marlin_i2/Marlin/G26_Mesh_Validation_Tool.cpp
2019-03-04 00:20:41 +01:00

920 lines
37 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* Marlin Firmware -- G26 - Mesh Validation Tool
*/
#include "MarlinConfig.h"
#if ENABLED(G26_MESH_VALIDATION)
#include "Marlin.h"
#include "planner.h"
#include "stepper.h"
#include "temperature.h"
#include "ultralcd.h"
#include "parser.h"
#include "serial.h"
#include "bitmap_flags.h"
#if ENABLED(MESH_BED_LEVELING)
#include "mesh_bed_leveling.h"
#elif ENABLED(AUTO_BED_LEVELING_UBL)
#include "ubl.h"
#endif
#define EXTRUSION_MULTIPLIER 1.0
#define RETRACTION_MULTIPLIER 1.0
#define PRIME_LENGTH 10.0
#define OOZE_AMOUNT 0.3
#define INTERSECTION_CIRCLE_RADIUS 5
#define CROSSHAIRS_SIZE 3
#if CROSSHAIRS_SIZE >= INTERSECTION_CIRCLE_RADIUS
#error "CROSSHAIRS_SIZE must be less than INTERSECTION_CIRCLE_RADIUS."
#endif
#define G26_OK false
#define G26_ERR true
/**
* G26 Mesh Validation Tool
*
* G26 is a Mesh Validation Tool intended to provide support for the Marlin Unified Bed Leveling System.
* In order to fully utilize and benefit from the Marlin Unified Bed Leveling System an accurate Mesh must
* be defined. G29 is designed to allow the user to quickly validate the correctness of her Mesh. It will
* first heat the bed and nozzle. It will then print lines and circles along the Mesh Cell boundaries and
* the intersections of those lines (respectively).
*
* This action allows the user to immediately see where the Mesh is properly defined and where it needs to
* be edited. The command will generate the Mesh lines closest to the nozzle's starting position. Alternatively
* the user can specify the X and Y position of interest with command parameters. This allows the user to
* focus on a particular area of the Mesh where attention is needed.
*
* B # Bed Set the Bed Temperature. If not specified, a default of 60 C. will be assumed.
*
* C Current When searching for Mesh Intersection points to draw, use the current nozzle location
* as the base for any distance comparison.
*
* D Disable Disable the Unified Bed Leveling System. In the normal case the user is invoking this
* command to see how well a Mesh as been adjusted to match a print surface. In order to do
* this the Unified Bed Leveling System is turned on by the G26 command. The D parameter
* alters the command's normal behaviour and disables the Unified Bed Leveling System even if
* it is on.
*
* H # Hotend Set the Nozzle Temperature. If not specified, a default of 205 C. will be assumed.
*
* F # Filament Used to specify the diameter of the filament being used. If not specified
* 1.75mm filament is assumed. If you are not getting acceptable results by using the
* 'correct' numbers, you can scale this number up or down a little bit to change the amount
* of filament that is being extruded during the printing of the various lines on the bed.
*
* K Keep-On Keep the heaters turned on at the end of the command.
*
* L # Layer Layer height. (Height of nozzle above bed) If not specified .20mm will be used.
*
* O # Ooooze How much your nozzle will Ooooze filament while getting in position to print. This
* is over kill, but using this parameter will let you get the very first 'circle' perfect
* so you have a trophy to peel off of the bed and hang up to show how perfectly you have your
* Mesh calibrated. If not specified, a filament length of .3mm is assumed.
*
* P # Prime Prime the nozzle with specified length of filament. If this parameter is not
* given, no prime action will take place. If the parameter specifies an amount, that much
* will be purged before continuing. If no amount is specified the command will start
* purging filament until the user provides an LCD Click and then it will continue with
* printing the Mesh. You can carefully remove the spent filament with a needle nose
* pliers while holding the LCD Click wheel in a depressed state. If you do not have
* an LCD, you must specify a value if you use P.
*
* Q # Multiplier Retraction Multiplier. Normally not needed. Retraction defaults to 1.0mm and
* un-retraction is at 1.2mm These numbers will be scaled by the specified amount
*
* R # Repeat Prints the number of patterns given as a parameter, starting at the current location.
