marlin2_i2/Marlin/src/lcd/extensible_ui/ui_api.cpp
2018-11-03 06:24:41 -05:00

759 lines
25 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**************
* ui_api.cpp *
**************/
/****************************************************************************
* Written By Marcio Teixeira 2018 - Aleph Objects, Inc. *
* *
* This program is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 3 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* To view a copy of the GNU General Public License, go to the following *
* location: <http://www.gnu.org/licenses/>. *
****************************************************************************/
#include "../../inc/MarlinConfigPre.h"
#if ENABLED(EXTENSIBLE_UI)
#include "../../gcode/queue.h"
#include "../../module/motion.h"
#include "../../module/planner.h"
#include "../../module/probe.h"
#include "../../module/temperature.h"
#include "../../libs/duration_t.h"
#include "../../HAL/shared/Delay.h"
#if DO_SWITCH_EXTRUDER || ENABLED(SWITCHING_NOZZLE) || ENABLED(PARKING_EXTRUDER)
#include "../../module/tool_change.h"
#endif
#if ENABLED(SDSUPPORT)
#include "../../sd/cardreader.h"
#include "../../feature/emergency_parser.h"
#define IFSD(A,B) (A)
#else
#define IFSD(A,B) (B)
#endif
#if ENABLED(PRINTCOUNTER)
#include "../../core/utility.h"
#include "../../module/printcounter.h"
#endif
#include "ui_api.h"
#if ENABLED(BACKLASH_GCODE)
extern float backlash_distance_mm[XYZ], backlash_correction;
#ifdef BACKLASH_SMOOTHING_MM
extern float backlash_smoothing_mm;
#endif
#endif
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
#include "../../feature/runout.h"
#endif
inline float clamp(const float value, const float minimum, const float maximum) {
return MAX(MIN(value, maximum), minimum);
}
static struct {
uint8_t printer_killed : 1;
uint8_t manual_motion : 1;
} flags;
namespace UI {
#ifdef __SAM3X8E__
/**
* Implement a special millis() to allow time measurement
* within an ISR (such as when the printer is killed).
*
* To keep proper time, must be called at least every 1s.
*/
uint32_t safe_millis() {
// Not killed? Just call millis()
if (!flags.printer_killed) return millis();
static uint32_t currTimeHI = 0; /* Current time */
// Machine was killed, reinit SysTick so we are able to compute time without ISRs
if (currTimeHI == 0) {
// Get the last time the Arduino time computed (from CMSIS) and convert it to SysTick
currTimeHI = (uint32_t)((GetTickCount() * (uint64_t)(F_CPU / 8000)) >> 24);
// Reinit the SysTick timer to maximize its period
SysTick->LOAD = SysTick_LOAD_RELOAD_Msk; // get the full range for the systick timer
SysTick->VAL = 0; // Load the SysTick Counter Value
SysTick->CTRL = // MCLK/8 as source
// No interrupts
SysTick_CTRL_ENABLE_Msk; // Enable SysTick Timer
}
// Check if there was a timer overflow from the last read
if (SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) {
// There was. This means (SysTick_LOAD_RELOAD_Msk * 1000 * 8)/F_CPU ms has elapsed
currTimeHI++;
}
// Calculate current time in milliseconds
uint32_t currTimeLO = SysTick_LOAD_RELOAD_Msk - SysTick->VAL; // (in MCLK/8)
uint64_t currTime = ((uint64_t)currTimeLO) | (((uint64_t)currTimeHI) << 24);
// The ms count is
return (uint32_t)(currTime / (F_CPU / 8000));
}
#else
// TODO: Implement for AVR
FORCE_INLINE uint32_t safe_millis() { return millis(); }
#endif
void delay_us(unsigned long us) {
DELAY_US(us);
}
void delay_ms(unsigned long ms) {
if (flags.printer_killed)
DELAY_US(ms * 1000);
else
safe_delay(ms);
}
void yield() {
if (!flags.printer_killed)
thermalManager.manage_heater();
}
float getActualTemp_celsius(const heater_t heater) {
return heater == BED ?
