -5.0, 5.0);
MENU_ITEM_EDIT(float52, MSG_DELTA_RADIUS, &delta_radius, DELTA_RADIUS - 5.0, DELTA_RADIUS + 5.0);
MENU_ITEM_EDIT(float43, "Tx", &delta_tower_angle_trim[A_AXIS], -5.0, 5.0);
MENU_ITEM_EDIT(float43, "Ty", &delta_tower_angle_trim[B_AXIS], -5.0, 5.0);
MENU_ITEM_EDIT(float43, "Tz", &Tz, -5.0, 5.0);
END_MENU();
}
void lcd_delta_calibrate_menu() {
START_MENU();
MENU_BACK(MSG_MAIN);
#if ENABLED(DELTA_AUTO_CALIBRATION)
MENU_ITEM(submenu, MSG_DELTA_SETTINGS, lcd_delta_settings);
MENU_ITEM(gcode, MSG_DELTA_AUTO_CALIBRATE, PSTR("G33"));
MENU_ITEM(gcode, MSG_DELTA_HEIGHT_CALIBRATE, PSTR("G33 P1"));
#if ENABLED(EEPROM_SETTINGS)
MENU_ITEM(function, MSG_STORE_EEPROM, lcd_store_settings);
MENU_ITEM(function, MSG_LOAD_EEPROM, lcd_load_settings);
#endif
#endif
MENU_ITEM(submenu, MSG_AUTO_HOME, _lcd_delta_calibrate_home);
if (axis_homed[Z_AXIS]) {
MENU_ITEM(submenu, MSG_DELTA_CALIBRATE_X, _goto_tower_x);
MENU_ITEM(submenu, MSG_DELTA_CALIBRATE_Y, _goto_tower_y);
MENU_ITEM(submenu, MSG_DELTA_CALIBRATE_Z, _goto_tower_z);
MENU_ITEM(submenu, MSG_DELTA_CALIBRATE_CENTER, _goto_center);
}
END_MENU();
}
#endif // DELTA_CALIBRATION_MENU
/**
* If the most recent manual move hasn't been fed to the planner yet,
* and the planner can accept one, send immediately
*/
inline void manage_manual_move() {
if (manual_move_axis != (int8_t)NO_AXIS && ELAPSED(millis(), manual_move_start_time) && !planner.is_full()) {
planner.buffer_line_kinematic(current_position, MMM_TO_MMS(manual_feedrate_mm_m[manual_move_axis]), manual_move_e_index);
manual_move_axis = (int8_t)NO_AXIS;
}
}
/**
* Set a flag that lcd_update() should start a move
* to "current_position" after a short delay.
*/
inline void manual_move_to_current(AxisEnum axis
#if E_MANUAL > 1
, int8_t eindex=-1
#endif
) {
#if E_MANUAL > 1
if (axis == E_AXIS) manual_move_e_index = eindex >= 0 ? eindex : active_extruder;
#endif
manual_move_start_time = millis() + (move_menu_scale < 0.99 ? 0UL : 250UL); // delay for bigger moves
manual_move_axis = (int8_t)axis;
}
/**
*
* "Prepare" > "Move Axis" submenu
*
*/
void _lcd_move_xyz(const char* name, AxisEnum axis) {
if (lcd_clicked) { return lcd_goto_previous_menu(); }
ENCODER_DIRECTION_NORMAL();
if (encoderPosition) {
refresh_cmd_timeout();
float min = current_position[axis] - 1000,
max = current_position[axis] + 1000;
#if HAS_SOFTWARE_ENDSTOPS
// Limit to software endstops, if enabled
if (soft_endstops_enabled) {
#if ENABLED(MIN_SOFTWARE_ENDSTOPS)
min = soft_endstop_min[axis];
#endif
#if ENABLED(MAX_SOFTWARE_ENDSTOPS)
max = soft_endstop_max[axis];
#endif
}
#endif
// Get the new position
current_position[axis] += float((int32_t)encoderPosition) * move_menu_scale;
// Delta limits XY based on the current offset from center
// This assumes the center is 0,0
#if ENABLED(DELTA)
if (axis != Z_AXIS) {
max = SQRT(sq((float)(DELTA_PRINTABLE_RADIUS)) - sq(current_position[Y_AXIS - axis]));
min = -max;
}
#endif
// Limit only when trying to move towards the limit
if ((int32_t)encoderPosition < 0) NOLESS(current_position[axis], min);
if ((int32_t)encoderPosition > 0) NOMORE(current_position[axis], max);
manual_move_to_current(axis);
encoderPosition = 0;
lcdDrawUpdate = LCDVIEW_REDRAW_NOW;
}
if (lcdDrawUpdate)
lcd_implementation_drawedit(name, move_menu_scale >= 0.1 ? ftostr41sign(current_position[axis]) : ftostr43sign(current_position[axis]));
}
void lcd_move_x() { _lcd_move_xyz(PSTR(MSG_MOVE_X), X_AXIS); }
void lcd_move_y() { _lcd_move_xyz(PSTR(MSG_MOVE_Y), Y_AXIS); }
void lcd_move_z() { _lcd_move_xyz(PSTR(MSG_MOVE_Z), Z_AXIS); }
void _lcd_move_e(
#if E_MANUAL > 1
int8_t eindex=-1
#endif
) {
if (lcd_clicked) { return lcd_goto_previous_menu(); }
ENCODER_DIRECTION_NORMAL();
if (encoderPosition) {
current_position[E_AXIS] += float((int32_t)encoderPosition) * move_menu_scale;
encoderPosition = 0;
manual_move_to_current(E_AXIS
#if E_MANUAL > 1
, eindex
#endif
);
lcdDrawUpdate = LCDVIEW_REDRAW_NOW;
}
if (lcdDrawUpdate) {
PGM_P pos_label;
#if E_MANUAL == 1
pos_label = PSTR(MSG_MOVE_E);
#else
switch (eindex) {
default: pos_label = PSTR(MSG_MOVE_E MSG_MOVE_E1); break;
case 1: pos_label = PSTR(MSG_MOVE_E MSG_MOVE_E2); break;
#if E_MANUAL > 2
case 2: pos_label = PSTR(MSG_MOVE_E MSG_MOVE_E3); break;
#if E_MANUAL > 3
case 3: pos_label = PSTR(MSG_MOVE_E MSG_MOVE_E4); break;
#if E_MANUAL > 4
case 4: pos_label = PSTR(MSG_MOVE_E MSG_MOVE_E5); break;
#endif // E_MANUAL > 4
#endif // E_MANUAL > 3
#endif // E_MANUAL > 2
}
#endif // E_MANUAL > 1
lcd_implementation_drawedit(pos_label, ftostr41sign(current_position[E_AXIS]));
}
}
void lcd_move_e() { _lcd_move_e(); }
#if E_MANUAL > 1
void lcd_move_e0() { _lcd_move_e(0); }
void lcd_move_e1() { _lcd_move_e(1); }
#if E_MANUAL > 2
void lcd_move_e2() { _lcd_move_e(2); }
#if E_MANUAL > 3
void lcd_move_e3() { _lcd_move_e(3); }
#if E_MANUAL > 4
void lcd_move_e4() { _lcd_move_e(4); }
#endif // E_MANUAL > 4
#endif // E_MANUAL > 3
#endif // E_MANUAL > 2
#endif // E_MANUAL > 1
/**
*
* "Prepare" > "Move Xmm" > "Move XYZ" submenu
*
*/
screenFunc_t _manual_move_func_ptr;
void _goto_manual_move(const float scale) {
defer_return_to_status = true;
move_menu_scale = scale;
lcd_goto_screen(_manual_move_func_ptr);
}
void lcd_move_menu_10mm() { _goto_manual_move(10.0); }
void lcd_move_menu_1mm() { _goto_manual_move( 1.0); }
void lcd_move_menu_01mm() { _goto_manual_move( 0.1); }
void _lcd_move_distance_menu(const AxisEnum axis, const screenFunc_t func) {
_manual_move_func_ptr = func;
START_MENU();
if (LCD_HEIGHT >= 4) {
switch(axis) {
case X_AXIS:
STATIC_ITEM(MSG_MOVE_X, true, true); break;
case Y_AXIS:
STATIC_ITEM(MSG_MOVE_Y, true, true); break;
case Z_AXIS:
STATIC_ITEM(MSG_MOVE_Z, true, true); break;
default:
STATIC_ITEM(MSG_MOVE_E, true, true); break;
}
}
MENU_BACK(MSG_MOVE_AXIS);
MENU_ITEM(submenu, MSG_MOVE_10MM, lcd_move_menu_10mm);
MENU_ITEM(submenu, MSG_MOVE_1MM, lcd_move_menu_1mm);
MENU_ITEM(submenu, MSG_MOVE_01MM, lcd_move_menu_01mm);
END_MENU();
}
void lcd_move_get_x_amount() { _lcd_move_distance_menu(X_AXIS, lcd_move_x); }
void lcd_move_get_y_amount() { _lcd_move_distance_menu(Y_AXIS, lcd_move_y); }
void lcd_move_get_z_amount() { _lcd_move_distance_menu(Z_AXIS, lcd_move_z); }
void lcd_move_get_e_amount() { _lcd_move_distance_menu(E_AXIS, lcd_move_e); }
#if E_MANUAL > 1
void lcd_move_get_e0_amount() { _lcd_move_distance_menu(E_AXIS, lcd_move_e0); }
void lcd_move_get_e1_amount() { _lcd_move_distance_menu(E_AXIS, lcd_move_e1); }
#if E_MANUAL > 2
void lcd_move_get_e2_amount() { _lcd_move_distance_menu(E_AXIS, lcd_move_e2); }
#if E_MANUAL > 3
void lcd_move_get_e3_amount() { _lcd_move_distance_menu(E_AXIS, lcd_move_e3); }
#if E_MANUAL > 4
void lcd_move_get_e4_amount() { _lcd_move_distance_menu(E_AXIS, lcd_move_e4); }
#endif // E_MANUAL > 4
#endif // E_MANUAL > 3
#endif // E_MANUAL > 2
#endif // E_MANUAL > 1
/**
*
* "Prepare" > "Move Axis" submenu
*
*/
#if IS_KINEMATIC
#define _MOVE_XYZ_ALLOWED (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS])
#if ENABLED(DELTA)
#define _MOVE_XY_ALLOWED (current_position[Z_AXIS] <= delta_clip_start_height)
void lcd_lower_z_to_clip_height() {
line_to_z(delta_clip_start_height);
lcd_synchronize();
}
#else
#define _MOVE_XY_ALLOWED true
#endif
#else
#define _MOVE_XYZ_ALLOWED true
#define _MOVE_XY_ALLOWED true
#endif
void lcd_move_menu() {
START_MENU();
MENU_BACK(MSG_PREPARE);
if (_MOVE_XYZ_ALLOWED) {
if (_MOVE_XY_ALLOWED) {
MENU_ITEM(submenu, MSG_MOVE_X, lcd_move_get_x_amount);
MENU_ITEM(submenu, MSG_MOVE_Y, lcd_move_get_y_amount);
}
#if ENABLED(DELTA)
else
MENU_ITEM(function, MSG_FREE_XY, lcd_lower_z_to_clip_height);
#endif
MENU_ITEM(submenu, MSG_MOVE_Z, lcd_move_get_z_amount);
}
else
MENU_ITEM(gcode, MSG_AUTO_HOME, PSTR("G28"));
#if ENABLED(SWITCHING_EXTRUDER)
if (active_extruder)
MENU_ITEM(gcode, MSG_SELECT " " MSG_E1, PSTR("T0"));
else
MENU_ITEM(gcode, MSG_SELECT " " MSG_E2, PSTR("T1"));
#endif
MENU_ITEM(submenu, MSG_MOVE_E, lcd_move_get_e_amount);
#if E_MANUAL > 1
MENU_ITEM(submenu, MSG_MOVE_E MSG_MOVE_E1, lcd_move_get_e0_amount);
MENU_ITEM(submenu, MSG_MOVE_E MSG_MOVE_E2, lcd_move_get_e1_amount);
#if E_MANUAL > 2
MENU_ITEM(submenu, MSG_MOVE_E MSG_MOVE_E3, lcd_move_get_e2_amount);
#if E_MANUAL > 3
MENU_ITEM(submenu, MSG_MOVE_E MSG_MOVE_E4, lcd_move_get_e3_amount);
#if E_MANUAL > 4
MENU_ITEM(submenu, MSG_MOVE_E MSG_MOVE_E5, lcd_move_get_e4_amount);
#endif // E_MANUAL > 4
#endif // E_MANUAL > 3
#endif // E_MANUAL > 2
#endif // E_MANUAL > 1
END_MENU();
}
/**
*
* "Control" submenu
*
*/
#if HAS_LCD_CONTRAST
void lcd_callback_set_contrast() { set_lcd_contrast(lcd_contrast); }
#endif
static void lcd_factory_settings() {
settings.reset();
lcd_completion_feedback();
}
void lcd_control_menu() {
START_MENU();
MENU_BACK(MSG_MAIN);
MENU_ITEM(submenu, MSG_TEMPERATURE, lcd_control_temperature_menu);