* If a parameter isn't given, every point will be printed unless G26 is interrupted.
* This works the same way that the UBL G29 P4 R parameter works.
*
* NOTE: If you do not have an LCD, you -must- specify R. This is to ensure that you are
* aware that there's some risk associated with printing without the ability to abort in
* cases where mesh point Z value may be inaccurate. As above, if you do not include a
* parameter, every point will be printed.
*
* S # Nozzle Used to control the size of nozzle diameter. If not specified, a .4mm nozzle is assumed.
*
* U # Random Randomize the order that the circles are drawn on the bed. The search for the closest
* undrawn cicle is still done. But the distance to the location for each circle has a
* random number of the size specified added to it. Specifying S50 will give an interesting
* deviation from the normal behaviour on a 10 x 10 Mesh.
*
* X # X Coord. Specify the starting location of the drawing activity.
*
* Y # Y Coord. Specify the starting location of the drawing activity.
*/
// External references
extern Planner planner;
// Private functions
static uint16_t circle_flags[16], horizontal_mesh_line_flags[16], vertical_mesh_line_flags[16];
float g26_e_axis_feedrate = 0.025,
random_deviation = 0.0;
static bool g26_retracted = false; // Track the retracted state of the nozzle so mismatched
// retracts/recovers won't result in a bad state.
static float g26_extrusion_multiplier,
g26_retraction_multiplier,
g26_layer_height,
g26_prime_length,
g26_x_pos, g26_y_pos;
static int16_t g26_bed_temp,
g26_hotend_temp;
static int8_t g26_prime_flag;
#if ENABLED(ULTIPANEL)
/**
* If the LCD is clicked, cancel, wait for release, return true
*/
bool user_canceled() {
if (!is_lcd_clicked()) return false; // Return if the button isn't pressed
lcd_setstatusPGM(PSTR("Mesh Validation Stopped."), 99);
#if ENABLED(ULTIPANEL)
lcd_quick_feedback(true);
#endif
wait_for_release();
return true;
}
bool exit_from_g26() {
lcd_setstatusPGM(PSTR("Leaving G26"), -1);
wait_for_release();
return G26_ERR;
}
#endif
void G26_line_to_destination(const float &feed_rate) {
const float save_feedrate = feedrate_mm_s;
feedrate_mm_s = feed_rate;
prepare_move_to_destination(); // will ultimately call ubl.line_to_destination_cartesian or ubl.prepare_linear_move_to for UBL_SEGMENTED
feedrate_mm_s = save_feedrate;
}
void move_to(const float &rx, const float &ry, const float &z, const float &e_delta) {
float feed_value;
static float last_z = -999.99;
bool has_xy_component = (rx != current_position[X_AXIS] || ry != current_position[Y_AXIS]); // Check if X or Y is involved in the movement.
if (z != last_z) {
last_z = z;
feed_value = planner.max_feedrate_mm_s[Z_AXIS]/(3.0); // Base the feed rate off of the configured Z_AXIS feed rate
destination[X_AXIS] = current_position[X_AXIS];
destination[Y_AXIS] = current_position[Y_AXIS];
destination[Z_AXIS] = z; // We know the last_z==z or we wouldn't be in this block of code.
destination[E_CART] = current_position[E_CART];
G26_line_to_destination(feed_value);
set_destination_from_current();
}
// Check if X or Y is involved in the movement.
// Yes: a 'normal' movement. No: a retract() or recover()
feed_value = has_xy_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5;
if (g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value);
destination[X_AXIS] = rx;
destination[Y_AXIS] = ry;
destination[E_CART] += e_delta;
G26_line_to_destination(feed_value);
set_destination_from_current();
}
FORCE_INLINE void move_to(const float where[XYZE], const float &de) { move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], de); }
void retract_filament(const float where[XYZE]) {
if (!g26_retracted) { // Only retract if we are not already retracted!
g26_retracted = true;
move_to(where, -1.0 * g26_retraction_multiplier);
}
}
void recover_filament(const float where[XYZE]) {
if (g26_retracted) { // Only un-retract if we are retracted.
move_to(where, 1.2 * g26_retraction_multiplier);
g26_retracted = false;
}
}
/**
* Prime the nozzle if needed. Return true on error.
