marlin_i2/Marlin/planner.h

909 lines
33 KiB
C
Raw Normal View History

2019-03-04 00:20:41 +01:00
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* planner.h
*
* Buffer movement commands and manage the acceleration profile plan
*
* Derived from Grbl
* Copyright (c) 2009-2011 Simen Svale Skogsrud
*/
#ifndef PLANNER_H
#define PLANNER_H
#include "types.h"
#include "enum.h"
#include "Marlin.h"
#if ABL_PLANAR
#include "vector_3.h"
#endif
enum BlockFlagBit : char {
// Recalculate trapezoids on entry junction. For optimization.
BLOCK_BIT_RECALCULATE,
// Nominal speed always reached.
// i.e., The segment is long enough, so the nominal speed is reachable if accelerating
// from a safe speed (in consideration of jerking from zero speed).
BLOCK_BIT_NOMINAL_LENGTH,
// The block is segment 2+ of a longer move
BLOCK_BIT_CONTINUED,
// Sync the stepper counts from the block
BLOCK_BIT_SYNC_POSITION
};
enum BlockFlag : char {
BLOCK_FLAG_RECALCULATE = _BV(BLOCK_BIT_RECALCULATE),
BLOCK_FLAG_NOMINAL_LENGTH = _BV(BLOCK_BIT_NOMINAL_LENGTH),
BLOCK_FLAG_CONTINUED = _BV(BLOCK_BIT_CONTINUED),
BLOCK_FLAG_SYNC_POSITION = _BV(BLOCK_BIT_SYNC_POSITION)
};
/**
* struct block_t
*
* A single entry in the planner buffer.
* Tracks linear movement over multiple axes.
*
* The "nominal" values are as-specified by gcode, and
* may never actually be reached due to acceleration limits.
*/
typedef struct {
volatile uint8_t flag; // Block flags (See BlockFlag enum above) - Modified by ISR and main thread!
#if ENABLED(UNREGISTERED_MOVE_SUPPORT)
bool count_it;
#endif
// Fields used by the motion planner to manage acceleration
float nominal_speed_sqr, // The nominal speed for this block in (mm/sec)^2
entry_speed_sqr, // Entry speed at previous-current junction in (mm/sec)^2
max_entry_speed_sqr, // Maximum allowable junction entry speed in (mm/sec)^2
millimeters, // The total travel of this block in mm
acceleration; // acceleration mm/sec^2
union {
// Data used by all move blocks
struct {
// Fields used by the Bresenham algorithm for tracing the line
uint32_t steps[NUM_AXIS]; // Step count along each axis
};
// Data used by all sync blocks
struct {
int32_t position[NUM_AXIS]; // New position to force when this sync block is executed
};
};
uint32_t step_event_count; // The number of step events required to complete this block
uint8_t active_extruder; // The extruder to move (if E move)
#if ENABLED(MIXING_EXTRUDER)
uint32_t mix_steps[MIXING_STEPPERS]; // Scaled steps[E_AXIS] for the mixing steppers
#endif
// Settings for the trapezoid generator
uint32_t accelerate_until, // The index of the step event on which to stop acceleration
decelerate_after; // The index of the step event on which to start decelerating
#if ENABLED(S_CURVE_ACCELERATION)
uint32_t cruise_rate, // The actual cruise rate to use, between end of the acceleration phase and start of deceleration phase
acceleration_time, // Acceleration time and deceleration time in STEP timer counts
deceleration_time,
acceleration_time_inverse, // Inverse of acceleration and deceleration periods, expressed as integer. Scale depends on CPU being used
deceleration_time_inverse;
#else
uint32_t acceleration_rate; // The acceleration rate used for acceleration calculation
#endif
uint8_t direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
// Advance extrusion
#if ENABLED(LIN_ADVANCE)
bool use_advance_lead;
uint16_t advance_speed, // STEP timer value for extruder speed offset ISR
max_adv_steps, // max. advance steps to get cruising speed pressure (not always nominal_speed!)
final_adv_steps; // advance steps due to exit speed
float e_D_ratio;
#endif
uint32_t nominal_rate, // The nominal step rate for this block in step_events/sec
initial_rate, // The jerk-adjusted step rate at start of block
final_rate, // The minimal rate at exit
acceleration_steps_per_s2; // acceleration steps/sec^2
#if FAN_COUNT > 0
uint16_t fan_speed[FAN_COUNT];
#endif
#if ENABLED(BARICUDA)
uint8_t valve_pressure, e_to_p_pressure;
#endif
uint32_t segment_time_us;
} block_t;
#define HAS_POSITION_FLOAT (ENABLED(LIN_ADVANCE) || HAS_FEEDRATE_SCALING)
#define BLOCK_MOD(n) ((n)&(BLOCK_BUFFER_SIZE-1))
class Planner {
public:
/**
* The move buffer, calculated in stepper steps
*
* block_buffer is a ring buffer...