MENU_ITEM(submenu, MSG_MOTION, lcd_control_motion_menu);
MENU_ITEM(submenu, MSG_FILAMENT, lcd_control_filament_menu);
#if HAS_LCD_CONTRAST
MENU_ITEM_EDIT_CALLBACK(int3, MSG_CONTRAST, (int*)&lcd_contrast, LCD_CONTRAST_MIN, LCD_CONTRAST_MAX, lcd_callback_set_contrast, true);
#endif
#if ENABLED(FWRETRACT)
MENU_ITEM(submenu, MSG_RETRACT, lcd_control_retract_menu);
#endif
#if ENABLED(DAC_STEPPER_CURRENT)
MENU_ITEM(submenu, MSG_DRIVE_STRENGTH, lcd_dac_menu);
#endif
#if HAS_MOTOR_CURRENT_PWM
MENU_ITEM(submenu, MSG_DRIVE_STRENGTH, lcd_pwm_menu);
#endif
#if ENABLED(BLTOUCH)
MENU_ITEM(submenu, MSG_BLTOUCH, bltouch_menu);
#endif
#if ENABLED(EEPROM_SETTINGS)
MENU_ITEM(function, MSG_STORE_EEPROM, lcd_store_settings);
MENU_ITEM(function, MSG_LOAD_EEPROM, lcd_load_settings);
#endif
MENU_ITEM(function, MSG_RESTORE_FAILSAFE, lcd_factory_settings);
#if ENABLED(EEPROM_SETTINGS)
MENU_ITEM(gcode, MSG_INIT_EEPROM, PSTR("M502\nM500")); // TODO: Add "Are You Sure?" step
#endif
END_MENU();
}
/**
*
* "Temperature" submenu
*
*/
#if ENABLED(PID_AUTOTUNE_MENU)
#if ENABLED(PIDTEMP)
int16_t autotune_temp[HOTENDS] = ARRAY_BY_HOTENDS1(150);
#endif
#if ENABLED(PIDTEMPBED)
int16_t autotune_temp_bed = 70;
#endif
void _lcd_autotune(int16_t e) {
char cmd[30];
sprintf_P(cmd, PSTR("M303 U1 E%i S%i"), e,
#if HAS_PID_FOR_BOTH
e < 0 ? autotune_temp_bed : autotune_temp[e]
#elif ENABLED(PIDTEMPBED)
autotune_temp_bed
#else
autotune_temp[e]
#endif
);
enqueue_and_echo_command(cmd);
}
#endif // PID_AUTOTUNE_MENU
#if ENABLED(PIDTEMP)
// Helpers for editing PID Ki & Kd values
// grab the PID value out of the temp variable; scale it; then update the PID driver
void copy_and_scalePID_i(int16_t e) {
#if DISABLED(PID_PARAMS_PER_HOTEND) || HOTENDS == 1
UNUSED(e);
#endif
PID_PARAM(Ki, e) = scalePID_i(raw_Ki);
thermalManager.updatePID();
}
void copy_and_scalePID_d(int16_t e) {
#if DISABLED(PID_PARAMS_PER_HOTEND) || HOTENDS == 1
UNUSED(e);
#endif
PID_PARAM(Kd, e) = scalePID_d(raw_Kd);
thermalManager.updatePID();
}
#define _DEFINE_PIDTEMP_BASE_FUNCS(N) \
void copy_and_scalePID_i_E ## N() { copy_and_scalePID_i(N); } \
void copy_and_scalePID_d_E ## N() { copy_and_scalePID_d(N); }
#if ENABLED(PID_AUTOTUNE_MENU)
#define DEFINE_PIDTEMP_FUNCS(N) \
_DEFINE_PIDTEMP_BASE_FUNCS(N); \
void lcd_autotune_callback_E ## N() { _lcd_autotune(N); } typedef void _pid_##N##_void
#else
#define DEFINE_PIDTEMP_FUNCS(N) _DEFINE_PIDTEMP_BASE_FUNCS(N) typedef void _pid_##N##_void
#endif
DEFINE_PIDTEMP_FUNCS(0);
#if ENABLED(PID_PARAMS_PER_HOTEND)
#if HOTENDS > 1
DEFINE_PIDTEMP_FUNCS(1);
#if HOTENDS > 2
DEFINE_PIDTEMP_FUNCS(2);
#if HOTENDS > 3
DEFINE_PIDTEMP_FUNCS(3);
#if HOTENDS > 4
DEFINE_PIDTEMP_FUNCS(4);
#endif // HOTENDS > 4
#endif // HOTENDS > 3
#endif // HOTENDS > 2
#endif // HOTENDS > 1
#endif // PID_PARAMS_PER_HOTEND
#endif // PIDTEMP
/**
*
* "Control" > "Temperature" submenu
*
*/
void lcd_control_temperature_menu() {
START_MENU();
//
// ^ Control
//
MENU_BACK(MSG_CONTROL);
//
// Nozzle:
// Nozzle [1-5]:
//
#if HOTENDS == 1
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE, &thermalManager.target_temperature[0], 0, HEATER_0_MAXTEMP - 15, watch_temp_callback_E0);
#else // HOTENDS > 1
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N1, &thermalManager.target_temperature[0], 0, HEATER_0_MAXTEMP - 15, watch_temp_callback_E0);
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N2, &thermalManager.target_temperature[1], 0, HEATER_1_MAXTEMP - 15, watch_temp_callback_E1);
#if HOTENDS > 2
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N3, &thermalManager.target_temperature[2], 0, HEATER_2_MAXTEMP - 15, watch_temp_callback_E2);
#if HOTENDS > 3
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N4, &thermalManager.target_temperature[3], 0, HEATER_3_MAXTEMP - 15, watch_temp_callback_E3);
#if HOTENDS > 4
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N5, &thermalManager.target_temperature[4], 0, HEATER_4_MAXTEMP - 15, watch_temp_callback_E4);
#endif // HOTENDS > 4
#endif // HOTENDS > 3
#endif // HOTENDS > 2
#endif // HOTENDS > 1
//
// Bed:
//
#if HAS_TEMP_BED
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_BED, &thermalManager.target_temperature_bed, 0, BED_MAXTEMP - 15, watch_temp_callback_bed);
#endif
//
// Fan Speed:
//
#if FAN_COUNT > 0
#if HAS_FAN0
#if FAN_COUNT > 1
#define MSG_1ST_FAN_SPEED MSG_FAN_SPEED " 1"
#else
#define MSG_1ST_FAN_SPEED MSG_FAN_SPEED
#endif
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_1ST_FAN_SPEED, &fanSpeeds[0], 0, 255);
#endif
#if HAS_FAN1
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_FAN_SPEED " 2", &fanSpeeds[1], 0, 255);
#endif
#if HAS_FAN2
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_FAN_SPEED " 3", &fanSpeeds[2], 0, 255);
#endif
#endif // FAN_COUNT > 0
//
// Autotemp, Min, Max, Fact
//
#if ENABLED(AUTOTEMP) && (TEMP_SENSOR_0 != 0)
MENU_ITEM_EDIT(bool, MSG_AUTOTEMP, &planner.autotemp_enabled);
MENU_ITEM_EDIT(float3, MSG_MIN, &planner.autotemp_min, 0, HEATER_0_MAXTEMP - 15);
MENU_ITEM_EDIT(float3, MSG_MAX, &planner.autotemp_max, 0, HEATER_0_MAXTEMP - 15);
MENU_ITEM_EDIT(float32, MSG_FACTOR, &planner.autotemp_factor, 0.0, 1.0);
#endif
//
// PID-P, PID-I, PID-D, PID-C, PID Autotune
// PID-P E1, PID-I E1, PID-D E1, PID-C E1, PID Autotune E1
// PID-P E2, PID-I E2, PID-D E2, PID-C E2, PID Autotune E2
// PID-P E3, PID-I E3, PID-D E3, PID-C E3, PID Autotune E3
// PID-P E4, PID-I E4, PID-D E4, PID-C E4, PID Autotune E4
// PID-P E5, PID-I E5, PID-D E5, PID-C E5, PID Autotune E5
//
#if ENABLED(PIDTEMP)
#define _PID_BASE_MENU_ITEMS(ELABEL, eindex) \
raw_Ki = unscalePID_i(PID_PARAM(Ki, eindex)); \
raw_Kd = unscalePID_d(PID_PARAM(Kd, eindex)); \
MENU_ITEM_EDIT(float52, MSG_PID_P ELABEL, &PID_PARAM(Kp, eindex), 1, 9990); \
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_I ELABEL, &raw_Ki, 0.01, 9990, copy_and_scalePID_i_E ## eindex); \
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_D ELABEL, &raw_Kd, 1, 9990, copy_and_scalePID_d_E ## eindex)
#if ENABLED(PID_EXTRUSION_SCALING)
#define _PID_MENU_ITEMS(ELABEL, eindex) \
_PID_BASE_MENU_ITEMS(ELABEL, eindex); \
MENU_ITEM_EDIT(float3, MSG_PID_C ELABEL, &PID_PARAM(Kc, eindex), 1, 9990)
#else
#define _PID_MENU_ITEMS(ELABEL, eindex) _PID_BASE_MENU_ITEMS(ELABEL, eindex)
#endif
#if ENABLED(PID_AUTOTUNE_MENU)
#define PID_MENU_ITEMS(ELABEL, eindex) \
_PID_MENU_ITEMS(ELABEL, eindex); \
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_PID_AUTOTUNE ELABEL, &autotune_temp[eindex], 150, heater_maxtemp[eindex] - 15, lcd_autotune_callback_E ## eindex)
#else
#define PID_MENU_ITEMS(ELABEL, eindex) _PID_MENU_ITEMS(ELABEL, eindex)
#endif
#if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
PID_MENU_ITEMS(" " MSG_E1, 0);
PID_MENU_ITEMS(" " MSG_E2, 1);
#if HOTENDS > 2
PID_MENU_ITEMS(" " MSG_E3, 2);
#if HOTENDS > 3
PID_MENU_ITEMS(" " MSG_E4, 3);
#if HOTENDS > 4
PID_MENU_ITEMS(" " MSG_E5, 4);
#endif // HOTENDS > 4
#endif // HOTENDS > 3
#endif // HOTENDS > 2
#else // !PID_PARAMS_PER_HOTEND || HOTENDS == 1
PID_MENU_ITEMS("", 0);
#endif // !PID_PARAMS_PER_HOTEND || HOTENDS == 1
#endif // PIDTEMP
//
// Preheat Material 1 conf
//
MENU_ITEM(submenu, MSG_PREHEAT_1_SETTINGS, lcd_control_temperature_preheat_material1_settings_menu);
//
// Preheat Material 2 conf
//
MENU_ITEM(submenu, MSG_PREHEAT_2_SETTINGS, lcd_control_temperature_preheat_material2_settings_menu);
END_MENU();
}
void _lcd_control_temperature_preheat_settings_menu(uint8_t material) {
#if HOTENDS > 4
#define MINTEMP_ALL MIN5(HEATER_0_MINTEMP, HEATER_1_MINTEMP, HEATER_2_MINTEMP, HEATER_3_MINTEMP, HEATER_4_MINTEMP)
#define MAXTEMP_ALL MAX5(HEATER_0_MAXTEMP, HEATER_1_MAXTEMP, HEATER_2_MAXTEMP, HEATER_3_MAXTEMP, HEATER_4_MAXTEMP)
#elif HOTENDS > 3
#define MINTEMP_ALL MIN4(HEATER_0_MINTEMP, HEATER_1_MINTEMP, HEATER_2_MINTEMP, HEATER_3_MINTEMP)
#define MAXTEMP_ALL MAX4(HEATER_0_MAXTEMP, HEATER_1_MAXTEMP, HEATER_2_MAXTEMP, HEATER_3_MAXTEMP)
#elif HOTENDS > 2
#define MINTEMP_ALL MIN3(HEATER_0_MINTEMP, HEATER_1_MINTEMP, HEATER_2_MINTEMP)
#define MAXTEMP_ALL MAX3(HEATER_0_MAXTEMP, HEATER_1_MAXTEMP, HEATER_2_MAXTEMP)
#elif HOTENDS > 1
#define MINTEMP_ALL min(HEATER_0_MINTEMP, HEATER_1_MINTEMP)
#define MAXTEMP_ALL max(HEATER_0_MAXTEMP, HEATER_1_MAXTEMP)
#else
#define MINTEMP_ALL HEATER_0_MINTEMP
#define MAXTEMP_ALL HEATER_0_MAXTEMP
#endif
START_MENU();
MENU_BACK(MSG_TEMPERATURE);
MENU_ITEM_EDIT(int3, MSG_FAN_SPEED, &lcd_preheat_fan_speed[material], 0, 255);
#if TEMP_SENSOR_0 != 0
MENU_ITEM_EDIT(int3, MSG_NOZZLE, &lcd_preheat_hotend_temp[material], MINTEMP_ALL, MAXTEMP_ALL - 15);
#endif
#if TEMP_SENSOR_BED != 0
MENU_ITEM_EDIT(int3, MSG_BED, &lcd_preheat_bed_temp[material], BED_MINTEMP, BED_MAXTEMP - 15);
#endif
#if ENABLED(EEPROM_SETTINGS)
MENU_ITEM(function, MSG_STORE_EEPROM, lcd_store_settings);
#endif
END_MENU();
}
/**
*
* "Temperature" > "Preheat Material 1 conf" submenu