#if HAS_HEATED_BED
thermalManager.degBed()
#else
0
#endif
: thermalManager.degHotend(heater - H0);
}
float getActualTemp_celsius(const extruder_t extruder) {
return thermalManager.degHotend(extruder - E0);
}
float getTargetTemp_celsius(const heater_t heater) {
return heater == BED ?
#if HAS_HEATED_BED
thermalManager.degTargetBed()
#else
0
#endif
: thermalManager.degTargetHotend(heater - H0);
}
float getTargetTemp_celsius(const extruder_t extruder) {
return thermalManager.degTargetHotend(extruder - E0);
}
float getFan_percent(const fan_t fan) { return ((float(fan_speed[fan - FAN0]) + 1) * 100) / 256; }
float getAxisPosition_mm(const axis_t axis) {
return flags.manual_motion ? destination[axis] : current_position[axis];
}
float getAxisPosition_mm(const extruder_t extruder) {
return flags.manual_motion ? destination[E_AXIS] : current_position[E_AXIS];
}
void setAxisPosition_mm(const float position, const axis_t axis) {
// Start with no limits to movement
float min = current_position[axis] - 1000,
max = current_position[axis] + 1000;
// Limit to software endstops, if enabled
#if HAS_SOFTWARE_ENDSTOPS
if (soft_endstops_enabled) switch (axis) {
case X_AXIS:
#if ENABLED(MIN_SOFTWARE_ENDSTOP_X)
min = soft_endstop_min[X_AXIS];
#endif
#if ENABLED(MAX_SOFTWARE_ENDSTOP_X)
max = soft_endstop_max[X_AXIS];
#endif
break;
case Y_AXIS:
#if ENABLED(MIN_SOFTWARE_ENDSTOP_Y)
min = soft_endstop_min[Y_AXIS];
#endif
#if ENABLED(MAX_SOFTWARE_ENDSTOP_Y)
max = soft_endstop_max[Y_AXIS];
#endif
break;
case Z_AXIS:
#if ENABLED(MIN_SOFTWARE_ENDSTOP_Z)
min = soft_endstop_min[Z_AXIS];
#endif
#if ENABLED(MAX_SOFTWARE_ENDSTOP_Z)
max = soft_endstop_max[Z_AXIS];
#endif
default: break;
}
#endif // HAS_SOFTWARE_ENDSTOPS
// Delta limits XY based on the current offset from center
// This assumes the center is 0,0
#if ENABLED(DELTA)
if (axis != Z_AXIS) {
max = SQRT(sq((float)(DELTA_PRINTABLE_RADIUS)) - sq(current_position[Y_AXIS - axis])); // (Y_AXIS - axis) == the other axis
min = -max;
}
#endif
if (!flags.manual_motion)
set_destination_from_current();
destination[axis] = clamp(position, min, max);
flags.manual_motion = true;
}
void setAxisPosition_mm(const float position, const extruder_t extruder) {
setActiveTool(extruder, true);
if (!flags.manual_motion)
set_destination_from_current();
destination[E_AXIS] = position;
flags.manual_motion = true;
}
void _processManualMoveToDestination() {
// Lower max_response_lag makes controls more responsive, but makes CPU work harder
constexpr float max_response_lag = 0.1; // seconds
constexpr uint8_t segments_to_buffer = 4; // keep planner filled with this many segments
if (flags.manual_motion && planner.movesplanned() < segments_to_buffer) {
float saved_destination[XYZ];
COPY(saved_destination, destination);
// Compute direction vector from current_position towards destination.
destination[X_AXIS] -= current_position[X_AXIS];
destination[Y_AXIS] -= current_position[Y_AXIS];
destination[Z_AXIS] -= current_position[Z_AXIS];
const float inv_length = RSQRT(sq(destination[X_AXIS]) + sq(destination[Y_AXIS]) + sq(destination[Z_AXIS]));
// Find move segment length so that all segments can execute in less time than max_response_lag
const float scale = inv_length * feedrate_mm_s * max_response_lag / segments_to_buffer;
if (scale < 1) {
// Move a small bit towards the destination.
destination[X_AXIS] = scale * destination[X_AXIS] + current_position[X_AXIS];
destination[Y_AXIS] = scale * destination[Y_AXIS] + current_position[Y_AXIS];
destination[Z_AXIS] = scale * destination[Z_AXIS] + current_position[Z_AXIS];
prepare_move_to_destination();
COPY(destination, saved_destination);
}
else {
// We are close enough to finish off the move.
