62db9848d3
Improvement to avoid reinitializing delay buffer with every print. Fixed issues in buffer indexing and memory out of bounds due to floating point imprecision. Simplified the code by avoiding conversion to standard diameter and 1cu mm extrusion, which caused complications in determining mm extruded.
1504 lines
43 KiB
C++
1504 lines
43 KiB
C++
/*
|
|
temperature.c - temperature control
|
|
Part of Marlin
|
|
|
|
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
This firmware is a mashup between Sprinter and grbl.
|
|
(https://github.com/kliment/Sprinter)
|
|
(https://github.com/simen/grbl/tree)
|
|
|
|
It has preliminary support for Matthew Roberts advance algorithm
|
|
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
|
|
|
|
*/
|
|
|
|
|
|
#include "Marlin.h"
|
|
#include "ultralcd.h"
|
|
#include "temperature.h"
|
|
#include "watchdog.h"
|
|
|
|
//===========================================================================
|
|
//=============================public variables============================
|
|
//===========================================================================
|
|
int target_temperature[EXTRUDERS] = { 0 };
|
|
int target_temperature_bed = 0;
|
|
int current_temperature_raw[EXTRUDERS] = { 0 };
|
|
float current_temperature[EXTRUDERS] = { 0.0 };
|
|
int current_temperature_bed_raw = 0;
|
|
float current_temperature_bed = 0.0;
|
|
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
|
|
int redundant_temperature_raw = 0;
|
|
float redundant_temperature = 0.0;
|
|
#endif
|
|
#ifdef PIDTEMP
|
|
float Kp=DEFAULT_Kp;
|
|
float Ki=(DEFAULT_Ki*PID_dT);
|
|
float Kd=(DEFAULT_Kd/PID_dT);
|
|
#ifdef PID_ADD_EXTRUSION_RATE
|
|
float Kc=DEFAULT_Kc;
|
|
#endif
|
|
#endif //PIDTEMP
|
|
|
|
#ifdef PIDTEMPBED
|
|
float bedKp=DEFAULT_bedKp;
|
|
float bedKi=(DEFAULT_bedKi*PID_dT);
|
|
float bedKd=(DEFAULT_bedKd/PID_dT);
|
|
#endif //PIDTEMPBED
|
|
|
|
#ifdef FAN_SOFT_PWM
|
|
unsigned char fanSpeedSoftPwm;
|
|
#endif
|
|
|
|
unsigned char soft_pwm_bed;
|
|
|
|
#ifdef BABYSTEPPING
|
|
volatile int babystepsTodo[3]={0,0,0};
|
|
#endif
|
|
|
|
#ifdef FILAMENT_SENSOR
|
|
int current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only
|
|
#endif
|
|
//===========================================================================
|
|
//=============================private variables============================
|
|
//===========================================================================
|
|
static volatile bool temp_meas_ready = false;
|
|
|
|
#ifdef PIDTEMP
|
|
//static cannot be external:
|
|
static float temp_iState[EXTRUDERS] = { 0 };
|
|
static float temp_dState[EXTRUDERS] = { 0 };
|
|
static float pTerm[EXTRUDERS];
|
|
static float iTerm[EXTRUDERS];
|
|
static float dTerm[EXTRUDERS];
|
|
//int output;
|
|
static float pid_error[EXTRUDERS];
|
|
static float temp_iState_min[EXTRUDERS];
|
|
static float temp_iState_max[EXTRUDERS];
|
|
// static float pid_input[EXTRUDERS];
|
|
// static float pid_output[EXTRUDERS];
|
|
static bool pid_reset[EXTRUDERS];
|
|
#endif //PIDTEMP
|
|
#ifdef PIDTEMPBED
|
|
//static cannot be external:
|
|
static float temp_iState_bed = { 0 };
|
|
static float temp_dState_bed = { 0 };
|
|
static float pTerm_bed;
|
|
static float iTerm_bed;
|
|
static float dTerm_bed;
|
|
//int output;
|
|
static float pid_error_bed;
|
|
static float temp_iState_min_bed;
|
|
static float temp_iState_max_bed;
|
|
#else //PIDTEMPBED
|
|
static unsigned long previous_millis_bed_heater;
|
|
#endif //PIDTEMPBED
|
|
static unsigned char soft_pwm[EXTRUDERS];
|
|
|
|
#ifdef FAN_SOFT_PWM
|
|
static unsigned char soft_pwm_fan;
|
|
#endif
|
|
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
|
|
(defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
|
|
(defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
|
|
static unsigned long extruder_autofan_last_check;
|
|
#endif
|
|
|
|
#if EXTRUDERS > 3
|
|
# error Unsupported number of extruders
|
|
#elif EXTRUDERS > 2
|
|
# define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
|
|
#elif EXTRUDERS > 1
|
|
# define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
|
|
#else
|
|
# define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
|
|
#endif
|
|
|
|
// Init min and max temp with extreme values to prevent false errors during startup
|
|
static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
|
|
static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
|
|
static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
|
|
static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
|
|
//static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP; /* No bed mintemp error implemented?!? */
|
|
#ifdef BED_MAXTEMP
|
|
static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
|
|
#endif
|
|
|
|
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
|
|
static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
|
|
static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
|
|
#else
|
|
static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
|
|
static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
|
|
#endif
|
|
|
|
static float analog2temp(int raw, uint8_t e);
|
|
static float analog2tempBed(int raw);
|
|
static void updateTemperaturesFromRawValues();
|
|
|
|
#ifdef WATCH_TEMP_PERIOD
|
|
int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
|
|
unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
|
|
#endif //WATCH_TEMP_PERIOD
|
|
|
|
#ifndef SOFT_PWM_SCALE
|
|
#define SOFT_PWM_SCALE 0
|
|
#endif
|
|
|
|
#ifdef FILAMENT_SENSOR
|
|
static int meas_shift_index; //used to point to a delayed sample in buffer for filament width sensor
|
|
#endif
|
|
//===========================================================================
|
|
//============================= functions ============================
|
|
//===========================================================================
|
|
|
|
void PID_autotune(float temp, int extruder, int ncycles)
|
|
{
|
|
float input = 0.0;
|
|
int cycles=0;
|
|
bool heating = true;
|
|
|
|
unsigned long temp_millis = millis();
|
|
unsigned long t1=temp_millis;
|
|
unsigned long t2=temp_millis;
|
|
long t_high = 0;
|
|
long t_low = 0;
|
|
|
|
long bias, d;
|
|
float Ku, Tu;
|
|
float Kp, Ki, Kd;
|
|
float max = 0, min = 10000;
|
|
|
|
if ((extruder >= EXTRUDERS)
|
|
#if (TEMP_BED_PIN <= -1)
|
|
||(extruder < 0)
|
|
#endif
|
|
){
|
|
SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
|
|
return;
|
|
}
|
|
|
|
SERIAL_ECHOLN("PID Autotune start");
|
|
|
|
disable_heater(); // switch off all heaters.
