zephyr_ircam/drivers/sensor/mlx90640/mlx90640.c
2024-01-06 22:03:13 +01:00

1739 lines
52 KiB
C

/*
* Copyright (c) 2024 PM
*
* using code from Melexis https://github.com/melexis/mlx90640-library,
* commit f6be7ca1d4a55146b705f3d347f84b773b29cc86 under Apache-2.0
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT melexis_mlx90640
#include <math.h>
#include <string.h>
#include <zephyr/device.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/drivers/i2c.h>
#include <zephyr/drivers/sensor.h>
#include <zephyr/kernel.h>
#include <zephyr/logging/log.h>
#include <zephyr/sys/__assert.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/sys/util.h>
#include "mlx90640.h"
LOG_MODULE_REGISTER(MLX90640, CONFIG_SENSOR_LOG_LEVEL);
#define MLX90640_NO_ERROR 0
#define MLX90640_I2C_NACK_ERROR 1
#define MLX90640_I2C_WRITE_ERROR 2
#define MLX90640_BROKEN_PIXELS_NUM_ERROR 3
#define MLX90640_OUTLIER_PIXELS_NUM_ERROR 4
#define MLX90640_BAD_PIXELS_NUM_ERROR 5
#define MLX90640_ADJACENT_BAD_PIXELS_ERROR 6
#define MLX90640_EEPROM_DATA_ERROR 7
#define MLX90640_FRAME_DATA_ERROR 8
#define MLX90640_MEAS_TRIGGER_ERROR 9
#define MLX90640_BIT_MASK(x) (1UL << (x))
#define MLX90640_REG_MASK(sbit, nbits) ~((~(~0UL << (nbits))) << (sbit))
#define MLX90640_EEPROM_START_ADDRESS 0x2400
#define MLX90640_EEPROM_DUMP_NUM 832
#define MLX90640_PIXEL_DATA_START_ADDRESS 0x0400
#define MLX90640_PIXEL_NUM 768
#define MLX90640_LINE_NUM 24
#define MLX90640_COLUMN_NUM 32
#define MLX90640_LINE_SIZE 32
#define MLX90640_COLUMN_SIZE 24
#define MLX90640_AUX_DATA_START_ADDRESS 0x0700
#define MLX90640_AUX_NUM 64
#define MLX90640_STATUS_REG 0x8000
#define MLX90640_INIT_STATUS_VALUE 0x0030
#define MLX90640_STAT_FRAME_MASK MLX90640_BIT_MASK(0)
#define MLX90640_GET_FRAME(reg_value) (reg_value & MLX90640_STAT_FRAME_MASK)
#define MLX90640_STAT_DATA_READY_MASK MLX90640_BIT_MASK(3)
#define MLX90640_GET_DATA_READY(reg_value) (reg_value & MLX90640_STAT_DATA_READY_MASK)
#define MLX90640_CTRL_REG 0x800D
#define MLX90640_CTRL_TRIG_READY_MASK MLX90640_BIT_MASK(15)
#define MLX90640_CTRL_REFRESH_SHIFT 7
#define MLX90640_CTRL_REFRESH_MASK MLX90640_REG_MASK(MLX90640_CTRL_REFRESH_SHIFT, 3)
#define MLX90640_CTRL_RESOLUTION_SHIFT 10
#define MLX90640_CTRL_RESOLUTION_MASK MLX90640_REG_MASK(MLX90640_CTRL_RESOLUTION_SHIFT, 2)
#define MLX90640_CTRL_MEAS_MODE_SHIFT 12
#define MLX90640_CTRL_MEAS_MODE_MASK MLX90640_BIT_MASK(12)
#define MLX90640_DEVICE_ID1_ADDRESS 0x2407
#define MLX90640_DEVICE_ID2_ADDRESS 0x2408
#define MLX90640_DEVICE_ID3_ADDRESS 0x2409
#define MLX90640_MS_BYTE_SHIFT 8
#define MLX90640_MS_BYTE_MASK 0xFF00
#define MLX90640_LS_BYTE_MASK 0x00FF
#define MLX90640_MS_BYTE(reg16) ((reg16 & MLX90640_MS_BYTE_MASK) >> MLX90640_MS_BYTE_SHIFT)
#define MLX90640_LS_BYTE(reg16) (reg16 & MLX90640_LS_BYTE_MASK)
#define MLX90640_MSBITS_6_MASK 0xFC00
#define MLX90640_LSBITS_10_MASK 0x03FF
#define MLX90640_NIBBLE1_MASK 0x000F
#define MLX90640_NIBBLE2_MASK 0x00F0
#define MLX90640_NIBBLE3_MASK 0x0F00
#define MLX90640_NIBBLE4_MASK 0xF000