*
* head,tail : indexes for write,read
* head==tail : the buffer is empty
* head!=tail : blocks are in the buffer
* head==(tail-1)%size : the buffer is full
*
* Writer of head is Planner::buffer_segment().
* Reader of tail is Stepper::isr(). Always consider tail busy / read-only
*/
static block_t block_buffer[BLOCK_BUFFER_SIZE];
static volatile uint8_t block_buffer_head, // Index of the next block to be pushed
block_buffer_nonbusy, // Index of the first non busy block
block_buffer_planned, // Index of the optimally planned block
block_buffer_tail; // Index of the busy block, if any
static uint16_t cleaning_buffer_counter; // A counter to disable queuing of blocks
static uint8_t delay_before_delivering; // This counter delays delivery of blocks when queue becomes empty to allow the opportunity of merging blocks
#if ENABLED(DISTINCT_E_FACTORS)
static uint8_t last_extruder; // Respond to extruder change
#endif
static int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder
static float e_factor[EXTRUDERS]; // The flow percentage and volumetric multiplier combine to scale E movement
#if DISABLED(NO_VOLUMETRICS)
static float filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
volumetric_area_nominal, // Nominal cross-sectional area
volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
// May be auto-adjusted by a filament width sensor
#endif
static uint32_t max_acceleration_mm_per_s2[NUM_AXIS_N], // (mm/s^2) M201 XYZE
max_acceleration_steps_per_s2[NUM_AXIS_N], // (steps/s^2) Derived from mm_per_s2
min_segment_time_us; // (µs) M205 Q
static float max_feedrate_mm_s[NUM_AXIS_N], // (mm/s) M203 XYZE - Max speeds
axis_steps_per_mm[NUM_AXIS_N], // (steps) M92 XYZE - Steps per millimeter
steps_to_mm[NUM_AXIS_N], // (mm) Millimeters per step
min_feedrate_mm_s, // (mm/s) M205 S - Minimum linear feedrate
acceleration, // (mm/s^2) M204 S - Normal acceleration. DEFAULT ACCELERATION for all printing moves.
retract_acceleration, // (mm/s^2) M204 R - Retract acceleration. Filament pull-back and push-forward while standing still in the other axes
travel_acceleration, // (mm/s^2) M204 T - Travel acceleration. DEFAULT ACCELERATION for all NON printing moves.
min_travel_feedrate_mm_s; // (mm/s) M205 T - Minimum travel feedrate
#if ENABLED(JUNCTION_DEVIATION)
static float junction_deviation_mm; // (mm) M205 J
#if ENABLED(LIN_ADVANCE)
#if ENABLED(DISTINCT_E_FACTORS)
static float max_e_jerk[EXTRUDERS]; // Calculated from junction_deviation_mm
#else
static float max_e_jerk;
#endif
#endif
#else
static float max_jerk[NUM_AXIS]; // (mm/s^2) M205 XYZE - The largest speed change requiring no acceleration.