|
|
|
|
if (extruder<0)
|
|
{
|
|
soft_pwm_bed = (MAX_BED_POWER)/2;
|
|
bias = d = (MAX_BED_POWER)/2;
|
|
}
|
|
else
|
|
{
|
|
soft_pwm[extruder] = (PID_MAX)/2;
|
|
bias = d = (PID_MAX)/2;
|
|
}
|
|
|
|
|
|
|
|
|
|
for(;;) {
|
|
|
|
if(temp_meas_ready == true) { // temp sample ready
|
|
updateTemperaturesFromRawValues();
|
|
|
|
input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
|
|
|
|
max=max(max,input);
|
|
min=min(min,input);
|
|
if(heating == true && input > temp) {
|
|
if(millis() - t2 > 5000) {
|
|
heating=false;
|
|
if (extruder<0)
|
|
soft_pwm_bed = (bias - d) >> 1;
|
|
else
|
|
soft_pwm[extruder] = (bias - d) >> 1;
|
|
t1=millis();
|
|
t_high=t1 - t2;
|
|
max=temp;
|
|
}
|
|
}
|
|
if(heating == false && input < temp) {
|
|
if(millis() - t1 > 5000) {
|
|
heating=true;
|
|
t2=millis();
|
|
t_low=t2 - t1;
|
|
if(cycles > 0) {
|
|
bias += (d*(t_high - t_low))/(t_low + t_high);
|
|
bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
|
|
if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
|
|
else d = bias;
|
|
|
|
SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
|
|
SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
|
|
SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
|
|
SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
|
|
if(cycles > 2) {
|
|
Ku = (4.0*d)/(3.14159*(max-min)/2.0);
|
|
Tu = ((float)(t_low + t_high)/1000.0);
|
|
SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
|
|
SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
|
|
Kp = 0.6*Ku;
|
|
Ki = 2*Kp/Tu;
|
|
Kd = Kp*Tu/8;
|
|
SERIAL_PROTOCOLLNPGM(" Classic PID ");
|
|
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
|
|
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
|
|
SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
|
|
/*
|
|
Kp = 0.33*Ku;
|
|
Ki = Kp/Tu;
|
|
Kd = Kp*Tu/3;
|
|
SERIAL_PROTOCOLLNPGM(" Some overshoot ");
|
|
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
|
|
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
|
|
SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
|
|
Kp = 0.2*Ku;
|
|
Ki = 2*Kp/Tu;
|
|
Kd = Kp*Tu/3;
|
|
SERIAL_PROTOCOLLNPGM(" No overshoot ");
|
|
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
|
|
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
|
|
SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
|
|
*/
|
|
}
|
|
}
|
|
if (extruder<0)
|
|
soft_pwm_bed = (bias + d) >> 1;
|
|
else
|
|
soft_pwm[extruder] = (bias + d) >> 1;
|
|
cycles++;
|
|
min=temp;
|
|
}
|
|
}
|
|
}
|
|
if(input > (temp + 20)) {
|
|
SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
|
|
return;
|
|
}
|
|
if(millis() - temp_millis > 2000) {
|
|
int p;
|
|
if (extruder<0){
|
|
p=soft_pwm_bed;
|
|
SERIAL_PROTOCOLPGM("ok B:");
|
|
}else{
|
|
p=soft_pwm[extruder];
|
|
SERIAL_PROTOCOLPGM("ok T:");
|
|
}
|
|
|
|
SERIAL_PROTOCOL(input);
|
|
SERIAL_PROTOCOLPGM(" @:");
|
|
SERIAL_PROTOCOLLN(p);
|
|
|
|
temp_millis = millis();
|
|
}
|
|
if(((millis() - t1) + (millis() - t2)) > (10L*60L*1000L*2L)) {
|
|
SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
|
|
return;
|
|
}
|
|
if(cycles > ncycles) {
|
|
SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
|
|
return;
|
|
}
|
|
lcd_update();
|
|
}
|
|
}
|
|
|
|
void updatePID()
|
|
{
|
|
#ifdef PIDTEMP
|
|
for(int e = 0; e < EXTRUDERS; e++) {
|
|
temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki;
|
|
}
|
|
#endif
|
|
#ifdef PIDTEMPBED
|
|
temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
|
|
#endif
|
|
}
|
|
|
|
int getHeaterPower(int heater) {
|
|
if (heater<0)
|
|
return soft_pwm_bed;
|
|
return soft_pwm[heater];
|
|
}
|
|
|
|
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
|
|
(defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
|
|
(defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
|
|
|
|
#if defined(FAN_PIN) && FAN_PIN > -1
|
|
#if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
|
|
#error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
|
|
#endif
|
|
#if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
|
|
#error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
|
|
#endif
|
|
#if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
|
|
#error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
|
|
#endif
|
|
#endif
|
|
|
|
void setExtruderAutoFanState(int pin, bool state)
|
|
{
|
|
unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
|
|
// this idiom allows both digital and PWM fan outputs (see M42 handling).
|
|
pinMode(pin, OUTPUT);
|
|
digitalWrite(pin, newFanSpeed);
|
|
analogWrite(pin, newFanSpeed);
|
|
}
|
|
|
|
void checkExtruderAutoFans()
|
|
{
|
|
uint8_t fanState = 0;
|
|
|
|
// which fan pins need to be turned on?