*
*/
void lcd_control_temperature_preheat_material1_settings_menu() { _lcd_control_temperature_preheat_settings_menu(0); }
/**
*
* "Temperature" > "Preheat Material 2 conf" submenu
*
*/
void lcd_control_temperature_preheat_material2_settings_menu() { _lcd_control_temperature_preheat_settings_menu(1); }
/**
*
* "Control" > "Motion" submenu
*
*/
void _reset_acceleration_rates() { planner.reset_acceleration_rates(); }
#if ENABLED(DISTINCT_E_FACTORS)
void _reset_e_acceleration_rate(const uint8_t e) { if (e == active_extruder) _reset_acceleration_rates(); }
void _reset_e0_acceleration_rate() { _reset_e_acceleration_rate(0); }
void _reset_e1_acceleration_rate() { _reset_e_acceleration_rate(1); }
#if E_STEPPERS > 2
void _reset_e2_acceleration_rate() { _reset_e_acceleration_rate(2); }
#if E_STEPPERS > 3
void _reset_e3_acceleration_rate() { _reset_e_acceleration_rate(3); }
#if E_STEPPERS > 4
void _reset_e4_acceleration_rate() { _reset_e_acceleration_rate(4); }
#endif // E_STEPPERS > 4
#endif // E_STEPPERS > 3
#endif // E_STEPPERS > 2
#endif
void _planner_refresh_positioning() { planner.refresh_positioning(); }
#if ENABLED(DISTINCT_E_FACTORS)
void _planner_refresh_e_positioning(const uint8_t e) {
if (e == active_extruder)
_planner_refresh_positioning();
else
planner.steps_to_mm[E_AXIS + e] = 1.0 / planner.axis_steps_per_mm[E_AXIS + e];
}
void _planner_refresh_e0_positioning() { _planner_refresh_e_positioning(0); }
void _planner_refresh_e1_positioning() { _planner_refresh_e_positioning(1); }
#if E_STEPPERS > 2
void _planner_refresh_e2_positioning() { _planner_refresh_e_positioning(2); }
#if E_STEPPERS > 3
void _planner_refresh_e3_positioning() { _planner_refresh_e_positioning(3); }
#if E_STEPPERS > 4
void _planner_refresh_e4_positioning() { _planner_refresh_e_positioning(4); }
#endif // E_STEPPERS > 4
#endif // E_STEPPERS > 3
#endif // E_STEPPERS > 2
#endif
// M203 / M205 Velocity options
void lcd_control_motion_velocity_menu() {
START_MENU();
MENU_BACK(MSG_MOTION);
// M203 Max Feedrate
MENU_ITEM_EDIT(float3, MSG_VMAX MSG_X, &planner.max_feedrate_mm_s[X_AXIS], 1, 999);
MENU_ITEM_EDIT(float3, MSG_VMAX MSG_Y, &planner.max_feedrate_mm_s[Y_AXIS], 1, 999);
MENU_ITEM_EDIT(float3, MSG_VMAX MSG_Z, &planner.max_feedrate_mm_s[Z_AXIS], 1, 999);
#if ENABLED(DISTINCT_E_FACTORS)
MENU_ITEM_EDIT(float3, MSG_VMAX MSG_E, &planner.max_feedrate_mm_s[E_AXIS + active_extruder], 1, 999);
MENU_ITEM_EDIT(float3, MSG_VMAX MSG_E1, &planner.max_feedrate_mm_s[E_AXIS], 1, 999);
MENU_ITEM_EDIT(float3, MSG_VMAX MSG_E2, &planner.max_feedrate_mm_s[E_AXIS + 1], 1, 999);
#if E_STEPPERS > 2
MENU_ITEM_EDIT(float3, MSG_VMAX MSG_E3, &planner.max_feedrate_mm_s[E_AXIS + 2], 1, 999);
#if E_STEPPERS > 3
MENU_ITEM_EDIT(float3, MSG_VMAX MSG_E4, &planner.max_feedrate_mm_s[E_AXIS + 3], 1, 999);
#if E_STEPPERS > 4
MENU_ITEM_EDIT(float3, MSG_VMAX MSG_E5, &planner.max_feedrate_mm_s[E_AXIS + 4], 1, 999);
#endif // E_STEPPERS > 4
#endif // E_STEPPERS > 3
#endif // E_STEPPERS > 2
#else
MENU_ITEM_EDIT(float3, MSG_VMAX MSG_E, &planner.max_feedrate_mm_s[E_AXIS], 1, 999);
#endif
// M205 S Min Feedrate
MENU_ITEM_EDIT(float3, MSG_VMIN, &planner.min_feedrate_mm_s, 0, 999);
// M205 T Min Travel Feedrate
MENU_ITEM_EDIT(float3, MSG_VTRAV_MIN, &planner.min_travel_feedrate_mm_s, 0, 999);
END_MENU();
}
// M201 / M204 Accelerations
void lcd_control_motion_acceleration_menu() {
START_MENU();
MENU_BACK(MSG_MOTION);
// M204 P Acceleration
MENU_ITEM_EDIT(float5, MSG_ACC, &planner.acceleration, 10, 99000);
// M204 R Retract Acceleration
MENU_ITEM_EDIT(float5, MSG_A_RETRACT, &planner.retract_acceleration, 100, 99000);
// M204 T Travel Acceleration
MENU_ITEM_EDIT(float5, MSG_A_TRAVEL, &planner.travel_acceleration, 100, 99000);
// M201 settings
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_X, &planner.max_acceleration_mm_per_s2[X_AXIS], 100, 99000, _reset_acceleration_rates);
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_Y, &planner.max_acceleration_mm_per_s2[Y_AXIS], 100, 99000, _reset_acceleration_rates);
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_Z, &planner.max_acceleration_mm_per_s2[Z_AXIS], 10, 99000, _reset_acceleration_rates);
#if ENABLED(DISTINCT_E_FACTORS)
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_E, &planner.max_acceleration_mm_per_s2[E_AXIS + active_extruder], 100, 99000, _reset_acceleration_rates);
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_E1, &planner.max_acceleration_mm_per_s2[E_AXIS], 100, 99000, _reset_e0_acceleration_rate);
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_E2, &planner.max_acceleration_mm_per_s2[E_AXIS + 1], 100, 99000, _reset_e1_acceleration_rate);
#if E_STEPPERS > 2
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_E3, &planner.max_acceleration_mm_per_s2[E_AXIS + 2], 100, 99000, _reset_e2_acceleration_rate);
#if E_STEPPERS > 3
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_E4, &planner.max_acceleration_mm_per_s2[E_AXIS + 3], 100, 99000, _reset_e3_acceleration_rate);
#if E_STEPPERS > 4
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_E5, &planner.max_acceleration_mm_per_s2[E_AXIS + 4], 100, 99000, _reset_e4_acceleration_rate);
#endif // E_STEPPERS > 4
#endif // E_STEPPERS > 3
#endif // E_STEPPERS > 2
#else
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_E, &planner.max_acceleration_mm_per_s2[E_AXIS], 100, 99000, _reset_acceleration_rates);
#endif
END_MENU();
}
// M205 Jerk
void lcd_control_motion_jerk_menu() {
START_MENU();
MENU_BACK(MSG_MOTION);
MENU_ITEM_EDIT(float3, MSG_VX_JERK, &planner.max_jerk[X_AXIS], 1, 990);
MENU_ITEM_EDIT(float3, MSG_VY_JERK, &planner.max_jerk[Y_AXIS], 1, 990);
#if ENABLED(DELTA)
MENU_ITEM_EDIT(float3, MSG_VZ_JERK, &planner.max_jerk[Z_AXIS], 1, 990);
#else
MENU_ITEM_EDIT(float52, MSG_VZ_JERK, &planner.max_jerk[Z_AXIS], 0.1, 990);
#endif
MENU_ITEM_EDIT(float3, MSG_VE_JERK, &planner.max_jerk[E_AXIS], 1, 990);
END_MENU();
}
// M92 Steps-per-mm
void lcd_control_motion_steps_per_mm_menu() {
START_MENU();
MENU_BACK(MSG_MOTION);
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float62, MSG_XSTEPS, &planner.axis_steps_per_mm[X_AXIS], 5, 9999, _planner_refresh_positioning);
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float62, MSG_YSTEPS, &planner.axis_steps_per_mm[Y_AXIS], 5, 9999, _planner_refresh_positioning);
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float62, MSG_ZSTEPS, &planner.axis_steps_per_mm[Z_AXIS], 5, 9999, _planner_refresh_positioning);
#if ENABLED(DISTINCT_E_FACTORS)
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float62, MSG_ESTEPS, &planner.axis_steps_per_mm[E_AXIS + active_extruder], 5, 9999, _planner_refresh_positioning);
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float62, MSG_E1STEPS, &planner.axis_steps_per_mm[E_AXIS], 5, 9999, _planner_refresh_e0_positioning);
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float62, MSG_E2STEPS, &planner.axis_steps_per_mm[E_AXIS + 1], 5, 9999, _planner_refresh_e1_positioning);
#if E_STEPPERS > 2
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float62, MSG_E3STEPS, &planner.axis_steps_per_mm[E_AXIS + 2], 5, 9999, _planner_refresh_e2_positioning);
#if E_STEPPERS > 3
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float62, MSG_E4STEPS, &planner.axis_steps_per_mm[E_AXIS + 3], 5, 9999, _planner_refresh_e3_positioning);
#if E_STEPPERS > 4
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float62, MSG_E5STEPS, &planner.axis_steps_per_mm[E_AXIS + 4], 5, 9999, _planner_refresh_e4_positioning);
#endif // E_STEPPERS > 4
#endif // E_STEPPERS > 3
#endif // E_STEPPERS > 2
#else
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float62, MSG_ESTEPS, &planner.axis_steps_per_mm[E_AXIS], 5, 9999, _planner_refresh_positioning);
#endif
END_MENU();
}
void lcd_control_motion_menu() {
START_MENU();
MENU_BACK(MSG_CONTROL);
#if ENABLED(BABYSTEP_ZPROBE_OFFSET)
MENU_ITEM(submenu, MSG_ZPROBE_ZOFFSET, lcd_babystep_zoffset);
#elif HAS_BED_PROBE
MENU_ITEM_EDIT_CALLBACK(float32, MSG_ZPROBE_ZOFFSET, &zprobe_zoffset, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX, lcd_refresh_zprobe_zoffset);
#endif
// M203 / M205 - Feedrate items
MENU_ITEM(submenu, MSG_VELOCITY, lcd_control_motion_velocity_menu);
// M201 - Acceleration items
MENU_ITEM(submenu, MSG_ACCELERATION, lcd_control_motion_acceleration_menu);
// M205 - Max Jerk
MENU_ITEM(submenu, MSG_JERK, lcd_control_motion_jerk_menu);
// M92 - Steps Per mm
MENU_ITEM(submenu, MSG_STEPS_PER_MM, lcd_control_motion_steps_per_mm_menu);
// M540 S - Abort on endstop hit when SD printing
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
MENU_ITEM_EDIT(bool, MSG_ENDSTOP_ABORT, &stepper.abort_on_endstop_hit);
#endif
END_MENU();
}
/**
*
* "Control" > "Filament" submenu
*
*/
void lcd_control_filament_menu() {
START_MENU();
MENU_BACK(MSG_CONTROL);