#endif
#if ENABLED(LINE_BUILDUP_COMPENSATION_FEATURE)
/*
* Parameters for calculating target[]
* See buildup compensation theory:
* https://vitana.se/opr3d/tbear/2017.html#hangprinter_project_29
*/
static float k0[MOV_AXIS],
k1[MOV_AXIS],
k2[MOV_AXIS],
sqrtk1[MOV_AXIS];
#endif
#if HAS_LEVELING
static bool leveling_active; // Flag that bed leveling is enabled
#if ABL_PLANAR
static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
#endif
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
static float z_fade_height, inverse_z_fade_height;
#endif
#else
static constexpr bool leveling_active = false;
#endif
#if ENABLED(LIN_ADVANCE)
static float extruder_advance_K;
#endif
#if HAS_POSITION_FLOAT
static float position_float[NUM_AXIS];
#endif
#if ENABLED(SKEW_CORRECTION)
#if ENABLED(SKEW_CORRECTION_GCODE)
static float xy_skew_factor;
#else
static constexpr float xy_skew_factor = XY_SKEW_FACTOR;
#endif
#if ENABLED(SKEW_CORRECTION_FOR_Z)
#if ENABLED(SKEW_CORRECTION_GCODE)
static float xz_skew_factor, yz_skew_factor;
#else
static constexpr float xz_skew_factor = XZ_SKEW_FACTOR, yz_skew_factor = YZ_SKEW_FACTOR;
#endif
#else
static constexpr float xz_skew_factor = 0, yz_skew_factor = 0;
#endif
#endif
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
static bool abort_on_endstop_hit;
#endif
private:
/**
* The current position of the tool in absolute steps
* Recalculated if any axis_steps_per_mm are changed by gcode
*/
static int32_t position[NUM_AXIS];
/**
* Speed of previous path line segment
*/
static float previous_speed[NUM_AXIS];
/**
* Nominal speed of previous path line segment (mm/s)^2
*/
static float previous_nominal_speed_sqr;
/**
* Limit where 64bit math is necessary for acceleration calculation
*/
static uint32_t cutoff_long;
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
static float last_fade_z;
#endif
#if ENABLED(DISABLE_INACTIVE_EXTRUDER)
/**
* Counters to manage disabling inactive extruders
*/
static uint8_t g_uc_extruder_last_move[EXTRUDERS];
#endif // DISABLE_INACTIVE_EXTRUDER
#ifdef XY_FREQUENCY_LIMIT
// Used for the frequency limit
#define MAX_FREQ_TIME_US (uint32_t)(1000000.0 / XY_FREQUENCY_LIMIT)
// Old direction bits. Used for speed calculations
static unsigned char old_direction_bits;
// Segment times (in µs). Used for speed calculations
static uint32_t axis_segment_time_us[2][3];
#endif
#if ENABLED(ULTRA_LCD)
volatile static uint32_t block_buffer_runtime_us; //Theoretical block buffer runtime in µs
#endif
public:
/**
* Instance Methods
*/
Planner();
void init();
/**
* Static (class) Methods
*/
static void reset_acceleration_rates();
static void refresh_positioning();
FORCE_INLINE static void refresh_e_factor(const uint8_t e) {
e_factor[e] = (flow_percentage[e] * 0.01f
#if DISABLED(NO_VOLUMETRICS)
* volumetric_multiplier[e]
#endif
);
}
// Manage fans, paste pressure, etc.
static void check_axes_activity();
// Update multipliers based on new diameter measurements
static void calculate_volumetric_multipliers();
#if ENABLED(FILAMENT_WIDTH_SENSOR)
void calculate_volumetric_for_width_sensor(const int8_t encoded_ratio);
#endif
#if DISABLED(NO_VOLUMETRICS)
FORCE_INLINE static void set_filament_size(const uint8_t e, const float &v) {
filament_size[e] = v;
// make sure all extruders have some sane value for the filament size
for (uint8_t i = 0; i < COUNT(filament_size); i++)
if (!filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
}
#endif
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
/**
* Get the Z leveling fade factor based on the given Z height,
* re-calculating only when needed.
*
* Returns 1.0 if planner.z_fade_height is 0.0.
* Returns 0.0 if Z is past the specified 'Fade Height'.