|
|
#if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
|
|
if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
|
|
fanState |= 1;
|
|
#endif
|
|
#if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
|
|
if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
|
|
{
|
|
if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
|
|
fanState |= 1;
|
|
else
|
|
fanState |= 2;
|
|
}
|
|
#endif
|
|
#if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
|
|
if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
|
|
{
|
|
if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
|
|
fanState |= 1;
|
|
else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
|
|
fanState |= 2;
|
|
else
|
|
fanState |= 4;
|
|
}
|
|
#endif
|
|
|
|
// update extruder auto fan states
|
|
#if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
|
|
setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
|
|
#endif
|
|
#if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
|
|
if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
|
|
setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
|
|
#endif
|
|
#if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
|
|
if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
|
|
&& EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
|
|
setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
|
|
#endif
|
|
}
|
|
|
|
#endif // any extruder auto fan pins set
|
|
|
|
void manage_heater()
|
|
{
|
|
float pid_input;
|
|
float pid_output;
|
|
|
|
if(temp_meas_ready != true) //better readability
|
|
return;
|
|
|
|
updateTemperaturesFromRawValues();
|
|
|
|
for(int e = 0; e < EXTRUDERS; e++)
|
|
{
|
|
|
|
#ifdef THERMAL_RUNAWAY_PROTECTION_PERIOD && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0
|
|
thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_RUNAWAY_PROTECTION_PERIOD, THERMAL_RUNAWAY_PROTECTION_HYSTERESIS);
|
|
#endif
|
|
|
|
#ifdef PIDTEMP
|
|
pid_input = current_temperature[e];
|
|
|
|
#ifndef PID_OPENLOOP
|
|
pid_error[e] = target_temperature[e] - pid_input;
|
|
if(pid_error[e] > PID_FUNCTIONAL_RANGE) {
|
|
pid_output = BANG_MAX;
|
|
pid_reset[e] = true;
|
|
}
|
|
else if(pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
|
|
pid_output = 0;
|
|
pid_reset[e] = true;
|
|
}
|
|
else {
|
|
if(pid_reset[e] == true) {
|
|
temp_iState[e] = 0.0;
|
|
pid_reset[e] = false;
|
|
}
|
|
pTerm[e] = Kp * pid_error[e];
|
|
temp_iState[e] += pid_error[e];
|
|
temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
|
|
iTerm[e] = Ki * temp_iState[e];
|
|
|
|
//K1 defined in Configuration.h in the PID settings
|
|
#define K2 (1.0-K1)
|
|
dTerm[e] = (Kd * (pid_input - temp_dState[e]))*K2 + (K1 * dTerm[e]);
|
|
pid_output = constrain(pTerm[e] + iTerm[e] - dTerm[e], 0, PID_MAX);
|
|
}
|
|
temp_dState[e] = pid_input;
|
|
#else
|
|
pid_output = constrain(target_temperature[e], 0, PID_MAX);
|
|
#endif //PID_OPENLOOP
|
|
#ifdef PID_DEBUG
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHO(" PID_DEBUG ");
|
|
SERIAL_ECHO(e);
|
|
SERIAL_ECHO(": Input ");
|
|
SERIAL_ECHO(pid_input);
|
|
SERIAL_ECHO(" Output ");
|
|
SERIAL_ECHO(pid_output);
|
|
SERIAL_ECHO(" pTerm ");
|
|
SERIAL_ECHO(pTerm[e]);
|
|
SERIAL_ECHO(" iTerm ");
|
|
SERIAL_ECHO(iTerm[e]);
|
|
SERIAL_ECHO(" dTerm ");
|
|
SERIAL_ECHOLN(dTerm[e]);
|
|
#endif //PID_DEBUG
|
|
#else /* PID off */
|
|
pid_output = 0;
|
|
if(current_temperature[e] < target_temperature[e]) {
|
|
pid_output = PID_MAX;
|
|
}
|
|
#endif
|
|
|
|
// Check if temperature is within the correct range
|
|
if((current_temperature[e] > minttemp[e]) && (current_temperature[e] < maxttemp[e]))
|
|
{
|
|
soft_pwm[e] = (int)pid_output >> 1;
|
|
}
|
|
else {
|
|
soft_pwm[e] = 0;
|
|
}
|
|
|
|
#ifdef WATCH_TEMP_PERIOD
|
|
if(watchmillis[e] && millis() - watchmillis[e] > WATCH_TEMP_PERIOD)
|
|
{
|
|
if(degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE)
|
|
{
|
|
setTargetHotend(0, e);
|
|
LCD_MESSAGEPGM("Heating failed");
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLN("Heating failed");
|
|
}else{
|
|
watchmillis[e] = 0;
|
|
}
|
|
}
|
|
#endif
|
|
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
|
|
if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
|
|
disable_heater();
|
|
if(IsStopped() == false) {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
|
|
LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
|
|
}
|
|
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
|
|
Stop();
|
|
#endif
|
|
}
|
|
#endif
|
|
} // End extruder for loop
|
|
|
|
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
|
|
(defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
|
|
(defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
|
|
if(millis() - extruder_autofan_last_check > 2500) // only need to check fan state very infrequently
|
|
{
|
|
checkExtruderAutoFans();
|
|
extruder_autofan_last_check = millis();
|
|
}
|
|
#endif
|
|
|
|
#ifndef PIDTEMPBED
|
|
if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
|
|
return;
|
|
previous_millis_bed_heater = millis();
|
|
#endif
|
|
|
|
#if TEMP_SENSOR_BED != 0
|
|
|
|
#ifdef THERMAL_RUNAWAY_PROTECTION_PERIOD && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0
|
|
thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, 9, THERMAL_RUNAWAY_PROTECTION_BED_PERIOD, THERMAL_RUNAWAY_PROTECTION_BED_HYSTERESIS);
|
|
#endif
|
|
|
|
#ifdef PIDTEMPBED
|
|
pid_input = current_temperature_bed;
