marlin_i2/Marlin/Max7219_Debug_LEDs.cpp

594 lines
20 KiB
C++
Raw Normal View History

2019-03-04 00:20:41 +01:00
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* This module is off by default, but can be enabled to facilitate the display of
* extra debug information during code development.
*
* Just connect up 5V and GND to give it power, then connect up the pins assigned
* in Configuration_adv.h. For example, on the Re-ARM you could use:
*
* #define MAX7219_CLK_PIN 77
* #define MAX7219_DIN_PIN 78
* #define MAX7219_LOAD_PIN 79
*
* send() is called automatically at startup, and then there are a number of
* support functions available to control the LEDs in the 8x8 grid.
*/
#include "MarlinConfig.h"
#if ENABLED(MAX7219_DEBUG)
#define MAX7219_ERRORS // Disable to save 406 bytes of Program Memory
#include "Max7219_Debug_LEDs.h"
#include "planner.h"
#include "stepper.h"
#include "Marlin.h"
#include "delay.h"
Max7219 max7219;
uint8_t Max7219::led_line[MAX7219_LINES]; // = { 0 };
#define LINE_REG(Q) (max7219_reg_digit0 + ((Q) & 0x7))
#if _ROT == 0 || _ROT == 270
#define _LED_BIT(Q) (7 - ((Q) & 0x7))
#define _LED_UNIT(Q) ((Q) & ~0x7)
#else
#define _LED_BIT(Q) ((Q) & 0x7)
#define _LED_UNIT(Q) ((MAX7219_NUMBER_UNITS - 1 - ((Q) >> 3)) << 3)
#endif
#if _ROT < 180
#define _LED_IND(P,Q) (_LED_UNIT(P) + (Q))
#else
#define _LED_IND(P,Q) (_LED_UNIT(P) + (7 - ((Q) & 0x7)))
#endif
#if _ROT == 0 || _ROT == 180
#define LED_IND(X,Y) _LED_IND(X,Y)
#define LED_BIT(X,Y) _LED_BIT(X)
#elif _ROT == 90 || _ROT == 270
#define LED_IND(X,Y) _LED_IND(Y,X)
#define LED_BIT(X,Y) _LED_BIT(Y)
#endif
#define XOR_7219(X,Y) do{ led_line[LED_IND(X,Y)] ^= _BV(LED_BIT(X,Y)); }while(0)
#define SET_7219(X,Y) do{ led_line[LED_IND(X,Y)] |= _BV(LED_BIT(X,Y)); }while(0)
#define CLR_7219(X,Y) do{ led_line[LED_IND(X,Y)] &= ~_BV(LED_BIT(X,Y)); }while(0)
#define BIT_7219(X,Y) TEST(led_line[LED_IND(X,Y)], LED_BIT(X,Y))
#ifdef CPU_32_BIT
#define SIG_DELAY() DELAY_US(1) // Approximate a 1µs delay on 32-bit ARM
#undef CRITICAL_SECTION_START
#undef CRITICAL_SECTION_END
#define CRITICAL_SECTION_START NOOP
#define CRITICAL_SECTION_END NOOP
#else
#define SIG_DELAY() DELAY_NS(188) // Delay for 0.1875µs (16MHz AVR) or 0.15µs (20MHz AVR)
#endif
void Max7219::error(const char * const func, const int32_t v1, const int32_t v2/*=-1*/) {
#if ENABLED(MAX7219_ERRORS)
SERIAL_ECHOPGM("??? Max7219::");
serialprintPGM(func);
SERIAL_CHAR('(');
SERIAL_ECHO(v1);
if (v2 > 0) SERIAL_ECHOPAIR(", ", v2);
SERIAL_CHAR(')');
SERIAL_EOL();
#else
UNUSED(func); UNUSED(v1); UNUSED(v2);
#endif
}
/**
* Flip the lowest n_bytes of the supplied bits:
* flipped(x, 1) flips the low 8 bits of x.
* flipped(x, 2) flips the low 16 bits of x.
* flipped(x, 3) flips the low 24 bits of x.