*/
inline static float fade_scaling_factor_for_z(const float &rz) {
static float z_fade_factor = 1;
if (z_fade_height) {
if (rz >= z_fade_height) return 0;
if (last_fade_z != rz) {
last_fade_z = rz;
z_fade_factor = 1 - rz * inverse_z_fade_height;
}
return z_fade_factor;
}
return 1;
}
FORCE_INLINE static void force_fade_recalc() { last_fade_z = -999.999f; }
FORCE_INLINE static void set_z_fade_height(const float &zfh) {
z_fade_height = zfh > 0 ? zfh : 0;
inverse_z_fade_height = RECIPROCAL(z_fade_height);
force_fade_recalc();
}
FORCE_INLINE static bool leveling_active_at_z(const float &rz) {
return !z_fade_height || rz < z_fade_height;
}
#else
FORCE_INLINE static float fade_scaling_factor_for_z(const float &rz) {
UNUSED(rz);
return 1;
}
FORCE_INLINE static bool leveling_active_at_z(const float &rz) { UNUSED(rz); return true; }
#endif
#if ENABLED(SKEW_CORRECTION)
FORCE_INLINE static void skew(float &cx, float &cy, const float &cz) {
if (WITHIN(cx, X_MIN_POS + 1, X_MAX_POS) && WITHIN(cy, Y_MIN_POS + 1, Y_MAX_POS)) {
const float sx = cx - cy * xy_skew_factor - cz * (xz_skew_factor - (xy_skew_factor * yz_skew_factor)),
sy = cy - cz * yz_skew_factor;
if (WITHIN(sx, X_MIN_POS, X_MAX_POS) && WITHIN(sy, Y_MIN_POS, Y_MAX_POS)) {
cx = sx; cy = sy;
}
}
}
FORCE_INLINE static void unskew(float &cx, float &cy, const float &cz) {
if (WITHIN(cx, X_MIN_POS, X_MAX_POS) && WITHIN(cy, Y_MIN_POS, Y_MAX_POS)) {
const float sx = cx + cy * xy_skew_factor + cz * xz_skew_factor,
sy = cy + cz * yz_skew_factor;
if (WITHIN(sx, X_MIN_POS, X_MAX_POS) && WITHIN(sy, Y_MIN_POS, Y_MAX_POS)) {
cx = sx; cy = sy;
}
}
}
#endif // SKEW_CORRECTION
#if PLANNER_LEVELING || HAS_UBL_AND_CURVES
/**
* Apply leveling to transform a cartesian position
* as it will be given to the planner and steppers.
*/
static void apply_leveling(float &rx, float &ry, float &rz);
FORCE_INLINE static void apply_leveling(float (&raw)[XYZ]) { apply_leveling(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]); }
#endif
#if PLANNER_LEVELING
#define ARG_X float rx
#define ARG_Y float ry
#define ARG_Z float rz
#if ENABLED(HANGPRINTER)
#define ARG_E1 float re1
#endif
static void unapply_leveling(float raw[XYZ]);
#else
#define ARG_X const float &rx
#define ARG_Y const float &ry
#define ARG_Z const float &rz
#if ENABLED(HANGPRINTER)
#define ARG_E1 const float &re1
#endif
#endif
// Number of moves currently in the planner including the busy block, if any
FORCE_INLINE static uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail); }
// Number of nonbusy moves currently in the planner
FORCE_INLINE static uint8_t nonbusy_movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_nonbusy); }
// Remove all blocks from the buffer
FORCE_INLINE static void clear_block_buffer() { block_buffer_nonbusy = block_buffer_planned = block_buffer_head = block_buffer_tail = 0; }
// Check if movement queue is full
FORCE_INLINE static bool is_full() { return block_buffer_tail == next_block_index(block_buffer_head); }
// Get count of movement slots free
FORCE_INLINE static uint8_t moves_free() { return BLOCK_BUFFER_SIZE - 1 - movesplanned(); }
/**
* Planner::get_next_free_block
*
* - Get the next head indices (passed by reference)
* - Wait for the number of spaces to open up in the planner
* - Return the first head block
*/
FORCE_INLINE static block_t* get_next_free_block(uint8_t &next_buffer_head, const uint8_t count=1) {
// Wait until there are enough slots free
while (moves_free() < count) { idle(); }
// Return the first available block
next_buffer_head = next_block_index(block_buffer_head);
return &block_buffer[block_buffer_head];
}
/**
* Planner::_buffer_steps
*
* Add a new linear movement to the buffer (in terms of steps).
*
* target - target position in steps units
* fr_mm_s - (target) speed of the move
* extruder - target extruder
* millimeters - the length of the movement, if known
* count_it - apply this move to the counters (UNREGISTERED_MOVE_SUPPORT)
*
* Returns true if movement was buffered, false otherwise
*/
static bool _buffer_steps(const int32_t (&target)[NUM_AXIS]
#if HAS_POSITION_FLOAT
, const float (&target_float)[NUM_AXIS]
#endif
, float fr_mm_s, const uint8_t extruder, const float &millimeters=0.0
#if ENABLED(UNREGISTERED_MOVE_SUPPORT)
, const bool count_it=true
#endif
);
/**
* Planner::_populate_block
*
* Fills a new linear movement in the block (in terms of steps).
