2608 lines
93 KiB
C++
2608 lines
93 KiB
C++
/**
|
|
* Marlin 3D Printer Firmware
|
|
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
*
|
|
* Based on Sprinter and grbl.
|
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* stepper.cpp - A singleton object to execute motion plans using stepper motors
|
|
* Marlin Firmware
|
|
*
|
|
* Derived from Grbl
|
|
* Copyright (c) 2009-2011 Simen Svale Skogsrud
|
|
*
|
|
* Grbl is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* Grbl is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/**
|
|
* Timer calculations informed by the 'RepRap cartesian firmware' by Zack Smith
|
|
* and Philipp Tiefenbacher.
|
|
*/
|
|
|
|
/**
|
|
* __________________________
|
|
* /| |\ _________________ ^
|
|
* / | | \ /| |\ |
|
|
* / | | \ / | | \ s
|
|
* / | | | | | \ p
|
|
* / | | | | | \ e
|
|
* +-----+------------------------+---+--+---------------+----+ e
|
|
* | BLOCK 1 | BLOCK 2 | d
|
|
*
|
|
* time ----->
|
|
*
|
|
* The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
|
|
* first block->accelerate_until step_events_completed, then keeps going at constant speed until
|
|
* step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
|
|
* The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
|
|
*/
|
|
|
|
/**
|
|
* Marlin uses the Bresenham algorithm. For a detailed explanation of theory and
|
|
* method see https://www.cs.helsinki.fi/group/goa/mallinnus/lines/bresenh.html
|
|
*/
|
|
|
|
/**
|
|
* Jerk controlled movements planner added Apr 2018 by Eduardo José Tagle.
|
|
* Equations based on Synthethos TinyG2 sources, but the fixed-point
|
|
* implementation is new, as we are running the ISR with a variable period.
|
|
* Also implemented the Bézier velocity curve evaluation in ARM assembler,
|
|
* to avoid impacting ISR speed.
|
|
*/
|
|
|
|
#include "Marlin.h"
|
|
#include "stepper.h"
|
|
#include "endstops.h"
|
|
#include "planner.h"
|
|
#include "temperature.h"
|
|
#include "ultralcd.h"
|
|
#include "language.h"
|
|
#include "cardreader.h"
|
|
#include "speed_lookuptable.h"
|
|
#include "delay.h"
|
|
|
|
#if HAS_DIGIPOTSS
|
|
#include <SPI.h>
|
|
#endif
|
|
|
|
Stepper stepper; // Singleton
|
|
|
|
// public:
|
|
|
|
#if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
|
|
bool Stepper::homing_dual_axis = false;
|
|
#endif
|
|
|
|
#if HAS_MOTOR_CURRENT_PWM
|
|
uint32_t Stepper::motor_current_setting[3]; // Initialized by settings.load()
|
|
#endif
|
|
|
|
// private:
|
|
|
|
block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced
|
|
|
|
uint8_t Stepper::last_direction_bits = 0,
|
|
Stepper::axis_did_move;
|
|
|
|
bool Stepper::abort_current_block;
|
|
|
|
#if DISABLED(MIXING_EXTRUDER)
|
|
uint8_t Stepper::last_moved_extruder = 0xFF;
|
|
#endif
|
|
|
|
#if ENABLED(X_DUAL_ENDSTOPS)
|
|
bool Stepper::locked_X_motor = false, Stepper::locked_X2_motor = false;
|
|
#endif
|
|
#if ENABLED(Y_DUAL_ENDSTOPS)
|
|
bool Stepper::locked_Y_motor = false, Stepper::locked_Y2_motor = false;
|
|
#endif
|
|
#if ENABLED(Z_DUAL_ENDSTOPS)
|
|
bool Stepper::locked_Z_motor = false, Stepper::locked_Z2_motor = false;
|
|
#endif
|
|
|
|
uint32_t Stepper::acceleration_time, Stepper::deceleration_time;
|
|
uint8_t Stepper::steps_per_isr;
|
|
|
|
#if DISABLED(ADAPTIVE_STEP_SMOOTHING)
|
|
constexpr
|
|
#endif
|
|
uint8_t Stepper::oversampling_factor;
|
|
|
|
int32_t Stepper::delta_error[NUM_AXIS] = { 0 };
|
|
uint32_t Stepper::advance_dividend[NUM_AXIS] = { 0 },
|
|
Stepper::advance_divisor = 0,
|
|
Stepper::step_events_completed = 0, // The number of step events executed in the current block
|
|
Stepper::accelerate_until, // The point from where we need to stop acceleration
|
|
Stepper::decelerate_after, // The point from where we need to start decelerating
|
|
Stepper::step_event_count; // The total event count for the current block
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
int32_t Stepper::delta_error_m[MIXING_STEPPERS];
|
|
uint32_t Stepper::advance_dividend_m[MIXING_STEPPERS],
|
|
Stepper::advance_divisor_m;
|
|
#else
|
|
int8_t Stepper::active_extruder; // Active extruder
|
|
#endif
|
|
|
|
#if ENABLED(S_CURVE_ACCELERATION)
|
|
int32_t __attribute__((used)) Stepper::bezier_A __asm__("bezier_A"); // A coefficient in Bézier speed curve with alias for assembler
|
|
int32_t __attribute__((used)) Stepper::bezier_B __asm__("bezier_B"); // B coefficient in Bézier speed curve with alias for assembler
|
|
int32_t __attribute__((used)) Stepper::bezier_C __asm__("bezier_C"); // C coefficient in Bézier speed curve with alias for assembler
|
|
uint32_t __attribute__((used)) Stepper::bezier_F __asm__("bezier_F"); // F coefficient in Bézier speed curve with alias for assembler
|
|
uint32_t __attribute__((used)) Stepper::bezier_AV __asm__("bezier_AV"); // AV coefficient in Bézier speed curve with alias for assembler
|
|
bool __attribute__((used)) Stepper::A_negative __asm__("A_negative"); // If A coefficient was negative
|
|
bool Stepper::bezier_2nd_half; // =false If Bézier curve has been initialized or not
|
|
#endif
|
|
|
|
uint32_t Stepper::nextMainISR = 0;
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
|
|
constexpr uint32_t LA_ADV_NEVER = 0xFFFFFFFF;
|
|
uint32_t Stepper::nextAdvanceISR = LA_ADV_NEVER,
|
|
Stepper::LA_isr_rate = LA_ADV_NEVER;
|
|
uint16_t Stepper::LA_current_adv_steps = 0,
|
|
Stepper::LA_final_adv_steps,
|
|
Stepper::LA_max_adv_steps;
|
|
|
|
int8_t Stepper::LA_steps = 0;
|
|
|
|
bool Stepper::LA_use_advance_lead;
|
|
|
|
#endif // LIN_ADVANCE
|
|
|
|
int32_t Stepper::ticks_nominal = -1;
|
|
|
|
#if DISABLED(S_CURVE_ACCELERATION)
|
|
uint32_t Stepper::acc_step_rate; // needed for deceleration start point
|
|
#endif
|
|
|
|
volatile int32_t Stepper::endstops_trigsteps[XYZ],
|
|
Stepper::count_position[NUM_AXIS] = { 0 };
|
|
int8_t Stepper::count_direction[NUM_AXIS] = {
|
|
1, 1, 1, 1
|
|
#if ENABLED(HANGPRINTER)
|
|
, 1
|
|
#endif
|
|
};
|
|
|
|
#if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
|
|
#define DUAL_ENDSTOP_APPLY_STEP(A,V) \
|
|
if (homing_dual_axis) { \
|
|
if (A##_HOME_DIR < 0) { \
|
|
if (!(TEST(endstops.state(), A##_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##_motor) A##_STEP_WRITE(V); \
|
|
if (!(TEST(endstops.state(), A##2_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##2_motor) A##2_STEP_WRITE(V); \
|
|
} \
|
|
else { \
|
|
if (!(TEST(endstops.state(), A##_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##_motor) A##_STEP_WRITE(V); \
|
|
if (!(TEST(endstops.state(), A##2_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##2_motor) A##2_STEP_WRITE(V); \
|
|
} \
|
|
} \
|
|
else { \
|
|
A##_STEP_WRITE(V); \
|
|
A##2_STEP_WRITE(V); \
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(X_DUAL_STEPPER_DRIVERS)
|
|
#define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)
|
|
#if ENABLED(X_DUAL_ENDSTOPS)
|
|
#define X_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(X,v)
|
|
#else
|
|
#define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
|
|
#endif
|
|
#elif ENABLED(DUAL_X_CARRIAGE)
|
|
#define X_APPLY_DIR(v,ALWAYS) \
|
|
if (extruder_duplication_enabled || ALWAYS) { \
|
|
X_DIR_WRITE(v); \
|
|
X2_DIR_WRITE(v); \
|
|
} \
|
|
else { \
|
|
if (movement_extruder()) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
|
|
}
|
|
#define X_APPLY_STEP(v,ALWAYS) \
|
|
if (extruder_duplication_enabled || ALWAYS) { \
|
|
X_STEP_WRITE(v); \
|
|
X2_STEP_WRITE(v); \
|
|
} \
|
|
else { \
|
|
if (movement_extruder()) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
|
|
}
|
|
#else
|
|
#define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
|
|
#define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
|
|
#endif
|
|
|
|
#if ENABLED(Y_DUAL_STEPPER_DRIVERS)
|
|
#define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0)
|
|
#if ENABLED(Y_DUAL_ENDSTOPS)
|
|
#define Y_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Y,v)
|
|
#else
|
|
#define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
|
|
#endif
|
|
#else
|
|
#define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
|
|
#define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
|
|
#endif
|
|
|
|
#if ENABLED(Z_DUAL_STEPPER_DRIVERS)
|
|
#define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0)
|
|
#if ENABLED(Z_DUAL_ENDSTOPS)
|
|
#define Z_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Z,v)
|
|
#else
|
|
#define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
|
|
#endif
|
|
#else
|
|
#define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
|
|
#define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
|
|
#endif
|
|
|
|
/**
|
|
* Hangprinter's mapping {A,B,C,D} <-> {X,Y,Z,E1} happens here.
|
|
* If you have two extruders: {A,B,C,D} <-> {X,Y,Z,E2}
|
|
* ... etc up to max 4 extruders.
|
|
* Place D connector on your first "free" extruder output.
|
|
*/
|
|
#if ENABLED(HANGPRINTER)
|
|
#define A_APPLY_DIR(v,Q) X_APPLY_DIR(v,Q)
|
|
#define A_APPLY_STEP(v,Q) X_APPLY_STEP(v,Q)
|
|
|
|
#define B_APPLY_DIR(v,Q) Y_APPLY_DIR(v,Q)
|
|
#define B_APPLY_STEP(v,Q) Y_APPLY_STEP(v,Q)
|
|
|
|
#define C_APPLY_DIR(v,Q) Z_APPLY_DIR(v,Q)
|
|
#define C_APPLY_STEP(v,Q) Z_APPLY_STEP(v,Q)
|
|
|
|
#define __D_APPLY(I,T,v) E##I##_##T##_WRITE(v)
|
|
#define _D_APPLY(I,T,v) __D_APPLY(I,T,v)
|
|
#define D_APPLY_DIR(v,Q) _D_APPLY(EXTRUDERS, DIR, v)
|
|
#define D_APPLY_STEP(v,Q) _D_APPLY(EXTRUDERS, STEP, v)
|
|
#endif
|
|
|
|
#if DISABLED(MIXING_EXTRUDER)
|
|
#define E_APPLY_STEP(v,Q) E_STEP_WRITE(active_extruder, v)
|
|
#endif
|
|
|
|
// intRes = longIn1 * longIn2 >> 24
|
|
// uses:
|
|
// A[tmp] to store 0
|
|
// B[tmp] to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
|
|
// note that the lower two bytes and the upper byte of the 48bit result are not calculated.