#define MLX90640_NIBBLE1(reg16) ((reg16 & MLX90640_NIBBLE1_MASK))
#define MLX90640_NIBBLE2(reg16) ((reg16 & MLX90640_NIBBLE2_MASK) >> 4)
#define MLX90640_NIBBLE3(reg16) ((reg16 & MLX90640_NIBBLE3_MASK) >> 8)
#define MLX90640_NIBBLE4(reg16) ((reg16 & MLX90640_NIBBLE4_MASK) >> 12)
#define MLX90640_POW2(x) pow(2, (double)x)
#define SCALEALPHA 0.000001
// static void mlx90640_int_extract_vdd_parameters(const struct device *dev, uint16_t *eeData);
// static void mlx90640_int_extract_ptat_parameters(const struct device *dev, uint16_t *eeData);
// static void mlx90640_int_extract_gain_parameters(const struct device *dev, uint16_t *eeData);
// static void mlx90640_int_extract_tgc_parameters(const struct device *dev, uint16_t *eeData);
// static void mlx90640_int_extract_resolution_parameters(const struct device *dev, uint16_t *eeData);
// static void mlx90640_int_extract_ks_ta_parameters(const struct device *dev, uint16_t *eeData);
// static void mlx90640_int_extract_ks_to_parameters(const struct device *dev, uint16_t *eeData);
// static void mlx90640_int_extract_alpha_parameters(const struct device *dev, uint16_t *eeData);
// static void mlx90640_int_extract_offset_parameters(const struct device *dev, uint16_t *eeData);
// static void mlx90640_int_extract_kta_pixel_parameters(const struct device *dev, uint16_t *eeData);
// static void mlx90640_int_extract_kv_pixel_parameters(const struct device *dev, uint16_t *eeData);
// static void mlx90640_int_extract_cp_parameters(const struct device *dev, uint16_t *eeData);
// static void mlx90640_int_extract_cilc_parameters(const struct device *dev, uint16_t *eeData);
// static int mlx90640_int_extract_deviating_pixels(const struct device *dev, uint16_t *eeData);
// static int mlx90640_int_check_adjacent_pixels(uint16_t pix1, uint16_t pix2);
// static float mlx90640_int_get_median(float *values, int n);
// static int mlx90640_int_is_pixel_bad(const struct device *dev, uint16_t pixel);
// static int mlx90640_int_validate_frame_data(uint16_t *frameData);
// static int mlx90640_int_validate_aux_data(uint16_t *auxData);
// static int mlx90640_int_i2c_reg_write(const struct device *dev, uint8_t reg_addr, uint16_t wdata);
// static int mlx90640_int_i2c_reg_read(const struct device *dev, uint8_t reg_addr, uint16_t num_words_read,
// uint16_t *rdata);
//--------------------------------------
// internal methods
static int mlx90640_int_i2c_reg_write(const struct device *dev, uint16_t reg_addr, uint16_t wdata)
{
const struct mlx90640_config *config = dev->config;
uint8_t data[4];
data[0] = reg_addr >> 8;
data[1] = reg_addr & 0xFF;
data[2] = wdata >> 8;
data[3] = wdata & 0xFF;
return i2c_write_dt(&config->i2c, data, 4);
}
static int mlx90640_int_i2c_reg_read(const struct device *dev, uint16_t reg_addr, uint16_t num_words_read,
uint16_t *rdata)
{
const struct mlx90640_config *config = dev->config;
uint8_t data[4];
int error;
data[0] = reg_addr >> 8;
data[1] = reg_addr & 0xFF;