* flipped(x, 4) flips the low 32 bits of x.
*/
inline uint32_t flipped(const uint32_t bits, const uint8_t n_bytes) {
uint32_t mask = 1, outbits = 0;
for (uint8_t b = 0; b < n_bytes * 8; b++) {
outbits <<= 1;
if (bits & mask) outbits |= 1;
mask <<= 1;
}
return outbits;
}
void Max7219::noop() {
CRITICAL_SECTION_START;
SIG_DELAY();
WRITE(MAX7219_DIN_PIN, LOW);
for (uint8_t i = 16; i--;) {
SIG_DELAY();
WRITE(MAX7219_CLK_PIN, LOW);
SIG_DELAY();
SIG_DELAY();
WRITE(MAX7219_CLK_PIN, HIGH);
SIG_DELAY();
}
CRITICAL_SECTION_END;
}
void Max7219::putbyte(uint8_t data) {
CRITICAL_SECTION_START;
for (uint8_t i = 8; i--;) {
SIG_DELAY();
WRITE(MAX7219_CLK_PIN, LOW); // tick
SIG_DELAY();
WRITE(MAX7219_DIN_PIN, (data & 0x80) ? HIGH : LOW); // send 1 or 0 based on data bit
SIG_DELAY();
WRITE(MAX7219_CLK_PIN, HIGH); // tock
SIG_DELAY();
data <<= 1;
}
CRITICAL_SECTION_END;
}
void Max7219::pulse_load() {
SIG_DELAY();
WRITE(MAX7219_LOAD_PIN, LOW); // tell the chip to load the data
SIG_DELAY();
WRITE(MAX7219_LOAD_PIN, HIGH);
SIG_DELAY();
}
void Max7219::send(const uint8_t reg, const uint8_t data) {
SIG_DELAY();
CRITICAL_SECTION_START;
SIG_DELAY();
putbyte(reg); // specify register
SIG_DELAY();
putbyte(data); // put data
CRITICAL_SECTION_END;
}
// Send out a single native row of bits to all units
void Max7219::refresh_line(const uint8_t line) {
for (uint8_t u = MAX7219_NUMBER_UNITS; u--;)
send(LINE_REG(line), led_line[(u << 3) | (line & 0x7)]);
pulse_load();
}
// Send out a single native row of bits to just one unit
void Max7219::refresh_unit_line(const uint8_t line) {
for (uint8_t u = MAX7219_NUMBER_UNITS; u--;)
if (u == (line >> 3)) send(LINE_REG(line), led_line[line]); else noop();
pulse_load();
}
void Max7219::set(const uint8_t line, const uint8_t bits) {
led_line[line] = bits;
refresh_line(line);
}
#if ENABLED(MAX7219_NUMERIC)
// Draw an integer with optional leading zeros and optional decimal point
void Max7219::print(const uint8_t start, int16_t value, uint8_t size, const bool leadzero=false, bool dec=false) {
constexpr uint8_t led_numeral[10] = { 0x7E, 0x60, 0x6D, 0x79, 0x63, 0x5B, 0x5F, 0x70, 0x7F, 0x7A },
led_decimal = 0x80, led_minus = 0x01;
bool blank = false, neg = value < 0;
if (neg) value *= -1;
while (size--) {
const bool minus = neg && blank;
if (minus) neg = false;
send(
max7219_reg_digit0 + start + size,
minus ? led_minus : blank ? 0x00 : led_numeral[value % 10] | (dec ? led_decimal : 0x00)
);
pulse_load(); // tell the chips to load the clocked out data
value /= 10;
if (!value && !leadzero) blank = true;
dec = false;
}
}
// Draw a float with a decimal point and optional digits