#if ENABLED(LIN_ADVANCE)
MENU_ITEM_EDIT(float3, MSG_ADVANCE_K, &planner.extruder_advance_k, 0, 999);
#endif
MENU_ITEM_EDIT_CALLBACK(bool, MSG_VOLUMETRIC_ENABLED, &volumetric_enabled, calculate_volumetric_multipliers);
if (volumetric_enabled) {
#if EXTRUDERS == 1
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM, &filament_size[0], 1.5, 3.25, calculate_volumetric_multipliers);
#else // EXTRUDERS > 1
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM MSG_DIAM_E1, &filament_size[0], 1.5, 3.25, calculate_volumetric_multipliers);
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM MSG_DIAM_E2, &filament_size[1], 1.5, 3.25, calculate_volumetric_multipliers);
#if EXTRUDERS > 2
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM MSG_DIAM_E3, &filament_size[2], 1.5, 3.25, calculate_volumetric_multipliers);
#if EXTRUDERS > 3
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM MSG_DIAM_E4, &filament_size[3], 1.5, 3.25, calculate_volumetric_multipliers);
#if EXTRUDERS > 4
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM MSG_DIAM_E5, &filament_size[4], 1.5, 3.25, calculate_volumetric_multipliers);
#endif // EXTRUDERS > 4
#endif // EXTRUDERS > 3
#endif // EXTRUDERS > 2
#endif // EXTRUDERS > 1
}
END_MENU();
}
/**
*
* "Control" > "Retract" submenu
*
*/
#if ENABLED(FWRETRACT)
void lcd_control_retract_menu() {
START_MENU();
MENU_BACK(MSG_CONTROL);
MENU_ITEM_EDIT(bool, MSG_AUTORETRACT, &autoretract_enabled);
MENU_ITEM_EDIT(float52, MSG_CONTROL_RETRACT, &retract_length, 0, 100);
#if EXTRUDERS > 1
MENU_ITEM_EDIT(float52, MSG_CONTROL_RETRACT_SWAP, &swap_retract_length, 0, 100);
#endif
MENU_ITEM_EDIT(float3, MSG_CONTROL_RETRACTF, &retract_feedrate_mm_s, 1, 999);
MENU_ITEM_EDIT(float52, MSG_CONTROL_RETRACT_ZLIFT, &retract_zlift, 0, 999);
MENU_ITEM_EDIT(float52, MSG_CONTROL_RETRACT_RECOVER, &retract_recover_length, -100, 100);
#if EXTRUDERS > 1
MENU_ITEM_EDIT(float52, MSG_CONTROL_RETRACT_RECOVER_SWAP, &swap_retract_recover_length, -100, 100);
#endif
MENU_ITEM_EDIT(float3, MSG_CONTROL_RETRACT_RECOVERF, &retract_recover_feedrate_mm_s, 1, 999);
END_MENU();
}
#endif // FWRETRACT
#if ENABLED(SDSUPPORT)
#if !PIN_EXISTS(SD_DETECT)
void lcd_sd_refresh() {
card.initsd();
encoderTopLine = 0;
}
#endif
void lcd_sd_updir() {
card.updir();
encoderTopLine = 0;
screen_changed = true;
lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW;
}
/**
*
* "Print from SD" submenu
*
*/
void lcd_sdcard_menu() {
ENCODER_DIRECTION_MENUS();
if (!lcdDrawUpdate && !lcd_clicked) return; // nothing to do (so don't thrash the SD card)
const uint16_t fileCnt = card.getnrfilenames();
START_MENU();
MENU_BACK(MSG_MAIN);
card.getWorkDirName();
if (card.filename[0] == '/') {
#if !PIN_EXISTS(SD_DETECT)
MENU_ITEM(function, LCD_STR_REFRESH MSG_REFRESH, lcd_sd_refresh);
#endif
}
else {
MENU_ITEM(function, LCD_STR_FOLDER "..", lcd_sd_updir);
}
for (uint16_t i = 0; i < fileCnt; i++) {
if (_menuLineNr == _thisItemNr) {
const uint16_t nr =
#if ENABLED(SDCARD_RATHERRECENTFIRST) && DISABLED(SDCARD_SORT_ALPHA)
fileCnt - 1 -
#endif
i;
#if ENABLED(SDCARD_SORT_ALPHA)
card.getfilename_sorted(nr);
#else
card.getfilename(nr);
#endif
if (card.filenameIsDir)
MENU_ITEM(sddirectory, MSG_CARD_MENU, card.filename, card.longFilename);
else
MENU_ITEM(sdfile, MSG_CARD_MENU, card.filename, card.longFilename);
}
else {
MENU_ITEM_DUMMY();
}
}
END_MENU();
}
#endif // SDSUPPORT
#if ENABLED(LCD_INFO_MENU)
#if ENABLED(PRINTCOUNTER)
/**
*
* About Printer > Statistics submenu
*
*/
void lcd_info_stats_menu() {
if (lcd_clicked) { return lcd_goto_previous_menu(); }
char buffer[21];
printStatistics stats = print_job_timer.getStats();
START_SCREEN(); // 12345678901234567890
STATIC_ITEM(MSG_INFO_PRINT_COUNT ": ", false, false, itostr3left(stats.totalPrints)); // Print Count: 999
STATIC_ITEM(MSG_INFO_COMPLETED_PRINTS": ", false, false, itostr3left(stats.finishedPrints)); // Completed : 666
duration_t elapsed = stats.printTime;
elapsed.toString(buffer);
STATIC_ITEM(MSG_INFO_PRINT_TIME ": ", false, false); // Total print Time:
STATIC_ITEM("", false, false, buffer); // 99y 364d 23h 59m 59s
elapsed = stats.longestPrint;
elapsed.toString(buffer);
STATIC_ITEM(MSG_INFO_PRINT_LONGEST ": ", false, false); // Longest job time:
STATIC_ITEM("", false, false, buffer); // 99y 364d 23h 59m 59s
sprintf_P(buffer, PSTR("%ld.%im"), long(stats.filamentUsed / 1000), int16_t(stats.filamentUsed / 100) % 10);
STATIC_ITEM(MSG_INFO_PRINT_FILAMENT ": ", false, false); // Extruded total:
STATIC_ITEM("", false, false, buffer); // 125m
END_SCREEN();
}
#endif // PRINTCOUNTER
/**
*
* About Printer > Thermistors
*
*/
void lcd_info_thermistors_menu() {
if (lcd_clicked) { return lcd_goto_previous_menu(); }
START_SCREEN();
#define THERMISTOR_ID TEMP_SENSOR_0
#include "thermistornames.h"
STATIC_ITEM("T0: " THERMISTOR_NAME, false, true);
STATIC_ITEM(MSG_INFO_MIN_TEMP ": " STRINGIFY(HEATER_0_MINTEMP), false);
STATIC_ITEM(MSG_INFO_MAX_TEMP ": " STRINGIFY(HEATER_0_MAXTEMP), false);
#if TEMP_SENSOR_1 != 0
#undef THERMISTOR_ID
#define THERMISTOR_ID TEMP_SENSOR_1
#include "thermistornames.h"
STATIC_ITEM("T1: " THERMISTOR_NAME, false, true);
STATIC_ITEM(MSG_INFO_MIN_TEMP ": " STRINGIFY(HEATER_1_MINTEMP), false);
STATIC_ITEM(MSG_INFO_MAX_TEMP ": " STRINGIFY(HEATER_1_MAXTEMP), false);
#endif
#if TEMP_SENSOR_2 != 0
#undef THERMISTOR_ID
#define THERMISTOR_ID TEMP_SENSOR_2
#include "thermistornames.h"
STATIC_ITEM("T2: " THERMISTOR_NAME, false, true);
STATIC_ITEM(MSG_INFO_MIN_TEMP ": " STRINGIFY(HEATER_2_MINTEMP), false);
STATIC_ITEM(MSG_INFO_MAX_TEMP ": " STRINGIFY(HEATER_2_MAXTEMP), false);
#endif
#if TEMP_SENSOR_3 != 0
#undef THERMISTOR_ID
#define THERMISTOR_ID TEMP_SENSOR_3
#include "thermistornames.h"
STATIC_ITEM("T3: " THERMISTOR_NAME, false, true);
STATIC_ITEM(MSG_INFO_MIN_TEMP ": " STRINGIFY(HEATER_3_MINTEMP), false);
STATIC_ITEM(MSG_INFO_MAX_TEMP ": " STRINGIFY(HEATER_3_MAXTEMP), false);
#endif
#if TEMP_SENSOR_4 != 0
#undef THERMISTOR_ID
#define THERMISTOR_ID TEMP_SENSOR_4
#include "thermistornames.h"
STATIC_ITEM("T4: " THERMISTOR_NAME, false, true);
STATIC_ITEM(MSG_INFO_MIN_TEMP ": " STRINGIFY(HEATER_4_MINTEMP), false);
STATIC_ITEM(MSG_INFO_MAX_TEMP ": " STRINGIFY(HEATER_4_MAXTEMP), false);
#endif
#if TEMP_SENSOR_BED != 0
#undef THERMISTOR_ID
#define THERMISTOR_ID TEMP_SENSOR_BED
#include "thermistornames.h"
STATIC_ITEM("TBed:" THERMISTOR_NAME, false, true);
STATIC_ITEM(MSG_INFO_MIN_TEMP ": " STRINGIFY(BED_MINTEMP), false);
STATIC_ITEM(MSG_INFO_MAX_TEMP ": " STRINGIFY(BED_MAXTEMP), false);
#endif
END_SCREEN();
}
/**
*
* About Printer > Board Info
*
*/
void lcd_info_board_menu() {
if (lcd_clicked) { return lcd_goto_previous_menu(); }
START_SCREEN();
STATIC_ITEM(BOARD_NAME, true, true); // MyPrinterController
STATIC_ITEM(MSG_INFO_BAUDRATE ": " STRINGIFY(BAUDRATE), true); // Baud: 250000
STATIC_ITEM(MSG_INFO_PROTOCOL ": " PROTOCOL_VERSION, true); // Protocol: 1.0
#if POWER_SUPPLY == 0
STATIC_ITEM(MSG_INFO_PSU ": Generic", true);
#elif POWER_SUPPLY == 1
STATIC_ITEM(MSG_INFO_PSU ": ATX", true); // Power Supply: ATX
#elif POWER_SUPPLY == 2
STATIC_ITEM(MSG_INFO_PSU ": XBox", true); // Power Supply: XBox
#endif
END_SCREEN();
}
/**
*
* About Printer > Printer Info
*
*/
void lcd_info_printer_menu() {
if (lcd_clicked) { return lcd_goto_previous_menu(); }
START_SCREEN();
STATIC_ITEM(MSG_MARLIN, true, true); // Marlin
STATIC_ITEM(SHORT_BUILD_VERSION, true); // x.x.x-Branch
STATIC_ITEM(STRING_DISTRIBUTION_DATE, true); // YYYY-MM-DD HH:MM
STATIC_ITEM(MACHINE_NAME, true); // My3DPrinter
STATIC_ITEM(WEBSITE_URL, true); // www.my3dprinter.com
STATIC_ITEM(MSG_INFO_EXTRUDERS ": " STRINGIFY(EXTRUDERS), true); // Extruders: 2
#if ENABLED(AUTO_BED_LEVELING_3POINT)
STATIC_ITEM(MSG_3POINT_LEVELING, true); // 3-Point Leveling
#elif ENABLED(AUTO_BED_LEVELING_LINEAR)
STATIC_ITEM(MSG_LINEAR_LEVELING, true); // Linear Leveling
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
STATIC_ITEM(MSG_BILINEAR_LEVELING, true); // Bi-linear Leveling
#elif ENABLED(AUTO_BED_LEVELING_UBL)
STATIC_ITEM(MSG_UBL_LEVELING, true); // Unified Bed Leveling
#elif ENABLED(MESH_BED_LEVELING)
STATIC_ITEM(MSG_MESH_LEVELING, true); // Mesh Leveling
#endif
END_SCREEN();
}
/**
*
* "About Printer" submenu
*
*/
void lcd_info_menu() {
START_MENU();
MENU_BACK(MSG_MAIN);
MENU_ITEM(submenu, MSG_INFO_PRINTER_MENU, lcd_info_printer_menu); // Printer Info >
MENU_ITEM(submenu, MSG_INFO_BOARD_MENU, lcd_info_board_menu); // Board Info >
MENU_ITEM(submenu, MSG_INFO_THERMISTOR_MENU, lcd_info_thermistors_menu); // Thermistors >
#if ENABLED(PRINTCOUNTER)
MENU_ITEM(submenu, MSG_INFO_STATS_MENU, lcd_info_stats_menu); // Printer Statistics >
#endif
END_MENU();
}
#endif // LCD_INFO_MENU
/**
*
* Filament Change Feature Screens
*
*/
#if ENABLED(ADVANCED_PAUSE_FEATURE)
// Portions from STATIC_ITEM...