|
|
// this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
|
|
// B A are bits 24-39 and are the returned value
|
|
// C B A is longIn1
|
|
// D C B A is longIn2
|
|
//
|
|
static FORCE_INLINE uint16_t MultiU24X32toH16(uint32_t longIn1, uint32_t longIn2) {
|
|
register uint8_t tmp1;
|
|
register uint8_t tmp2;
|
|
register uint16_t intRes;
|
|
__asm__ __volatile__(
|
|
A("clr %[tmp1]")
|
|
A("mul %A[longIn1], %B[longIn2]")
|
|
A("mov %[tmp2], r1")
|
|
A("mul %B[longIn1], %C[longIn2]")
|
|
A("movw %A[intRes], r0")
|
|
A("mul %C[longIn1], %C[longIn2]")
|
|
A("add %B[intRes], r0")
|
|
A("mul %C[longIn1], %B[longIn2]")
|
|
A("add %A[intRes], r0")
|
|
A("adc %B[intRes], r1")
|
|
A("mul %A[longIn1], %C[longIn2]")
|
|
A("add %[tmp2], r0")
|
|
A("adc %A[intRes], r1")
|
|
A("adc %B[intRes], %[tmp1]")
|
|
A("mul %B[longIn1], %B[longIn2]")
|
|
A("add %[tmp2], r0")
|
|
A("adc %A[intRes], r1")
|
|
A("adc %B[intRes], %[tmp1]")
|
|
A("mul %C[longIn1], %A[longIn2]")
|
|
A("add %[tmp2], r0")
|
|
A("adc %A[intRes], r1")
|
|
A("adc %B[intRes], %[tmp1]")
|
|
A("mul %B[longIn1], %A[longIn2]")
|
|
A("add %[tmp2], r1")
|
|
A("adc %A[intRes], %[tmp1]")
|
|
A("adc %B[intRes], %[tmp1]")
|
|
A("lsr %[tmp2]")
|
|
A("adc %A[intRes], %[tmp1]")
|
|
A("adc %B[intRes], %[tmp1]")
|
|
A("mul %D[longIn2], %A[longIn1]")
|
|
A("add %A[intRes], r0")
|
|
A("adc %B[intRes], r1")
|
|
A("mul %D[longIn2], %B[longIn1]")
|
|
A("add %B[intRes], r0")
|
|
A("clr r1")
|
|
: [intRes] "=&r" (intRes),
|
|
[tmp1] "=&r" (tmp1),
|
|
[tmp2] "=&r" (tmp2)
|
|
: [longIn1] "d" (longIn1),
|
|
[longIn2] "d" (longIn2)
|
|
: "cc"
|
|
);
|
|
return intRes;
|
|
}
|
|
|
|
void Stepper::wake_up() {
|
|
// TCNT1 = 0;
|
|
ENABLE_STEPPER_DRIVER_INTERRUPT();
|
|
}
|
|
|
|
/**
|
|
* Set the stepper direction of each axis
|
|
*
|
|
* COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
|
|
* COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
|
|
* COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
|
|
*/
|
|
void Stepper::set_directions() {
|
|
|
|
#define SET_STEP_DIR(A) \
|
|
if (motor_direction(_AXIS(A))) { \
|
|
A##_APPLY_DIR(INVERT_## A##_DIR, false); \
|
|
count_direction[_AXIS(A)] = -1; \
|
|
} \
|
|
else { \
|
|
A##_APPLY_DIR(!INVERT_## A##_DIR, false); \
|
|
count_direction[_AXIS(A)] = 1; \
|
|
}
|
|
|
|
#if HAS_X_DIR
|
|
SET_STEP_DIR(X); // A
|
|
#endif
|
|
#if HAS_Y_DIR
|
|
SET_STEP_DIR(Y); // B
|
|
#endif
|
|
#if HAS_Z_DIR
|
|
SET_STEP_DIR(Z); // C
|
|
#endif
|
|
#if ENABLED(HANGPRINTER)
|
|
SET_STEP_DIR(D);
|
|
#endif
|
|
|
|
#if DISABLED(LIN_ADVANCE)
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
if (motor_direction(E_AXIS)) {
|
|
MIXING_STEPPERS_LOOP(j) REV_E_DIR(j);
|
|
count_direction[E_AXIS] = -1;
|
|
}
|
|
else {
|
|
MIXING_STEPPERS_LOOP(j) NORM_E_DIR(j);
|
|
count_direction[E_AXIS] = 1;
|
|
}
|
|
#else
|
|
if (motor_direction(E_AXIS)) {
|
|
REV_E_DIR(active_extruder);
|
|
count_direction[E_AXIS] = -1;
|
|
}
|
|
else {
|
|
NORM_E_DIR(active_extruder);
|
|
count_direction[E_AXIS] = 1;
|
|
}
|
|
#endif
|
|
#endif // !LIN_ADVANCE
|
|
|
|
// A small delay may be needed after changing direction
|
|
#if MINIMUM_STEPPER_DIR_DELAY > 0
|
|
DELAY_NS(MINIMUM_STEPPER_DIR_DELAY);
|
|
#endif
|
|
}
|
|
|
|
#if ENABLED(S_CURVE_ACCELERATION)
|
|
/**
|
|
* This uses a quintic (fifth-degree) Bézier polynomial for the velocity curve, giving
|
|
* a "linear pop" velocity curve; with pop being the sixth derivative of position:
|
|
* velocity - 1st, acceleration - 2nd, jerk - 3rd, snap - 4th, crackle - 5th, pop - 6th
|
|
*
|
|
* The Bézier curve takes the form:
|
|
*
|
|
* V(t) = P_0 * B_0(t) + P_1 * B_1(t) + P_2 * B_2(t) + P_3 * B_3(t) + P_4 * B_4(t) + P_5 * B_5(t)
|
|
*
|
|
* Where 0 <= t <= 1, and V(t) is the velocity. P_0 through P_5 are the control points, and B_0(t)
|
|
* through B_5(t) are the Bernstein basis as follows:
|
|
*
|
|
* B_0(t) = (1-t)^5 = -t^5 + 5t^4 - 10t^3 + 10t^2 - 5t + 1
|
|
* B_1(t) = 5(1-t)^4 * t = 5t^5 - 20t^4 + 30t^3 - 20t^2 + 5t
|
|
* B_2(t) = 10(1-t)^3 * t^2 = -10t^5 + 30t^4 - 30t^3 + 10t^2
|
|
* B_3(t) = 10(1-t)^2 * t^3 = 10t^5 - 20t^4 + 10t^3
|
|
* B_4(t) = 5(1-t) * t^4 = -5t^5 + 5t^4
|
|
* B_5(t) = t^5 = t^5
|
|
* ^ ^ ^ ^ ^ ^
|
|
* | | | | | |
|
|
* A B C D E F
|
|
*
|
|
* Unfortunately, we cannot use forward-differencing to calculate each position through
|
|
* the curve, as Marlin uses variable timer periods. So, we require a formula of the form:
|
|
*
|
|
* V_f(t) = A*t^5 + B*t^4 + C*t^3 + D*t^2 + E*t + F
|
|
*
|
|
* Looking at the above B_0(t) through B_5(t) expanded forms, if we take the coefficients of t^5
|
|
* through t of the Bézier form of V(t), we can determine that:
|
|
*
|
|
* A = -P_0 + 5*P_1 - 10*P_2 + 10*P_3 - 5*P_4 + P_5
|
|
* B = 5*P_0 - 20*P_1 + 30*P_2 - 20*P_3 + 5*P_4
|
|
* C = -10*P_0 + 30*P_1 - 30*P_2 + 10*P_3
|
|
* D = 10*P_0 - 20*P_1 + 10*P_2
|
|
* E = - 5*P_0 + 5*P_1
|
|
* F = P_0
|
|
*
|
|
* Now, since we will (currently) *always* want the initial acceleration and jerk values to be 0,
|
|
* We set P_i = P_0 = P_1 = P_2 (initial velocity), and P_t = P_3 = P_4 = P_5 (target velocity),
|
|
* which, after simplification, resolves to:
|
|
*
|
|
* A = - 6*P_i + 6*P_t = 6*(P_t - P_i)
|
|
* B = 15*P_i - 15*P_t = 15*(P_i - P_t)
|
|
* C = -10*P_i + 10*P_t = 10*(P_t - P_i)
|
|
* D = 0
|
|
* E = 0
|
|
* F = P_i
|
|
*
|
|
* As the t is evaluated in non uniform steps here, there is no other way rather than evaluating
|
|
* the Bézier curve at each point:
|
|
*
|
|
* V_f(t) = A*t^5 + B*t^4 + C*t^3 + F [0 <= t <= 1]
|
|
*
|
|
* Floating point arithmetic execution time cost is prohibitive, so we will transform the math to
|
|
* use fixed point values to be able to evaluate it in realtime. Assuming a maximum of 250000 steps
|
|
* per second (driver pulses should at least be 2µS hi/2µS lo), and allocating 2 bits to avoid
|
|
* overflows on the evaluation of the Bézier curve, means we can use
|
|
*
|
|
* t: unsigned Q0.32 (0 <= t < 1) |range 0 to 0xFFFFFFFF unsigned
|
|
* A: signed Q24.7 , |range = +/- 250000 * 6 * 128 = +/- 192000000 = 0x0B71B000 | 28 bits + sign
|
|
* B: signed Q24.7 , |range = +/- 250000 *15 * 128 = +/- 480000000 = 0x1C9C3800 | 29 bits + sign
|
|
* C: signed Q24.7 , |range = +/- 250000 *10 * 128 = +/- 320000000 = 0x1312D000 | 29 bits + sign
|
|
* F: signed Q24.7 , |range = +/- 250000 * 128 = 32000000 = 0x01E84800 | 25 bits + sign
|
|
*
|
|
* The trapezoid generator state contains the following information, that we will use to create and evaluate
|
|
* the Bézier curve:
|
|
*
|
|
* blk->step_event_count [TS] = The total count of steps for this movement. (=distance)
|
|
* blk->initial_rate [VI] = The initial steps per second (=velocity)
|
|
* blk->final_rate [VF] = The ending steps per second (=velocity)
|
|
* and the count of events completed (step_events_completed) [CS] (=distance until now)
|
|
*
|
|
* Note the abbreviations we use in the following formulae are between []s
|
|
*
|
|
* For Any 32bit CPU:
|
|
*
|
|
* At the start of each trapezoid, calculate the coefficients A,B,C,F and Advance [AV], as follows:
|
|
*
|
|
* A = 6*128*(VF - VI) = 768*(VF - VI)
|
|
* B = 15*128*(VI - VF) = 1920*(VI - VF)
|
|
* C = 10*128*(VF - VI) = 1280*(VF - VI)
|
|
* F = 128*VI = 128*VI
|
|
* AV = (1<<32)/TS ~= 0xFFFFFFFF / TS (To use ARM UDIV, that is 32 bits) (this is computed at the planner, to offload expensive calculations from the ISR)
|
|
*
|
|
* And for each point, evaluate the curve with the following sequence:
|
|
*
|
|
* void lsrs(uint32_t& d, uint32_t s, int cnt) {
|
|
* d = s >> cnt;
|
|
* }
|
|
* void lsls(uint32_t& d, uint32_t s, int cnt) {
|
|
* d = s << cnt;
|
|
* }
|
|
* void lsrs(int32_t& d, uint32_t s, int cnt) {
|
|
* d = uint32_t(s) >> cnt;
|
|
* }
|
|
* void lsls(int32_t& d, uint32_t s, int cnt) {
|
|
* d = uint32_t(s) << cnt;
|
|
* }
|
|
* void umull(uint32_t& rlo, uint32_t& rhi, uint32_t op1, uint32_t op2) {
|
|
* uint64_t res = uint64_t(op1) * op2;
|
|
* rlo = uint32_t(res & 0xFFFFFFFF);
|
|
* rhi = uint32_t((res >> 32) & 0xFFFFFFFF);
|
|
* }
|
|
* void smlal(int32_t& rlo, int32_t& rhi, int32_t op1, int32_t op2) {
|
|
* int64_t mul = int64_t(op1) * op2;
|
|
* int64_t s = int64_t(uint32_t(rlo) | ((uint64_t(uint32_t(rhi)) << 32U)));
|
|
* mul += s;
|
|
* rlo = int32_t(mul & 0xFFFFFFFF);
|
|
* rhi = int32_t((mul >> 32) & 0xFFFFFFFF);
|
|
* }
|
|
* int32_t _eval_bezier_curve_arm(uint32_t curr_step) {
|
|
* register uint32_t flo = 0;
|
|
* register uint32_t fhi = bezier_AV * curr_step;
|
|
* register uint32_t t = fhi;
|
|
* register int32_t alo = bezier_F;
|
|
* register int32_t ahi = 0;
|
|
* register int32_t A = bezier_A;
|
|
* register int32_t B = bezier_B;
|
|
* register int32_t C = bezier_C;
|
|
*
|
|
* lsrs(ahi, alo, 1); // a = F << 31
|
|
* lsls(alo, alo, 31); //
|
|
* umull(flo, fhi, fhi, t); // f *= t
|
|
* umull(flo, fhi, fhi, t); // f>>=32; f*=t
|
|
* lsrs(flo, fhi, 1); //
|
|
* smlal(alo, ahi, flo, C); // a+=(f>>33)*C
|
|
* umull(flo, fhi, fhi, t); // f>>=32; f*=t
|
|
* lsrs(flo, fhi, 1); //
|
|
* smlal(alo, ahi, flo, B); // a+=(f>>33)*B
|
|
* umull(flo, fhi, fhi, t); // f>>=32; f*=t
|
|
* lsrs(flo, fhi, 1); // f>>=33;
|
|
* smlal(alo, ahi, flo, A); // a+=(f>>33)*A;
|
|
* lsrs(alo, ahi, 6); // a>>=38
|
|
*
|
|
* return alo;
|
|
* }
|
|
*
|
|
* This is rewritten in ARM assembly for optimal performance (43 cycles to execute).
|
|
*
|
|
* For AVR, the precision of coefficients is scaled so the Bézier curve can be evaluated in real-time:
|
|
* Let's reduce precision as much as possible. After some experimentation we found that:
|
|
*
|
|
* Assume t and AV with 24 bits is enough
|
|
* A = 6*(VF - VI)
|
|
* B = 15*(VI - VF)
|
|
* C = 10*(VF - VI)
|
|
* F = VI
|
|
* AV = (1<<24)/TS (this is computed at the planner, to offload expensive calculations from the ISR)
|
|
*
|
|
* Instead of storing sign for each coefficient, we will store its absolute value,
|
|
* and flag the sign of the A coefficient, so we can save to store the sign bit.
|
|
* It always holds that sign(A) = - sign(B) = sign(C)
|
|
*
|
|
* So, the resulting range of the coefficients are:
|
|
*
|
|
* t: unsigned (0 <= t < 1) |range 0 to 0xFFFFFF unsigned
|
|
* A: signed Q24 , range = 250000 * 6 = 1500000 = 0x16E360 | 21 bits
|
|
* B: signed Q24 , range = 250000 *15 = 3750000 = 0x393870 | 22 bits
|
|
* C: signed Q24 , range = 250000 *10 = 2500000 = 0x1312D0 | 21 bits
|
|
* F: signed Q24 , range = 250000 = 250000 = 0x0ED090 | 20 bits
|
|
*
|
|
* And for each curve, estimate its coefficients with:
|
|
*
|
|
* void _calc_bezier_curve_coeffs(int32_t v0, int32_t v1, uint32_t av) {
|
|
* // Calculate the Bézier coefficients
|
|
* if (v1 < v0) {
|
|
* A_negative = true;
|
|
* bezier_A = 6 * (v0 - v1);
|
|
* bezier_B = 15 * (v0 - v1);
|
|
* bezier_C = 10 * (v0 - v1);
|
|
* }
|
|
* else {
|
|
* A_negative = false;
|
|
* bezier_A = 6 * (v1 - v0);
|
|
* bezier_B = 15 * (v1 - v0);
|
|
* bezier_C = 10 * (v1 - v0);
|
|
* }
|
|
* bezier_F = v0;
|
|
* }
|
|
*
|
|
* And for each point, evaluate the curve with the following sequence:
|
|
*
|
|
* // unsigned multiplication of 24 bits x 24bits, return upper 16 bits
|
|
* void umul24x24to16hi(uint16_t& r, uint24_t op1, uint24_t op2) {
|
|
* r = (uint64_t(op1) * op2) >> 8;
|
|
* }
|
|
* // unsigned multiplication of 16 bits x 16bits, return upper 16 bits
|
|
* void umul16x16to16hi(uint16_t& r, uint16_t op1, uint16_t op2) {
|
|
* r = (uint32_t(op1) * op2) >> 16;
|
|
* }
|
|
* // unsigned multiplication of 16 bits x 24bits, return upper 24 bits
|
|
* void umul16x24to24hi(uint24_t& r, uint16_t op1, uint24_t op2) {
|
|
* r = uint24_t((uint64_t(op1) * op2) >> 16);
|
|
* }
|
|
*
|
|
* int32_t _eval_bezier_curve(uint32_t curr_step) {
|
|
* // To save computing, the first step is always the initial speed
|
|
* if (!curr_step)
|
|
* return bezier_F;
|
|
*
|
|
* uint16_t t;
|
|
* umul24x24to16hi(t, bezier_AV, curr_step); // t: Range 0 - 1^16 = 16 bits
|
|
* uint16_t f = t;
|
|
* umul16x16to16hi(f, f, t); // Range 16 bits (unsigned)
|
|
* umul16x16to16hi(f, f, t); // Range 16 bits : f = t^3 (unsigned)
|
|
* uint24_t acc = bezier_F; // Range 20 bits (unsigned)
|
|
* if (A_negative) {
|
|
* uint24_t v;
|
|
* umul16x24to24hi(v, f, bezier_C); // Range 21bits
|
|
* acc -= v;
|
|
* umul16x16to16hi(f, f, t); // Range 16 bits : f = t^4 (unsigned)
|
|
* umul16x24to24hi(v, f, bezier_B); // Range 22bits
|
|
* acc += v;
|
|
* umul16x16to16hi(f, f, t); // Range 16 bits : f = t^5 (unsigned)
|
|
* umul16x24to24hi(v, f, bezier_A); // Range 21bits + 15 = 36bits (plus sign)
|
|
* acc -= v;
|
|
* }
|
|
* else {
|
|
* uint24_t v;
|
|
* umul16x24to24hi(v, f, bezier_C); // Range 21bits
|
|
* acc += v;
|
|
* umul16x16to16hi(f, f, t); // Range 16 bits : f = t^4 (unsigned)
|
|
* umul16x24to24hi(v, f, bezier_B); // Range 22bits
|
|
* acc -= v;
|
|
* umul16x16to16hi(f, f, t); // Range 16 bits : f = t^5 (unsigned)
|
|
* umul16x24to24hi(v, f, bezier_A); // Range 21bits + 15 = 36bits (plus sign)
|
|
* acc += v;
|
|
* }
|
|
* return acc;
|
|
* }
|
|
* These functions are translated to assembler for optimal performance.