*/
inline bool prime_nozzle() {
#if ENABLED(ULTIPANEL)
float Total_Prime = 0.0;
if (g26_prime_flag == -1) { // The user wants to control how much filament gets purged
lcd_external_control = true;
lcd_setstatusPGM(PSTR("User-Controlled Prime"), 99);
lcd_chirp();
set_destination_from_current();
recover_filament(destination); // Make sure G26 doesn't think the filament is retracted().
while (!is_lcd_clicked()) {
lcd_chirp();
destination[E_CART] += 0.25;
#ifdef PREVENT_LENGTHY_EXTRUDE
Total_Prime += 0.25;
if (Total_Prime >= EXTRUDE_MAXLENGTH) return G26_ERR;
#endif
G26_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0);
set_destination_from_current();
planner.synchronize(); // Without this synchronize, the purge is more consistent,
// but because the planner has a buffer, we won't be able
// to stop as quickly. So we put up with the less smooth
// action to give the user a more responsive 'Stop'.
SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
}
wait_for_release();
lcd_setstatusPGM(PSTR("Done Priming"), 99);
lcd_quick_feedback(true);
lcd_external_control = false;
}
else
#endif
{
#if ENABLED(ULTRA_LCD)
lcd_setstatusPGM(PSTR("Fixed Length Prime."), 99);
lcd_quick_feedback(true);
#endif
set_destination_from_current();
destination[E_CART] += g26_prime_length;
G26_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0);
set_destination_from_current();
retract_filament(destination);
}
return G26_OK;
}
mesh_index_pair find_closest_circle_to_print(const float &X, const float &Y) {
float closest = 99999.99;
mesh_index_pair return_val;
return_val.x_index = return_val.y_index = -1;
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
if (!is_bitmap_set(circle_flags, i, j)) {
const float mx = _GET_MESH_X(i), // We found a circle that needs to be printed
my = _GET_MESH_Y(j);
// Get the distance to this intersection
float f = HYPOT(X - mx, Y - my);
// It is possible that we are being called with the values
// to let us find the closest circle to the start position.
// But if this is not the case, add a small weighting to the
// distance calculation to help it choose a better place to continue.
f += HYPOT(g26_x_pos - mx, g26_y_pos - my) / 15.0;
// Add in the specified amount of Random Noise to our search
if (random_deviation > 1.0)
f += random(0.0, random_deviation);
if (f < closest) {
closest = f; // We found a closer location that is still
return_val.x_index = i; // un-printed --- save the data for it
return_val.y_index = j;
return_val.distance = closest;
}
}
}
}
bitmap_set(circle_flags, return_val.x_index, return_val.y_index); // Mark this location as done.
return return_val;
}
/**
* print_line_from_here_to_there() takes two cartesian coordinates and draws a line from one
* to the other. But there are really three sets of coordinates involved. The first coordinate
* is the present location of the nozzle. We don't necessarily want to print from this location.
* We first need to move the nozzle to the start of line segment where we want to print. Once
* there, we can use the two coordinates supplied to draw the line.
*
* Note: Although we assume the first set of coordinates is the start of the line and the second
* set of coordinates is the end of the line, it does not always work out that way. This function
* optimizes the movement to minimize the travel distance before it can start printing. This saves
* a lot of time and eliminates a lot of nonsensical movement of the nozzle. However, it does
* cause a lot of very little short retracement of th nozzle when it draws the very first line
* segment of a 'circle'. The time this requires is very short and is easily saved by the other
* cases where the optimization comes into play.