|
|
|
|
#ifndef PID_OPENLOOP
|
|
pid_error_bed = target_temperature_bed - pid_input;
|
|
pTerm_bed = bedKp * pid_error_bed;
|
|
temp_iState_bed += pid_error_bed;
|
|
temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
|
|
iTerm_bed = bedKi * temp_iState_bed;
|
|
|
|
//K1 defined in Configuration.h in the PID settings
|
|
#define K2 (1.0-K1)
|
|
dTerm_bed= (bedKd * (pid_input - temp_dState_bed))*K2 + (K1 * dTerm_bed);
|
|
temp_dState_bed = pid_input;
|
|
|
|
pid_output = constrain(pTerm_bed + iTerm_bed - dTerm_bed, 0, MAX_BED_POWER);
|
|
|
|
#else
|
|
pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
|
|
#endif //PID_OPENLOOP
|
|
|
|
if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
|
|
{
|
|
soft_pwm_bed = (int)pid_output >> 1;
|
|
}
|
|
else {
|
|
soft_pwm_bed = 0;
|
|
}
|
|
|
|
#elif !defined(BED_LIMIT_SWITCHING)
|
|
// Check if temperature is within the correct range
|
|
if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
|
|
{
|
|
if(current_temperature_bed >= target_temperature_bed)
|
|
{
|
|
soft_pwm_bed = 0;
|
|
}
|
|
else
|
|
{
|
|
soft_pwm_bed = MAX_BED_POWER>>1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
soft_pwm_bed = 0;
|
|
WRITE(HEATER_BED_PIN,LOW);
|
|
}
|
|
#else //#ifdef BED_LIMIT_SWITCHING
|
|
// Check if temperature is within the correct band
|
|
if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
|
|
{
|
|
if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
|
|
{
|
|
soft_pwm_bed = 0;
|
|
}
|
|
else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
|
|
{
|
|
soft_pwm_bed = MAX_BED_POWER>>1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
soft_pwm_bed = 0;
|
|
WRITE(HEATER_BED_PIN,LOW);
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
//code for controlling the extruder rate based on the width sensor
|
|
#ifdef FILAMENT_SENSOR
|
|
if(filament_sensor)
|
|
{
|
|
meas_shift_index=delay_index1-meas_delay_cm;
|
|
if(meas_shift_index<0)
|
|
meas_shift_index = meas_shift_index + (MAX_MEASUREMENT_DELAY+1); //loop around buffer if needed
|
|
|
|
//get the delayed info and add 100 to reconstitute to a percent of the nominal filament diameter
|
|
//then square it to get an area
|
|
|
|
if(meas_shift_index<0)
|
|
meas_shift_index=0;
|
|
else if (meas_shift_index>MAX_MEASUREMENT_DELAY)
|
|
meas_shift_index=MAX_MEASUREMENT_DELAY;
|
|
|
|
volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = pow((float)(100+measurement_delay[meas_shift_index])/100.0,2);
|
|
if (volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] <0.01)
|
|
volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]=0.01;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#define PGM_RD_W(x) (short)pgm_read_word(&x)
|
|
// Derived from RepRap FiveD extruder::getTemperature()
|
|
// For hot end temperature measurement.
|
|
static float analog2temp(int raw, uint8_t e) {
|
|
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
|
|
if(e > EXTRUDERS)
|
|
#else
|
|
if(e >= EXTRUDERS)
|
|
#endif
|
|
{
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERROR((int)e);
|
|
SERIAL_ERRORLNPGM(" - Invalid extruder number !");
|
|
kill();
|
|
return 0.0;
|
|
}
|
|
#ifdef HEATER_0_USES_MAX6675
|
|
if (e == 0)
|
|
{
|
|
return 0.25 * raw;
|
|
}
|
|
#endif
|
|
|
|
if(heater_ttbl_map[e] != NULL)
|
|
{
|
|
float celsius = 0;
|
|
uint8_t i;
|
|
short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
|
|
|
|
for (i=1; i<heater_ttbllen_map[e]; i++)
|
|
{
|
|
if (PGM_RD_W((*tt)[i][0]) > raw)
|
|
{
|
|
celsius = PGM_RD_W((*tt)[i-1][1]) +
|
|
(raw - PGM_RD_W((*tt)[i-1][0])) *
|
|
(float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
|
|
(float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Overflow: Set to last value in the table
|
|
if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
|
|
|
|
return celsius;
|
|
}
|
|
return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
|
|
}
|
|
|
|
// Derived from RepRap FiveD extruder::getTemperature()
|
|
// For bed temperature measurement.
|
|
static float analog2tempBed(int raw) {
|
|
#ifdef BED_USES_THERMISTOR
|
|
float celsius = 0;
|
|
byte i;
|
|
|
|
for (i=1; i<BEDTEMPTABLE_LEN; i++)
|
|
{
|
|
if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
|
|
{
|
|
celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
|
|
(raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
|
|
(float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
|
|
(float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Overflow: Set to last value in the table
|
|
if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
|
|
|
|
return celsius;
|
|
#elif defined BED_USES_AD595
|
|
return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
/* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
|
|
and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
|
|
static void updateTemperaturesFromRawValues()
|
|
{
|
|
for(uint8_t e=0;e<EXTRUDERS;e++)
|
|
{
|
|
current_temperature[e] = analog2temp(current_temperature_raw[e], e);
|
|
}
|
|
current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
|
|
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
|
|
redundant_temperature = analog2temp(redundant_temperature_raw, 1);
|
|
#endif
|
|
#ifdef FILAMENT_SENSOR && (FILWIDTH_PIN > -1) //check if a sensor is supported
|
|
filament_width_meas = analog2widthFil();
|
|
#endif
|
|
//Reset the watchdog after we know we have a temperature measurement.