|
|
* Coefficient calculation takes 70 cycles. Bezier point evaluation takes 150 cycles.
|
|
*/
|
|
|
|
// For AVR we use assembly to maximize speed
|
|
void Stepper::_calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av) {
|
|
|
|
// Store advance
|
|
bezier_AV = av;
|
|
|
|
// Calculate the rest of the coefficients
|
|
register uint8_t r2 = v0 & 0xFF;
|
|
register uint8_t r3 = (v0 >> 8) & 0xFF;
|
|
register uint8_t r12 = (v0 >> 16) & 0xFF;
|
|
register uint8_t r5 = v1 & 0xFF;
|
|
register uint8_t r6 = (v1 >> 8) & 0xFF;
|
|
register uint8_t r7 = (v1 >> 16) & 0xFF;
|
|
register uint8_t r4,r8,r9,r10,r11;
|
|
|
|
__asm__ __volatile__(
|
|
/* Calculate the Bézier coefficients */
|
|
/* %10:%1:%0 = v0*/
|
|
/* %5:%4:%3 = v1*/
|
|
/* %7:%6:%10 = temporary*/
|
|
/* %9 = val (must be high register!)*/
|
|
/* %10 (must be high register!)*/
|
|
|
|
/* Store initial velocity*/
|
|
A("sts bezier_F, %0")
|
|
A("sts bezier_F+1, %1")
|
|
A("sts bezier_F+2, %10") /* bezier_F = %10:%1:%0 = v0 */
|
|
|
|
/* Get delta speed */
|
|
A("ldi %2,-1") /* %2 = 0xFF, means A_negative = true */
|
|
A("clr %8") /* %8 = 0 */
|
|
A("sub %0,%3")
|
|
A("sbc %1,%4")
|
|
A("sbc %10,%5") /* v0 -= v1, C=1 if result is negative */
|
|
A("brcc 1f") /* branch if result is positive (C=0), that means v0 >= v1 */
|
|
|
|
/* Result was negative, get the absolute value*/
|
|
A("com %10")
|
|
A("com %1")
|
|
A("neg %0")
|
|
A("sbc %1,%2")
|
|
A("sbc %10,%2") /* %10:%1:%0 +1 -> %10:%1:%0 = -(v0 - v1) = (v1 - v0) */
|
|
A("clr %2") /* %2 = 0, means A_negative = false */
|
|
|
|
/* Store negative flag*/
|
|
L("1")
|
|
A("sts A_negative, %2") /* Store negative flag */
|
|
|
|
/* Compute coefficients A,B and C [20 cycles worst case]*/
|
|
A("ldi %9,6") /* %9 = 6 */
|
|
A("mul %0,%9") /* r1:r0 = 6*LO(v0-v1) */
|
|
A("sts bezier_A, r0")
|
|
A("mov %6,r1")
|
|
A("clr %7") /* %7:%6:r0 = 6*LO(v0-v1) */
|
|
A("mul %1,%9") /* r1:r0 = 6*MI(v0-v1) */
|
|
A("add %6,r0")
|
|
A("adc %7,r1") /* %7:%6:?? += 6*MI(v0-v1) << 8 */
|
|
A("mul %10,%9") /* r1:r0 = 6*HI(v0-v1) */
|
|
A("add %7,r0") /* %7:%6:?? += 6*HI(v0-v1) << 16 */
|
|
A("sts bezier_A+1, %6")
|
|
A("sts bezier_A+2, %7") /* bezier_A = %7:%6:?? = 6*(v0-v1) [35 cycles worst] */
|
|
|
|
A("ldi %9,15") /* %9 = 15 */
|
|
A("mul %0,%9") /* r1:r0 = 5*LO(v0-v1) */
|
|
A("sts bezier_B, r0")
|
|
A("mov %6,r1")
|
|
A("clr %7") /* %7:%6:?? = 5*LO(v0-v1) */
|
|
A("mul %1,%9") /* r1:r0 = 5*MI(v0-v1) */
|
|
A("add %6,r0")
|
|
A("adc %7,r1") /* %7:%6:?? += 5*MI(v0-v1) << 8 */
|
|
A("mul %10,%9") /* r1:r0 = 5*HI(v0-v1) */
|
|
A("add %7,r0") /* %7:%6:?? += 5*HI(v0-v1) << 16 */
|
|
A("sts bezier_B+1, %6")
|
|
A("sts bezier_B+2, %7") /* bezier_B = %7:%6:?? = 5*(v0-v1) [50 cycles worst] */
|
|
|
|
A("ldi %9,10") /* %9 = 10 */
|
|
A("mul %0,%9") /* r1:r0 = 10*LO(v0-v1) */
|
|
A("sts bezier_C, r0")
|
|
A("mov %6,r1")
|
|
A("clr %7") /* %7:%6:?? = 10*LO(v0-v1) */
|
|
A("mul %1,%9") /* r1:r0 = 10*MI(v0-v1) */
|
|
A("add %6,r0")
|
|
A("adc %7,r1") /* %7:%6:?? += 10*MI(v0-v1) << 8 */
|
|
A("mul %10,%9") /* r1:r0 = 10*HI(v0-v1) */
|
|
A("add %7,r0") /* %7:%6:?? += 10*HI(v0-v1) << 16 */
|
|
A("sts bezier_C+1, %6")
|
|
" sts bezier_C+2, %7" /* bezier_C = %7:%6:?? = 10*(v0-v1) [65 cycles worst] */
|
|
: "+r" (r2),
|
|
"+d" (r3),
|
|
"=r" (r4),
|
|
"+r" (r5),
|
|
"+r" (r6),
|
|
"+r" (r7),
|
|
"=r" (r8),
|
|
"=r" (r9),
|
|
"=r" (r10),
|
|
"=d" (r11),
|
|
"+r" (r12)
|
|
:
|
|
: "r0", "r1", "cc", "memory"
|
|
);
|
|
}
|
|
|
|
FORCE_INLINE int32_t Stepper::_eval_bezier_curve(const uint32_t curr_step) {
|
|
|
|
// If dealing with the first step, save expensive computing and return the initial speed
|
|
if (!curr_step)
|
|
return bezier_F;
|
|
|
|
register uint8_t r0 = 0; /* Zero register */
|
|
register uint8_t r2 = (curr_step) & 0xFF;
|
|
register uint8_t r3 = (curr_step >> 8) & 0xFF;
|
|
register uint8_t r4 = (curr_step >> 16) & 0xFF;
|
|
register uint8_t r1,r5,r6,r7,r8,r9,r10,r11; /* Temporary registers */
|
|
|
|
__asm__ __volatile(
|
|
/* umul24x24to16hi(t, bezier_AV, curr_step); t: Range 0 - 1^16 = 16 bits*/
|
|
A("lds %9,bezier_AV") /* %9 = LO(AV)*/
|
|
A("mul %9,%2") /* r1:r0 = LO(bezier_AV)*LO(curr_step)*/
|
|
A("mov %7,r1") /* %7 = LO(bezier_AV)*LO(curr_step) >> 8*/
|
|
A("clr %8") /* %8:%7 = LO(bezier_AV)*LO(curr_step) >> 8*/
|
|
A("lds %10,bezier_AV+1") /* %10 = MI(AV)*/
|
|
A("mul %10,%2") /* r1:r0 = MI(bezier_AV)*LO(curr_step)*/
|
|
A("add %7,r0")
|
|
A("adc %8,r1") /* %8:%7 += MI(bezier_AV)*LO(curr_step)*/
|
|
A("lds r1,bezier_AV+2") /* r11 = HI(AV)*/
|
|
A("mul r1,%2") /* r1:r0 = HI(bezier_AV)*LO(curr_step)*/
|
|
A("add %8,r0") /* %8:%7 += HI(bezier_AV)*LO(curr_step) << 8*/
|
|
A("mul %9,%3") /* r1:r0 = LO(bezier_AV)*MI(curr_step)*/
|
|
A("add %7,r0")
|
|
A("adc %8,r1") /* %8:%7 += LO(bezier_AV)*MI(curr_step)*/
|
|
A("mul %10,%3") /* r1:r0 = MI(bezier_AV)*MI(curr_step)*/
|
|
A("add %8,r0") /* %8:%7 += LO(bezier_AV)*MI(curr_step) << 8*/
|
|
A("mul %9,%4") /* r1:r0 = LO(bezier_AV)*HI(curr_step)*/
|
|
A("add %8,r0") /* %8:%7 += LO(bezier_AV)*HI(curr_step) << 8*/
|
|
/* %8:%7 = t*/
|
|
|
|
/* uint16_t f = t;*/
|
|
A("mov %5,%7") /* %6:%5 = f*/
|
|
A("mov %6,%8")
|
|
/* %6:%5 = f*/
|
|
|
|
/* umul16x16to16hi(f, f, t); / Range 16 bits (unsigned) [17] */
|
|
A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
|
|
A("mov %9,r1") /* store MIL(LO(f) * LO(t)) in %9, we need it for rounding*/
|
|
A("clr %10") /* %10 = 0*/
|
|
A("clr %11") /* %11 = 0*/
|
|
A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
|
|
A("add %9,r0") /* %9 += LO(LO(f) * HI(t))*/
|
|
A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
|
|
A("adc %11,%0") /* %11 += carry*/
|
|
A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
|
|
A("add %9,r0") /* %9 += LO(HI(f) * LO(t))*/
|
|
A("adc %10,r1") /* %10 += HI(HI(f) * LO(t)) */
|
|
A("adc %11,%0") /* %11 += carry*/
|
|
A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
|
|
A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
|
|
A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
|
|
A("mov %5,%10") /* %6:%5 = */
|
|
A("mov %6,%11") /* f = %10:%11*/
|
|
|
|
/* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
|
|
A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
|
|
A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
|
|
A("clr %10") /* %10 = 0*/
|
|
A("clr %11") /* %11 = 0*/
|
|
A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
|
|
A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
|
|
A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
|
|
A("adc %11,%0") /* %11 += carry*/
|
|
A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
|
|
A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
|
|
A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
|
|
A("adc %11,%0") /* %11 += carry*/
|
|
A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
|
|
A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
|
|
A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
|
|
A("mov %5,%10") /* %6:%5 =*/
|
|
A("mov %6,%11") /* f = %10:%11*/
|
|
/* [15 +17*2] = [49]*/
|
|
|
|
/* %4:%3:%2 will be acc from now on*/
|
|
|
|
/* uint24_t acc = bezier_F; / Range 20 bits (unsigned)*/
|
|
A("clr %9") /* "decimal place we get for free"*/
|
|
A("lds %2,bezier_F")
|
|
A("lds %3,bezier_F+1")
|
|
A("lds %4,bezier_F+2") /* %4:%3:%2 = acc*/
|
|
|
|
/* if (A_negative) {*/
|
|
A("lds r0,A_negative")
|
|
A("or r0,%0") /* Is flag signalling negative? */
|
|
A("brne 3f") /* If yes, Skip next instruction if A was negative*/
|
|
A("rjmp 1f") /* Otherwise, jump */
|
|
|
|
/* uint24_t v; */
|
|
/* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29] */
|
|
/* acc -= v; */
|
|
L("3")
|
|
A("lds %10, bezier_C") /* %10 = LO(bezier_C)*/
|
|
A("mul %10,%5") /* r1:r0 = LO(bezier_C) * LO(f)*/
|
|
A("sub %9,r1")
|
|
A("sbc %2,%0")
|
|
A("sbc %3,%0")
|
|
A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_C) * LO(f))*/
|
|
A("lds %11, bezier_C+1") /* %11 = MI(bezier_C)*/
|
|
A("mul %11,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
|
|
A("sub %9,r0")
|
|
A("sbc %2,r1")
|
|
A("sbc %3,%0")
|
|
A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_C) * LO(f)*/
|
|
A("lds %1, bezier_C+2") /* %1 = HI(bezier_C)*/
|
|
A("mul %1,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
|
|
A("sub %2,r0")
|
|
A("sbc %3,r1")
|
|
A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 8*/
|
|
A("mul %10,%6") /* r1:r0 = LO(bezier_C) * MI(f)*/
|
|
A("sub %9,r0")
|
|
A("sbc %2,r1")
|
|
A("sbc %3,%0")
|
|
A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_C) * MI(f)*/
|
|
A("mul %11,%6") /* r1:r0 = MI(bezier_C) * MI(f)*/
|
|
A("sub %2,r0")
|
|
A("sbc %3,r1")
|
|
A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_C) * MI(f) << 8*/
|
|
A("mul %1,%6") /* r1:r0 = HI(bezier_C) * LO(f)*/
|
|
A("sub %3,r0")
|
|
A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 16*/
|
|
|
|
/* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
|
|
A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
|
|
A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
|
|
A("clr %10") /* %10 = 0*/
|
|
A("clr %11") /* %11 = 0*/
|
|
A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
|
|
A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
|
|
A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
|
|
A("adc %11,%0") /* %11 += carry*/
|
|
A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
|
|
A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
|
|
A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
|
|
A("adc %11,%0") /* %11 += carry*/
|
|
A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
|
|
A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
|
|
A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
|
|
A("mov %5,%10") /* %6:%5 =*/
|
|
A("mov %6,%11") /* f = %10:%11*/
|
|
|
|
/* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*/
|
|
/* acc += v; */
|
|
A("lds %10, bezier_B") /* %10 = LO(bezier_B)*/
|
|
A("mul %10,%5") /* r1:r0 = LO(bezier_B) * LO(f)*/
|
|
A("add %9,r1")
|
|
A("adc %2,%0")
|
|
A("adc %3,%0")
|
|
A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_B) * LO(f))*/
|
|
A("lds %11, bezier_B+1") /* %11 = MI(bezier_B)*/
|
|
A("mul %11,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
|
|
A("add %9,r0")
|
|
A("adc %2,r1")
|
|
A("adc %3,%0")
|
|
A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_B) * LO(f)*/
|
|
A("lds %1, bezier_B+2") /* %1 = HI(bezier_B)*/
|
|
A("mul %1,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
|
|
A("add %2,r0")
|
|
A("adc %3,r1")
|
|
A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 8*/
|
|
A("mul %10,%6") /* r1:r0 = LO(bezier_B) * MI(f)*/
|
|
A("add %9,r0")
|
|
A("adc %2,r1")
|
|
A("adc %3,%0")
|
|
A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_B) * MI(f)*/
|
|
A("mul %11,%6") /* r1:r0 = MI(bezier_B) * MI(f)*/
|
|
A("add %2,r0")
|
|
A("adc %3,r1")
|
|
A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_B) * MI(f) << 8*/
|
|
A("mul %1,%6") /* r1:r0 = HI(bezier_B) * LO(f)*/
|
|
A("add %3,r0")
|
|
A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 16*/
|
|
|
|
/* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5 (unsigned) [17]*/
|
|
A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
|
|
A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
|
|
A("clr %10") /* %10 = 0*/