*/
void print_line_from_here_to_there(const float &sx, const float &sy, const float &sz, const float &ex, const float &ey, const float &ez) {
const float dx_s = current_position[X_AXIS] - sx, // find our distance from the start of the actual line segment
dy_s = current_position[Y_AXIS] - sy,
dist_start = HYPOT2(dx_s, dy_s), // We don't need to do a sqrt(), we can compare the distance^2
// to save computation time
dx_e = current_position[X_AXIS] - ex, // find our distance from the end of the actual line segment
dy_e = current_position[Y_AXIS] - ey,
dist_end = HYPOT2(dx_e, dy_e),
line_length = HYPOT(ex - sx, ey - sy);
// If the end point of the line is closer to the nozzle, flip the direction,
// moving from the end to the start. On very small lines the optimization isn't worth it.
if (dist_end < dist_start && (INTERSECTION_CIRCLE_RADIUS) < ABS(line_length))
return print_line_from_here_to_there(ex, ey, ez, sx, sy, sz);
// Decide whether to retract & bump
if (dist_start > 2.0) {
retract_filament(destination);
//todo: parameterize the bump height with a define
move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + 0.500, 0.0); // Z bump to minimize scraping
move_to(sx, sy, sz + 0.500, 0.0); // Get to the starting point with no extrusion while bumped
}
move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion / un-Z bump
const float e_pos_delta = line_length * g26_e_axis_feedrate * g26_extrusion_multiplier;
recover_filament(destination);
move_to(ex, ey, ez, e_pos_delta); // Get to the ending point with an appropriate amount of extrusion
}
inline bool look_for_lines_to_connect() {
float sx, sy, ex, ey;
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
#if ENABLED(ULTIPANEL)
if (user_canceled()) return true; // Check if the user wants to stop the Mesh Validation
#endif
if (i < GRID_MAX_POINTS_X) { // We can't connect to anything to the right than GRID_MAX_POINTS_X.
// This is already a half circle because we are at the edge of the bed.
if (is_bitmap_set(circle_flags, i, j) && is_bitmap_set(circle_flags, i + 1, j)) { // check if we can do a line to the left
if (!is_bitmap_set(horizontal_mesh_line_flags, i, j)) {
//
// We found two circles that need a horizontal line to connect them
// Print it!
//
sx = _GET_MESH_X( i ) + (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)); // right edge
ex = _GET_MESH_X(i + 1) - (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)); // left edge
sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1);
sy = ey = constrain(_GET_MESH_Y(j), Y_MIN_POS + 1, Y_MAX_POS - 1);
ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
if (position_is_reachable(sx, sy) && position_is_reachable(ex, ey)) {
if (g26_debug_flag) {
SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx);
SERIAL_ECHOPAIR(", sy=", sy);
SERIAL_ECHOPAIR(") -> (ex=", ex);
SERIAL_ECHOPAIR(", ey=", ey);
SERIAL_CHAR(')');
SERIAL_EOL();
//debug_current_and_destination(PSTR("Connecting horizontal line."));
}
print_line_from_here_to_there(sx, sy, g26_layer_height, ex, ey, g26_layer_height);
}
bitmap_set(horizontal_mesh_line_flags, i, j); // Mark it as done so we don't do it again, even if we skipped it
}
}
if (j < GRID_MAX_POINTS_Y) { // We can't connect to anything further back than GRID_MAX_POINTS_Y.
// This is already a half circle because we are at the edge of the bed.
if (is_bitmap_set(circle_flags, i, j) && is_bitmap_set(circle_flags, i, j + 1)) { // check if we can do a line straight down
if (!is_bitmap_set( vertical_mesh_line_flags, i, j)) {
//
// We found two circles that need a vertical line to connect them
// Print it!
//
sy = _GET_MESH_Y( j ) + (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)); // top edge
ey = _GET_MESH_Y(j + 1) - (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)); // bottom edge
sx = ex = constrain(_GET_MESH_X(i), X_MIN_POS + 1, X_MAX_POS - 1);
sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
if (position_is_reachable(sx, sy) && position_is_reachable(ex, ey)) {
if (g26_debug_flag) {
SERIAL_ECHOPAIR(" Connecting with vertical line (sx=", sx);
SERIAL_ECHOPAIR(", sy=", sy);
SERIAL_ECHOPAIR(") -> (ex=", ex);
SERIAL_ECHOPAIR(", ey=", ey);
SERIAL_CHAR(')');
SERIAL_EOL();
#if ENABLED(AUTO_BED_LEVELING_UBL)
debug_current_and_destination(PSTR("Connecting vertical line."));
#endif
}
print_line_from_here_to_there(sx, sy, g26_layer_height, ex, ey, g26_layer_height);
}
bitmap_set(vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again, even if skipped
}
}
}
}
}
}
return false;
}
/**
* Turn on the bed and nozzle heat and
* wait for them to get up to temperature.