|
|
watchdog_reset();
|
|
|
|
CRITICAL_SECTION_START;
|
|
temp_meas_ready = false;
|
|
CRITICAL_SECTION_END;
|
|
}
|
|
|
|
|
|
// For converting raw Filament Width to milimeters
|
|
#ifdef FILAMENT_SENSOR
|
|
float analog2widthFil() {
|
|
return current_raw_filwidth/16383.0*5.0;
|
|
//return current_raw_filwidth;
|
|
}
|
|
|
|
// For converting raw Filament Width to a ratio
|
|
int widthFil_to_size_ratio() {
|
|
|
|
float temp;
|
|
|
|
temp=filament_width_meas;
|
|
if(filament_width_meas<MEASURED_LOWER_LIMIT)
|
|
temp=filament_width_nominal; //assume sensor cut out
|
|
else if (filament_width_meas>MEASURED_UPPER_LIMIT)
|
|
temp= MEASURED_UPPER_LIMIT;
|
|
|
|
|
|
return(filament_width_nominal/temp*100);
|
|
|
|
|
|
}
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
void tp_init()
|
|
{
|
|
#if (MOTHERBOARD == 80) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
|
|
//disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
|
|
MCUCR=(1<<JTD);
|
|
MCUCR=(1<<JTD);
|
|
#endif
|
|
|
|
// Finish init of mult extruder arrays
|
|
for(int e = 0; e < EXTRUDERS; e++) {
|
|
// populate with the first value
|
|
maxttemp[e] = maxttemp[0];
|
|
#ifdef PIDTEMP
|
|
temp_iState_min[e] = 0.0;
|
|
temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki;
|
|
#endif //PIDTEMP
|
|
#ifdef PIDTEMPBED
|
|
temp_iState_min_bed = 0.0;
|
|
temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
|
|
#endif //PIDTEMPBED
|
|
}
|
|
|
|
#if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
|
|
SET_OUTPUT(HEATER_0_PIN);
|
|
#endif
|
|
#if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
|
|
SET_OUTPUT(HEATER_1_PIN);
|
|
#endif
|
|
#if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
|
|
SET_OUTPUT(HEATER_2_PIN);
|
|
#endif
|
|
#if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
|
|
SET_OUTPUT(HEATER_BED_PIN);
|
|
#endif
|
|
#if defined(FAN_PIN) && (FAN_PIN > -1)
|
|
SET_OUTPUT(FAN_PIN);
|
|
#ifdef FAST_PWM_FAN
|
|
setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
|
|
#endif
|
|
#ifdef FAN_SOFT_PWM
|
|
soft_pwm_fan = fanSpeedSoftPwm / 2;
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef HEATER_0_USES_MAX6675
|
|
#ifndef SDSUPPORT
|
|
SET_OUTPUT(MAX_SCK_PIN);
|
|
WRITE(MAX_SCK_PIN,0);
|
|
|
|
SET_OUTPUT(MAX_MOSI_PIN);
|
|
WRITE(MAX_MOSI_PIN,1);
|
|
|
|
SET_INPUT(MAX_MISO_PIN);
|
|
WRITE(MAX_MISO_PIN,1);
|
|
#endif
|
|
|
|
SET_OUTPUT(MAX6675_SS);
|
|
WRITE(MAX6675_SS,1);
|
|
#endif
|
|
|
|
// Set analog inputs
|
|
ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07;
|
|
DIDR0 = 0;
|
|
#ifdef DIDR2
|
|
DIDR2 = 0;
|
|
#endif
|
|
#if defined(TEMP_0_PIN) && (TEMP_0_PIN > -1)
|
|
#if TEMP_0_PIN < 8
|
|
DIDR0 |= 1 << TEMP_0_PIN;
|
|
#else
|
|
DIDR2 |= 1<<(TEMP_0_PIN - 8);
|
|
#endif
|
|
#endif
|
|
#if defined(TEMP_1_PIN) && (TEMP_1_PIN > -1)
|
|
#if TEMP_1_PIN < 8
|
|
DIDR0 |= 1<<TEMP_1_PIN;
|
|
#else
|
|
DIDR2 |= 1<<(TEMP_1_PIN - 8);
|
|
#endif
|
|
#endif
|
|
#if defined(TEMP_2_PIN) && (TEMP_2_PIN > -1)
|
|
#if TEMP_2_PIN < 8
|
|
DIDR0 |= 1 << TEMP_2_PIN;
|
|
#else
|
|
DIDR2 |= 1<<(TEMP_2_PIN - 8);
|
|
#endif
|
|
#endif
|
|
#if defined(TEMP_BED_PIN) && (TEMP_BED_PIN > -1)
|
|
#if TEMP_BED_PIN < 8
|
|
DIDR0 |= 1<<TEMP_BED_PIN;
|
|
#else
|
|
DIDR2 |= 1<<(TEMP_BED_PIN - 8);
|
|
#endif
|
|
#endif
|
|
|
|
//Added for Filament Sensor
|
|
#ifdef FILAMENT_SENSOR
|
|
#if defined(FILWIDTH_PIN) && (FILWIDTH_PIN > -1)
|
|
#if FILWIDTH_PIN < 8
|
|
DIDR0 |= 1<<FILWIDTH_PIN;
|
|
#else
|
|
DIDR2 |= 1<<(FILWIDTH_PIN - 8);
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
// Use timer0 for temperature measurement
|
|
// Interleave temperature interrupt with millies interrupt
|
|
OCR0B = 128;
|
|
TIMSK0 |= (1<<OCIE0B);
|
|
|
|
// Wait for temperature measurement to settle
|
|
delay(250);
|
|
|
|
#ifdef HEATER_0_MINTEMP
|
|
minttemp[0] = HEATER_0_MINTEMP;
|
|
while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
|
|
#if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
|
|
minttemp_raw[0] += OVERSAMPLENR;
|
|
#else
|
|
minttemp_raw[0] -= OVERSAMPLENR;
|
|
#endif
|
|
}
|
|
#endif //MINTEMP
|
|
#ifdef HEATER_0_MAXTEMP
|
|
maxttemp[0] = HEATER_0_MAXTEMP;
|
|
while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
|
|
#if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
|
|
maxttemp_raw[0] -= OVERSAMPLENR;
|
|
#else
|
|
maxttemp_raw[0] += OVERSAMPLENR;
|
|
#endif
|
|
}
|
|
#endif //MAXTEMP
|
|
|
|
#if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
|
|
minttemp[1] = HEATER_1_MINTEMP;
|
|
while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
|
|
#if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
|
|
minttemp_raw[1] += OVERSAMPLENR;
|
|
#else
|
|
minttemp_raw[1] -= OVERSAMPLENR;
|
|
#endif
|
|
}
|
|
#endif // MINTEMP 1
|
|
#if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
|
|
maxttemp[1] = HEATER_1_MAXTEMP;
|
|
while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
|
|
#if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
|
|
maxttemp_raw[1] -= OVERSAMPLENR;
|
|
#else
|
|
maxttemp_raw[1] += OVERSAMPLENR;
|
|
#endif
|
|
}
|
|
#endif //MAXTEMP 1
|
|
|
|
#if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
|
|
minttemp[2] = HEATER_2_MINTEMP;
|
|
while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
|
|
#if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
|
|
minttemp_raw[2] += OVERSAMPLENR;
|
|
#else
|
|
minttemp_raw[2] -= OVERSAMPLENR;
|
|
#endif
|
|
}
|
|
#endif //MINTEMP 2
|
|
#if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
|
|
maxttemp[2] = HEATER_2_MAXTEMP;
|