|
|
A("clr %11") /* %11 = 0*/
|
|
A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
|
|
A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
|
|
A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
|
|
A("adc %11,%0") /* %11 += carry*/
|
|
A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
|
|
A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
|
|
A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
|
|
A("adc %11,%0") /* %11 += carry*/
|
|
A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
|
|
A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
|
|
A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
|
|
A("mov %5,%10") /* %6:%5 =*/
|
|
A("mov %6,%11") /* f = %10:%11*/
|
|
|
|
/* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*/
|
|
/* acc -= v; */
|
|
A("lds %10, bezier_A") /* %10 = LO(bezier_A)*/
|
|
A("mul %10,%5") /* r1:r0 = LO(bezier_A) * LO(f)*/
|
|
A("sub %9,r1")
|
|
A("sbc %2,%0")
|
|
A("sbc %3,%0")
|
|
A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_A) * LO(f))*/
|
|
A("lds %11, bezier_A+1") /* %11 = MI(bezier_A)*/
|
|
A("mul %11,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
|
|
A("sub %9,r0")
|
|
A("sbc %2,r1")
|
|
A("sbc %3,%0")
|
|
A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_A) * LO(f)*/
|
|
A("lds %1, bezier_A+2") /* %1 = HI(bezier_A)*/
|
|
A("mul %1,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
|
|
A("sub %2,r0")
|
|
A("sbc %3,r1")
|
|
A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 8*/
|
|
A("mul %10,%6") /* r1:r0 = LO(bezier_A) * MI(f)*/
|
|
A("sub %9,r0")
|
|
A("sbc %2,r1")
|
|
A("sbc %3,%0")
|
|
A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_A) * MI(f)*/
|
|
A("mul %11,%6") /* r1:r0 = MI(bezier_A) * MI(f)*/
|
|
A("sub %2,r0")
|
|
A("sbc %3,r1")
|
|
A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_A) * MI(f) << 8*/
|
|
A("mul %1,%6") /* r1:r0 = HI(bezier_A) * LO(f)*/
|
|
A("sub %3,r0")
|
|
A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 16*/
|
|
A("jmp 2f") /* Done!*/
|
|
|
|
L("1")
|
|
|
|
/* uint24_t v; */
|
|
/* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29]*/
|
|
/* acc += v; */
|
|
A("lds %10, bezier_C") /* %10 = LO(bezier_C)*/
|
|
A("mul %10,%5") /* r1:r0 = LO(bezier_C) * LO(f)*/
|
|
A("add %9,r1")
|
|
A("adc %2,%0")
|
|
A("adc %3,%0")
|
|
A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_C) * LO(f))*/
|
|
A("lds %11, bezier_C+1") /* %11 = MI(bezier_C)*/
|
|
A("mul %11,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
|
|
A("add %9,r0")
|
|
A("adc %2,r1")
|
|
A("adc %3,%0")
|
|
A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_C) * LO(f)*/
|
|
A("lds %1, bezier_C+2") /* %1 = HI(bezier_C)*/
|
|
A("mul %1,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
|
|
A("add %2,r0")
|
|
A("adc %3,r1")
|
|
A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 8*/
|
|
A("mul %10,%6") /* r1:r0 = LO(bezier_C) * MI(f)*/
|
|
A("add %9,r0")
|
|
A("adc %2,r1")
|
|
A("adc %3,%0")
|
|
A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_C) * MI(f)*/
|
|
A("mul %11,%6") /* r1:r0 = MI(bezier_C) * MI(f)*/
|
|
A("add %2,r0")
|
|
A("adc %3,r1")
|
|
A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_C) * MI(f) << 8*/
|
|
A("mul %1,%6") /* r1:r0 = HI(bezier_C) * LO(f)*/
|
|
A("add %3,r0")
|
|
A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 16*/
|
|
|
|
/* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
|
|
A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
|
|
A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
|
|
A("clr %10") /* %10 = 0*/
|
|
A("clr %11") /* %11 = 0*/
|
|
A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
|
|
A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
|
|
A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
|
|
A("adc %11,%0") /* %11 += carry*/
|
|
A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
|
|
A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
|
|
A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
|
|
A("adc %11,%0") /* %11 += carry*/
|
|
A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
|
|
A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
|
|
A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
|
|
A("mov %5,%10") /* %6:%5 =*/
|
|
A("mov %6,%11") /* f = %10:%11*/
|
|
|
|
/* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*/
|
|
/* acc -= v;*/
|
|
A("lds %10, bezier_B") /* %10 = LO(bezier_B)*/
|
|
A("mul %10,%5") /* r1:r0 = LO(bezier_B) * LO(f)*/
|
|
A("sub %9,r1")
|
|
A("sbc %2,%0")
|
|
A("sbc %3,%0")
|
|
A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_B) * LO(f))*/
|
|
A("lds %11, bezier_B+1") /* %11 = MI(bezier_B)*/
|
|
A("mul %11,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
|
|
A("sub %9,r0")
|
|
A("sbc %2,r1")
|
|
A("sbc %3,%0")
|
|
A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_B) * LO(f)*/
|
|
A("lds %1, bezier_B+2") /* %1 = HI(bezier_B)*/
|
|
A("mul %1,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
|
|
A("sub %2,r0")
|
|
A("sbc %3,r1")
|
|
A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 8*/
|
|
A("mul %10,%6") /* r1:r0 = LO(bezier_B) * MI(f)*/
|
|
A("sub %9,r0")
|
|
A("sbc %2,r1")
|
|
A("sbc %3,%0")
|
|
A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_B) * MI(f)*/
|
|
A("mul %11,%6") /* r1:r0 = MI(bezier_B) * MI(f)*/
|
|
A("sub %2,r0")
|
|
A("sbc %3,r1")
|
|
A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_B) * MI(f) << 8*/
|
|
A("mul %1,%6") /* r1:r0 = HI(bezier_B) * LO(f)*/
|
|
A("sub %3,r0")
|
|
A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 16*/
|
|
|
|
/* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5 (unsigned) [17]*/
|
|
A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
|
|
A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
|
|
A("clr %10") /* %10 = 0*/
|
|
A("clr %11") /* %11 = 0*/
|
|
A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
|
|
A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
|
|
A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
|
|
A("adc %11,%0") /* %11 += carry*/
|
|
A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
|
|
A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
|
|
A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
|
|
A("adc %11,%0") /* %11 += carry*/
|
|
A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
|
|
A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
|
|
A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
|
|
A("mov %5,%10") /* %6:%5 =*/
|
|
A("mov %6,%11") /* f = %10:%11*/
|
|
|
|
/* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*/
|
|
/* acc += v; */
|
|
A("lds %10, bezier_A") /* %10 = LO(bezier_A)*/
|
|
A("mul %10,%5") /* r1:r0 = LO(bezier_A) * LO(f)*/
|
|
A("add %9,r1")
|
|
A("adc %2,%0")
|
|
A("adc %3,%0")
|
|
A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_A) * LO(f))*/
|
|
A("lds %11, bezier_A+1") /* %11 = MI(bezier_A)*/
|
|
A("mul %11,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
|
|
A("add %9,r0")
|
|
A("adc %2,r1")
|
|
A("adc %3,%0")
|
|
A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_A) * LO(f)*/
|
|
A("lds %1, bezier_A+2") /* %1 = HI(bezier_A)*/
|
|
A("mul %1,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
|
|
A("add %2,r0")
|
|
A("adc %3,r1")
|
|
A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 8*/
|
|
A("mul %10,%6") /* r1:r0 = LO(bezier_A) * MI(f)*/
|
|
A("add %9,r0")
|
|
A("adc %2,r1")
|
|
A("adc %3,%0")
|
|
A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_A) * MI(f)*/
|
|
A("mul %11,%6") /* r1:r0 = MI(bezier_A) * MI(f)*/
|
|
A("add %2,r0")
|
|
A("adc %3,r1")
|
|
A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_A) * MI(f) << 8*/
|
|
A("mul %1,%6") /* r1:r0 = HI(bezier_A) * LO(f)*/
|
|
A("add %3,r0")
|
|
A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 16*/
|
|
L("2")
|
|
" clr __zero_reg__" /* C runtime expects r1 = __zero_reg__ = 0 */
|
|
: "+r"(r0),
|
|
"+r"(r1),
|
|
"+r"(r2),
|
|
"+r"(r3),
|
|
"+r"(r4),
|
|
"+r"(r5),
|
|
"+r"(r6),
|
|
"+r"(r7),
|
|
"+r"(r8),
|
|
"+r"(r9),
|
|
"+r"(r10),
|
|
"+r"(r11)
|
|
:
|
|
:"cc","r0","r1"
|
|
);
|
|
return (r2 | (uint16_t(r3) << 8)) | (uint32_t(r4) << 16);
|
|
}
|
|
|
|
#endif // S_CURVE_ACCELERATION
|
|
|
|
/**
|
|
* Stepper Driver Interrupt
|
|
*
|
|
* Directly pulses the stepper motors at high frequency.
|
|
*/
|
|
|
|
HAL_STEP_TIMER_ISR {
|
|
HAL_timer_isr_prologue(STEP_TIMER_NUM);
|
|
|
|
Stepper::isr();
|
|
|
|
HAL_timer_isr_epilogue(STEP_TIMER_NUM);
|
|
}
|
|
|
|
#define STEP_MULTIPLY(A,B) MultiU24X32toH16(A, B)
|
|
|
|
void Stepper::isr() {
|
|
DISABLE_ISRS();
|
|
|
|
// Program timer compare for the maximum period, so it does NOT
|
|
// flag an interrupt while this ISR is running - So changes from small
|
|
// periods to big periods are respected and the timer does not reset to 0
|
|
HAL_timer_set_compare(STEP_TIMER_NUM, HAL_TIMER_TYPE_MAX);
|
|
|
|
// Count of ticks for the next ISR
|
|
hal_timer_t next_isr_ticks = 0;
|
|
|
|
// Limit the amount of iterations
|
|
uint8_t max_loops = 10;
|
|
|
|
// We need this variable here to be able to use it in the following loop
|
|
hal_timer_t min_ticks;
|
|
do {
|
|
// Enable ISRs to reduce USART processing latency
|
|
ENABLE_ISRS();
|
|
|
|
// Run main stepping pulse phase ISR if we have to
|
|
if (!nextMainISR) Stepper::stepper_pulse_phase_isr();
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
// Run linear advance stepper ISR if we have to
|
|
if (!nextAdvanceISR) nextAdvanceISR = Stepper::advance_isr();
|
|
#endif
|
|
|
|
// ^== Time critical. NOTHING besides pulse generation should be above here!!!
|
|
|
|
// Run main stepping block processing ISR if we have to
|
|
if (!nextMainISR) nextMainISR = Stepper::stepper_block_phase_isr();
|
|
|
|
uint32_t interval =
|
|
#if ENABLED(LIN_ADVANCE)
|
|
MIN(nextAdvanceISR, nextMainISR) // Nearest time interval
|
|
#else
|
|
nextMainISR // Remaining stepper ISR time
|
|
#endif
|
|
;
|
|
|
|
// Limit the value to the maximum possible value of the timer
|
|
NOMORE(interval, HAL_TIMER_TYPE_MAX);
|
|
|
|
// Compute the time remaining for the main isr
|
|
nextMainISR -= interval;
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
// Compute the time remaining for the advance isr
|
|
if (nextAdvanceISR != LA_ADV_NEVER) nextAdvanceISR -= interval;
|
|
#endif
|
|
|
|
/**
|
|
* This needs to avoid a race-condition caused by interleaving
|
|
* of interrupts required by both the LA and Stepper algorithms.
|
|
*
|
|
* Assume the following tick times for stepper pulses:
|
|
* Stepper ISR (S): 1 1000 2000 3000 4000
|
|
* Linear Adv. (E): 10 1010 2010 3010 4010
|
|
*
|
|
* The current algorithm tries to interleave them, giving:
|
|
* 1:S 10:E 1000:S 1010:E 2000:S 2010:E 3000:S 3010:E 4000:S 4010:E
|
|
*
|
|
* Ideal timing would yield these delta periods:
|
|
* 1:S 9:E 990:S 10:E 990:S 10:E 990:S 10:E 990:S 10:E
|
|
*
|
|
* But, since each event must fire an ISR with a minimum duration, the
|
|
* minimum delta might be 900, so deltas under 900 get rounded up:
|
|
* 900:S d900:E d990:S d900:E d990:S d900:E d990:S d900:E d990:S d900:E
|
|
*
|
|
* It works, but divides the speed of all motors by half, leading to a sudden
|
|
* reduction to 1/2 speed! Such jumps in speed lead to lost steps (not even
|
|
* accounting for double/quad stepping, which makes it even worse).