COPY(destination, saved_destination);
prepare_move_to_destination();
flags.manual_motion = false;
}
}
}
void setActiveTool(const extruder_t extruder, bool no_move) {
const uint8_t e = extruder - E0;
#if DO_SWITCH_EXTRUDER || ENABLED(SWITCHING_NOZZLE) || ENABLED(PARKING_EXTRUDER)
if (e != active_extruder)
tool_change(e, 0, no_move);
#endif
active_extruder = e;
}
extruder_t getActiveTool() {
switch (active_extruder) {
case 5: return E5;
case 4: return E4;
case 3: return E3;
case 2: return E2;
case 1: return E1;
default: return E0;
}
}
bool isMoving() { return planner.has_blocks_queued(); }
bool canMove(const axis_t axis) {
switch (axis) {
#if IS_KINEMATIC || ENABLED(NO_MOTION_BEFORE_HOMING)
case X: return TEST(axis_homed, X_AXIS);
case Y: return TEST(axis_homed, Y_AXIS);
case Z: return TEST(axis_homed, Z_AXIS);
#else
case X: case Y: case Z: return true;
#endif
default: return false;
}
}
bool canMove(const extruder_t extruder) {
return !thermalManager.tooColdToExtrude(extruder - E0);
}
float getAxisSteps_per_mm(const axis_t axis) {
return planner.settings.axis_steps_per_mm[axis];
}
float getAxisSteps_per_mm(const extruder_t extruder) {
return planner.settings.axis_steps_per_mm[E_AXIS_N(extruder - E0)];
}
void setAxisSteps_per_mm(const float value, const axis_t axis) {
planner.settings.axis_steps_per_mm[axis] = value;
}
void setAxisSteps_per_mm(const float value, const extruder_t extruder) {
planner.settings.axis_steps_per_mm[E_AXIS_N(axis - E0)] = value;
}
float getAxisMaxFeedrate_mm_s(const axis_t axis) {
return planner.settings.max_feedrate_mm_s[axis];
}
float getAxisMaxFeedrate_mm_s(const extruder_t extruder) {
return planner.settings.max_feedrate_mm_s[E_AXIS_N(axis - E0)];
}
void setAxisMaxFeedrate_mm_s(const float value, const axis_t axis) {
planner.settings.max_feedrate_mm_s[axis] = value;
}
void setAxisMaxFeedrate_mm_s(const float value, const extruder_t extruder) {
planner.settings.max_feedrate_mm_s[E_AXIS_N(axis - E0)] = value;
}
float getAxisMaxAcceleration_mm_s2(const axis_t axis) {
return planner.settings.max_acceleration_mm_per_s2[axis];
}
float getAxisMaxAcceleration_mm_s2(const extruder_t extruder) {
return planner.settings.max_acceleration_mm_per_s2[E_AXIS_N(extruder - E0)];
}
void setAxisMaxAcceleration_mm_s2(const float value, const axis_t axis) {
planner.settings.max_acceleration_mm_per_s2[axis] = value;
}
void setAxisMaxAcceleration_mm_s2(const float value, const extruder_t extruder) {
planner.settings.max_acceleration_mm_per_s2[E_AXIS_N(extruder - E0)] = value;
}
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
bool getFilamentRunoutEnabled() { return runout.enabled; }
void setFilamentRunoutEnabled(const bool value) { runout.enabled = value; }
#if FILAMENT_RUNOUT_DISTANCE_MM > 0
float getFilamentRunoutDistance_mm() {
return RunoutResponseDelayed::runout_distance_mm;
}
void setFilamentRunoutDistance_mm(const float value) {
RunoutResponseDelayed::runout_distance_mm = clamp(value, 0, 999);
}
#endif
#endif
#if ENABLED(LIN_ADVANCE)
float getLinearAdvance_mm_mm_s(const extruder_t extruder) {
return (extruder < EXTRUDERS) ? planner.extruder_advance_K[extruder - E0] : 0;
}
void setLinearAdvance_mm_mm_s(const float value, const extruder_t extruder) {
if (extruder < EXTRUDERS)
planner.extruder_advance_K[extruder - E0] = clamp(value, 0, 999);