void Max7219::print(const uint8_t start, const float value, const uint8_t pre_size, const uint8_t post_size, const bool leadzero=false) {
if (pre_size) print(start, value, pre_size, leadzero, !!post_size);
if (post_size) {
const int16_t after = ABS(value) * (10 ^ post_size);
print(start + pre_size, after, post_size, true);
}
}
#endif // MAX7219_NUMERIC
// Modify a single LED bit and send the changed line
void Max7219::led_set(const uint8_t x, const uint8_t y, const bool on) {
if (x > MAX7219_X_LEDS - 1 || y > MAX7219_Y_LEDS - 1) return error(PSTR("led_set"), x, y);
if (BIT_7219(x, y) == on) return;
XOR_7219(x, y);
refresh_line(LED_IND(x, y));
}
void Max7219::led_on(const uint8_t x, const uint8_t y) {
if (x > MAX7219_X_LEDS - 1 || y > MAX7219_Y_LEDS - 1) return error(PSTR("led_on"), x, y);
led_set(x, y, true);
}
void Max7219::led_off(const uint8_t x, const uint8_t y) {
if (x > MAX7219_X_LEDS - 1 || y > MAX7219_Y_LEDS - 1) return error(PSTR("led_off"), x, y);
led_set(x, y, false);
}
void Max7219::led_toggle(const uint8_t x, const uint8_t y) {
if (x > MAX7219_X_LEDS - 1 || y > MAX7219_Y_LEDS - 1) return error(PSTR("led_toggle"), x, y);
led_set(x, y, !BIT_7219(x, y));
}
void Max7219::send_row(const uint8_t row) {
#if _ROT == 0 || _ROT == 180
refresh_line(LED_IND(0, row));
#else
UNUSED(row);
refresh();
#endif
}
void Max7219::send_column(const uint8_t col) {
#if _ROT == 90 || _ROT == 270
refresh_line(LED_IND(col, 0));
#else
UNUSED(col);
refresh();
#endif
}
void Max7219::clear() {
ZERO(led_line);
refresh();
}
void Max7219::fill() {
memset(led_line, 0xFF, sizeof(led_line));
refresh();
}
void Max7219::clear_row(const uint8_t row) {
if (row >= MAX7219_Y_LEDS) return error(PSTR("clear_row"), row);
for (uint8_t x = 0; x < MAX7219_X_LEDS; x++) CLR_7219(x, row);
send_row(row);
}
void Max7219::clear_column(const uint8_t col) {
if (col >= MAX7219_X_LEDS) return error(PSTR("set_column"), col);
for (uint8_t y = 0; y < MAX7219_Y_LEDS; y++) CLR_7219(col, y);
send_column(col);
}
/**
* Plot the low order bits of val to the specified row of the matrix.
* With 4 Max7219 units in the chain, it's possible to set 32 bits at once with
* one call to the function (if rotated 90° or 180°).
*/
void Max7219::set_row(const uint8_t row, const uint32_t val) {
if (row >= MAX7219_Y_LEDS) return error(PSTR("set_row"), row);
uint32_t mask = _BV32(MAX7219_X_LEDS - 1);
for (uint8_t x = 0; x < MAX7219_X_LEDS; x++) {
if (val & mask) SET_7219(x, row); else CLR_7219(x, row);
mask >>= 1;
}
send_row(row);
}
/**
* Plot the low order bits of val to the specified column of the matrix.
* With 4 Max7219 units in the chain, it's possible to set 32 bits at once with
* one call to the function (if rotated 90° or 180°).