|
|
*/
|
|
|
|
// Compute the tick count for the next ISR
|
|
next_isr_ticks += interval;
|
|
|
|
/**
|
|
* The following section must be done with global interrupts disabled.
|
|
* We want nothing to interrupt it, as that could mess the calculations
|
|
* we do for the next value to program in the period register of the
|
|
* stepper timer and lead to skipped ISRs (if the value we happen to program
|
|
* is less than the current count due to something preempting between the
|
|
* read and the write of the new period value).
|
|
*/
|
|
DISABLE_ISRS();
|
|
|
|
/**
|
|
* Get the current tick value + margin
|
|
* Assuming at least 6µs between calls to this ISR...
|
|
* On AVR the ISR epilogue+prologue is estimated at 100 instructions - Give 8µs as margin
|
|
* On ARM the ISR epilogue+prologue is estimated at 20 instructions - Give 1µs as margin
|
|
*/
|
|
min_ticks = HAL_timer_get_count(STEP_TIMER_NUM) + hal_timer_t((STEPPER_TIMER_TICKS_PER_US) * 8);
|
|
|
|
/**
|
|
* NB: If for some reason the stepper monopolizes the MPU, eventually the
|
|
* timer will wrap around (and so will 'next_isr_ticks'). So, limit the
|
|
* loop to 10 iterations. Beyond that, there's no way to ensure correct pulse
|
|
* timing, since the MCU isn't fast enough.
|
|
*/
|
|
if (!--max_loops) next_isr_ticks = min_ticks;
|
|
|
|
// Advance pulses if not enough time to wait for the next ISR
|
|
} while (next_isr_ticks < min_ticks);
|
|
|
|
// Now 'next_isr_ticks' contains the period to the next Stepper ISR - And we are
|
|
// sure that the time has not arrived yet - Warrantied by the scheduler
|
|
|
|
// Set the next ISR to fire at the proper time
|
|
HAL_timer_set_compare(STEP_TIMER_NUM, hal_timer_t(next_isr_ticks));
|
|
|
|
// Don't forget to finally reenable interrupts
|
|
ENABLE_ISRS();
|
|
}
|
|
|
|
/**
|
|
* This phase of the ISR should ONLY create the pulses for the steppers.
|
|
* This prevents jitter caused by the interval between the start of the
|
|
* interrupt and the start of the pulses. DON'T add any logic ahead of the
|
|
* call to this method that might cause variation in the timing. The aim
|
|
* is to keep pulse timing as regular as possible.
|
|
*/
|
|
#if ENABLED(UNREGISTERED_MOVE_SUPPORT)
|
|
#define COUNT_IT current_block->count_it
|
|
#else
|
|
#define COUNT_IT true
|
|
#endif
|
|
|
|
void Stepper::stepper_pulse_phase_isr() {
|
|
|
|
// If we must abort the current block, do so!
|
|
if (abort_current_block) {
|
|
abort_current_block = false;
|
|
if (current_block) {
|
|
axis_did_move = 0;
|
|
current_block = NULL;
|
|
planner.discard_current_block();
|
|
}
|
|
}
|
|
|
|
// If there is no current block, do nothing
|
|
if (!current_block) return;
|
|
|
|
// Count of pending loops and events for this iteration
|
|
const uint32_t pending_events = step_event_count - step_events_completed;
|
|
uint8_t events_to_do = MIN(pending_events, steps_per_isr);
|
|
|
|
// Just update the value we will get at the end of the loop
|
|
step_events_completed += events_to_do;
|
|
|
|
// Get the timer count and estimate the end of the pulse
|
|
hal_timer_t pulse_end = HAL_timer_get_count(PULSE_TIMER_NUM) + hal_timer_t(MIN_PULSE_TICKS);
|
|
|
|
const hal_timer_t added_step_ticks = hal_timer_t(ADDED_STEP_TICKS);
|
|
|
|
// Take multiple steps per interrupt (For high speed moves)
|
|
do {
|
|
|
|
#define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
|
|
#define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
|
|
|
|
// Start an active pulse, if Bresenham says so, and update position
|
|
#define PULSE_START(AXIS) do{ \
|
|
delta_error[_AXIS(AXIS)] += advance_dividend[_AXIS(AXIS)]; \
|
|
if (delta_error[_AXIS(AXIS)] >= 0) { \
|
|
_APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), 0); \
|
|
if (COUNT_IT) count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
|
|
} \
|
|
}while(0)
|
|
|
|
// Stop an active pulse, if any, and adjust error term
|
|
#define PULSE_STOP(AXIS) do { \
|
|
if (delta_error[_AXIS(AXIS)] >= 0) { \
|
|
delta_error[_AXIS(AXIS)] -= advance_divisor; \
|
|
_APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), 0); \
|
|
} \
|
|
}while(0)
|
|
|
|
// Pulse start
|
|
#if ENABLED(HANGPRINTER)
|
|
#if HAS_A_STEP
|
|
PULSE_START(A);
|
|
#endif
|
|
#if HAS_B_STEP
|
|
PULSE_START(B);
|
|
#endif
|
|
#if HAS_C_STEP
|
|
PULSE_START(C);
|
|
#endif
|
|
#if HAS_D_STEP
|
|
PULSE_START(D);
|
|
#endif
|
|
#else
|
|
#if HAS_X_STEP
|
|
PULSE_START(X);
|
|
#endif
|
|
#if HAS_Y_STEP
|
|
PULSE_START(Y);
|
|
#endif
|
|
#if HAS_Z_STEP
|
|
PULSE_START(Z);
|
|
#endif
|
|
#endif // HANGPRINTER
|
|
|
|
// Pulse E/Mixing extruders
|
|
#if ENABLED(LIN_ADVANCE)
|
|
// Tick the E axis, correct error term and update position
|
|
delta_error[E_AXIS] += advance_dividend[E_AXIS];
|
|
if (delta_error[E_AXIS] >= 0) {
|
|
if (COUNT_IT) count_position[E_AXIS] += count_direction[E_AXIS];
|
|
delta_error[E_AXIS] -= advance_divisor;
|
|
|
|
// Don't step E here - But remember the number of steps to perform
|
|
motor_direction(E_AXIS) ? --LA_steps : ++LA_steps;
|
|
}
|
|
#else // !LIN_ADVANCE - use linear interpolation for E also
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
|
|
// Tick the E axis
|
|
delta_error[E_AXIS] += advance_dividend[E_AXIS];
|
|
if (delta_error[E_AXIS] >= 0) {
|
|
if (COUNT_IT) count_position[E_AXIS] += count_direction[E_AXIS];
|
|
delta_error[E_AXIS] -= advance_divisor;
|
|
}
|
|
|
|
// Tick the counters used for this mix in proper proportion
|
|
MIXING_STEPPERS_LOOP(j) {
|
|
// Step mixing steppers (proportionally)
|
|
delta_error_m[j] += advance_dividend_m[j];
|
|
// Step when the counter goes over zero
|
|
if (delta_error_m[j] >= 0) E_STEP_WRITE(j, !INVERT_E_STEP_PIN);
|
|
}
|
|
|
|
#else // !MIXING_EXTRUDER
|
|
PULSE_START(E);
|
|
#endif
|
|
#endif // !LIN_ADVANCE
|
|
|
|
#if MINIMUM_STEPPER_PULSE
|
|
// Just wait for the requested pulse duration
|
|
while (HAL_timer_get_count(PULSE_TIMER_NUM) < pulse_end) { /* nada */ }
|
|
#endif
|
|
|
|
// Add the delay needed to ensure the maximum driver rate is enforced
|
|
if (signed(added_step_ticks) > 0) pulse_end += hal_timer_t(added_step_ticks);
|
|
|
|
#if ENABLED(HANGPRINTER)
|
|
#if HAS_A_STEP
|
|
PULSE_STOP(A);
|
|
#endif
|
|
#if HAS_B_STEP
|
|
PULSE_STOP(B);
|
|
#endif
|
|
#if HAS_C_STEP
|
|
PULSE_STOP(C);
|
|
#endif
|
|
#if HAS_D_STEP
|
|
PULSE_STOP(D);
|
|
#endif
|
|
#else
|
|
#if HAS_X_STEP
|
|
PULSE_STOP(X);
|
|
#endif
|
|
#if HAS_Y_STEP
|
|
PULSE_STOP(Y);
|
|
#endif
|
|
#if HAS_Z_STEP
|
|
PULSE_STOP(Z);
|
|
#endif
|
|
#endif
|
|
|
|
#if DISABLED(LIN_ADVANCE)
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
MIXING_STEPPERS_LOOP(j) {
|
|
if (delta_error_m[j] >= 0) {
|
|
delta_error_m[j] -= advance_divisor_m;
|
|
E_STEP_WRITE(j, INVERT_E_STEP_PIN);
|
|
}
|
|
}
|
|
#else // !MIXING_EXTRUDER
|
|
PULSE_STOP(E);
|
|
#endif
|
|
#endif // !LIN_ADVANCE
|
|
|
|
// Decrement the count of pending pulses to do
|
|
--events_to_do;
|
|
|
|
// For minimum pulse time wait after stopping pulses also
|
|
if (events_to_do) {
|
|
// Just wait for the requested pulse duration
|
|
while (HAL_timer_get_count(PULSE_TIMER_NUM) < pulse_end) { /* nada */ }
|
|
#if MINIMUM_STEPPER_PULSE
|
|
// Add to the value, the time that the pulse must be active (to be used on the next loop)
|
|
pulse_end += hal_timer_t(MIN_PULSE_TICKS);
|
|
#endif
|
|
}
|
|
|
|
} while (events_to_do);
|
|
}
|
|
|
|
// This is the last half of the stepper interrupt: This one processes and
|
|
// properly schedules blocks from the planner. This is executed after creating
|
|
// the step pulses, so it is not time critical, as pulses are already done.
|
|
|
|
uint32_t Stepper::stepper_block_phase_isr() {
|
|
|
|
// If no queued movements, just wait 1ms for the next move
|
|
uint32_t interval = (STEPPER_TIMER_RATE / 1000);
|
|
|
|
// If there is a current block
|
|
if (current_block) {
|
|
|
|
// If current block is finished, reset pointer
|
|
if (step_events_completed >= step_event_count) {
|
|
axis_did_move = 0;
|
|
current_block = NULL;
|
|
planner.discard_current_block();
|
|
}
|
|
else {
|
|
// Step events not completed yet...
|
|
|
|
// Are we in acceleration phase ?
|
|
if (step_events_completed <= accelerate_until) { // Calculate new timer value
|
|
|
|
#if ENABLED(S_CURVE_ACCELERATION)
|
|
// Get the next speed to use (Jerk limited!)
|
|
uint32_t acc_step_rate =
|
|
acceleration_time < current_block->acceleration_time
|
|
? _eval_bezier_curve(acceleration_time)
|
|
: current_block->cruise_rate;
|
|
#else
|
|
acc_step_rate = STEP_MULTIPLY(acceleration_time, current_block->acceleration_rate) + current_block->initial_rate;
|
|
NOMORE(acc_step_rate, current_block->nominal_rate);
|
|
#endif
|
|
|
|
// acc_step_rate is in steps/second
|
|
|
|
// step_rate to timer interval and steps per stepper isr
|
|
interval = calc_timer_interval(acc_step_rate, oversampling_factor, &steps_per_isr);
|
|
acceleration_time += interval;
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
if (LA_use_advance_lead) {
|
|
// Fire ISR if final adv_rate is reached
|
|
if (LA_steps && LA_isr_rate != current_block->advance_speed) nextAdvanceISR = 0;
|
|
}
|
|
else if (LA_steps) nextAdvanceISR = 0;
|
|
#endif // LIN_ADVANCE
|
|
}
|
|
// Are we in Deceleration phase ?
|
|
else if (step_events_completed > decelerate_after) {
|
|
uint32_t step_rate;
|
|
|
|
#if ENABLED(S_CURVE_ACCELERATION)
|
|
// If this is the 1st time we process the 2nd half of the trapezoid...
|
|
if (!bezier_2nd_half) {
|
|
// Initialize the Bézier speed curve
|
|
_calc_bezier_curve_coeffs(current_block->cruise_rate, current_block->final_rate, current_block->deceleration_time_inverse);
|
|
bezier_2nd_half = true;
|
|
// The first point starts at cruise rate. Just save evaluation of the Bézier curve
|
|
step_rate = current_block->cruise_rate;
|
|
}
|
|
else {
|
|
// Calculate the next speed to use
|
|
step_rate = deceleration_time < current_block->deceleration_time
|
|
? _eval_bezier_curve(deceleration_time)
|
|
: current_block->final_rate;
|
|
}
|
|
#else
|
|
|
|
// Using the old trapezoidal control
|
|
step_rate = STEP_MULTIPLY(deceleration_time, current_block->acceleration_rate);
|
|
if (step_rate < acc_step_rate) { // Still decelerating?
|
|
step_rate = acc_step_rate - step_rate;
|
|
NOLESS(step_rate, current_block->final_rate);
|
|
}
|
|
else
|
|
step_rate = current_block->final_rate;
|
|
#endif
|
|
|
|
// step_rate is in steps/second
|
|
|
|
// step_rate to timer interval and steps per stepper isr
|
|
interval = calc_timer_interval(step_rate, oversampling_factor, &steps_per_isr);
|
|
deceleration_time += interval;
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
if (LA_use_advance_lead) {
|
|
// Wake up eISR on first deceleration loop and fire ISR if final adv_rate is reached
|
|
if (step_events_completed <= decelerate_after + steps_per_isr || (LA_steps && LA_isr_rate != current_block->advance_speed)) {
|
|
nextAdvanceISR = 0;
|
|
LA_isr_rate = current_block->advance_speed;
|
|
}
|
|
}
|
|
else if (LA_steps) nextAdvanceISR = 0;
|
|
#endif // LIN_ADVANCE
|
|
}
|
|
// We must be in cruise phase otherwise
|
|
else {
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
// If there are any esteps, fire the next advance_isr "now"
|
|
if (LA_steps && LA_isr_rate != current_block->advance_speed) nextAdvanceISR = 0;
|
|
#endif
|
|
|
|
// Calculate the ticks_nominal for this nominal speed, if not done yet
|
|
if (ticks_nominal < 0) {
|
|
// step_rate to timer interval and loops for the nominal speed
|
|
ticks_nominal = calc_timer_interval(current_block->nominal_rate, oversampling_factor, &steps_per_isr);
|
|
}
|
|
|
|
// The timer interval is just the nominal value for the nominal speed
|
|
interval = ticks_nominal;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If there is no current block at this point, attempt to pop one from the buffer
|
|
// and prepare its movement
|
|
if (!current_block) {
|
|
|
|
// Anything in the buffer?