}
#endif
#if ENABLED(JUNCTION_DEVIATION)
float getJunctionDeviation_mm() {
return planner.junction_deviation_mm;
}
void setJunctionDeviation_mm(const float value) {
planner.junction_deviation_mm = clamp(value, 0.01, 0.3);
planner.recalculate_max_e_jerk();
}
#else
float getAxisMaxJerk_mm_s(const axis_t axis) {
return planner.max_jerk[axis];
}
float getAxisMaxJerk_mm_s(const extruder_t extruder) {
return planner.max_jerk[E_AXIS];
}
void setAxisMaxJerk_mm_s(const float value, const axis_t axis) {
planner.max_jerk[axis] = value;
}
void setAxisMaxJerk_mm_s(const float value, const extruder_t extruder) {
planner.max_jerk[E_AXIS] = value;
}
#endif
float getFeedrate_mm_s() { return feedrate_mm_s; }
float getMinFeedrate_mm_s() { return planner.settings.min_feedrate_mm_s; }
float getMinTravelFeedrate_mm_s() { return planner.settings.min_travel_feedrate_mm_s; }
float getPrintingAcceleration_mm_s2() { return planner.settings.acceleration; }
float getRetractAcceleration_mm_s2() { return planner.settings.retract_acceleration; }
float getTravelAcceleration_mm_s2() { return planner.settings.travel_acceleration; }
void setFeedrate_mm_s(const float fr) { feedrate_mm_s = fr; }
void setMinFeedrate_mm_s(const float fr) { planner.settings.min_feedrate_mm_s = fr; }
void setMinTravelFeedrate_mm_s(const float fr) { planner.settings.min_travel_feedrate_mm_s = fr; }
void setPrintingAcceleration_mm_s2(const float acc) { planner.settings.acceleration = acc; }
void setRetractAcceleration_mm_s2(const float acc) { planner.settings.retract_acceleration = acc; }
void setTravelAcceleration_mm_s2(const float acc) { planner.settings.travel_acceleration = acc; }
#if ENABLED(BABYSTEP_ZPROBE_OFFSET)
float getZOffset_mm() {
#if ENABLED(BABYSTEP_HOTEND_Z_OFFSET)
if (active_extruder != 0)
return hotend_offset[Z_AXIS][active_extruder];
else
#endif
return zprobe_zoffset;
}
void setZOffset_mm(const float value) {
const float diff = (value - getZOffset_mm()) / planner.steps_to_mm[Z_AXIS];
addZOffset_steps(diff > 0 ? ceil(diff) : floor(diff));
}
void addZOffset_steps(int16_t babystep_increment) {
#if ENABLED(BABYSTEP_HOTEND_Z_OFFSET)
const bool do_probe = (active_extruder == 0);
#else
constexpr bool do_probe = true;
#endif
const float diff = planner.steps_to_mm[Z_AXIS] * babystep_increment,
new_probe_offset = zprobe_zoffset + diff,
new_offs =
#if ENABLED(BABYSTEP_HOTEND_Z_OFFSET)
do_probe ? new_probe_offset : hotend_offset[Z_AXIS][active_extruder] - diff
#else
new_probe_offset
#endif
;
if (WITHIN(new_offs, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
thermalManager.babystep_axis(Z_AXIS, babystep_increment);
if (do_probe) zprobe_zoffset = new_offs;
#if ENABLED(BABYSTEP_HOTEND_Z_OFFSET)
else hotend_offset[Z_AXIS][active_extruder] = new_offs;
#endif
}
}
#endif // ENABLED(BABYSTEP_ZPROBE_OFFSET)
#if HOTENDS > 1
float getNozzleOffset_mm(const axis_t axis, const extruder_t extruder) {
if (extruder - E0 >= HOTENDS) return 0;
return hotend_offset[axis][extruder - E0];
}
void setNozzleOffset_mm(const float value, const axis_t axis, const extruder_t extruder) {
if (extruder - E0 >= HOTENDS) return;
hotend_offset[axis][extruder - E0] = value;
}
#endif
#if ENABLED(BACKLASH_GCODE)
float getAxisBacklash_mm(const axis_t axis) { return backlash_distance_mm[axis]; }
void setAxisBacklash_mm(const float value, const axis_t axis)