#define HOTEND_STATUS_ITEM() do { \
if (_menuLineNr == _thisItemNr) { \
if (lcdDrawUpdate) { \
lcd_implementation_drawmenu_static(_lcdLineNr, PSTR(MSG_FILAMENT_CHANGE_NOZZLE), false, true); \
lcd_implementation_hotend_status(_lcdLineNr); \
} \
if (_skipStatic && encoderLine <= _thisItemNr) { \
encoderPosition += ENCODER_STEPS_PER_MENU_ITEM; \
++encoderLine; \
} \
lcdDrawUpdate = LCDVIEW_CALL_REDRAW_NEXT; \
} \
++_thisItemNr; \
}while(0)
void lcd_advanced_pause_toocold_menu() {
START_MENU();
STATIC_ITEM(MSG_HEATING_FAILED_LCD, true, true);
STATIC_ITEM(MSG_FILAMENT_CHANGE_MINTEMP STRINGIFY(EXTRUDE_MINTEMP) ".", false, false);
MENU_BACK(MSG_BACK);
#if LCD_HEIGHT > 4
STATIC_ITEM(" ");
#endif
HOTEND_STATUS_ITEM();
END_MENU();
}
void lcd_advanced_pause_resume_print() {
advanced_pause_menu_response = ADVANCED_PAUSE_RESPONSE_RESUME_PRINT;
}
void lcd_advanced_pause_extrude_more() {
advanced_pause_menu_response = ADVANCED_PAUSE_RESPONSE_EXTRUDE_MORE;
}
void lcd_advanced_pause_option_menu() {
START_MENU();
#if LCD_HEIGHT > 2
STATIC_ITEM(MSG_FILAMENT_CHANGE_OPTION_HEADER, true, false);
#endif
MENU_ITEM(function, MSG_FILAMENT_CHANGE_OPTION_RESUME, lcd_advanced_pause_resume_print);
MENU_ITEM(function, MSG_FILAMENT_CHANGE_OPTION_EXTRUDE, lcd_advanced_pause_extrude_more);
END_MENU();
}
void lcd_advanced_pause_init_message() {
START_SCREEN();
STATIC_ITEM(MSG_FILAMENT_CHANGE_HEADER, true, true);
STATIC_ITEM(MSG_FILAMENT_CHANGE_INIT_1);
#ifdef MSG_FILAMENT_CHANGE_INIT_2
STATIC_ITEM(MSG_FILAMENT_CHANGE_INIT_2);
#define __FC_LINES_A 3
#else
#define __FC_LINES_A 2
#endif
#ifdef MSG_FILAMENT_CHANGE_INIT_3
STATIC_ITEM(MSG_FILAMENT_CHANGE_INIT_3);
#define _FC_LINES_A (__FC_LINES_A + 1)
#else
#define _FC_LINES_A __FC_LINES_A
#endif
#if LCD_HEIGHT > _FC_LINES_A + 1
STATIC_ITEM(" ");
#endif
HOTEND_STATUS_ITEM();
END_SCREEN();
}
void lcd_advanced_pause_unload_message() {
START_SCREEN();
STATIC_ITEM(MSG_FILAMENT_CHANGE_HEADER, true, true);
STATIC_ITEM(MSG_FILAMENT_CHANGE_UNLOAD_1);
#ifdef MSG_FILAMENT_CHANGE_UNLOAD_2
STATIC_ITEM(MSG_FILAMENT_CHANGE_UNLOAD_2);
#define __FC_LINES_B 3
#else
#define __FC_LINES_B 2
#endif
#ifdef MSG_FILAMENT_CHANGE_UNLOAD_3
STATIC_ITEM(MSG_FILAMENT_CHANGE_UNLOAD_3);
#define _FC_LINES_B (__FC_LINES_B + 1)
#else
#define _FC_LINES_B __FC_LINES_B
#endif
#if LCD_HEIGHT > _FC_LINES_B + 1
STATIC_ITEM(" ");
#endif
HOTEND_STATUS_ITEM();
END_SCREEN();
}
void lcd_advanced_pause_wait_for_nozzles_to_heat() {
START_SCREEN();
STATIC_ITEM(MSG_FILAMENT_CHANGE_HEADER, true, true);
STATIC_ITEM(MSG_FILAMENT_CHANGE_HEATING_1);
#ifdef MSG_FILAMENT_CHANGE_HEATING_2
STATIC_ITEM(MSG_FILAMENT_CHANGE_HEATING_2);
#define _FC_LINES_C 3
#else
#define _FC_LINES_C 2
#endif
#if LCD_HEIGHT > _FC_LINES_C + 1
STATIC_ITEM(" ");
#endif
HOTEND_STATUS_ITEM();
END_SCREEN();
}
void lcd_advanced_pause_heat_nozzle() {
START_SCREEN();
STATIC_ITEM(MSG_FILAMENT_CHANGE_HEADER, true, true);
STATIC_ITEM(MSG_FILAMENT_CHANGE_HEAT_1);
#ifdef MSG_FILAMENT_CHANGE_INSERT_2
STATIC_ITEM(MSG_FILAMENT_CHANGE_HEAT_2);
#define _FC_LINES_D 3
#else
#define _FC_LINES_D 2
#endif
#if LCD_HEIGHT > _FC_LINES_D + 1
STATIC_ITEM(" ");
#endif
HOTEND_STATUS_ITEM();
END_SCREEN();
}
void lcd_advanced_pause_insert_message() {
START_SCREEN();
STATIC_ITEM(MSG_FILAMENT_CHANGE_HEADER, true, true);
STATIC_ITEM(MSG_FILAMENT_CHANGE_INSERT_1);
#ifdef MSG_FILAMENT_CHANGE_INSERT_2
STATIC_ITEM(MSG_FILAMENT_CHANGE_INSERT_2);
#define __FC_LINES_E 3
#else
#define __FC_LINES_E 2
#endif
#ifdef MSG_FILAMENT_CHANGE_INSERT_3
STATIC_ITEM(MSG_FILAMENT_CHANGE_INSERT_3);
#define _FC_LINES_E (__FC_LINES_E + 1)
#else
#define _FC_LINES_E __FC_LINES_E
#endif
#if LCD_HEIGHT > _FC_LINES_E + 1
STATIC_ITEM(" ");
#endif
HOTEND_STATUS_ITEM();
END_SCREEN();
}
void lcd_advanced_pause_load_message() {
START_SCREEN();
STATIC_ITEM(MSG_FILAMENT_CHANGE_HEADER, true, true);
STATIC_ITEM(MSG_FILAMENT_CHANGE_LOAD_1);
#ifdef MSG_FILAMENT_CHANGE_LOAD_2
STATIC_ITEM(MSG_FILAMENT_CHANGE_LOAD_2);
#define __FC_LINES_F 3
#else
#define __FC_LINES_F 2
#endif
#ifdef MSG_FILAMENT_CHANGE_LOAD_3
STATIC_ITEM(MSG_FILAMENT_CHANGE_LOAD_3);
#define _FC_LINES_F (__FC_LINES_F + 1)
#else
#define _FC_LINES_F __FC_LINES_F
#endif
#if LCD_HEIGHT > _FC_LINES_F + 1
STATIC_ITEM(" ");
#endif
HOTEND_STATUS_ITEM();
END_SCREEN();
}
void lcd_advanced_pause_extrude_message() {
START_SCREEN();
STATIC_ITEM(MSG_FILAMENT_CHANGE_HEADER, true, true);
STATIC_ITEM(MSG_FILAMENT_CHANGE_EXTRUDE_1);
#ifdef MSG_FILAMENT_CHANGE_EXTRUDE_2
STATIC_ITEM(MSG_FILAMENT_CHANGE_EXTRUDE_2);
#define __FC_LINES_G 3
#else
#define __FC_LINES_G 2
#endif
#ifdef MSG_FILAMENT_CHANGE_EXTRUDE_3
STATIC_ITEM(MSG_FILAMENT_CHANGE_EXTRUDE_3);
#define _FC_LINES_G (__FC_LINES_G + 1)
#else
#define _FC_LINES_G __FC_LINES_G
#endif
#if LCD_HEIGHT > _FC_LINES_G + 1
STATIC_ITEM(" ");
#endif
HOTEND_STATUS_ITEM();
END_SCREEN();
}
void lcd_advanced_pause_resume_message() {
START_SCREEN();
STATIC_ITEM(MSG_FILAMENT_CHANGE_HEADER, true, true);
STATIC_ITEM(MSG_FILAMENT_CHANGE_RESUME_1);
#ifdef MSG_FILAMENT_CHANGE_RESUME_2
STATIC_ITEM(MSG_FILAMENT_CHANGE_RESUME_2);
#endif
#ifdef MSG_FILAMENT_CHANGE_RESUME_3
STATIC_ITEM(MSG_FILAMENT_CHANGE_RESUME_3);
#endif
END_SCREEN();
}
void lcd_advanced_pause_show_message(const AdvancedPauseMessage message) {
switch (message) {
case ADVANCED_PAUSE_MESSAGE_INIT:
defer_return_to_status = true;
lcd_goto_screen(lcd_advanced_pause_init_message);
break;
case ADVANCED_PAUSE_MESSAGE_UNLOAD:
defer_return_to_status = true;
lcd_goto_screen(lcd_advanced_pause_unload_message);
break;
case ADVANCED_PAUSE_MESSAGE_INSERT:
defer_return_to_status = true;
lcd_goto_screen(lcd_advanced_pause_insert_message);
break;
case ADVANCED_PAUSE_MESSAGE_LOAD:
defer_return_to_status = true;
lcd_goto_screen(lcd_advanced_pause_load_message);
break;
case ADVANCED_PAUSE_MESSAGE_EXTRUDE:
defer_return_to_status = true;
lcd_goto_screen(lcd_advanced_pause_extrude_message);
break;
case ADVANCED_PAUSE_MESSAGE_CLICK_TO_HEAT_NOZZLE:
defer_return_to_status = true;
lcd_goto_screen(lcd_advanced_pause_heat_nozzle);
break;
case ADVANCED_PAUSE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT:
defer_return_to_status = true;
lcd_goto_screen(lcd_advanced_pause_wait_for_nozzles_to_heat);
break;
case ADVANCED_PAUSE_MESSAGE_OPTION:
defer_return_to_status = true;
advanced_pause_menu_response = ADVANCED_PAUSE_RESPONSE_WAIT_FOR;
lcd_goto_screen(lcd_advanced_pause_option_menu);
break;
case ADVANCED_PAUSE_MESSAGE_RESUME:
defer_return_to_status = true;
lcd_goto_screen(lcd_advanced_pause_resume_message);
break;
case ADVANCED_PAUSE_MESSAGE_STATUS:
lcd_return_to_status();
break;
}
}
#endif // ADVANCED_PAUSE_FEATURE
/**
*
* Functions for editing single values
*
* The "DEFINE_MENU_EDIT_TYPE" macro generates the functions needed to edit a numerical value.