|
|
if ((current_block = planner.get_current_block())) {
|
|
|
|
// Sync block? Sync the stepper counts and return
|
|
while (TEST(current_block->flag, BLOCK_BIT_SYNC_POSITION)) {
|
|
_set_position(
|
|
current_block->position[A_AXIS], current_block->position[B_AXIS], current_block->position[C_AXIS],
|
|
#if ENABLED(HANGPRINTER)
|
|
current_block->position[D_AXIS],
|
|
#endif
|
|
current_block->position[E_AXIS]
|
|
);
|
|
planner.discard_current_block();
|
|
|
|
// Try to get a new block
|
|
if (!(current_block = planner.get_current_block()))
|
|
return interval; // No more queued movements!
|
|
}
|
|
|
|
// Flag all moving axes for proper endstop handling
|
|
|
|
#if IS_CORE
|
|
// Define conditions for checking endstops
|
|
#define S_(N) current_block->steps[CORE_AXIS_##N]
|
|
#define D_(N) TEST(current_block->direction_bits, CORE_AXIS_##N)
|
|
#endif
|
|
|
|
#if CORE_IS_XY || CORE_IS_XZ
|
|
/**
|
|
* Head direction in -X axis for CoreXY and CoreXZ bots.
|
|
*
|
|
* If steps differ, both axes are moving.
|
|
* If DeltaA == -DeltaB, the movement is only in the 2nd axis (Y or Z, handled below)
|
|
* If DeltaA == DeltaB, the movement is only in the 1st axis (X)
|
|
*/
|
|
#if ENABLED(COREXY) || ENABLED(COREXZ)
|
|
#define X_CMP ==
|
|
#else
|
|
#define X_CMP !=
|
|
#endif
|
|
#define X_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && D_(1) X_CMP D_(2)) )
|
|
#else
|
|
#define X_MOVE_TEST !!current_block->steps[A_AXIS]
|
|
#endif
|
|
|
|
#if CORE_IS_XY || CORE_IS_YZ
|
|
/**
|
|
* Head direction in -Y axis for CoreXY / CoreYZ bots.
|
|
*
|
|
* If steps differ, both axes are moving
|
|
* If DeltaA == DeltaB, the movement is only in the 1st axis (X or Y)
|
|
* If DeltaA == -DeltaB, the movement is only in the 2nd axis (Y or Z)
|
|
*/
|
|
#if ENABLED(COREYX) || ENABLED(COREYZ)
|
|
#define Y_CMP ==
|
|
#else
|
|
#define Y_CMP !=
|
|
#endif
|
|
#define Y_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && D_(1) Y_CMP D_(2)) )
|
|
#else
|
|
#define Y_MOVE_TEST !!current_block->steps[B_AXIS]
|
|
#endif
|
|
|
|
#if CORE_IS_XZ || CORE_IS_YZ
|
|
/**
|
|
* Head direction in -Z axis for CoreXZ or CoreYZ bots.
|
|
*
|
|
* If steps differ, both axes are moving
|
|
* If DeltaA == DeltaB, the movement is only in the 1st axis (X or Y, already handled above)
|
|
* If DeltaA == -DeltaB, the movement is only in the 2nd axis (Z)
|
|
*/
|
|
#if ENABLED(COREZX) || ENABLED(COREZY)
|
|
#define Z_CMP ==
|
|
#else
|
|
#define Z_CMP !=
|
|
#endif
|
|
#define Z_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && D_(1) Z_CMP D_(2)) )
|
|
#else
|
|
#define Z_MOVE_TEST !!current_block->steps[C_AXIS]
|
|
#endif
|
|
|
|
uint8_t axis_bits = 0;
|
|
if (X_MOVE_TEST) SBI(axis_bits, A_AXIS);
|
|
if (Y_MOVE_TEST) SBI(axis_bits, B_AXIS);
|
|
if (Z_MOVE_TEST) SBI(axis_bits, C_AXIS);
|
|
//if (!!current_block->steps[E_AXIS]) SBI(axis_bits, E_AXIS);
|
|
//if (!!current_block->steps[A_AXIS]) SBI(axis_bits, X_HEAD);
|
|
//if (!!current_block->steps[B_AXIS]) SBI(axis_bits, Y_HEAD);
|
|
//if (!!current_block->steps[C_AXIS]) SBI(axis_bits, Z_HEAD);
|
|
axis_did_move = axis_bits;
|
|
|
|
// No acceleration / deceleration time elapsed so far
|
|
acceleration_time = deceleration_time = 0;
|
|
|
|
uint8_t oversampling = 0; // Assume we won't use it
|
|
|
|
#if ENABLED(ADAPTIVE_STEP_SMOOTHING)
|
|
// At this point, we must decide if we can use Stepper movement axis smoothing.
|
|
uint32_t max_rate = current_block->nominal_rate; // Get the maximum rate (maximum event speed)
|
|
while (max_rate < MIN_STEP_ISR_FREQUENCY) {
|
|
max_rate <<= 1;
|
|
if (max_rate >= MAX_STEP_ISR_FREQUENCY_1X) break;
|
|
++oversampling;
|
|
}
|
|
oversampling_factor = oversampling;
|
|
#endif
|
|
|
|
// Based on the oversampling factor, do the calculations
|
|
step_event_count = current_block->step_event_count << oversampling;
|
|
|
|
// Initialize Bresenham delta errors to 1/2
|
|
delta_error[X_AXIS] = delta_error[Y_AXIS] = delta_error[Z_AXIS] = delta_error[E_AXIS] = -int32_t(step_event_count);
|
|
|
|
// Calculate Bresenham dividends
|
|
advance_dividend[X_AXIS] = current_block->steps[X_AXIS] << 1;
|
|
advance_dividend[Y_AXIS] = current_block->steps[Y_AXIS] << 1;
|
|
advance_dividend[Z_AXIS] = current_block->steps[Z_AXIS] << 1;
|
|
advance_dividend[E_AXIS] = current_block->steps[E_AXIS] << 1;
|
|
|
|
// Calculate Bresenham divisor
|
|
advance_divisor = step_event_count << 1;
|
|
|
|
// No step events completed so far
|
|
step_events_completed = 0;
|
|
|
|
// Compute the acceleration and deceleration points
|
|
accelerate_until = current_block->accelerate_until << oversampling;
|
|
decelerate_after = current_block->decelerate_after << oversampling;
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
const uint32_t e_steps = (
|
|
#if ENABLED(LIN_ADVANCE)
|
|
current_block->steps[E_AXIS]
|
|
#else
|
|
step_event_count
|
|
#endif
|
|
);
|
|
MIXING_STEPPERS_LOOP(i) {
|
|
delta_error_m[i] = -int32_t(e_steps);
|
|
advance_dividend_m[i] = current_block->mix_steps[i] << 1;
|
|
}
|
|
advance_divisor_m = e_steps << 1;
|
|
#else
|
|
active_extruder = current_block->active_extruder;
|
|
#endif
|
|
|
|
// Initialize the trapezoid generator from the current block.
|
|
#if ENABLED(LIN_ADVANCE)
|
|
#if DISABLED(MIXING_EXTRUDER) && E_STEPPERS > 1
|
|
// If the now active extruder wasn't in use during the last move, its pressure is most likely gone.
|
|
if (active_extruder != last_moved_extruder) LA_current_adv_steps = 0;
|
|
#endif
|
|
|
|
if ((LA_use_advance_lead = current_block->use_advance_lead)) {
|
|
LA_final_adv_steps = current_block->final_adv_steps;
|
|
LA_max_adv_steps = current_block->max_adv_steps;
|
|
//Start the ISR
|
|
nextAdvanceISR = 0;
|
|
LA_isr_rate = current_block->advance_speed;
|
|
}
|
|
else LA_isr_rate = LA_ADV_NEVER;
|
|
#endif
|
|
|
|
if (current_block->direction_bits != last_direction_bits
|
|
#if DISABLED(MIXING_EXTRUDER)
|
|
|| active_extruder != last_moved_extruder
|
|
#endif
|
|
) {
|
|
last_direction_bits = current_block->direction_bits;
|
|
#if DISABLED(MIXING_EXTRUDER)
|
|
last_moved_extruder = active_extruder;
|
|
#endif
|
|
set_directions();
|
|
}
|
|
|
|
// At this point, we must ensure the movement about to execute isn't
|
|
// trying to force the head against a limit switch. If using interrupt-
|
|
// driven change detection, and already against a limit then no call to
|
|
// the endstop_triggered method will be done and the movement will be
|
|
// done against the endstop. So, check the limits here: If the movement
|
|
// is against the limits, the block will be marked as to be killed, and
|
|
// on the next call to this ISR, will be discarded.
|
|
endstops.update();
|
|
|
|
#if ENABLED(Z_LATE_ENABLE)
|
|
// If delayed Z enable, enable it now. This option will severely interfere with
|
|
// timing between pulses when chaining motion between blocks, and it could lead
|
|
// to lost steps in both X and Y axis, so avoid using it unless strictly necessary!!
|
|
if (current_block->steps[Z_AXIS]) enable_Z();
|
|
#endif
|
|
|
|
// Mark the time_nominal as not calculated yet
|
|
ticks_nominal = -1;
|
|
|
|
#if DISABLED(S_CURVE_ACCELERATION)
|
|
// Set as deceleration point the initial rate of the block
|
|
acc_step_rate = current_block->initial_rate;
|
|
#endif
|
|
|
|
#if ENABLED(S_CURVE_ACCELERATION)
|
|
// Initialize the Bézier speed curve
|
|
_calc_bezier_curve_coeffs(current_block->initial_rate, current_block->cruise_rate, current_block->acceleration_time_inverse);
|
|
// We haven't started the 2nd half of the trapezoid
|
|
bezier_2nd_half = false;
|
|
#endif
|
|
|
|
// Calculate the initial timer interval
|
|
interval = calc_timer_interval(current_block->initial_rate, oversampling_factor, &steps_per_isr);
|
|
}
|
|
}
|
|
|
|
// Return the interval to wait
|
|
return interval;
|
|
}
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
|
|
// Timer interrupt for E. LA_steps is set in the main routine
|
|
uint32_t Stepper::advance_isr() {
|
|
uint32_t interval;
|
|
|
|
if (LA_use_advance_lead) {
|
|
if (step_events_completed > decelerate_after && LA_current_adv_steps > LA_final_adv_steps) {
|
|
LA_steps--;
|
|
LA_current_adv_steps--;
|
|
interval = LA_isr_rate;
|
|
}
|
|
else if (step_events_completed < decelerate_after && LA_current_adv_steps < LA_max_adv_steps) {
|
|
//step_events_completed <= (uint32_t)accelerate_until) {
|
|
LA_steps++;
|
|
LA_current_adv_steps++;
|
|
interval = LA_isr_rate;
|
|
}
|
|
else
|
|
interval = LA_isr_rate = LA_ADV_NEVER;
|
|
}
|
|
else
|
|
interval = LA_ADV_NEVER;
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
if (LA_steps >= 0)
|
|
MIXING_STEPPERS_LOOP(j) NORM_E_DIR(j);
|
|
else
|
|
MIXING_STEPPERS_LOOP(j) REV_E_DIR(j);
|
|
#else
|
|
if (LA_steps >= 0)
|
|
NORM_E_DIR(active_extruder);
|
|
else
|
|
REV_E_DIR(active_extruder);
|
|
#endif
|
|
|
|
// Get the timer count and estimate the end of the pulse
|
|
hal_timer_t pulse_end = HAL_timer_get_count(PULSE_TIMER_NUM) + hal_timer_t(MIN_PULSE_TICKS);
|
|
|
|
const hal_timer_t added_step_ticks = hal_timer_t(ADDED_STEP_TICKS);
|
|
|
|
// Step E stepper if we have steps
|
|
while (LA_steps) {
|
|
|
|
// Set the STEP pulse ON
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
MIXING_STEPPERS_LOOP(j) {
|
|
// Step mixing steppers (proportionally)
|
|
delta_error_m[j] += advance_dividend_m[j];
|
|
// Step when the counter goes over zero
|
|
if (delta_error_m[j] >= 0) E_STEP_WRITE(j, !INVERT_E_STEP_PIN);
|
|
}
|
|
#else
|
|
E_STEP_WRITE(active_extruder, !INVERT_E_STEP_PIN);
|
|
#endif
|
|
|
|
// Enforce a minimum duration for STEP pulse ON
|
|
#if MINIMUM_STEPPER_PULSE
|
|
// Just wait for the requested pulse duration
|
|
while (HAL_timer_get_count(PULSE_TIMER_NUM) < pulse_end) { /* nada */ }
|
|
#endif
|
|
|
|
// Add the delay needed to ensure the maximum driver rate is enforced
|
|
if (signed(added_step_ticks) > 0) pulse_end += hal_timer_t(added_step_ticks);
|
|
|
|
LA_steps < 0 ? ++LA_steps : --LA_steps;
|
|
|
|
// Set the STEP pulse OFF
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
MIXING_STEPPERS_LOOP(j) {
|
|
if (delta_error_m[j] >= 0) {
|
|
delta_error_m[j] -= advance_divisor_m;
|
|
E_STEP_WRITE(j, INVERT_E_STEP_PIN);
|
|
}
|
|
}
|
|
#else
|
|
E_STEP_WRITE(active_extruder, INVERT_E_STEP_PIN);
|
|
#endif
|
|
|
|
// For minimum pulse time wait before looping
|
|
// Just wait for the requested pulse duration
|
|
if (LA_steps) {
|
|
while (HAL_timer_get_count(PULSE_TIMER_NUM) < pulse_end) { /* nada */ }
|
|
#if MINIMUM_STEPPER_PULSE
|
|
// Add to the value, the time that the pulse must be active (to be used on the next loop)
|
|
pulse_end += hal_timer_t(MIN_PULSE_TICKS);
|
|
#endif
|
|
}
|
|
} // LA_steps
|
|
|
|
return interval;
|
|
}
|
|
#endif // LIN_ADVANCE
|
|
|
|
// Check if the given block is busy or not - Must not be called from ISR contexts
|
|
// The current_block could change in the middle of the read by an Stepper ISR, so
|
|
// we must explicitly prevent that!