|
while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
|
|
#if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
|
|
maxttemp_raw[2] -= OVERSAMPLENR;
|
|
#else
|
|
maxttemp_raw[2] += OVERSAMPLENR;
|
|
#endif
|
|
}
|
|
#endif //MAXTEMP 2
|
|
|
|
#ifdef BED_MINTEMP
|
|
/* No bed MINTEMP error implemented?!? */ /*
|
|
while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
|
|
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
|
|
bed_minttemp_raw += OVERSAMPLENR;
|
|
#else
|
|
bed_minttemp_raw -= OVERSAMPLENR;
|
|
#endif
|
|
}
|
|
*/
|
|
#endif //BED_MINTEMP
|
|
#ifdef BED_MAXTEMP
|
|
while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
|
|
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
|
|
bed_maxttemp_raw -= OVERSAMPLENR;
|
|
#else
|
|
bed_maxttemp_raw += OVERSAMPLENR;
|
|
#endif
|
|
}
|
|
#endif //BED_MAXTEMP
|
|
}
|
|
|
|
void setWatch()
|
|
{
|
|
#ifdef WATCH_TEMP_PERIOD
|
|
for (int e = 0; e < EXTRUDERS; e++)
|
|
{
|
|
if(degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2))
|
|
{
|
|
watch_start_temp[e] = degHotend(e);
|
|
watchmillis[e] = millis();
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef THERMAL_RUNAWAY_PROTECTION_PERIOD && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0
|
|
void thermal_runaway_protection(int *state, unsigned long *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc)
|
|
{
|
|
/*
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHO("Thermal Thermal Runaway Running. Heater ID:");
|
|
SERIAL_ECHO(heater_id);
|
|
SERIAL_ECHO(" ; State:");
|
|
SERIAL_ECHO(*state);
|
|
SERIAL_ECHO(" ; Timer:");
|
|
SERIAL_ECHO(*timer);
|
|
SERIAL_ECHO(" ; Temperature:");
|
|
SERIAL_ECHO(temperature);
|
|
SERIAL_ECHO(" ; Target Temp:");
|
|
SERIAL_ECHO(target_temperature);
|
|
SERIAL_ECHOLN("");
|
|
*/
|
|
if ((target_temperature == 0) || thermal_runaway)
|
|
{
|
|
*state = 0;
|
|
*timer = 0;
|
|
return;
|
|
}
|
|
switch (*state)
|
|
{
|
|
case 0: // "Heater Inactive" state
|
|
if (target_temperature > 0) *state = 1;
|
|
break;
|
|
case 1: // "First Heating" state
|
|
if (temperature >= target_temperature) *state = 2;
|
|
break;
|
|
case 2: // "Temperature Stable" state
|
|
if (temperature >= (target_temperature - hysteresis_degc))
|
|
{
|
|
*timer = millis();
|
|
}
|
|
else if ( (millis() - *timer) > period_seconds*1000)
|
|
{
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM("Thermal Runaway, system stopped! Heater_ID: ");
|
|
SERIAL_ERRORLN((int)heater_id);
|
|
LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
|
|
thermal_runaway = true;
|
|
while(1)
|
|
{
|
|
disable_heater();
|
|
disable_x();
|
|
disable_y();
|
|
disable_z();
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
manage_heater();
|
|
lcd_update();
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void disable_heater()
|
|
{
|
|
for(int i=0;i<EXTRUDERS;i++)
|
|
setTargetHotend(0,i);
|
|
setTargetBed(0);
|
|
#if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
|
|
target_temperature[0]=0;
|
|
soft_pwm[0]=0;
|
|
#if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
|
|
WRITE(HEATER_0_PIN,LOW);
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
|
|
target_temperature[1]=0;
|
|
soft_pwm[1]=0;
|
|
#if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
|
|
WRITE(HEATER_1_PIN,LOW);
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
|
|
target_temperature[2]=0;
|
|
soft_pwm[2]=0;
|
|
#if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
|
|
WRITE(HEATER_2_PIN,LOW);
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
|
target_temperature_bed=0;
|
|
soft_pwm_bed=0;
|
|
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
|
|
WRITE(HEATER_BED_PIN,LOW);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
void max_temp_error(uint8_t e) {
|
|
disable_heater();
|
|
if(IsStopped() == false) {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLN((int)e);
|
|
SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
|
|
LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
|
|
}
|
|
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
|
|
Stop();
|
|
#endif
|
|
}
|
|
|
|
void min_temp_error(uint8_t e) {
|
|
disable_heater();
|
|
if(IsStopped() == false) {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLN((int)e);
|
|
SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
|
|
LCD_ALERTMESSAGEPGM("Err: MINTEMP");
|
|
}
|
|
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
|
|
Stop();
|
|
#endif
|
|
}
|
|
|
|
void bed_max_temp_error(void) {
|
|
#if HEATER_BED_PIN > -1
|
|
WRITE(HEATER_BED_PIN, 0);
|
|
#endif
|
|
if(IsStopped() == false) {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !!");
|
|
LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
|
|
}
|
|
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
|
|
Stop();
|
|
#endif
|
|
}
|
|
|
|
#ifdef HEATER_0_USES_MAX6675
|
|
#define MAX6675_HEAT_INTERVAL 250
|
|
long max6675_previous_millis = -HEAT_INTERVAL;
|
|
int max6675_temp = 2000;
|
|
|
|
int read_max6675()
|
|
{
|
|
if (millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
|
|
return max6675_temp;
|
|
|
|
max6675_previous_millis = millis();
|
|
max6675_temp = 0;
|
|
|
|
#ifdef PRR
|
|
PRR &= ~(1<<PRSPI);
|
|
#elif defined PRR0
|
|
PRR0 &= ~(1<<PRSPI);
|
|
#endif
|
|
|
|
SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
|
|
|
|
// enable TT_MAX6675
|
|
WRITE(MAX6675_SS, 0);
|
|
|
|
// ensure 100ns delay - a bit extra is fine
|
|
asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
|
|
asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