*
* For example, DEFINE_MENU_EDIT_TYPE(int16_t, int3, itostr3, 1) expands into these functions:
*
* bool _menu_edit_int3();
* void menu_edit_int3(); // edit int16_t (interactively)
* void menu_edit_callback_int3(); // edit int16_t (interactively) with callback on completion
* void _menu_action_setting_edit_int3(const char * const pstr, int16_t * const ptr, const int16_t minValue, const int16_t maxValue);
* void menu_action_setting_edit_int3(const char * const pstr, int16_t * const ptr, const int16_t minValue, const int16_t maxValue);
* void menu_action_setting_edit_callback_int3(const char * const pstr, int16_t * const ptr, const int16_t minValue, const int16_t maxValue, const screenFunc_t callback, const bool live); // edit int16_t with callback
*
* You can then use one of the menu macros to present the edit interface:
* MENU_ITEM_EDIT(int3, MSG_SPEED, &feedrate_percentage, 10, 999)
*
* This expands into a more primitive menu item:
* MENU_ITEM(setting_edit_int3, MSG_SPEED, PSTR(MSG_SPEED), &feedrate_percentage, 10, 999)
*
* ...which calls:
* menu_action_setting_edit_int3(PSTR(MSG_SPEED), &feedrate_percentage, 10, 999)
*/
#define DEFINE_MENU_EDIT_TYPE(_type, _name, _strFunc, _scale) \
bool _menu_edit_ ## _name() { \
ENCODER_DIRECTION_NORMAL(); \
if ((int32_t)encoderPosition < 0) encoderPosition = 0; \
if ((int32_t)encoderPosition > maxEditValue) encoderPosition = maxEditValue; \
if (lcdDrawUpdate) \
lcd_implementation_drawedit(editLabel, _strFunc(((_type)((int32_t)encoderPosition + minEditValue)) * (1.0 / _scale))); \
if (lcd_clicked || (liveEdit && lcdDrawUpdate)) { \
_type value = ((_type)((int32_t)encoderPosition + minEditValue)) * (1.0 / _scale); \
if (editValue != NULL) *((_type*)editValue) = value; \
if (liveEdit) (*callbackFunc)(); \
if (lcd_clicked) lcd_goto_previous_menu(); \
} \
return lcd_clicked; \
} \
void menu_edit_ ## _name() { _menu_edit_ ## _name(); } \
void menu_edit_callback_ ## _name() { if (_menu_edit_ ## _name()) (*callbackFunc)(); } \
void _menu_action_setting_edit_ ## _name(const char * const pstr, _type* const ptr, const _type minValue, const _type maxValue) { \
lcd_save_previous_screen(); \
\
lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW; \
\
editLabel = pstr; \
editValue = ptr; \
minEditValue = minValue * _scale; \
maxEditValue = maxValue * _scale - minEditValue; \
encoderPosition = (*ptr) * _scale - minEditValue; \
} \
void menu_action_setting_edit_ ## _name(const char * const pstr, _type * const ptr, const _type minValue, const _type maxValue) { \
_menu_action_setting_edit_ ## _name(pstr, ptr, minValue, maxValue); \
currentScreen = menu_edit_ ## _name; \
} \
void menu_action_setting_edit_callback_ ## _name(const char * const pstr, _type * const ptr, const _type minValue, const _type maxValue, const screenFunc_t callback, const bool live) { \
_menu_action_setting_edit_ ## _name(pstr, ptr, minValue, maxValue); \
currentScreen = menu_edit_callback_ ## _name; \
callbackFunc = callback; \
liveEdit = live; \
} \
typedef void _name
DEFINE_MENU_EDIT_TYPE(int16_t, int3, itostr3, 1);
DEFINE_MENU_EDIT_TYPE(uint8_t, int8, i8tostr3, 1);
DEFINE_MENU_EDIT_TYPE(float, float3, ftostr3, 1.0);
DEFINE_MENU_EDIT_TYPE(float, float32, ftostr32, 100.0);
DEFINE_MENU_EDIT_TYPE(float, float43, ftostr43sign, 1000.0);
DEFINE_MENU_EDIT_TYPE(float, float5, ftostr5rj, 0.01);
DEFINE_MENU_EDIT_TYPE(float, float51, ftostr51sign, 10.0);
DEFINE_MENU_EDIT_TYPE(float, float52, ftostr52sign, 100.0);
DEFINE_MENU_EDIT_TYPE(float, float62, ftostr62rj, 100.0);
DEFINE_MENU_EDIT_TYPE(uint32_t, long5, ftostr5rj, 0.01);
/**
*
* Handlers for Keypad input
*
*/
#if ENABLED(ADC_KEYPAD)
inline bool handle_adc_keypad() {
static uint8_t adc_steps = 0;
if (buttons_reprapworld_keypad) {
if (adc_steps < 20) ++adc_steps;
lcd_quick_feedback();
lcdDrawUpdate = LCDVIEW_REDRAW_NOW;
if (encoderDirection == -1) { // side effect which signals we are inside a menu
if (buttons_reprapworld_keypad & EN_REPRAPWORLD_KEYPAD_DOWN) encoderPosition -= ENCODER_STEPS_PER_MENU_ITEM;
else if (buttons_reprapworld_keypad & EN_REPRAPWORLD_KEYPAD_UP) encoderPosition += ENCODER_STEPS_PER_MENU_ITEM;
else if (buttons_reprapworld_keypad & EN_REPRAPWORLD_KEYPAD_LEFT) menu_action_back();
else if (buttons_reprapworld_keypad & EN_REPRAPWORLD_KEYPAD_RIGHT) lcd_return_to_status();
}
else {
const int8_t step = adc_steps > 19 ? 100 : adc_steps > 10 ? 10 : 1;
if (buttons_reprapworld_keypad & EN_REPRAPWORLD_KEYPAD_DOWN) encoderPosition += ENCODER_PULSES_PER_STEP * step;
else if (buttons_reprapworld_keypad & EN_REPRAPWORLD_KEYPAD_UP) encoderPosition -= ENCODER_PULSES_PER_STEP * step;
else if (buttons_reprapworld_keypad & EN_REPRAPWORLD_KEYPAD_RIGHT) encoderPosition = 0;
}
#if ENABLED(ADC_KEYPAD_DEBUG)
SERIAL_PROTOCOLLNPAIR("buttons_reprapworld_keypad = ", (uint32_t)buttons_reprapworld_keypad);
SERIAL_PROTOCOLLNPAIR("encoderPosition = ", (uint32_t)encoderPosition);
#endif
return true;
}
else if (!thermalManager.current_ADCKey_raw)
adc_steps = 0; // reset stepping acceleration
return false;
}
#elif ENABLED(REPRAPWORLD_KEYPAD)
void _reprapworld_keypad_move(const AxisEnum axis, const int16_t dir) {
move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP;
encoderPosition = dir;
switch (axis) {
case X_AXIS: lcd_move_x(); break;
case Y_AXIS: lcd_move_y(); break;
case Z_AXIS: lcd_move_z();
default: break;
}
}
void reprapworld_keypad_move_z_up() { _reprapworld_keypad_move(Z_AXIS, 1); }
void reprapworld_keypad_move_z_down() { _reprapworld_keypad_move(Z_AXIS, -1); }
void reprapworld_keypad_move_x_left() { _reprapworld_keypad_move(X_AXIS, -1); }
void reprapworld_keypad_move_x_right() { _reprapworld_keypad_move(X_AXIS, 1); }
void reprapworld_keypad_move_y_up() { _reprapworld_keypad_move(Y_AXIS, -1); }
void reprapworld_keypad_move_y_down() { _reprapworld_keypad_move(Y_AXIS, 1); }
void reprapworld_keypad_move_home() { enqueue_and_echo_commands_P(PSTR("G28")); } // move all axes home and wait
void reprapworld_keypad_move_menu() { lcd_goto_screen(lcd_move_menu); }
inline void handle_reprapworld_keypad() {
static uint8_t keypad_debounce = 0;
if (!REPRAPWORLD_KEYPAD_PRESSED) {
if (keypad_debounce > 0) keypad_debounce--;
}
else if (!keypad_debounce) {
keypad_debounce = 2;
if (REPRAPWORLD_KEYPAD_MOVE_MENU) reprapworld_keypad_move_menu();
#if DISABLED(DELTA) && Z_HOME_DIR == -1
if (REPRAPWORLD_KEYPAD_MOVE_Z_UP) reprapworld_keypad_move_z_up();
#endif
if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
#if ENABLED(DELTA) || Z_HOME_DIR != -1
if (REPRAPWORLD_KEYPAD_MOVE_Z_UP) reprapworld_keypad_move_z_up();
#endif
if (REPRAPWORLD_KEYPAD_MOVE_Z_DOWN) reprapworld_keypad_move_z_down();
if (REPRAPWORLD_KEYPAD_MOVE_X_LEFT) reprapworld_keypad_move_x_left();
if (REPRAPWORLD_KEYPAD_MOVE_X_RIGHT) reprapworld_keypad_move_x_right();
if (REPRAPWORLD_KEYPAD_MOVE_Y_DOWN) reprapworld_keypad_move_y_down();
if (REPRAPWORLD_KEYPAD_MOVE_Y_UP) reprapworld_keypad_move_y_up();
}
else {
if (REPRAPWORLD_KEYPAD_MOVE_HOME) reprapworld_keypad_move_home();
}
}
}
#endif // REPRAPWORLD_KEYPAD
/**
*
* Menu actions
*
*/
void _menu_action_back() { lcd_goto_previous_menu(); }
void menu_action_submenu(screenFunc_t func) { lcd_save_previous_screen(); lcd_goto_screen(func); }
void menu_action_gcode(const char* pgcode) { enqueue_and_echo_commands_P(pgcode); }
void menu_action_function(screenFunc_t func) { (*func)(); }
#if ENABLED(SDSUPPORT)
void menu_action_sdfile(const char* filename, char* longFilename) {
UNUSED(longFilename);
card.openAndPrintFile(filename);
lcd_return_to_status();
}
void menu_action_sddirectory(const char* filename, char* longFilename) {
UNUSED(longFilename);
card.chdir(filename);
encoderPosition = 0;
screen_changed = true;
lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW;
}
#endif // SDSUPPORT
void menu_action_setting_edit_bool(const char* pstr, bool* ptr) { UNUSED(pstr); *ptr ^= true; lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW; }
void menu_action_setting_edit_callback_bool(const char* pstr, bool* ptr, screenFunc_t callback) {
menu_action_setting_edit_bool(pstr, ptr);
(*callback)();
}
#endif // ULTIPANEL
void lcd_init() {
lcd_implementation_init(
#if ENABLED(LCD_PROGRESS_BAR)
true
#endif
);
#if ENABLED(NEWPANEL)
#if BUTTON_EXISTS(EN1)
SET_INPUT_PULLUP(BTN_EN1);
#endif
#if BUTTON_EXISTS(EN2)
SET_INPUT_PULLUP(BTN_EN2);
#endif
#if BUTTON_EXISTS(ENC)
SET_INPUT_PULLUP(BTN_ENC);
#endif
#if ENABLED(REPRAPWORLD_KEYPAD) && DISABLED(ADC_KEYPAD)
SET_OUTPUT(SHIFT_CLK);
OUT_WRITE(SHIFT_LD, HIGH);
SET_INPUT_PULLUP(SHIFT_OUT);
#endif
#if BUTTON_EXISTS(UP)
SET_INPUT(BTN_UP);
#endif
#if BUTTON_EXISTS(DWN)
SET_INPUT(BTN_DWN);
#endif
#if BUTTON_EXISTS(LFT)
SET_INPUT(BTN_LFT);
#endif
#if BUTTON_EXISTS(RT)
SET_INPUT(BTN_RT);
#endif
#else // !NEWPANEL
#if ENABLED(SR_LCD_2W_NL) // Non latching 2 wire shift register
SET_OUTPUT(SR_DATA_PIN);
SET_OUTPUT(SR_CLK_PIN);
#elif defined(SHIFT_CLK)
SET_OUTPUT(SHIFT_CLK);
OUT_WRITE(SHIFT_LD, HIGH);
OUT_WRITE(SHIFT_EN, LOW);
SET_INPUT_PULLUP(SHIFT_OUT);
#endif // SR_LCD_2W_NL
#endif // !NEWPANEL
#if ENABLED(SDSUPPORT) && PIN_EXISTS(SD_DETECT)
SET_INPUT_PULLUP(SD_DETECT_PIN);
lcd_sd_status = 2; // UNKNOWN
#endif
#if ENABLED(LCD_HAS_SLOW_BUTTONS)
slow_buttons = 0;
#endif
lcd_buttons_update();
#if ENABLED(ULTIPANEL)
encoderDiff = 0;
#endif
}
int16_t lcd_strlen(const char* s) {
int16_t i = 0, j = 0;
while (s[i]) {
if (PRINTABLE(s[i])) j++;
i++;
}
return j;
}
int16_t lcd_strlen_P(const char* s) {
int16_t j = 0;
while (pgm_read_byte(s)) {
if (PRINTABLE(pgm_read_byte(s))) j++;
s++;
}
return j;
}
bool lcd_blink() {
static uint8_t blink = 0;
static millis_t next_blink_ms = 0;
millis_t ms = millis();
if (ELAPSED(ms, next_blink_ms)) {
blink ^= 0xFF;
next_blink_ms = ms + 1000 - LCD_UPDATE_INTERVAL / 2;
}
return blink != 0;
}
/**
* Update the LCD, read encoder buttons, etc.