*/
inline bool turn_on_heaters() {
millis_t next = millis() + 5000UL;
#if HAS_HEATED_BED
#if ENABLED(ULTRA_LCD)
if (g26_bed_temp > 25) {
lcd_setstatusPGM(PSTR("G26 Heating Bed."), 99);
lcd_quick_feedback(true);
#if ENABLED(ULTIPANEL)
lcd_external_control = true;
#endif
#endif
thermalManager.setTargetBed(g26_bed_temp);
while (ABS(thermalManager.degBed() - g26_bed_temp) > 3) {
#if ENABLED(ULTIPANEL)
if (is_lcd_clicked()) return exit_from_g26();
#endif
if (ELAPSED(millis(), next)) {
next = millis() + 5000UL;
thermalManager.print_heaterstates();
SERIAL_EOL();
}
idle();
SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
}
#if ENABLED(ULTRA_LCD)
}
lcd_setstatusPGM(PSTR("G26 Heating Nozzle."), 99);
lcd_quick_feedback(true);
#endif
#endif
// Start heating the nozzle and wait for it to reach temperature.
thermalManager.setTargetHotend(g26_hotend_temp, 0);
while (ABS(thermalManager.degHotend(0) - g26_hotend_temp) > 3) {
#if ENABLED(ULTIPANEL)
if (is_lcd_clicked()) return exit_from_g26();
#endif
if (ELAPSED(millis(), next)) {
next = millis() + 5000UL;
thermalManager.print_heaterstates();
SERIAL_EOL();
}
idle();
SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
}
#if ENABLED(ULTRA_LCD)
lcd_reset_status();
lcd_quick_feedback(true);
#endif
return G26_OK;
}
float valid_trig_angle(float d) {
while (d > 360.0) d -= 360.0;
while (d < 0.0) d += 360.0;
return d;
}
/**
* G26: Mesh Validation Pattern generation.
*
* Used to interactively edit the mesh by placing the
* nozzle in a problem area and doing a G29 P4 R command.
*
* Parameters:
*
* B Bed Temperature
* C Continue from the Closest mesh point
* D Disable leveling before starting
* F Filament diameter
* H Hotend Temperature
* K Keep heaters on when completed
* L Layer Height
* O Ooze extrusion length
* P Prime length
* Q Retraction multiplier
* R Repetitions (number of grid points)
* S Nozzle Size (diameter) in mm
* U Random deviation (50 if no value given)
* X X position
* Y Y position
*/
void gcode_G26() {
SERIAL_ECHOLNPGM("G26 command started. Waiting for heater(s).");
// Don't allow Mesh Validation without homing first,
// or if the parameter parsing did not go OK, abort
if (axis_unhomed_error()) return;
g26_extrusion_multiplier = EXTRUSION_MULTIPLIER;
g26_retraction_multiplier = RETRACTION_MULTIPLIER;
g26_layer_height = MESH_TEST_LAYER_HEIGHT;
g26_prime_length = PRIME_LENGTH;
g26_bed_temp = MESH_TEST_BED_TEMP;
g26_hotend_temp = MESH_TEST_HOTEND_TEMP;
g26_prime_flag = 0;
float g26_nozzle = MESH_TEST_NOZZLE_SIZE,
g26_filament_diameter = DEFAULT_NOMINAL_FILAMENT_DIA,
g26_ooze_amount = parser.linearval('O', OOZE_AMOUNT);
bool g26_continue_with_closest = parser.boolval('C'),
g26_keep_heaters_on = parser.boolval('K');
if (parser.seenval('B')) {
g26_bed_temp = parser.value_celsius();
if (g26_bed_temp && !WITHIN(g26_bed_temp, 40, 140)) {
SERIAL_PROTOCOLLNPGM("?Specified bed temperature not plausible (40-140C).");
return;
}
}
if (parser.seenval('L')) {
g26_layer_height = parser.value_linear_units();
if (!WITHIN(g26_layer_height, 0.0, 2.0)) {
SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible.");
return;
}
}
if (parser.seen('Q')) {
if (parser.has_value()) {
g26_retraction_multiplier = parser.value_float();
if (!WITHIN(g26_retraction_multiplier, 0.05, 15.0)) {
SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible.");
return;
}
}
else {
SERIAL_PROTOCOLLNPGM("?Retraction Multiplier must be specified.");
return;
}
}
if (parser.seenval('S')) {
g26_nozzle = parser.value_float();
if (!WITHIN(g26_nozzle, 0.1, 1.0)) {
SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible.");
return;
}
}
if (parser.seen('P')) {
if (!parser.has_value()) {
#if ENABLED(ULTIPANEL)
g26_prime_flag = -1;
#else
SERIAL_PROTOCOLLNPGM("?Prime length must be specified when not using an LCD.");
return;
#endif
}
else {
g26_prime_flag++;
g26_prime_length = parser.value_linear_units();
if (!WITHIN(g26_prime_length, 0.0, 25.0)) {
SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible.");
return;
}
}
}
if (parser.seenval('F')) {
g26_filament_diameter = parser.value_linear_units();
if (!WITHIN(g26_filament_diameter, 1.0, 4.0)) {
SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible.");
return;
}
}
g26_extrusion_multiplier *= sq(1.75) / sq(g26_filament_diameter); // If we aren't using 1.75mm filament, we need to
// scale up or down the length needed to get the
// same volume of filament
g26_extrusion_multiplier *= g26_filament_diameter * sq(g26_nozzle) / sq(0.3); // Scale up by nozzle size
if (parser.seenval('H')) {
g26_hotend_temp = parser.value_celsius();
if (!WITHIN(g26_hotend_temp, 165, 280)) {
SERIAL_PROTOCOLLNPGM("?Specified nozzle temperature not plausible.");
return;
}
}
if (parser.seen('U')) {
randomSeed(millis());
// This setting will persist for the next G26
random_deviation = parser.has_value() ? parser.value_float() : 50.0;
}
int16_t g26_repeats;
#if ENABLED(ULTIPANEL)
g26_repeats = parser.intval('R', GRID_MAX_POINTS + 1);
#else
if (!parser.seen('R')) {
SERIAL_PROTOCOLLNPGM("?(R)epeat must be specified when not using an LCD.");
return;
}
else
g26_repeats = parser.has_value() ? parser.value_int() : GRID_MAX_POINTS + 1;
#endif
if (g26_repeats < 1) {
SERIAL_PROTOCOLLNPGM("?(R)epeat value not plausible; must be at least 1.");
return;
}
g26_x_pos = parser.seenval('X') ? RAW_X_POSITION(parser.value_linear_units()) : current_position[X_AXIS];
g26_y_pos = parser.seenval('Y') ? RAW_Y_POSITION(parser.value_linear_units()) : current_position[Y_AXIS];
if (!position_is_reachable(g26_x_pos, g26_y_pos)) {
SERIAL_PROTOCOLLNPGM("?Specified X,Y coordinate out of bounds.");
return;
}
/**
* Wait until all parameters are verified before altering the state!
*/
set_bed_leveling_enabled(!parser.seen('D'));
if (current_position[Z_AXIS] < Z_CLEARANCE_BETWEEN_PROBES) {
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
set_current_from_destination();
}
if (turn_on_heaters() != G26_OK) goto LEAVE;
current_position[E_CART] = 0.0;
sync_plan_position_e();
if (g26_prime_flag && prime_nozzle() != G26_OK) goto LEAVE;
/**
* Bed is preheated
*
* Nozzle is at temperature
*
* Filament is primed!
*
* It's "Show Time" !!!