|
|
bool Stepper::is_block_busy(const block_t* const block) {
|
|
#define sw_barrier() asm volatile("": : :"memory");
|
|
|
|
// Keep reading until 2 consecutive reads return the same value,
|
|
// meaning there was no update in-between caused by an interrupt.
|
|
// This works because stepper ISRs happen at a slower rate than
|
|
// successive reads of a variable, so 2 consecutive reads with
|
|
// the same value means no interrupt updated it.
|
|
block_t* vold, *vnew = current_block;
|
|
sw_barrier();
|
|
do {
|
|
vold = vnew;
|
|
vnew = current_block;
|
|
sw_barrier();
|
|
} while (vold != vnew);
|
|
|
|
// Return if the block is busy or not
|
|
return block == vnew;
|
|
}
|
|
|
|
void Stepper::init() {
|
|
|
|
// Init Digipot Motor Current
|
|
#if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
|
|
digipot_init();
|
|
#endif
|
|
|
|
// Init Microstepping Pins
|
|
#if HAS_MICROSTEPS
|
|
microstep_init();
|
|
#endif
|
|
|
|
// Init Dir Pins
|
|
#if HAS_X_DIR
|
|
X_DIR_INIT;
|
|
#endif
|
|
#if HAS_X2_DIR
|
|
X2_DIR_INIT;
|
|
#endif
|
|
#if HAS_Y_DIR
|
|
Y_DIR_INIT;
|
|
#if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
|
|
Y2_DIR_INIT;
|
|
#endif
|
|
#endif
|
|
#if HAS_Z_DIR
|
|
Z_DIR_INIT;
|
|
#if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
|
|
Z2_DIR_INIT;
|
|
#endif
|
|
#endif
|
|
#if HAS_E0_DIR
|
|
E0_DIR_INIT;
|
|
#endif
|
|
#if HAS_E1_DIR
|
|
E1_DIR_INIT;
|
|
#endif
|
|
#if HAS_E2_DIR
|
|
E2_DIR_INIT;
|
|
#endif
|
|
#if HAS_E3_DIR
|
|
E3_DIR_INIT;
|
|
#endif
|
|
#if HAS_E4_DIR
|
|
E4_DIR_INIT;
|
|
#endif
|
|
|
|
// Init Enable Pins - steppers default to disabled.
|
|
#if HAS_X_ENABLE
|
|
X_ENABLE_INIT;
|
|
if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
|
|
#if (ENABLED(DUAL_X_CARRIAGE) || ENABLED(X_DUAL_STEPPER_DRIVERS)) && HAS_X2_ENABLE
|
|
X2_ENABLE_INIT;
|
|
if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
|
|
#endif
|
|
#endif
|
|
#if HAS_Y_ENABLE
|
|
Y_ENABLE_INIT;
|
|
if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
|
|
#if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
|
|
Y2_ENABLE_INIT;
|
|
if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
|
|
#endif
|
|
#endif
|
|
#if HAS_Z_ENABLE
|
|
Z_ENABLE_INIT;
|
|
if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
|
|
#if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
|
|
Z2_ENABLE_INIT;
|
|
if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
|
|
#endif
|
|
#endif
|
|
#if HAS_E0_ENABLE
|
|
E0_ENABLE_INIT;
|
|
if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
|
|
#endif
|
|
#if HAS_E1_ENABLE
|
|
E1_ENABLE_INIT;
|
|
if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
|
|
#endif
|
|
#if HAS_E2_ENABLE
|
|
E2_ENABLE_INIT;
|
|
if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
|
|
#endif
|
|
#if HAS_E3_ENABLE
|
|
E3_ENABLE_INIT;
|
|
if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
|
|
#endif
|
|
#if HAS_E4_ENABLE
|
|
E4_ENABLE_INIT;
|
|
if (!E_ENABLE_ON) E4_ENABLE_WRITE(HIGH);
|
|
#endif
|
|
|
|
#define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
|
|
#define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
|
|
#define _DISABLE(AXIS) disable_## AXIS()
|
|
|
|
#define AXIS_INIT(AXIS, PIN) \
|
|
_STEP_INIT(AXIS); \
|
|
_WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
|
|
_DISABLE(AXIS)
|
|
|
|
#define E_AXIS_INIT(NUM) AXIS_INIT(E## NUM, E)
|
|
|
|
// Init Step Pins
|
|
#if HAS_X_STEP
|
|
#if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE)
|
|
X2_STEP_INIT;
|
|
X2_STEP_WRITE(INVERT_X_STEP_PIN);
|
|
#endif
|
|
AXIS_INIT(X, X);
|
|
#endif
|
|
|
|
#if HAS_Y_STEP
|
|
#if ENABLED(Y_DUAL_STEPPER_DRIVERS)
|
|
Y2_STEP_INIT;
|
|
Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
|
|
#endif
|
|
AXIS_INIT(Y, Y);
|
|
#endif
|
|
|
|
#if HAS_Z_STEP
|
|
#if ENABLED(Z_DUAL_STEPPER_DRIVERS)
|
|
Z2_STEP_INIT;
|
|
Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
|
|
#endif
|
|
AXIS_INIT(Z, Z);
|
|
#endif
|
|
|
|
#if E_STEPPERS > 0 && HAS_E0_STEP
|
|
E_AXIS_INIT(0);
|
|
#endif
|
|
#if E_STEPPERS > 1 && HAS_E1_STEP
|
|
E_AXIS_INIT(1);
|
|
#endif
|
|
#if E_STEPPERS > 2 && HAS_E2_STEP
|
|
E_AXIS_INIT(2);
|
|
#endif
|
|
#if E_STEPPERS > 3 && HAS_E3_STEP
|
|
E_AXIS_INIT(3);
|
|
#endif
|
|
#if E_STEPPERS > 4 && HAS_E4_STEP
|
|
E_AXIS_INIT(4);
|
|
#endif
|
|
|
|
// Init Stepper ISR to 122 Hz for quick starting
|
|
HAL_timer_start(STEP_TIMER_NUM, 122); // OCR1A = 0x4000
|
|
|
|
ENABLE_STEPPER_DRIVER_INTERRUPT();
|
|
|
|
endstops.enable(true); // Start with endstops active. After homing they can be disabled
|
|
sei();
|
|
|
|
set_directions(); // Init directions to last_direction_bits = 0
|
|
}
|
|
|
|
/**
|
|
* Set the stepper positions directly in steps
|
|
*
|
|
* The input is based on the typical per-axis XYZ steps.
|
|
* For CORE machines XYZ needs to be translated to ABC.
|
|
*
|
|
* This allows get_axis_position_mm to correctly
|
|
* derive the current XYZ position later on.
|
|
*/
|
|
void Stepper::_set_position(const int32_t &a, const int32_t &b, const int32_t &c,
|
|
#if ENABLED(HANGPRINTER)
|
|
const int32_t &d,
|
|
#endif
|
|
const int32_t &e
|
|
) {
|
|
#if CORE_IS_XY
|
|
// corexy positioning
|
|
// these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
|
|
count_position[A_AXIS] = a + b;
|
|
count_position[B_AXIS] = CORESIGN(a - b);
|
|
count_position[Z_AXIS] = c;
|
|
#elif CORE_IS_XZ
|
|
// corexz planning
|
|
count_position[A_AXIS] = a + c;
|
|
count_position[Y_AXIS] = b;
|
|
count_position[C_AXIS] = CORESIGN(a - c);
|
|
#elif CORE_IS_YZ
|
|
// coreyz planning
|
|
count_position[X_AXIS] = a;
|
|
count_position[B_AXIS] = b + c;
|
|
count_position[C_AXIS] = CORESIGN(b - c);
|
|
#else
|
|
// default non-h-bot planning
|
|
count_position[X_AXIS] = a;
|
|
count_position[Y_AXIS] = b;
|
|
count_position[Z_AXIS] = c;
|
|
#if ENABLED(HANGPRINTER)
|
|
count_position[D_AXIS] = d;
|
|
#endif
|
|
#endif
|
|
count_position[E_AXIS] = e;
|
|
}
|
|
|
|
/**
|
|
* Get a stepper's position in steps.
|
|
*/
|
|
int32_t Stepper::position(const AxisEnum axis) {
|
|
const bool was_enabled = STEPPER_ISR_ENABLED();
|
|
if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
|
|
|
|
const int32_t v = count_position[axis];
|
|
|
|
if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
|
|
return v;
|
|
}
|
|
|
|
// Signal endstops were triggered - This function can be called from
|
|
// an ISR context (Temperature, Stepper or limits ISR), so we must
|
|
// be very careful here. If the interrupt being preempted was the
|
|
// Stepper ISR (this CAN happen with the endstop limits ISR) then
|
|
// when the stepper ISR resumes, we must be very sure that the movement
|
|
// is properly cancelled
|
|
void Stepper::endstop_triggered(const AxisEnum axis) {
|
|
|
|
const bool was_enabled = STEPPER_ISR_ENABLED();
|
|
if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
|
|
|
|
#if IS_CORE
|
|
|
|
endstops_trigsteps[axis] = 0.5f * (
|
|
axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
|
|
: count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
|
|
);
|
|
|
|
#else // !COREXY && !COREXZ && !COREYZ
|
|
|
|
endstops_trigsteps[axis] = count_position[axis];
|
|
|
|
#endif // !COREXY && !COREXZ && !COREYZ
|
|
|
|
// Discard the rest of the move if there is a current block
|
|
quick_stop();
|
|
|
|
if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
|
|
}
|
|
|
|
int32_t Stepper::triggered_position(const AxisEnum axis) {
|
|
const bool was_enabled = STEPPER_ISR_ENABLED();
|
|
if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
|
|
|
|
const int32_t v = endstops_trigsteps[axis];
|
|
|
|
if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
|
|
|
|
return v;
|
|
}
|
|
|
|
void Stepper::report_positions() {
|
|
|
|
// Protect the access to the position.
|
|
const bool was_enabled = STEPPER_ISR_ENABLED();
|
|
if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
|
|
|
|
const int32_t xpos = count_position[X_AXIS],
|
|
ypos = count_position[Y_AXIS],
|
|
#if ENABLED(HANGPRINTER)
|
|
dpos = count_position[D_AXIS],
|
|
#endif
|
|
zpos = count_position[Z_AXIS];
|
|
|
|
if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
|
|
|
|
#if CORE_IS_XY || CORE_IS_XZ || IS_DELTA || IS_SCARA || ENABLED(HANGPRINTER)
|
|
SERIAL_PROTOCOLPGM(MSG_COUNT_A);
|
|
#else
|
|
SERIAL_PROTOCOLPGM(MSG_COUNT_X);
|
|
#endif
|
|
SERIAL_PROTOCOL(xpos);
|
|
|
|
#if CORE_IS_XY || CORE_IS_YZ || IS_DELTA || IS_SCARA || ENABLED(HANGPRINTER)
|
|
SERIAL_PROTOCOLPGM(" B:");
|
|
#else
|
|
SERIAL_PROTOCOLPGM(" Y:");
|
|
#endif
|
|
SERIAL_PROTOCOL(ypos);
|
|
|
|
#if CORE_IS_XZ || CORE_IS_YZ || IS_DELTA || ENABLED(HANGPRINTER)
|
|
SERIAL_PROTOCOLPGM(" C:");
|
|
#else
|
|
SERIAL_PROTOCOLPGM(" Z:");
|
|
#endif
|
|
SERIAL_PROTOCOL(zpos);
|
|
|
|
#if ENABLED(HANGPRINTER)
|
|
SERIAL_PROTOCOLPAIR(" D:", dpos);
|
|
#endif
|
|
|
|
SERIAL_EOL();
|
|
}
|
|
|
|
#if ENABLED(BABYSTEPPING)
|
|
|
|
#if MINIMUM_STEPPER_PULSE
|
|
#define STEP_PULSE_CYCLES ((MINIMUM_STEPPER_PULSE) * CYCLES_PER_MICROSECOND)
|
|
#else
|
|
#define STEP_PULSE_CYCLES 0
|
|
#endif
|
|
|
|
#if ENABLED(DELTA)
|
|
#define CYCLES_EATEN_BABYSTEP (2 * 15)
|
|
#else
|
|
#define CYCLES_EATEN_BABYSTEP 0
|
|
#endif
|
|
#define EXTRA_CYCLES_BABYSTEP (STEP_PULSE_CYCLES - (CYCLES_EATEN_BABYSTEP))
|
|
|
|
#define _ENABLE(AXIS) enable_## AXIS()
|
|
#define _READ_DIR(AXIS) AXIS ##_DIR_READ
|
|
#define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
|
|
#define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
|
|
|
|
#if EXTRA_CYCLES_BABYSTEP > 20
|
|
#define _SAVE_START const hal_timer_t pulse_start = HAL_timer_get_count(PULSE_TIMER_NUM)
|
|
#define _PULSE_WAIT while (EXTRA_CYCLES_BABYSTEP > (uint32_t)(HAL_timer_get_count(PULSE_TIMER_NUM) - pulse_start) * (PULSE_TIMER_PRESCALE)) { /* nada */ }
|
|
#else
|
|
#define _SAVE_START NOOP
|
|
#if EXTRA_CYCLES_BABYSTEP > 0
|
|
#define _PULSE_WAIT DELAY_NS(EXTRA_CYCLES_BABYSTEP * NANOSECONDS_PER_CYCLE)
|
|
#elif STEP_PULSE_CYCLES > 0
|
|
#define _PULSE_WAIT NOOP
|
|
#elif ENABLED(DELTA)
|
|
#define _PULSE_WAIT DELAY_US(2);
|
|
#else
|
|
#define _PULSE_WAIT DELAY_US(4);
|
|
#endif
|
|
#endif
|
|
|
|
#define BABYSTEP_AXIS(AXIS, INVERT, DIR) { \
|
|
const uint8_t old_dir = _READ_DIR(AXIS); \
|
|
_ENABLE(AXIS); \
|
|
_APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^DIR^INVERT); \
|
|
DELAY_NS(MINIMUM_STEPPER_DIR_DELAY); \
|
|
_SAVE_START; \
|
|
_APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
|
|
_PULSE_WAIT; \
|
|
_APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
|
|
_APPLY_DIR(AXIS, old_dir); \
|
|
}
|
|
|
|
// MUST ONLY BE CALLED BY AN ISR,
|
|
// No other ISR should ever interrupt this!