* - Read button states
* - Check the SD Card slot state
* - Act on RepRap World keypad input
* - Update the encoder position
* - Apply acceleration to the encoder position
* - Set lcdDrawUpdate = LCDVIEW_CALL_REDRAW_NOW on controller events
* - Reset the Info Screen timeout if there's any input
* - Update status indicators, if any
*
* Run the current LCD menu handler callback function:
* - Call the handler only if lcdDrawUpdate != LCDVIEW_NONE
* - Before calling the handler, LCDVIEW_CALL_NO_REDRAW => LCDVIEW_NONE
* - Call the menu handler. Menu handlers should do the following:
* - If a value changes, set lcdDrawUpdate to LCDVIEW_REDRAW_NOW and draw the value
* (Encoder events automatically set lcdDrawUpdate for you.)
* - if (lcdDrawUpdate) { redraw }
* - Before exiting the handler set lcdDrawUpdate to:
* - LCDVIEW_CLEAR_CALL_REDRAW to clear screen and set LCDVIEW_CALL_REDRAW_NEXT.
* - LCDVIEW_REDRAW_NOW to draw now (including remaining stripes).
* - LCDVIEW_CALL_REDRAW_NEXT to draw now and get LCDVIEW_REDRAW_NOW on the next loop.
* - LCDVIEW_CALL_NO_REDRAW to draw now and get LCDVIEW_NONE on the next loop.
* - NOTE: For graphical displays menu handlers may be called 2 or more times per loop,
* so don't change lcdDrawUpdate without considering this.
*
* After the menu handler callback runs (or not):
* - Clear the LCD if lcdDrawUpdate == LCDVIEW_CLEAR_CALL_REDRAW
* - Update lcdDrawUpdate for the next loop (i.e., move one state down, usually)
*
* No worries. This function is only called from the main thread.
*/
void lcd_update() {
#if ENABLED(ULTIPANEL)
static millis_t return_to_status_ms = 0;
manage_manual_move();
lcd_buttons_update();
#if ENABLED(AUTO_BED_LEVELING_UBL)
const bool UBL_CONDITION = !ubl.has_control_of_lcd_panel;
#else
constexpr bool UBL_CONDITION = true;
#endif
// If the action button is pressed...
if (UBL_CONDITION && LCD_CLICKED) {
if (!wait_for_unclick) { // If not waiting for a debounce release:
wait_for_unclick = true; // Set debounce flag to ignore continous clicks
lcd_clicked = !wait_for_user; // Keep the click if not waiting for a user-click
wait_for_user = false; // Any click clears wait for user
lcd_quick_feedback(); // Always make a click sound
}
}
else wait_for_unclick = false;
#endif
#if ENABLED(SDSUPPORT) && PIN_EXISTS(SD_DETECT)
const bool sd_status = IS_SD_INSERTED;
if (sd_status != lcd_sd_status && lcd_detected()) {
if (sd_status) {
card.initsd();
if (lcd_sd_status != 2) LCD_MESSAGEPGM(MSG_SD_INSERTED);
}
else {
card.release();
if (lcd_sd_status != 2) LCD_MESSAGEPGM(MSG_SD_REMOVED);
}
lcd_sd_status = sd_status;
lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW;
lcd_implementation_init( // to maybe revive the LCD if static electricity killed it.
#if ENABLED(LCD_PROGRESS_BAR)
currentScreen == lcd_status_screen
#endif
);
}
#endif // SDSUPPORT && SD_DETECT_PIN
const millis_t ms = millis();
if (ELAPSED(ms, next_lcd_update_ms)
#if ENABLED(DOGLCD)
|| drawing_screen
#endif
) {
next_lcd_update_ms = ms + LCD_UPDATE_INTERVAL;
#if ENABLED(LCD_HAS_STATUS_INDICATORS)
lcd_implementation_update_indicators();
#endif
#if ENABLED(ULTIPANEL)
#if ENABLED(LCD_HAS_SLOW_BUTTONS)
slow_buttons = lcd_implementation_read_slow_buttons(); // buttons which take too long to read in interrupt context
#endif
#if ENABLED(ADC_KEYPAD)
if (handle_adc_keypad())
return_to_status_ms = ms + LCD_TIMEOUT_TO_STATUS;
#elif ENABLED(REPRAPWORLD_KEYPAD)
handle_reprapworld_keypad();
#endif
bool encoderPastThreshold = (abs(encoderDiff) >= ENCODER_PULSES_PER_STEP);
if (encoderPastThreshold || lcd_clicked) {
if (encoderPastThreshold) {
int32_t encoderMultiplier = 1;
#if ENABLED(ENCODER_RATE_MULTIPLIER)
if (encoderRateMultiplierEnabled) {
int32_t encoderMovementSteps = abs(encoderDiff) / ENCODER_PULSES_PER_STEP;
if (lastEncoderMovementMillis) {
// Note that the rate is always calculated between two passes through the
// loop and that the abs of the encoderDiff value is tracked.
float encoderStepRate = float(encoderMovementSteps) / float(ms - lastEncoderMovementMillis) * 1000.0;
if (encoderStepRate >= ENCODER_100X_STEPS_PER_SEC) encoderMultiplier = 100;
else if (encoderStepRate >= ENCODER_10X_STEPS_PER_SEC) encoderMultiplier = 10;
#if ENABLED(ENCODER_RATE_MULTIPLIER_DEBUG)
SERIAL_ECHO_START();
SERIAL_ECHOPAIR("Enc Step Rate: ", encoderStepRate);
SERIAL_ECHOPAIR(" Multiplier: ", encoderMultiplier);
SERIAL_ECHOPAIR(" ENCODER_10X_STEPS_PER_SEC: ", ENCODER_10X_STEPS_PER_SEC);
SERIAL_ECHOPAIR(" ENCODER_100X_STEPS_PER_SEC: ", ENCODER_100X_STEPS_PER_SEC);
SERIAL_EOL();
#endif // ENCODER_RATE_MULTIPLIER_DEBUG
}
lastEncoderMovementMillis = ms;
} // encoderRateMultiplierEnabled
#endif // ENCODER_RATE_MULTIPLIER
encoderPosition += (encoderDiff * encoderMultiplier) / ENCODER_PULSES_PER_STEP;
encoderDiff = 0;
}
return_to_status_ms = ms + LCD_TIMEOUT_TO_STATUS;
lcdDrawUpdate = LCDVIEW_REDRAW_NOW;
}
#endif // ULTIPANEL
// We arrive here every ~100ms when idling often enough.
// Instead of tracking the changes simply redraw the Info Screen ~1 time a second.
static int8_t lcd_status_update_delay = 1; // first update one loop delayed
if (
#if ENABLED(ULTIPANEL)
currentScreen == lcd_status_screen &&
#endif
!lcd_status_update_delay--
) {
lcd_status_update_delay = 9
#if ENABLED(DOGLCD)
+ 3
#endif
;
max_display_update_time--;
lcdDrawUpdate = LCDVIEW_REDRAW_NOW;
}
// then we want to use 1/2 of the time only.
uint16_t bbr2 = planner.block_buffer_runtime() >> 1;
#if ENABLED(DOGLCD)
if ((lcdDrawUpdate || drawing_screen) && (!bbr2 || (bbr2 > max_display_update_time)))
#else
if (lcdDrawUpdate && (!bbr2 || (bbr2 > max_display_update_time)))
#endif
{
#if ENABLED(DOGLCD)
if (!drawing_screen)
#endif
{
switch (lcdDrawUpdate) {
case LCDVIEW_CALL_NO_REDRAW:
lcdDrawUpdate = LCDVIEW_NONE;
break;
case LCDVIEW_CLEAR_CALL_REDRAW: // set by handlers, then altered after (rarely occurs here)
case LCDVIEW_CALL_REDRAW_NEXT: // set by handlers, then altered after (never occurs here?)