|
|
|
|
// read MSB
|
|
SPDR = 0;
|
|
for (;(SPSR & (1<<SPIF)) == 0;);
|
|
max6675_temp = SPDR;
|
|
max6675_temp <<= 8;
|
|
|
|
// read LSB
|
|
SPDR = 0;
|
|
for (;(SPSR & (1<<SPIF)) == 0;);
|
|
max6675_temp |= SPDR;
|
|
|
|
// disable TT_MAX6675
|
|
WRITE(MAX6675_SS, 1);
|
|
|
|
if (max6675_temp & 4)
|
|
{
|
|
// thermocouple open
|
|
max6675_temp = 2000;
|
|
}
|
|
else
|
|
{
|
|
max6675_temp = max6675_temp >> 3;
|
|
}
|
|
|
|
return max6675_temp;
|
|
}
|
|
#endif
|
|
|
|
|
|
// Timer 0 is shared with millies
|
|
ISR(TIMER0_COMPB_vect)
|
|
{
|
|
//these variables are only accesible from the ISR, but static, so they don't lose their value
|
|
static unsigned char temp_count = 0;
|
|
static unsigned long raw_temp_0_value = 0;
|
|
static unsigned long raw_temp_1_value = 0;
|
|
static unsigned long raw_temp_2_value = 0;
|
|
static unsigned long raw_temp_bed_value = 0;
|
|
static unsigned char temp_state = 10;
|
|
static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
|
|
static unsigned char soft_pwm_0;
|
|
#if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
|
|
static unsigned char soft_pwm_1;
|
|
#endif
|
|
#if EXTRUDERS > 2
|
|
static unsigned char soft_pwm_2;
|
|
#endif
|
|
#if HEATER_BED_PIN > -1
|
|
static unsigned char soft_pwm_b;
|
|
#endif
|
|
|
|
#if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
|
|
static unsigned long raw_filwidth_value = 0; //added for filament width sensor
|
|
#endif
|
|
|
|
if(pwm_count == 0){
|
|
soft_pwm_0 = soft_pwm[0];
|
|
if(soft_pwm_0 > 0) {
|
|
WRITE(HEATER_0_PIN,1);
|
|
#ifdef HEATERS_PARALLEL
|
|
WRITE(HEATER_1_PIN,1);
|
|
#endif
|
|
} else WRITE(HEATER_0_PIN,0);
|
|
|
|
#if EXTRUDERS > 1
|
|
soft_pwm_1 = soft_pwm[1];
|
|
if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
|
|
#endif
|
|
#if EXTRUDERS > 2
|
|
soft_pwm_2 = soft_pwm[2];
|
|
if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
|
|
#endif
|
|
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
|
|
soft_pwm_b = soft_pwm_bed;
|
|
if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
|
|
#endif
|
|
#ifdef FAN_SOFT_PWM
|
|
soft_pwm_fan = fanSpeedSoftPwm / 2;
|
|
if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
|
|
#endif
|
|
}
|
|
if(soft_pwm_0 < pwm_count) {
|
|
WRITE(HEATER_0_PIN,0);
|
|
#ifdef HEATERS_PARALLEL
|
|
WRITE(HEATER_1_PIN,0);
|
|
#endif
|
|
}
|
|
#if EXTRUDERS > 1
|
|
if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
|
|
#endif
|
|
#if EXTRUDERS > 2
|
|
if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
|
|
#endif
|
|
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
|
|
if(soft_pwm_b < pwm_count) WRITE(HEATER_BED_PIN,0);
|
|
#endif
|
|
#ifdef FAN_SOFT_PWM
|
|
if(soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
|
|
#endif
|
|
|
|
pwm_count += (1 << SOFT_PWM_SCALE);
|
|
pwm_count &= 0x7f;
|
|
|
|
switch(temp_state) {
|
|
case 0: // Prepare TEMP_0
|
|
#if defined(TEMP_0_PIN) && (TEMP_0_PIN > -1)
|
|
#if TEMP_0_PIN > 7
|
|
ADCSRB = 1<<MUX5;
|
|
#else
|
|
ADCSRB = 0;
|
|
#endif
|
|
ADMUX = ((1 << REFS0) | (TEMP_0_PIN & 0x07));
|
|
ADCSRA |= 1<<ADSC; // Start conversion
|
|
#endif
|
|
lcd_buttons_update();
|
|
temp_state = 1;
|
|
break;
|
|
case 1: // Measure TEMP_0
|
|
#if defined(TEMP_0_PIN) && (TEMP_0_PIN > -1)
|
|
raw_temp_0_value += ADC;
|
|
#endif
|
|
#ifdef HEATER_0_USES_MAX6675 // TODO remove the blocking
|
|
raw_temp_0_value = read_max6675();
|
|
#endif
|
|
temp_state = 2;
|
|
break;
|
|
case 2: // Prepare TEMP_BED
|
|
#if defined(TEMP_BED_PIN) && (TEMP_BED_PIN > -1)
|
|
#if TEMP_BED_PIN > 7
|
|
ADCSRB = 1<<MUX5;
|
|
#else
|
|
ADCSRB = 0;
|
|
#endif
|
|
ADMUX = ((1 << REFS0) | (TEMP_BED_PIN & 0x07));
|
|
ADCSRA |= 1<<ADSC; // Start conversion
|
|
#endif
|
|
lcd_buttons_update();
|
|
temp_state = 3;
|
|
break;
|
|
case 3: // Measure TEMP_BED
|
|
#if defined(TEMP_BED_PIN) && (TEMP_BED_PIN > -1)
|
|
raw_temp_bed_value += ADC;
|
|
#endif
|
|
temp_state = 4;
|
|
break;
|
|
case 4: // Prepare TEMP_1
|
|
#if defined(TEMP_1_PIN) && (TEMP_1_PIN > -1)
|
|
#if TEMP_1_PIN > 7
|
|
ADCSRB = 1<<MUX5;
|
|
#else
|
|
ADCSRB = 0;
|
|
#endif
|
|
ADMUX = ((1 << REFS0) | (TEMP_1_PIN & 0x07));
|
|
ADCSRA |= 1<<ADSC; // Start conversion
|
|
#endif
|
|
lcd_buttons_update();
|
|
temp_state = 5;
|
|
break;
|
|
case 5: // Measure TEMP_1
|
|
#if defined(TEMP_1_PIN) && (TEMP_1_PIN > -1)
|
|
raw_temp_1_value += ADC;
|
|
#endif
|
|
temp_state = 6;
|
|
break;
|
|
case 6: // Prepare TEMP_2
|
|
#if defined(TEMP_2_PIN) && (TEMP_2_PIN > -1)
|
|
#if TEMP_2_PIN > 7
|
|
ADCSRB = 1<<MUX5;
|
|
#else
|
|
ADCSRB = 0;
|
|
#endif
|
|
ADMUX = ((1 << REFS0) | (TEMP_2_PIN & 0x07));
|
|
ADCSRA |= 1<<ADSC; // Start conversion
|
|
#endif
|
|
lcd_buttons_update();
|
|
temp_state = 7;
|
|
break;
|
|
case 7: // Measure TEMP_2
|
|
#if defined(TEMP_2_PIN) && (TEMP_2_PIN > -1)
|
|
raw_temp_2_value += ADC;
|
|
#endif
|
|
temp_state = 8;//change so that Filament Width is also measured
|
|
|
|
break;
|
|
case 8: //Prepare FILWIDTH
|
|
#if defined(FILWIDTH_PIN) && (FILWIDTH_PIN> -1)
|
|
#if FILWIDTH_PIN>7
|
|
ADCSRB = 1<<MUX5;
|
|
#else
|
|
ADCSRB = 0;
|
|
#endif
|
|
ADMUX = ((1 << REFS0) | (FILWIDTH_PIN & 0x07));
|
|
ADCSRA |= 1<<ADSC; // Start conversion
|
|
#endif
|
|
lcd_buttons_update();
|
|
temp_state = 9;
|
|
break;
|
|
case 9: //Measure FILWIDTH
|
|
#if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
|
|
//raw_filwidth_value += ADC; //remove to use an IIR filter approach
|
|
if(ADC>102) //check that ADC is reading a voltage > 0.5 volts, otherwise don't take in the data.