*/
void Max7219::set_column(const uint8_t col, const uint32_t val) {
if (col >= MAX7219_X_LEDS) return error(PSTR("set_column"), col);
uint32_t mask = _BV32(MAX7219_Y_LEDS - 1);
for (uint8_t y = 0; y < MAX7219_Y_LEDS; y++) {
if (val & mask) SET_7219(col, y); else CLR_7219(col, y);
mask >>= 1;
}
send_column(col);
}
void Max7219::set_rows_16bits(const uint8_t y, uint32_t val) {
#if MAX7219_X_LEDS == 8
if (y > MAX7219_Y_LEDS - 2) return error(PSTR("set_rows_16bits"), y, val);
set_row(y + 1, val); val >>= 8;
set_row(y + 0, val);
#else // at least 16 bits on each row
if (y > MAX7219_Y_LEDS - 1) return error(PSTR("set_rows_16bits"), y, val);
set_row(y, val);
#endif
}
void Max7219::set_rows_32bits(const uint8_t y, uint32_t val) {
#if MAX7219_X_LEDS == 8
if (y > MAX7219_Y_LEDS - 4) return error(PSTR("set_rows_32bits"), y, val);
set_row(y + 3, val); val >>= 8;
set_row(y + 2, val); val >>= 8;
set_row(y + 1, val); val >>= 8;
set_row(y + 0, val);
#elif MAX7219_X_LEDS == 16
if (y > MAX7219_Y_LEDS - 2) return error(PSTR("set_rows_32bits"), y, val);
set_row(y + 1, val); val >>= 16;
set_row(y + 0, val);
#else // at least 24 bits on each row. In the 3 matrix case, just display the low 24 bits
if (y > MAX7219_Y_LEDS - 1) return error(PSTR("set_rows_32bits"), y, val);
set_row(y, val);
#endif
}
void Max7219::set_columns_16bits(const uint8_t x, uint32_t val) {
#if MAX7219_Y_LEDS == 8
if (x > MAX7219_X_LEDS - 2) return error(PSTR("set_columns_16bits"), x, val);
set_column(x + 0, val); val >>= 8;
set_column(x + 1, val);
#else // at least 16 bits in each column
if (x > MAX7219_X_LEDS - 1) return error(PSTR("set_columns_16bits"), x, val);
set_column(x, val);
#endif
}
void Max7219::set_columns_32bits(const uint8_t x, uint32_t val) {
#if MAX7219_Y_LEDS == 8
if (x > MAX7219_X_LEDS - 4) return error(PSTR("set_rows_32bits"), x, val);
set_column(x + 3, val); val >>= 8;
set_column(x + 2, val); val >>= 8;
set_column(x + 1, val); val >>= 8;
set_column(x + 0, val);
#elif MAX7219_Y_LEDS == 16
if (x > MAX7219_X_LEDS - 2) return error(PSTR("set_rows_32bits"), x, val);
set_column(x + 1, val); val >>= 16;
set_column(x + 0, val);
#else // at least 24 bits on each row. In the 3 matrix case, just display the low 24 bits
if (x > MAX7219_X_LEDS - 1) return error(PSTR("set_rows_32bits"), x, val);
set_column(x, val);
#endif
}
// Initialize the Max7219
void Max7219::register_setup() {
for (uint8_t i = 0; i < MAX7219_NUMBER_UNITS; i++)
send(max7219_reg_scanLimit, 0x07);
pulse_load(); // tell the chips to load the clocked out data
for (uint8_t i = 0; i < MAX7219_NUMBER_UNITS; i++)
send(max7219_reg_decodeMode, 0x00); // using an led matrix (not digits)
pulse_load(); // tell the chips to load the clocked out data
for (uint8_t i = 0; i < MAX7219_NUMBER_UNITS; i++)
send(max7219_reg_shutdown, 0x01); // not in shutdown mode
pulse_load(); // tell the chips to load the clocked out data
for (uint8_t i = 0; i < MAX7219_NUMBER_UNITS; i++)
send(max7219_reg_displayTest, 0x00); // no display test
pulse_load(); // tell the chips to load the clocked out data
for (uint8_t i = 0; i < MAX7219_NUMBER_UNITS; i++)
send(max7219_reg_intensity, 0x01 & 0x0F); // the first 0x0F is the value you can set