lcdDrawUpdate = LCDVIEW_REDRAW_NOW;
case LCDVIEW_REDRAW_NOW: // set above, or by a handler through LCDVIEW_CALL_REDRAW_NEXT
case LCDVIEW_NONE:
break;
} // switch
}
#if ENABLED(ADC_KEYPAD)
buttons_reprapworld_keypad = 0;
#endif
#if ENABLED(ULTIPANEL)
#define CURRENTSCREEN() (*currentScreen)(), lcd_clicked = false
#else
#define CURRENTSCREEN() lcd_status_screen()
#endif
#if ENABLED(DOGLCD) // Changes due to different driver architecture of the DOGM display
if (!drawing_screen) {
u8g.firstPage();
drawing_screen = 1;
}
lcd_setFont(FONT_MENU);
u8g.setColorIndex(1);
CURRENTSCREEN();
if (drawing_screen && (drawing_screen = u8g.nextPage())) {
NOLESS(max_display_update_time, millis() - ms);
return;
}
#else
CURRENTSCREEN();
#endif
NOLESS(max_display_update_time, millis() - ms);
}
#if ENABLED(ULTIPANEL)
// Return to Status Screen after a timeout
if (currentScreen == lcd_status_screen || defer_return_to_status)
return_to_status_ms = ms + LCD_TIMEOUT_TO_STATUS;
else if (ELAPSED(ms, return_to_status_ms))
lcd_return_to_status();
#endif // ULTIPANEL
#if ENABLED(DOGLCD)
if (!drawing_screen)
#endif
{
switch (lcdDrawUpdate) {
case LCDVIEW_CLEAR_CALL_REDRAW:
lcd_implementation_clear();
case LCDVIEW_CALL_REDRAW_NEXT:
lcdDrawUpdate = LCDVIEW_REDRAW_NOW;
break;
case LCDVIEW_REDRAW_NOW:
lcdDrawUpdate = LCDVIEW_NONE;
break;
case LCDVIEW_NONE:
break;
} // switch
}
} // ELAPSED(ms, next_lcd_update_ms)
}
void pad_message_string() {
uint8_t i = 0, j = 0;
char c;
while ((c = lcd_status_message[i]) && j < LCD_WIDTH) {
if (PRINTABLE(c)) j++;
i++;
}
if (true
#if ENABLED(STATUS_MESSAGE_SCROLLING)
&& j < LCD_WIDTH
#endif
) {
// pad with spaces to fill up the line
while (j++ < LCD_WIDTH) lcd_status_message[i++] = ' ';
// chop off at the edge
lcd_status_message[i] = '\0';
}
}
void lcd_finishstatus(const bool persist=false) {
pad_message_string();
#if !(ENABLED(LCD_PROGRESS_BAR) && (PROGRESS_MSG_EXPIRE > 0))
UNUSED(persist);
#endif
#if ENABLED(LCD_PROGRESS_BAR)
progress_bar_ms = millis();
#if PROGRESS_MSG_EXPIRE > 0
expire_status_ms = persist ? 0 : progress_bar_ms + PROGRESS_MSG_EXPIRE;
#endif
#endif
lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW;
#if ENABLED(FILAMENT_LCD_DISPLAY) && ENABLED(SDSUPPORT)
previous_lcd_status_ms = millis(); //get status message to show up for a while
#endif
#if ENABLED(STATUS_MESSAGE_SCROLLING)
status_scroll_pos = 0;
#endif
}
#if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
void dontExpireStatus() { expire_status_ms = 0; }
#endif
bool lcd_hasstatus() { return (lcd_status_message[0] != '\0'); }
void lcd_setstatus(const char * const message, const bool persist) {
if (lcd_status_message_level > 0) return;
strncpy(lcd_status_message, message, 3 * (LCD_WIDTH));
lcd_finishstatus(persist);
}
void lcd_setstatusPGM(const char * const message, int8_t level) {
if (level < 0) level = lcd_status_message_level = 0;
if (level < lcd_status_message_level) return;
lcd_status_message_level = level;
strncpy_P(lcd_status_message, message, 3 * (LCD_WIDTH));
lcd_finishstatus(level > 0);
}
void lcd_status_printf_P(const uint8_t level, const char * const fmt, ...) {
if (level < lcd_status_message_level) return;
lcd_status_message_level = level;
va_list args;
va_start(args, fmt);
vsnprintf_P(lcd_status_message, 3 * (LCD_WIDTH), fmt, args);
va_end(args);
lcd_finishstatus(level > 0);
}
void lcd_setalertstatusPGM(const char * const message) {
lcd_setstatusPGM(message, 1);
#if ENABLED(ULTIPANEL)
lcd_return_to_status();
#endif
}
void lcd_reset_alert_level() { lcd_status_message_level = 0; }
#if HAS_LCD_CONTRAST
void set_lcd_contrast(const uint16_t value) {
lcd_contrast = constrain(value, LCD_CONTRAST_MIN, LCD_CONTRAST_MAX);
u8g.setContrast(lcd_contrast);
}
#endif
#if ENABLED(ULTIPANEL)
/**
* Setup Rotary Encoder Bit Values (for two pin encoders to indicate movement)
* These values are independent of which pins are used for EN_A and EN_B indications
* The rotary encoder part is also independent to the chipset used for the LCD
*/
#if defined(EN_A) && defined(EN_B)
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1
#endif
#define GET_BUTTON_STATES(DST) \
uint8_t new_##DST = 0; \
WRITE(SHIFT_LD, LOW); \
WRITE(SHIFT_LD, HIGH); \
for (int8_t i = 0; i < 8; i++) { \
new_##DST >>= 1; \
if (READ(SHIFT_OUT)) SBI(new_##DST, 7); \
WRITE(SHIFT_CLK, HIGH); \
WRITE(SHIFT_CLK, LOW); \
} \
DST = ~new_##DST; //invert it, because a pressed switch produces a logical 0
/**
* Read encoder buttons from the hardware registers
* Warning: This function is called from interrupt context!
*/
void lcd_buttons_update() {
static uint8_t lastEncoderBits;
millis_t now = millis();
if (ELAPSED(now, next_button_update_ms)) {
#if ENABLED(NEWPANEL)
uint8_t newbutton = 0;
#if BUTTON_EXISTS(EN1)
if (BUTTON_PRESSED(EN1)) newbutton |= EN_A;
#endif
#if BUTTON_EXISTS(EN2)
if (BUTTON_PRESSED(EN2)) newbutton |= EN_B;
#endif
#if BUTTON_EXISTS(ENC)
if (BUTTON_PRESSED(ENC)) newbutton |= EN_C;
#endif
#if LCD_HAS_DIRECTIONAL_BUTTONS
// Manage directional buttons
#if ENABLED(REVERSE_MENU_DIRECTION)
#define _ENCODER_UD_STEPS (ENCODER_STEPS_PER_MENU_ITEM * encoderDirection)
#else
#define _ENCODER_UD_STEPS ENCODER_STEPS_PER_MENU_ITEM
#endif
#if ENABLED(REVERSE_ENCODER_DIRECTION)
#define ENCODER_UD_STEPS _ENCODER_UD_STEPS
#define ENCODER_LR_PULSES ENCODER_PULSES_PER_STEP
#else
#define ENCODER_UD_STEPS -(_ENCODER_UD_STEPS)
#define ENCODER_LR_PULSES -(ENCODER_PULSES_PER_STEP)
#endif
if (false) {
// for the else-ifs below
}
#if BUTTON_EXISTS(UP)
else if (BUTTON_PRESSED(UP)) {
encoderDiff = -(ENCODER_UD_STEPS);
next_button_update_ms = now + 300;
}
#endif
#if BUTTON_EXISTS(DWN)
else if (BUTTON_PRESSED(DWN)) {
encoderDiff = ENCODER_UD_STEPS;
next_button_update_ms = now + 300;
}
#endif
#if BUTTON_EXISTS(LFT)
else if (BUTTON_PRESSED(LFT)) {
encoderDiff = -(ENCODER_LR_PULSES);
next_button_update_ms = now + 300;
}
#endif
#if BUTTON_EXISTS(RT)
else if (BUTTON_PRESSED(RT)) {
encoderDiff = ENCODER_LR_PULSES;
next_button_update_ms = now + 300;
}
#endif
#endif // LCD_HAS_DIRECTIONAL_BUTTONS
buttons = newbutton;
#if ENABLED(LCD_HAS_SLOW_BUTTONS)
buttons |= slow_buttons;
#endif
#if ENABLED(ADC_KEYPAD)
uint8_t newbutton_reprapworld_keypad = 0;
buttons = 0;
if (buttons_reprapworld_keypad == 0) {
newbutton_reprapworld_keypad = get_ADC_keyValue();
if (WITHIN(newbutton_reprapworld_keypad, 1, 8))
buttons_reprapworld_keypad = _BV(newbutton_reprapworld_keypad - 1);
}
#elif ENABLED(REPRAPWORLD_KEYPAD)
GET_BUTTON_STATES(buttons_reprapworld_keypad);
#endif
#else
GET_BUTTON_STATES(buttons);
#endif // !NEWPANEL
} // next_button_update_ms
// Manage encoder rotation
#if ENABLED(REVERSE_MENU_DIRECTION) && ENABLED(REVERSE_ENCODER_DIRECTION)
#define ENCODER_DIFF_CW (encoderDiff -= encoderDirection)
#define ENCODER_DIFF_CCW (encoderDiff += encoderDirection)
#elif ENABLED(REVERSE_MENU_DIRECTION)
#define ENCODER_DIFF_CW (encoderDiff += encoderDirection)
#define ENCODER_DIFF_CCW (encoderDiff -= encoderDirection)
#elif ENABLED(REVERSE_ENCODER_DIRECTION)
#define ENCODER_DIFF_CW (encoderDiff--)
#define ENCODER_DIFF_CCW (encoderDiff++)
#else
#define ENCODER_DIFF_CW (encoderDiff++)
#define ENCODER_DIFF_CCW (encoderDiff--)
#endif
#define ENCODER_SPIN(_E1, _E2) switch (lastEncoderBits) { case _E1: ENCODER_DIFF_CW; break; case _E2: ENCODER_DIFF_CCW; }
uint8_t enc = 0;
if (buttons & EN_A) enc |= B01;
if (buttons & EN_B) enc |= B10;
if (enc != lastEncoderBits) {
switch (enc) {
case encrot0: ENCODER_SPIN(encrot3, encrot1); break;
case encrot1: ENCODER_SPIN(encrot0, encrot2); break;
case encrot2: ENCODER_SPIN(encrot1, encrot3); break;
case encrot3: ENCODER_SPIN(encrot2, encrot0); break;
}
#if ENABLED(AUTO_BED_LEVELING_UBL)
if (ubl.has_control_of_lcd_panel) {
ubl.encoder_diff = encoderDiff; // Make the encoder's rotation available to G29's Mesh Editor
encoderDiff = 0; // We are going to lie to the LCD Panel and claim the encoder
// knob has not turned.
}
#endif
lastEncoderBits = enc;
}
}
#if (ENABLED(LCD_I2C_TYPE_MCP23017) || ENABLED(LCD_I2C_TYPE_MCP23008)) && ENABLED(DETECT_DEVICE)
bool lcd_detected() { return lcd.LcdDetected() == 1; }
#else
bool lcd_detected() { return true; }
#endif
#if ENABLED(AUTO_BED_LEVELING_UBL)
void chirp_at_user() {
#if ENABLED(LCD_USE_I2C_BUZZER)
lcd.buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
#elif PIN_EXISTS(BEEPER)
buzzer.tone(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
#endif
}
bool ubl_lcd_clicked() { return LCD_CLICKED; }
#endif
#endif // ULTIPANEL
#if ENABLED(ADC_KEYPAD)
typedef struct {
uint16_t ADCKeyValueMin, ADCKeyValueMax;
uint8_t ADCKeyNo;
} _stADCKeypadTable_;
static const _stADCKeypadTable_ stADCKeyTable[] PROGMEM = {
// VALUE_MIN, VALUE_MAX, KEY
{ 4000, 4096, BLEN_REPRAPWORLD_KEYPAD_F1 + 1 }, // F1
{ 4000, 4096, BLEN_REPRAPWORLD_KEYPAD_F2 + 1 }, // F2
{ 4000, 4096, BLEN_REPRAPWORLD_KEYPAD_F3 + 1 }, // F3
{ 300, 500, BLEN_REPRAPWORLD_KEYPAD_LEFT + 1 }, // LEFT
{ 1900, 2200, BLEN_REPRAPWORLD_KEYPAD_RIGHT + 1 }, // RIGHT
{ 570, 870, BLEN_REPRAPWORLD_KEYPAD_UP + 1 }, // UP
{ 2670, 2870, BLEN_REPRAPWORLD_KEYPAD_DOWN + 1 }, // DOWN
{ 1150, 1450, BLEN_REPRAPWORLD_KEYPAD_MIDDLE + 1 }, // ENTER
};
uint8_t get_ADC_keyValue(void) {
if (thermalManager.ADCKey_count >= 16) {
const uint16_t currentkpADCValue = thermalManager.current_ADCKey_raw >> 2;
#if ENABLED(ADC_KEYPAD_DEBUG)
SERIAL_PROTOCOLLN(currentkpADCValue);
#endif
thermalManager.current_ADCKey_raw = 0;
thermalManager.ADCKey_count = 0;
if (currentkpADCValue < 4000)
for (uint8_t i = 0; i < ADC_KEY_NUM; i++) {
const uint16_t lo = pgm_read_word(&stADCKeyTable[i].ADCKeyValueMin),
hi = pgm_read_word(&stADCKeyTable[i].ADCKeyValueMax);
if (WITHIN(currentkpADCValue, lo, hi)) return pgm_read_byte(&stADCKeyTable[i].ADCKeyNo);
}
}
return 0;
}
#endif
#endif // ULTRA_LCD