|
|
{
|
|
raw_filwidth_value= raw_filwidth_value-(raw_filwidth_value>>7); //multipliy raw_filwidth_value by 127/128
|
|
|
|
raw_filwidth_value= raw_filwidth_value + ((unsigned long)ADC<<7); //add new ADC reading
|
|
}
|
|
#endif
|
|
temp_state = 0;
|
|
|
|
temp_count++;
|
|
break;
|
|
|
|
|
|
case 10: //Startup, delay initial temp reading a tiny bit so the hardware can settle.
|
|
temp_state = 0;
|
|
break;
|
|
// default:
|
|
// SERIAL_ERROR_START;
|
|
// SERIAL_ERRORLNPGM("Temp measurement error!");
|
|
// break;
|
|
}
|
|
|
|
if(temp_count >= OVERSAMPLENR) // 10 * 16 * 1/(16000000/64/256) = 164ms.
|
|
{
|
|
if (!temp_meas_ready) //Only update the raw values if they have been read. Else we could be updating them during reading.
|
|
{
|
|
current_temperature_raw[0] = raw_temp_0_value;
|
|
#if EXTRUDERS > 1
|
|
current_temperature_raw[1] = raw_temp_1_value;
|
|
#endif
|
|
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
|
|
redundant_temperature_raw = raw_temp_1_value;
|
|
#endif
|
|
#if EXTRUDERS > 2
|
|
current_temperature_raw[2] = raw_temp_2_value;
|
|
#endif
|
|
current_temperature_bed_raw = raw_temp_bed_value;
|
|
}
|
|
|
|
//Add similar code for Filament Sensor - can be read any time since IIR filtering is used
|
|
#if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
|
|
current_raw_filwidth = raw_filwidth_value>>10; //need to divide to get to 0-16384 range since we used 1/128 IIR filter approach
|
|
#endif
|
|
|
|
|
|
temp_meas_ready = true;
|
|
temp_count = 0;
|
|
raw_temp_0_value = 0;
|
|
raw_temp_1_value = 0;
|
|
raw_temp_2_value = 0;
|
|
raw_temp_bed_value = 0;
|
|
|
|
#if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
|
|
if(current_temperature_raw[0] <= maxttemp_raw[0]) {
|
|
#else
|
|
if(current_temperature_raw[0] >= maxttemp_raw[0]) {
|
|
#endif
|
|
max_temp_error(0);
|
|
}
|
|
#if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
|
|
if(current_temperature_raw[0] >= minttemp_raw[0]) {
|
|
#else
|
|
if(current_temperature_raw[0] <= minttemp_raw[0]) {
|
|
#endif
|
|
min_temp_error(0);
|
|
}
|
|
#if EXTRUDERS > 1
|
|
#if HEATER_1_RAW_LO_TEMP > HEATER_1_RAW_HI_TEMP
|
|
if(current_temperature_raw[1] <= maxttemp_raw[1]) {
|
|
#else
|
|
if(current_temperature_raw[1] >= maxttemp_raw[1]) {
|
|
#endif
|
|
max_temp_error(1);
|
|
}
|
|
#if HEATER_1_RAW_LO_TEMP > HEATER_1_RAW_HI_TEMP
|
|
if(current_temperature_raw[1] >= minttemp_raw[1]) {
|
|
#else
|
|
if(current_temperature_raw[1] <= minttemp_raw[1]) {
|
|
#endif
|
|
min_temp_error(1);
|
|
}
|
|
#endif
|
|
#if EXTRUDERS > 2
|
|
#if HEATER_2_RAW_LO_TEMP > HEATER_2_RAW_HI_TEMP
|
|
if(current_temperature_raw[2] <= maxttemp_raw[2]) {
|
|
#else
|
|
if(current_temperature_raw[2] >= maxttemp_raw[2]) {
|
|
#endif
|
|
max_temp_error(2);
|
|
}
|
|
#if HEATER_2_RAW_LO_TEMP > HEATER_2_RAW_HI_TEMP
|
|
if(current_temperature_raw[2] >= minttemp_raw[2]) {
|
|
#else
|
|
if(current_temperature_raw[2] <= minttemp_raw[2]) {
|
|
#endif
|
|
min_temp_error(2);
|
|
}
|
|
#endif
|
|
|
|
/* No bed MINTEMP error? */
|
|
#if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
|
|
# if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
|
|
if(current_temperature_bed_raw <= bed_maxttemp_raw) {
|
|
#else
|
|
if(current_temperature_bed_raw >= bed_maxttemp_raw) {
|
|
#endif
|
|
target_temperature_bed = 0;
|
|
bed_max_temp_error();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef BABYSTEPPING
|
|
for(uint8_t axis=0;axis<3;axis++)
|
|
{
|
|
int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
|
|
|
|
if(curTodo>0)
|
|
{
|
|
babystep(axis,/*fwd*/true);
|
|
babystepsTodo[axis]--; //less to do next time
|
|
}
|
|
else
|
|
if(curTodo<0)
|
|
{
|
|
babystep(axis,/*fwd*/false);
|
|
babystepsTodo[axis]++; //less to do next time
|
|
}
|
|
}
|
|
#endif //BABYSTEPPING
|
|
}
|
|
|
|
#ifdef PIDTEMP
|
|
// Apply the scale factors to the PID values
|
|
|
|
|
|
float scalePID_i(float i)
|
|
{
|
|
return i*PID_dT;
|
|
}
|
|
|
|
float unscalePID_i(float i)
|
|
{
|
|
return i/PID_dT;
|
|
}
|
|
|
|
float scalePID_d(float d)
|
|
{
|
|
return d/PID_dT;
|
|
}
|
|
|
|
float unscalePID_d(float d)
|
|
{
|
|
return d*PID_dT;
|
|
}
|
|
|
|
#endif //PIDTEMP
|
|
|
|
|