// range: 0x00 to 0x0F
pulse_load(); // tell the chips to load the clocked out data
}
#ifdef MAX7219_INIT_TEST
#if MAX7219_INIT_TEST == 2
void Max7219::spiral(const bool on, const uint16_t del) {
constexpr int8_t way[] = { 1, 0, 0, 1, -1, 0, 0, -1 };
int8_t px = 0, py = 0, dir = 0;
for (uint8_t i = MAX7219_X_LEDS * MAX7219_Y_LEDS; i--;) {
led_set(px, py, on);
delay(del);
const int8_t x = px + way[dir], y = py + way[dir + 1];
if (!WITHIN(x, 0, MAX7219_X_LEDS-1) || !WITHIN(y, 0, MAX7219_Y_LEDS-1) || BIT_7219(x, y) == on) dir = (dir + 2) & 0x7;
px += way[dir]; py += way[dir + 1];
}
}
#else
void Max7219::sweep(const int8_t dir, const uint16_t ms, const bool on) {
uint8_t x = dir > 0 ? 0 : MAX7219_X_LEDS-1;
for (uint8_t i = MAX7219_X_LEDS; i--; x += dir) {
set_column(x, on ? 0xFFFFFFFF : 0x00000000);
delay(ms);
}
}
#endif
#endif // MAX7219_INIT_TEST
void Max7219::init() {
SET_OUTPUT(MAX7219_DIN_PIN);
SET_OUTPUT(MAX7219_CLK_PIN);
OUT_WRITE(MAX7219_LOAD_PIN, HIGH);
delay(1);
register_setup();
for (uint8_t i = 0; i <= 7; i++) { // Empty registers to turn all LEDs off
led_line[i] = 0x00;
send(max7219_reg_digit0 + i, 0);
pulse_load(); // tell the chips to load the clocked out data
}
#ifdef MAX7219_INIT_TEST
#if MAX7219_INIT_TEST == 2
spiral(true, 8);
delay(150);
spiral(false, 8);
#else
// Do an aesthetically-pleasing pattern to fully test the Max7219 module and LEDs.
// Light up and turn off columns, both forward and backward.
sweep(1, 20, true);
sweep(1, 20, false);
delay(150);
sweep(-1, 20, true);
sweep(-1, 20, false);
#endif
#endif
}
/**
* This code demonstrates some simple debugging using a single 8x8 LED Matrix. If your feature could
* benefit from matrix display, add its code here. Very little processing is required, so the 7219 is
* ideal for debugging when realtime feedback is important but serial output can't be used.
*/
// Apply changes to update a marker
void Max7219::mark16(const uint8_t y, const uint8_t v1, const uint8_t v2) {
#if MAX7219_X_LEDS == 8
#if MAX7219_Y_LEDS == 8
led_off(v1 & 0x7, y + (v1 >= 8));
led_on(v2 & 0x7, y + (v2 >= 8));
#else
led_off(y, v1 & 0xF); // At least 16 LEDs down. Use a single column.
led_on(y, v2 & 0xF);
#endif
#else
led_off(v1 & 0xF, y); // At least 16 LEDs across. Use a single row.
led_on(v2 & 0xF, y);
#endif
}
// Apply changes to update a tail-to-head range
void Max7219::range16(const uint8_t y, const uint8_t ot, const uint8_t nt, const uint8_t oh, const uint8_t nh) {
#if MAX7219_X_LEDS == 8
#if MAX7219_Y_LEDS == 8
if (ot != nt) for (uint8_t n = ot & 0xF; n != (nt & 0xF) && n != (nh & 0xF); n = (n + 1) & 0xF)
led_off(n & 0x7, y + (n >= 8));
if (oh != nh) for (uint8_t n = (oh + 1) & 0xF; n != ((nh + 1) & 0xF); n = (n + 1) & 0xF)
led_on(n & 0x7, y + (n >= 8));
#else // The Max7219 Y-Axis has at least 16 LED's. So use a single column
if (ot != nt) for (uint8_t n = ot & 0xF; n != (nt & 0xF) && n != (nh & 0xF); n = (n + 1) & 0xF)
led_off(y, n & 0xF);
if (oh != nh) for (uint8_t n = (oh + 1) & 0xF; n != ((nh + 1) & 0xF); n = (n + 1) & 0xF)
led_on(y, n & 0xF);
#endif
#else // LED matrix has at least 16 LED's on the X-Axis. Use single line of LED's