*
* target - target position in steps units
* fr_mm_s - (target) speed of the move
* extruder - target extruder
* millimeters - the length of the movement, if known
* count_it - apply this move to the counters (UNREGISTERED_MOVE_SUPPORT)
*
* Returns true is movement is acceptable, false otherwise
*/
static bool _populate_block(block_t * const block, bool split_move,
const int32_t (&target)[NUM_AXIS]
#if HAS_POSITION_FLOAT
, const float (&target_float)[NUM_AXIS]
#endif
, float fr_mm_s, const uint8_t extruder, const float &millimeters=0.0
#if ENABLED(UNREGISTERED_MOVE_SUPPORT)
, const bool count_it=true
#endif
);
/**
* Planner::buffer_sync_block
* Add a block to the buffer that just updates the position
*/
static void buffer_sync_block();
/**
* Planner::buffer_segment
*
* Add a new linear movement to the buffer in axis units.
*
* Leveling and kinematics should be applied ahead of calling this.
*
* a,b,c,e - target positions in mm and/or degrees
* (a, b, c, d, e for Hangprinter)
* fr_mm_s - (target) speed of the move
* extruder - target extruder
* millimeters - the length of the movement, if known
* count_it - remember this move in its counters (UNREGISTERED_MOVE_SUPPORT)
*/
static bool buffer_segment(const float &a, const float &b, const float &c,
#if ENABLED(HANGPRINTER)
const float &d,
#endif
const float &e, const float &fr_mm_s, const uint8_t extruder, const float &millimeters=0.0
#if ENABLED(UNREGISTERED_MOVE_SUPPORT)
, bool count_it=true
#endif
);
static void _set_position_mm(const float &a, const float &b, const float &c,
#if ENABLED(HANGPRINTER)
const float &d,
#endif
const float &e
);
/**
* Add a new linear movement to the buffer.
* The target is NOT translated to delta/scara
*
* Leveling will be applied to input on cartesians.
* Kinematic machines should call buffer_line_kinematic (for leveled moves).
* (Cartesians may also call buffer_line_kinematic.)
*
* rx,ry,rz,e - target position in mm or degrees
* (rx, ry, rz, re1 for Hangprinter)
* fr_mm_s - (target) speed of the move (mm/s)
* extruder - target extruder
* millimeters - the length of the movement, if known
*/
FORCE_INLINE static bool buffer_line(ARG_X, ARG_Y, ARG_Z,
#if ENABLED(HANGPRINTER)
ARG_E1,
#endif
const float &e, const float &fr_mm_s, const uint8_t extruder, const float millimeters = 0.0
) {
#if PLANNER_LEVELING && IS_CARTESIAN
apply_leveling(rx, ry, rz);
#endif
return buffer_segment(rx, ry, rz,
#if ENABLED(HANGPRINTER)
re1,
#endif
e, fr_mm_s, extruder, millimeters
);
}
/**
* Add a new linear movement to the buffer.
* The target is cartesian, it's translated to delta/scara if
* needed.
*
* cart - x,y,z,e CARTESIAN target in mm
* fr_mm_s - (target) speed of the move (mm/s)
* extruder - target extruder
* millimeters - the length of the movement, if known
*/
FORCE_INLINE static bool buffer_line_kinematic(const float (&cart)[XYZE], const float &fr_mm_s, const uint8_t extruder, const float millimeters = 0.0) {
#if PLANNER_LEVELING
float raw[XYZ] = { cart[X_AXIS], cart[Y_AXIS], cart[Z_AXIS] };
apply_leveling(raw);
#else
const float (&raw)[XYZE] = cart;
#endif
#if IS_KINEMATIC
inverse_kinematics(raw);
return buffer_segment(
#if ENABLED(HANGPRINTER)
line_lengths[A_AXIS], line_lengths[B_AXIS], line_lengths[C_AXIS], line_lengths[D_AXIS]
#else
delta[A_AXIS], delta[B_AXIS], delta[C_AXIS]
#endif
, cart[E_CART], fr_mm_s, extruder, millimeters
);
#else
return buffer_segment(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], cart[E_CART], fr_mm_s, extruder, millimeters);
#endif
}
/**
* Set the planner.position and individual stepper positions.
* Used by G92, G28, G29, and other procedures.
*
* Multiplies by axis_steps_per_mm[] and does necessary conversion
* for COREXY / COREXZ / COREYZ to set the corresponding stepper positions.
*
* Clears previous speed values.