*/
ZERO(circle_flags);
ZERO(horizontal_mesh_line_flags);
ZERO(vertical_mesh_line_flags);
// Move nozzle to the specified height for the first layer
set_destination_from_current();
destination[Z_AXIS] = g26_layer_height;
move_to(destination, 0.0);
move_to(destination, g26_ooze_amount);
#if ENABLED(ULTIPANEL)
lcd_external_control = true;
#endif
//debug_current_and_destination(PSTR("Starting G26 Mesh Validation Pattern."));
#if DISABLED(ARC_SUPPORT)
/**
* Pre-generate radius offset values at 30 degree intervals to reduce CPU load.
*/
#define A_INT 30
#define _ANGS (360 / A_INT)
#define A_CNT (_ANGS / 2)
#define _IND(A) ((A + _ANGS * 8) % _ANGS)
#define _COS(A) (trig_table[_IND(A) % A_CNT] * (_IND(A) >= A_CNT ? -1 : 1))
#define _SIN(A) (-_COS((A + A_CNT / 2) % _ANGS))
#if A_CNT & 1
#error "A_CNT must be a positive value. Please change A_INT."
#endif
float trig_table[A_CNT];
for (uint8_t i = 0; i < A_CNT; i++)
trig_table[i] = INTERSECTION_CIRCLE_RADIUS * cos(RADIANS(i * A_INT));
#endif // !ARC_SUPPORT
mesh_index_pair location;
do {
location = g26_continue_with_closest
? find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS])
: find_closest_circle_to_print(g26_x_pos, g26_y_pos); // Find the closest Mesh Intersection to where we are now.
if (location.x_index >= 0 && location.y_index >= 0) {
const float circle_x = _GET_MESH_X(location.x_index),
circle_y = _GET_MESH_Y(location.y_index);
// If this mesh location is outside the printable_radius, skip it.
if (!position_is_reachable(circle_x, circle_y)) continue;
// Determine where to start and end the circle,
// which is always drawn counter-clockwise.
const uint8_t xi = location.x_index, yi = location.y_index;
const bool f = yi == 0, r = xi >= GRID_MAX_POINTS_X - 1, b = yi >= GRID_MAX_POINTS_Y - 1;
#if ENABLED(ARC_SUPPORT)
#define ARC_LENGTH(quarters) (INTERSECTION_CIRCLE_RADIUS * M_PI * (quarters) / 2)
float sx = circle_x + INTERSECTION_CIRCLE_RADIUS, // default to full circle
ex = circle_x + INTERSECTION_CIRCLE_RADIUS,
sy = circle_y, ey = circle_y,
arc_length = ARC_LENGTH(4);
// Figure out where to start and end the arc - we always print counterclockwise
if (xi == 0) { // left edge
sx = f ? circle_x + INTERSECTION_CIRCLE_RADIUS : circle_x;
ex = b ? circle_x + INTERSECTION_CIRCLE_RADIUS : circle_x;
sy = f ? circle_y : circle_y - INTERSECTION_CIRCLE_RADIUS;
ey = b ? circle_y : circle_y + INTERSECTION_CIRCLE_RADIUS;
arc_length = (f || b) ? ARC_LENGTH(1) : ARC_LENGTH(2);
}
else if (r) { // right edge
sx = b ? circle_x - INTERSECTION_CIRCLE_RADIUS : circle_x;
ex = f ? circle_x - INTERSECTION_CIRCLE_RADIUS : circle_x;
sy = b ? circle_y : circle_y + INTERSECTION_CIRCLE_RADIUS;
ey = f ? circle_y : circle_y - INTERSECTION_CIRCLE_RADIUS;
arc_length = (f || b) ? ARC_LENGTH(1) : ARC_LENGTH(2);
}
else if (f) {
sx = circle_x + INTERSECTION_CIRCLE_RADIUS;
ex = circle_x - INTERSECTION_CIRCLE_RADIUS;
sy = ey = circle_y;
arc_length = ARC_LENGTH(2);
}
else if (b) {
sx = circle_x - INTERSECTION_CIRCLE_RADIUS;
ex = circle_x + INTERSECTION_CIRCLE_RADIUS;
sy = ey = circle_y;
arc_length = ARC_LENGTH(2);
}
const float arc_offset[2] = {
circle_x - sx,
circle_y - sy
};
const float dx_s = current_position[X_AXIS] - sx, // find our distance from the start of the actual circle
dy_s = current_position[Y_AXIS] - sy,
dist_start = HYPOT2(dx_s, dy_s);
const float endpoint[XYZE] = {
ex, ey,
g26_layer_height,
current_position[E_CART] + (arc_length * g26_e_axis_feedrate * g26_extrusion_multiplier)