if (ot != nt) for (uint8_t n = ot & 0xF; n != (nt & 0xF) && n != (nh & 0xF); n = (n + 1) & 0xF)
led_off(n & 0xF, y);
if (oh != nh) for (uint8_t n = (oh + 1) & 0xF; n != ((nh + 1) & 0xF); n = (n + 1) & 0xF)
led_on(n & 0xF, y);
#endif
}
// Apply changes to update a quantity
void Max7219::quantity16(const uint8_t y, const uint8_t ov, const uint8_t nv) {
for (uint8_t i = MIN(nv, ov); i < MAX(nv, ov); i++)
#if MAX7219_X_LEDS == 8
#if MAX7219_Y_LEDS == 8
led_set(i >> 1, y + (i & 1), nv >= ov); // single 8x8 LED matrix. Use two lines to get 16 LED's
#else
led_set(y, i, nv >= ov); // The Max7219 Y-Axis has at least 16 LED's. So use a single column
#endif
#else
led_set(i, y, nv >= ov); // LED matrix has at least 16 LED's on the X-Axis. Use single line of LED's
#endif
}
void Max7219::idle_tasks() {
#define MAX7219_USE_HEAD (defined(MAX7219_DEBUG_PLANNER_HEAD) || defined(MAX7219_DEBUG_PLANNER_QUEUE))
#define MAX7219_USE_TAIL (defined(MAX7219_DEBUG_PLANNER_TAIL) || defined(MAX7219_DEBUG_PLANNER_QUEUE))
#if MAX7219_USE_HEAD || MAX7219_USE_TAIL
CRITICAL_SECTION_START;
#if MAX7219_USE_HEAD
const uint8_t head = planner.block_buffer_head;
#endif
#if MAX7219_USE_TAIL
const uint8_t tail = planner.block_buffer_tail;
#endif
CRITICAL_SECTION_END;
#endif
#if ENABLED(MAX7219_DEBUG_PRINTER_ALIVE)
static uint8_t refresh_cnt; // = 0
constexpr uint16_t refresh_limit = 5;
static millis_t next_blink = 0;
const millis_t ms = millis();
const bool do_blink = ELAPSED(ms, next_blink);
#else
static uint16_t refresh_cnt; // = 0
constexpr bool do_blink = true;
constexpr uint16_t refresh_limit = 50000;
#endif
// Some Max7219 units are vulnerable to electrical noise, especially
// with long wires next to high current wires. If the display becomes
// corrupted, this will fix it within a couple seconds.
if (do_blink && ++refresh_cnt >= refresh_limit) {
refresh_cnt = 0;
register_setup();
}
#if ENABLED(MAX7219_DEBUG_PRINTER_ALIVE)
if (do_blink) {
led_toggle(MAX7219_X_LEDS - 1, MAX7219_Y_LEDS - 1);
next_blink = ms + 1000;
}
#endif
#if defined(MAX7219_DEBUG_PLANNER_HEAD) && defined(MAX7219_DEBUG_PLANNER_TAIL) && MAX7219_DEBUG_PLANNER_HEAD == MAX7219_DEBUG_PLANNER_TAIL
static int16_t last_head_cnt = 0xF, last_tail_cnt = 0xF;
if (last_head_cnt != head || last_tail_cnt != tail) {
range16(MAX7219_DEBUG_PLANNER_HEAD, last_tail_cnt, tail, last_head_cnt, head);
last_head_cnt = head;
last_tail_cnt = tail;
}
#else
#ifdef MAX7219_DEBUG_PLANNER_HEAD
static int16_t last_head_cnt = 0x1;
if (last_head_cnt != head) {
mark16(MAX7219_DEBUG_PLANNER_HEAD, last_head_cnt, head);
last_head_cnt = head;
}
#endif
#ifdef MAX7219_DEBUG_PLANNER_TAIL
static int16_t last_tail_cnt = 0x1;
if (last_tail_cnt != tail) {
mark16(MAX7219_DEBUG_PLANNER_TAIL, last_tail_cnt, tail);
last_tail_cnt = tail;
}
#endif
#endif
#ifdef MAX7219_DEBUG_PLANNER_QUEUE
static int16_t last_depth = 0;
const int16_t current_depth = (head - tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1) & 0xF;
if (current_depth != last_depth) {
quantity16(MAX7219_DEBUG_PLANNER_QUEUE, last_depth, current_depth);
last_depth = current_depth;
}
#endif
}
#endif // MAX7219_DEBUG