{ backlash_distance_mm[axis] = clamp(value,0,5); }
float getBacklashCorrection_percent() { return backlash_correction * 100; }
void setBacklashCorrection_percent(const float value) { backlash_correction = clamp(value, 0, 100) / 100.0f; }
#ifdef BACKLASH_SMOOTHING_MM
float getBacklashSmoothing_mm() { return backlash_smoothing_mm; }
void setBacklashSmoothing_mm(const float value) { backlash_smoothing_mm = clamp(value, 0, 999); }
#endif
#endif
uint8_t getProgress_percent() {
return IFSD(card.percentDone(), 0);
}
uint32_t getProgress_seconds_elapsed() {
const duration_t elapsed = print_job_timer.duration();
return elapsed.value;
}
#if ENABLED(PRINTCOUNTER)
char* getTotalPrints_str(char buffer[21]) { strcpy(buffer,itostr3left(print_job_timer.getStats().totalPrints)); return buffer; }
char* getFinishedPrints_str(char buffer[21]) { strcpy(buffer,itostr3left(print_job_timer.getStats().finishedPrints)); return buffer; }
char* getTotalPrintTime_str(char buffer[21]) { duration_t(print_job_timer.getStats().printTime).toString(buffer); return buffer; }
char* getLongestPrint_str(char buffer[21]) { duration_t(print_job_timer.getStats().printTime).toString(buffer); return buffer; }
char* getFilamentUsed_str(char buffer[21]) {
printStatistics stats = print_job_timer.getStats();
sprintf_P(buffer, PSTR("%ld.%im"), long(stats.filamentUsed / 1000), int16_t(stats.filamentUsed / 100) % 10);
return buffer;
}
#endif
float getFeedrate_percent() { return feedrate_percentage; }
void enqueueCommands(progmem_str gcode) {
enqueue_and_echo_commands_P((PGM_P)gcode);
}
bool isAxisPositionKnown(const axis_t axis) {
return TEST(axis_known_position, axis);
}
progmem_str getFirmwareName_str() {
return F("Marlin " SHORT_BUILD_VERSION);
}
void setTargetTemp_celsius(float value, const heater_t heater) {
#if HAS_HEATED_BED
if (heater == BED)
thermalManager.setTargetBed(clamp(value,0,200));
#endif
thermalManager.setTargetHotend(clamp(value,0,500), heater - H0);
}
void setTargetTemp_celsius(float value, const extruder_t extruder) {
thermalManager.setTargetHotend(clamp(value,0,500), extruder - E0);
}
void setFan_percent(float value, const fan_t fan) {
if (fan < FAN_COUNT)
fan_speed[fan - FAN0] = clamp(round(value * 255 / 100), 0, 255);
}
void setFeedrate_percent(const float value) {
feedrate_percentage = clamp(value, 10, 500);
}
void printFile(const char *filename) {
IFSD(card.openAndPrintFile(filename), NOOP);
}
bool isPrintingFromMediaPaused() {
return IFSD(isPrintingFromMedia() && !card.sdprinting, false);
}
bool isPrintingFromMedia() {
return IFSD(card.cardOK && card.isFileOpen(), false);
}
bool isPrinting() {
return (planner.movesplanned() || IS_SD_PRINTING() || isPrintingFromMedia());
}
bool isMediaInserted() {
return IFSD(IS_SD_INSERTED() && card.cardOK, false);
}
void pausePrint() {
#if ENABLED(SDSUPPORT)
card.pauseSDPrint();
print_job_timer.pause();
#if ENABLED(PARK_HEAD_ON_PAUSE)
enqueue_and_echo_commands_P(PSTR("M125"));
#endif
UI::onStatusChanged(PSTR(MSG_PRINT_PAUSED));
#endif
}
void resumePrint() {
#if ENABLED(SDSUPPORT)
#if ENABLED(PARK_HEAD_ON_PAUSE)
enqueue_and_echo_commands_P(PSTR("M24"));
#else
card.startFileprint();
print_job_timer.start();
#endif
UI::onStatusChanged(PSTR(MSG_PRINTING));
#endif
}
void stopPrint() {
#if ENABLED(SDSUPPORT)
wait_for_heatup = wait_for_user = false;