|
|
void Stepper::babystep(const AxisEnum axis, const bool direction) {
|
|
cli();
|
|
|
|
switch (axis) {
|
|
|
|
#if ENABLED(BABYSTEP_XY)
|
|
|
|
case X_AXIS:
|
|
#if CORE_IS_XY
|
|
BABYSTEP_AXIS(X, false, direction);
|
|
BABYSTEP_AXIS(Y, false, direction);
|
|
#elif CORE_IS_XZ
|
|
BABYSTEP_AXIS(X, false, direction);
|
|
BABYSTEP_AXIS(Z, false, direction);
|
|
#else
|
|
BABYSTEP_AXIS(X, false, direction);
|
|
#endif
|
|
break;
|
|
|
|
case Y_AXIS:
|
|
#if CORE_IS_XY
|
|
BABYSTEP_AXIS(X, false, direction);
|
|
BABYSTEP_AXIS(Y, false, direction^(CORESIGN(1)<0));
|
|
#elif CORE_IS_YZ
|
|
BABYSTEP_AXIS(Y, false, direction);
|
|
BABYSTEP_AXIS(Z, false, direction^(CORESIGN(1)<0));
|
|
#else
|
|
BABYSTEP_AXIS(Y, false, direction);
|
|
#endif
|
|
break;
|
|
|
|
#endif
|
|
|
|
case Z_AXIS: {
|
|
|
|
#if CORE_IS_XZ
|
|
BABYSTEP_AXIS(X, BABYSTEP_INVERT_Z, direction);
|
|
BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z, direction^(CORESIGN(1)<0));
|
|
|
|
#elif CORE_IS_YZ
|
|
BABYSTEP_AXIS(Y, BABYSTEP_INVERT_Z, direction);
|
|
BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z, direction^(CORESIGN(1)<0));
|
|
|
|
#elif DISABLED(DELTA)
|
|
BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z, direction);
|
|
|
|
#else // DELTA
|
|
|
|
const bool z_direction = direction ^ BABYSTEP_INVERT_Z;
|
|
|
|
enable_X();
|
|
enable_Y();
|
|
enable_Z();
|
|
|
|
const uint8_t old_x_dir_pin = X_DIR_READ,
|
|
old_y_dir_pin = Y_DIR_READ,
|
|
old_z_dir_pin = Z_DIR_READ;
|
|
|
|
X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
|
|
Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
|
|
Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
|
|
|
|
#if MINIMUM_STEPPER_DIR_DELAY > 0
|
|
DELAY_NS(MINIMUM_STEPPER_DIR_DELAY);
|
|
#endif
|
|
|
|
_SAVE_START;
|
|
|
|
X_STEP_WRITE(!INVERT_X_STEP_PIN);
|
|
Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
|
|
Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
|
|
|
|
_PULSE_WAIT;
|
|
|
|
X_STEP_WRITE(INVERT_X_STEP_PIN);
|
|
Y_STEP_WRITE(INVERT_Y_STEP_PIN);
|
|
Z_STEP_WRITE(INVERT_Z_STEP_PIN);
|
|
|
|
// Restore direction bits
|
|
X_DIR_WRITE(old_x_dir_pin);
|
|
Y_DIR_WRITE(old_y_dir_pin);
|
|
Z_DIR_WRITE(old_z_dir_pin);
|
|
|
|
#endif
|
|
|
|
} break;
|
|
|
|
default: break;
|
|
}
|
|
sei();
|
|
}
|
|
|
|
#endif // BABYSTEPPING
|
|
|
|
/**
|
|
* Software-controlled Stepper Motor Current
|
|
*/
|
|
|
|
#if HAS_DIGIPOTSS
|
|
|
|
// From Arduino DigitalPotControl example
|
|
void Stepper::digitalPotWrite(const int16_t address, const int16_t value) {
|
|
WRITE(DIGIPOTSS_PIN, LOW); // Take the SS pin low to select the chip
|
|
SPI.transfer(address); // Send the address and value via SPI
|
|
SPI.transfer(value);
|
|
WRITE(DIGIPOTSS_PIN, HIGH); // Take the SS pin high to de-select the chip
|
|
//delay(10);
|
|
}
|
|
|
|
#endif // HAS_DIGIPOTSS
|
|
|
|
#if HAS_MOTOR_CURRENT_PWM
|
|
|
|
void Stepper::refresh_motor_power() {
|
|
for (uint8_t i = 0; i < COUNT(motor_current_setting); ++i) {
|
|
switch (i) {
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
|
|
case 0:
|
|
#endif
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
|
|
case 1:
|
|
#endif
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
|
|
case 2:
|
|
#endif
|
|
digipot_current(i, motor_current_setting[i]);
|
|
default: break;
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif // HAS_MOTOR_CURRENT_PWM
|
|
|
|
#if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
|
|
|
|
void Stepper::digipot_current(const uint8_t driver, const int current) {
|
|
|
|
#if HAS_DIGIPOTSS
|
|
|
|
const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
|
|
digitalPotWrite(digipot_ch[driver], current);
|
|
|
|
#elif HAS_MOTOR_CURRENT_PWM
|
|
|
|
if (WITHIN(driver, 0, 2))
|
|
motor_current_setting[driver] = current; // update motor_current_setting
|
|
|
|
#define _WRITE_CURRENT_PWM(P) analogWrite(MOTOR_CURRENT_PWM_## P ##_PIN, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
|
|
switch (driver) {
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
|
|
case 0: _WRITE_CURRENT_PWM(XY); break;
|
|
#endif
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
|
|
case 1: _WRITE_CURRENT_PWM(Z); break;
|
|
#endif
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
|
|
case 2: _WRITE_CURRENT_PWM(E); break;
|
|
#endif
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void Stepper::digipot_init() {
|
|
|
|
#if HAS_DIGIPOTSS
|
|
|
|
static const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
|
|
|
|
SPI.begin();
|
|
SET_OUTPUT(DIGIPOTSS_PIN);
|
|
|
|
for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) {
|
|
//digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
|
|
digipot_current(i, digipot_motor_current[i]);
|
|
}
|
|
|
|
#elif HAS_MOTOR_CURRENT_PWM
|
|
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
|
|
SET_OUTPUT(MOTOR_CURRENT_PWM_XY_PIN);
|
|
#endif
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
|
|
SET_OUTPUT(MOTOR_CURRENT_PWM_Z_PIN);
|
|
#endif
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
|
|
SET_OUTPUT(MOTOR_CURRENT_PWM_E_PIN);
|
|
#endif
|
|
|
|
refresh_motor_power();
|
|
|
|
// Set Timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
|
|
SET_CS5(PRESCALER_1);
|
|
|
|
#endif
|
|
}
|
|
|
|
#endif
|
|
|
|
#if HAS_MICROSTEPS
|
|
|
|
/**
|
|
* Software-controlled Microstepping
|
|
*/
|
|
|
|
void Stepper::microstep_init() {
|
|
SET_OUTPUT(X_MS1_PIN);
|
|
SET_OUTPUT(X_MS2_PIN);
|
|
#if HAS_Y_MICROSTEPS
|
|
SET_OUTPUT(Y_MS1_PIN);
|
|
SET_OUTPUT(Y_MS2_PIN);
|
|
#endif
|
|
#if HAS_Z_MICROSTEPS
|
|
SET_OUTPUT(Z_MS1_PIN);
|
|
SET_OUTPUT(Z_MS2_PIN);
|
|
#endif
|
|
#if HAS_E0_MICROSTEPS
|
|
SET_OUTPUT(E0_MS1_PIN);
|
|
SET_OUTPUT(E0_MS2_PIN);
|
|
#endif
|
|
#if HAS_E1_MICROSTEPS
|
|
SET_OUTPUT(E1_MS1_PIN);
|
|
SET_OUTPUT(E1_MS2_PIN);
|
|
#endif
|
|
#if HAS_E2_MICROSTEPS
|
|
SET_OUTPUT(E2_MS1_PIN);
|
|
SET_OUTPUT(E2_MS2_PIN);
|
|
#endif
|
|
#if HAS_E3_MICROSTEPS
|
|
SET_OUTPUT(E3_MS1_PIN);
|
|
SET_OUTPUT(E3_MS2_PIN);
|
|
#endif
|
|
#if HAS_E4_MICROSTEPS
|
|
SET_OUTPUT(E4_MS1_PIN);
|
|
SET_OUTPUT(E4_MS2_PIN);
|
|
#endif
|
|
static const uint8_t microstep_modes[] = MICROSTEP_MODES;
|
|
for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
|
|
microstep_mode(i, microstep_modes[i]);
|
|
}
|
|
|
|
void Stepper::microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2) {
|
|
if (ms1 >= 0) switch (driver) {
|
|
case 0: WRITE(X_MS1_PIN, ms1); break;
|
|
#if HAS_Y_MICROSTEPS
|
|
case 1: WRITE(Y_MS1_PIN, ms1); break;
|
|
#endif
|
|
#if HAS_Z_MICROSTEPS
|
|
case 2: WRITE(Z_MS1_PIN, ms1); break;
|
|
#endif
|
|
#if HAS_E0_MICROSTEPS
|
|
case 3: WRITE(E0_MS1_PIN, ms1); break;
|
|
#endif
|
|
#if HAS_E1_MICROSTEPS
|
|
case 4: WRITE(E1_MS1_PIN, ms1); break;
|
|
#endif
|
|
#if HAS_E2_MICROSTEPS
|
|
case 5: WRITE(E2_MS1_PIN, ms1); break;
|
|
#endif
|
|
#if HAS_E3_MICROSTEPS
|
|
case 6: WRITE(E3_MS1_PIN, ms1); break;
|
|
#endif
|
|
#if HAS_E4_MICROSTEPS
|
|
case 7: WRITE(E4_MS1_PIN, ms1); break;
|
|
#endif
|
|
}
|
|
if (ms2 >= 0) switch (driver) {
|
|
case 0: WRITE(X_MS2_PIN, ms2); break;
|
|
#if HAS_Y_MICROSTEPS
|
|
case 1: WRITE(Y_MS2_PIN, ms2); break;
|
|
#endif
|
|
#if HAS_Z_MICROSTEPS
|
|
case 2: WRITE(Z_MS2_PIN, ms2); break;
|
|
#endif
|
|
#if HAS_E0_MICROSTEPS
|
|
case 3: WRITE(E0_MS2_PIN, ms2); break;
|
|
#endif
|
|
#if HAS_E1_MICROSTEPS
|
|
case 4: WRITE(E1_MS2_PIN, ms2); break;
|
|
#endif
|
|
#if HAS_E2_MICROSTEPS
|
|
case 5: WRITE(E2_MS2_PIN, ms2); break;
|
|
#endif
|
|
#if HAS_E3_MICROSTEPS
|
|
case 6: WRITE(E3_MS2_PIN, ms2); break;
|
|
#endif
|
|
#if HAS_E4_MICROSTEPS
|
|
case 7: WRITE(E4_MS2_PIN, ms2); break;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void Stepper::microstep_mode(const uint8_t driver, const uint8_t stepping_mode) {
|
|
switch (stepping_mode) {
|
|
case 1: microstep_ms(driver, MICROSTEP1); break;
|
|
#if ENABLED(HEROIC_STEPPER_DRIVERS)
|
|
case 128: microstep_ms(driver, MICROSTEP128); break;
|
|
#else
|
|
case 2: microstep_ms(driver, MICROSTEP2); break;
|
|
case 4: microstep_ms(driver, MICROSTEP4); break;
|
|
#endif
|
|
case 8: microstep_ms(driver, MICROSTEP8); break;
|
|
case 16: microstep_ms(driver, MICROSTEP16); break;
|
|
default: SERIAL_ERROR_START(); SERIAL_ERRORLNPGM("Microsteps unavailable"); break;
|
|
}
|
|
}
|
|
|
|
void Stepper::microstep_readings() {
|
|
SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins");
|
|
SERIAL_PROTOCOLPGM("X: ");
|
|
SERIAL_PROTOCOL(READ(X_MS1_PIN));
|
|
SERIAL_PROTOCOLLN(READ(X_MS2_PIN));
|
|
#if HAS_Y_MICROSTEPS
|
|
SERIAL_PROTOCOLPGM("Y: ");
|
|
SERIAL_PROTOCOL(READ(Y_MS1_PIN));
|
|
SERIAL_PROTOCOLLN(READ(Y_MS2_PIN));
|
|
#endif
|
|
#if HAS_Z_MICROSTEPS
|
|
SERIAL_PROTOCOLPGM("Z: ");
|
|
SERIAL_PROTOCOL(READ(Z_MS1_PIN));
|
|
SERIAL_PROTOCOLLN(READ(Z_MS2_PIN));
|
|
#endif
|
|
#if HAS_E0_MICROSTEPS
|
|
SERIAL_PROTOCOLPGM("E0: ");
|
|
SERIAL_PROTOCOL(READ(E0_MS1_PIN));
|
|
SERIAL_PROTOCOLLN(READ(E0_MS2_PIN));
|
|
#endif
|
|
#if HAS_E1_MICROSTEPS
|
|
SERIAL_PROTOCOLPGM("E1: ");
|
|
SERIAL_PROTOCOL(READ(E1_MS1_PIN));
|
|
SERIAL_PROTOCOLLN(READ(E1_MS2_PIN));
|
|
#endif
|
|
#if HAS_E2_MICROSTEPS
|
|
SERIAL_PROTOCOLPGM("E2: ");
|
|
SERIAL_PROTOCOL(READ(E2_MS1_PIN));
|
|
SERIAL_PROTOCOLLN(READ(E2_MS2_PIN));
|
|
#endif
|
|
#if HAS_E3_MICROSTEPS
|
|
SERIAL_PROTOCOLPGM("E3: ");
|
|
SERIAL_PROTOCOL(READ(E3_MS1_PIN));
|
|
SERIAL_PROTOCOLLN(READ(E3_MS2_PIN));
|
|
#endif
|
|
#if HAS_E4_MICROSTEPS
|
|
SERIAL_PROTOCOLPGM("E4: ");
|
|
SERIAL_PROTOCOL(READ(E4_MS1_PIN));
|
|
SERIAL_PROTOCOLLN(READ(E4_MS2_PIN));
|
|
#endif
|
|
}
|
|
|
|
#endif // HAS_MICROSTEPS
|