};
if (dist_start > 2.0) {
retract_filament(destination);
//todo: parameterize the bump height with a define
move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + 0.500, 0.0); // Z bump to minimize scraping
move_to(sx, sy, g26_layer_height + 0.500, 0.0); // Get to the starting point with no extrusion while bumped
}
move_to(sx, sy, g26_layer_height, 0.0); // Get to the starting point with no extrusion / un-Z bump
recover_filament(destination);
const float save_feedrate = feedrate_mm_s;
feedrate_mm_s = PLANNER_XY_FEEDRATE() / 10.0;
plan_arc(endpoint, arc_offset, false); // Draw a counter-clockwise arc
feedrate_mm_s = save_feedrate;
set_destination_from_current();
#if ENABLED(ULTIPANEL)
if (user_canceled()) goto LEAVE; // Check if the user wants to stop the Mesh Validation
#endif
#else // !ARC_SUPPORT
int8_t start_ind = -2, end_ind = 9; // Assume a full circle (from 5:00 to 5:00)
if (xi == 0) { // Left edge? Just right half.
start_ind = f ? 0 : -3; // 03:00 to 12:00 for front-left
end_ind = b ? 0 : 2; // 06:00 to 03:00 for back-left
}
else if (r) { // Right edge? Just left half.
start_ind = b ? 6 : 3; // 12:00 to 09:00 for front-right
end_ind = f ? 5 : 8; // 09:00 to 06:00 for back-right
}
else if (f) { // Front edge? Just back half.
start_ind = 0; // 03:00
end_ind = 5; // 09:00
}
else if (b) { // Back edge? Just front half.
start_ind = 6; // 09:00
end_ind = 11; // 03:00
}
for (int8_t ind = start_ind; ind <= end_ind; ind++) {
#if ENABLED(ULTIPANEL)
if (user_canceled()) goto LEAVE; // Check if the user wants to stop the Mesh Validation
#endif
float rx = circle_x + _COS(ind), // For speed, these are now a lookup table entry
ry = circle_y + _SIN(ind),
xe = circle_x + _COS(ind + 1),
ye = circle_y + _SIN(ind + 1);
#if IS_KINEMATIC
// Check to make sure this segment is entirely on the bed, skip if not.
if (!position_is_reachable(rx, ry) || !position_is_reachable(xe, ye)) continue;
#else // not, we need to skip
rx = constrain(rx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
ry = constrain(ry, Y_MIN_POS + 1, Y_MAX_POS - 1);
xe = constrain(xe, X_MIN_POS + 1, X_MAX_POS - 1);
ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1);
#endif
print_line_from_here_to_there(rx, ry, g26_layer_height, xe, ye, g26_layer_height);
SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
}
#endif // !ARC_SUPPORT
if (look_for_lines_to_connect()) goto LEAVE;
}
SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
} while (--g26_repeats && location.x_index >= 0 && location.y_index >= 0);
LEAVE:
lcd_setstatusPGM(PSTR("Leaving G26"), -1);
retract_filament(destination);
destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES;
//debug_current_and_destination(PSTR("ready to do Z-Raise."));
move_to(destination, 0); // Raise the nozzle
//debug_current_and_destination(PSTR("done doing Z-Raise."));
destination[X_AXIS] = g26_x_pos; // Move back to the starting position
destination[Y_AXIS] = g26_y_pos;
//destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Keep the nozzle where it is
move_to(destination, 0); // Move back to the starting position
//debug_current_and_destination(PSTR("done doing X/Y move."));
#if ENABLED(ULTIPANEL)
lcd_external_control = false; // Give back control of the LCD Panel!
#endif
if (!g26_keep_heaters_on) {
#if HAS_HEATED_BED
thermalManager.setTargetBed(0);
#endif
thermalManager.setTargetHotend(0, 0);
}
}
#endif // G26_MESH_VALIDATION