card.abort_sd_printing = true;
UI::onStatusChanged(PSTR(MSG_PRINT_ABORTED));
#endif
}
FileList::FileList() { refresh(); }
void FileList::refresh() { num_files = 0xFFFF; }
bool FileList::seek(uint16_t pos, bool skip_range_check) {
#if ENABLED(SDSUPPORT)
if (!skip_range_check && pos > (count() - 1)) return false;
const uint16_t nr =
#if ENABLED(SDCARD_RATHERRECENTFIRST) && DISABLED(SDCARD_SORT_ALPHA)
count() - 1 -
#endif
pos;
card.getfilename_sorted(nr);
return card.filename && card.filename[0] != '\0';
#endif
}
const char* FileList::filename() {
return IFSD(card.longFilename && card.longFilename[0] ? card.longFilename : card.filename, "");
}
const char* FileList::shortFilename() {
return IFSD(card.filename, "");
}
const char* FileList::longFilename() {
return IFSD(card.longFilename, "");
}
bool FileList::isDir() {
return IFSD(card.filenameIsDir, false);
}
uint16_t FileList::count() {
return IFSD((num_files = (num_files == 0xFFFF ? card.get_num_Files() : num_files)), 0);
}
bool FileList::isAtRootDir() {
#if ENABLED(SDSUPPORT)
card.getWorkDirName();
return card.filename[0] == '/';
#else
return true;
#endif
}
void FileList::upDir() {
#if ENABLED(SDSUPPORT)
card.updir();
num_files = 0xFFFF;
#endif
}
void FileList::changeDir(const char *dirname) {
#if ENABLED(SDSUPPORT)
card.chdir(dirname);
num_files = 0xFFFF;
#endif
}
} // namespace UI
// At the moment, we piggy-back off the ultralcd calls, but this could be cleaned up in the future
void lcd_init() {
#if ENABLED(SDSUPPORT) && PIN_EXISTS(SD_DETECT)
SET_INPUT_PULLUP(SD_DETECT_PIN);
#endif
UI::onStartup();
}
void lcd_update() {
#if ENABLED(SDSUPPORT)
static bool last_sd_status;
const bool sd_status = IS_SD_INSERTED();
if (sd_status != last_sd_status) {
last_sd_status = sd_status;
if (sd_status) {
card.initsd();
if (card.cardOK)
UI::onMediaInserted();
else
UI::onMediaError();
}
else {
const bool ok = card.cardOK;
card.release();
if (ok) UI::onMediaRemoved();
}
}
#endif // SDSUPPORT
UI::_processManualMoveToDestination();
UI::onIdle();
}
bool lcd_hasstatus() { return true; }
bool lcd_detected() { return true; }
void lcd_reset_alert_level() { }
void lcd_refresh() { }
void lcd_setstatus(const char * const message, const bool persist /* = false */) { UI::onStatusChanged(message); }
void lcd_setstatusPGM(const char * const message, int8_t level /* = 0 */) { UI::onStatusChanged((progmem_str)message); }
void lcd_setalertstatusPGM(const char * const message) { lcd_setstatusPGM(message, 0); }
void lcd_reset_status() {
static const char paused[] PROGMEM = MSG_PRINT_PAUSED;
static const char printing[] PROGMEM = MSG_PRINTING;
static const char welcome[] PROGMEM = WELCOME_MSG;
PGM_P msg;
if (print_job_timer.isPaused())
msg = paused;
#if ENABLED(SDSUPPORT)
else if (card.sdprinting)
return lcd_setstatus(card.longest_filename(), true);
#endif
else if (print_job_timer.isRunning())
msg = printing;
else
msg = welcome;
lcd_setstatusPGM(msg, -1);
}
void lcd_status_printf_P(const uint8_t level, const char * const fmt, ...) {
char buff[64];
va_list args;
va_start(args, fmt);
vsnprintf_P(buff, sizeof(buff), fmt, args);
va_end(args);
buff[63] = '\0';
UI::onStatusChanged(buff);
}
void kill_screen(PGM_P msg) {
if (!flags.printer_killed) {
flags.printer_killed = true;
UI::onPrinterKilled(msg);
}
}
#endif // EXTENSIBLE_UI