*/
FORCE_INLINE static void set_position_mm(ARG_X, ARG_Y, ARG_Z,
#if ENABLED(HANGPRINTER)
ARG_E1,
#endif
const float &e
) {
#if PLANNER_LEVELING && IS_CARTESIAN
apply_leveling(rx, ry, rz);
#endif
_set_position_mm(rx, ry, rz,
#if ENABLED(HANGPRINTER)
re1,
#endif
e
);
}
static void set_position_mm_kinematic(const float (&cart)[XYZE]);
static void set_position_mm(const AxisEnum axis, const float &v);
FORCE_INLINE static void set_z_position_mm(const float &z) { set_position_mm(Z_AXIS, z); }
FORCE_INLINE static void set_e_position_mm(const float &e) { set_position_mm(E_AXIS, e); }
/**
* Get an axis position according to stepper position(s)
* For CORE machines apply translation from ABC to XYZ.
*/
static float get_axis_position_mm(const AxisEnum axis);
// SCARA AB axes are in degrees, not mm
#if IS_SCARA
FORCE_INLINE static float get_axis_position_degrees(const AxisEnum axis) { return get_axis_position_mm(axis); }
#endif
// Called to force a quick stop of the machine (for example, when an emergency
// stop is required, or when endstops are hit)
static void quick_stop();
// Called when an endstop is triggered. Causes the machine to stop inmediately
static void endstop_triggered(const AxisEnum axis);
// Triggered position of an axis in mm (not core-savvy)
static float triggered_position_mm(const AxisEnum axis);
// Block until all buffered steps are executed / cleaned
static void synchronize();
// Wait for moves to finish and disable all steppers
static void finish_and_disable();
// Periodic tick to handle cleaning timeouts
// Called from the Temperature ISR at ~1kHz
static void tick() {
if (cleaning_buffer_counter) {
--cleaning_buffer_counter;
#if ENABLED(SD_FINISHED_STEPPERRELEASE) && defined(SD_FINISHED_RELEASECOMMAND)
if (!cleaning_buffer_counter) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
#endif
}
}
/**
* Does the buffer have any blocks queued?
*/
FORCE_INLINE static bool has_blocks_queued() { return (block_buffer_head != block_buffer_tail); }
/**
* The current block. NULL if the buffer is empty.
* This also marks the block as busy.
* WARNING: Called from Stepper ISR context!
*/
static block_t* get_current_block() {
// Get the number of moves in the planner queue so far
const uint8_t nr_moves = movesplanned();
// If there are any moves queued ...
if (nr_moves) {
// If there is still delay of delivery of blocks running, decrement it
if (delay_before_delivering) {
--delay_before_delivering;
// If the number of movements queued is less than 3, and there is still time
// to wait, do not deliver anything
if (nr_moves < 3 && delay_before_delivering) return NULL;
delay_before_delivering = 0;
}
// If we are here, there is no excuse to deliver the block
block_t * const block = &block_buffer[block_buffer_tail];
// No trapezoid calculated? Don't execute yet.
if (TEST(block->flag, BLOCK_BIT_RECALCULATE)) return NULL;
#if ENABLED(ULTRA_LCD)
block_buffer_runtime_us -= block->segment_time_us; // We can't be sure how long an active block will take, so don't count it.
#endif
// As this block is busy, advance the nonbusy block pointer
block_buffer_nonbusy = next_block_index(block_buffer_tail);
// Push block_buffer_planned pointer, if encountered.
if (block_buffer_tail == block_buffer_planned)
block_buffer_planned = block_buffer_nonbusy;
// Return the block
return block;
}
// The queue became empty
#if ENABLED(ULTRA_LCD)
clear_block_buffer_runtime(); // paranoia. Buffer is empty now - so reset accumulated time to zero.
#endif
return NULL;
}
/**
* "Discard" the block and "release" the memory.
* Called when the current block is no longer needed.
* NB: There MUST be a current block to call this function!!
*/
FORCE_INLINE static void discard_current_block() {
if (has_blocks_queued())
block_buffer_tail = next_block_index(block_buffer_tail);
}
#if ENABLED(ULTRA_LCD)
static uint16_t block_buffer_runtime() {
bool was_enabled = STEPPER_ISR_ENABLED();
if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
millis_t bbru = block_buffer_runtime_us;
if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
// To translate µs to ms a division by 1000 would be required.
// We introduce 2.4% error here by dividing by 1024.
// Doesn't matter because block_buffer_runtime_us is already too small an estimation.
bbru >>= 10;
// limit to about a minute.
NOMORE(bbru, 0xFFFFul);
return bbru;
}
static void clear_block_buffer_runtime() {
bool was_enabled = STEPPER_ISR_ENABLED();
if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
block_buffer_runtime_us = 0;
if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
}
#endif
#if ENABLED(AUTOTEMP)
static float autotemp_min, autotemp_max, autotemp_factor;
static bool autotemp_enabled;
static void getHighESpeed();
static void autotemp_M104_M109();
#endif
#if ENABLED(JUNCTION_DEVIATION)
FORCE_INLINE static void recalculate_max_e_jerk() {
#define GET_MAX_E_JERK(N) SQRT(SQRT(0.5) * junction_deviation_mm * (N) * RECIPROCAL(1.0 - SQRT(0.5)))
#if ENABLED(LIN_ADVANCE)
#if ENABLED(DISTINCT_E_FACTORS)
for (uint8_t i = 0; i < EXTRUDERS; i++)
max_e_jerk[i] = GET_MAX_E_JERK(max_acceleration_mm_per_s2[E_AXIS + i]);
#else
max_e_jerk = GET_MAX_E_JERK(max_acceleration_mm_per_s2[E_AXIS]);
#endif
#endif
}
#endif
private:
/**
* Get the index of the next / previous block in the ring buffer
*/
static constexpr uint8_t next_block_index(const uint8_t block_index) { return BLOCK_MOD(block_index + 1); }
static constexpr uint8_t prev_block_index(const uint8_t block_index) { return BLOCK_MOD(block_index - 1); }
/**
* Calculate the distance (not time) it takes to accelerate
* from initial_rate to target_rate using the given acceleration:
*/
static float estimate_acceleration_distance(const float &initial_rate, const float &target_rate, const float &accel) {
if (accel == 0) return 0; // accel was 0, set acceleration distance to 0
return (sq(target_rate) - sq(initial_rate)) / (accel * 2);
}
/**
* Return the point at which you must start braking (at the rate of -'accel') if
* you start at 'initial_rate', accelerate (until reaching the point), and want to end at
* 'final_rate' after traveling 'distance'.
*
* This is used to compute the intersection point between acceleration and deceleration
* in cases where the "trapezoid" has no plateau (i.e., never reaches maximum speed)
*/
static float intersection_distance(const float &initial_rate, const float &final_rate, const float &accel, const float &distance) {
if (accel == 0) return 0; // accel was 0, set intersection distance to 0
return (accel * 2 * distance - sq(initial_rate) + sq(final_rate)) / (accel * 4);
}
/**
* Calculate the maximum allowable speed squared at this point, in order
* to reach 'target_velocity_sqr' using 'acceleration' within a given
* 'distance'.
*/
static float max_allowable_speed_sqr(const float &accel, const float &target_velocity_sqr, const float &distance) {
return target_velocity_sqr - 2 * accel * distance;
}
#if ENABLED(S_CURVE_ACCELERATION)
/**
* Calculate the speed reached given initial speed, acceleration and distance
*/
static float final_speed(const float &initial_velocity, const float &accel, const float &distance) {
return SQRT(sq(initial_velocity) + 2 * accel * distance);
}
#endif
static void calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor);
static void reverse_pass_kernel(block_t* const current, const block_t * const next);
static void forward_pass_kernel(const block_t * const previous, block_t* const current, uint8_t block_index);
static void reverse_pass();
static void forward_pass();
static void recalculate_trapezoids();
static void recalculate();
#if ENABLED(JUNCTION_DEVIATION)
FORCE_INLINE static void normalize_junction_vector(float (&vector)[XYZE]) {
float magnitude_sq = 0;
LOOP_XYZE(idx) if (vector[idx]) magnitude_sq += sq(vector[idx]);
const float inv_magnitude = RSQRT(magnitude_sq);
LOOP_XYZE(idx) vector[idx] *= inv_magnitude;
}
FORCE_INLINE static float limit_value_by_axis_maximum(const float &max_value, float (&unit_vec)[XYZE]) {
float limit_value = max_value;
LOOP_XYZE(idx) if (unit_vec[idx]) // Avoid divide by zero
NOMORE(limit_value, ABS(max_acceleration_mm_per_s2[idx] / unit_vec[idx]));
return limit_value;
}
#endif // JUNCTION_DEVIATION
};
#define PLANNER_XY_FEEDRATE() (MIN(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
extern Planner planner;
#endif // PLANNER_H