error = i2c_write_read_dt(&config->i2c, data, 2, rdata, num_words_read * 2);
for (uint16_t i = 0; i < num_words_read; i++)
{
uint16_t tmp = rdata[i];
rdata[i] = (tmp >> 8) | (tmp << 8);
}
return error;
}
int mlx90640_synch_frame(const struct device *dev)
{
uint16_t dataReady = 0;
uint16_t statusRegister;
int error = 1;
error = mlx90640_int_i2c_reg_write(dev, MLX90640_STATUS_REG, MLX90640_INIT_STATUS_VALUE);
if (error == -MLX90640_I2C_NACK_ERROR)
{
return error;
}
while (dataReady == 0)
{
error = mlx90640_int_i2c_reg_read(dev, MLX90640_STATUS_REG, 1, &statusRegister);
if (error != MLX90640_NO_ERROR)
{
return error;
}
// dataReady = statusRegister & 0x0008;
dataReady = MLX90640_GET_DATA_READY(statusRegister);
}
return MLX90640_NO_ERROR;
}
int mlx90640_trigger_measurement(const struct device *dev)
{
int error = 1;
uint16_t ctrlReg;
error = mlx90640_int_i2c_reg_read(dev, MLX90640_CTRL_REG, 1, &ctrlReg);
if (error != MLX90640_NO_ERROR)
{
return error;
}
ctrlReg |= MLX90640_CTRL_TRIG_READY_MASK;
error = mlx90640_int_i2c_reg_write(dev, MLX90640_CTRL_REG, ctrlReg);
if (error != MLX90640_NO_ERROR)
{
return error;
}
// error = MLX90640_I2CGeneralReset();
// if (error != MLX90640_NO_ERROR)
// {
// return error;
// }
error = mlx90640_int_i2c_reg_read(dev, MLX90640_CTRL_REG, 1, &ctrlReg);
if (error != MLX90640_NO_ERROR)
{
return error;
}
if ((ctrlReg & MLX90640_CTRL_TRIG_READY_MASK) != 0)
{
return -MLX90640_MEAS_TRIGGER_ERROR;
}
return MLX90640_NO_ERROR;
}
static int mlx90640_int_validate_frame_data(uint16_t *frameData)
{
uint8_t line = 0;
for (int i = 0; i < MLX90640_PIXEL_NUM; i += MLX90640_LINE_SIZE)
{
if ((frameData[i] == 0x7FFF) && (line % 2 == frameData[833]))
return -MLX90640_FRAME_DATA_ERROR;
line = line + 1;
}
return MLX90640_NO_ERROR;
}
static int mlx90640_int_validate_aux_data(uint16_t *auxData)
{
if (auxData[0] == 0x7FFF)
return -MLX90640_FRAME_DATA_ERROR;
for (int i = 8; i < 19; i++)
{
if (auxData[i] == 0x7FFF)
return -MLX90640_FRAME_DATA_ERROR;
}
for (int i = 20; i < 23; i++)
{
if (auxData[i] == 0x7FFF)
return -MLX90640_FRAME_DATA_ERROR;
}
for (int i = 24; i < 33; i++)
{
if (auxData[i] == 0x7FFF)
return -MLX90640_FRAME_DATA_ERROR;
}
for (int i = 40; i < 51; i++)
{
if (auxData[i] == 0x7FFF)
return -MLX90640_FRAME_DATA_ERROR;
}
for (int i = 52; i < 55; i++)
{
if (auxData[i] == 0x7FFF)
return -MLX90640_FRAME_DATA_ERROR;
}
for (int i = 56; i < 64; i++)
{
if (auxData[i] == 0x7FFF)
return -MLX90640_FRAME_DATA_ERROR;
}
return MLX90640_NO_ERROR;
}
int mlx90640_get_frame_data(const struct device *dev)
{
uint16_t *frameData = ((struct mlx90640_data *)dev->data)->raw_data;
uint16_t dataReady = 0;
uint16_t controlRegister1;
uint16_t statusRegister;
int error = 1;
uint16_t data[64];
uint8_t cnt = 0;
while (dataReady == 0)
{
error = mlx90640_int_i2c_reg_read(dev, MLX90640_STATUS_REG, 1, &statusRegister);
if (error != MLX90640_NO_ERROR)
{
return error;
}
// dataReady = statusRegister & 0x0008;
dataReady = MLX90640_GET_DATA_READY(statusRegister);
}
error = mlx90640_int_i2c_reg_write(dev, MLX90640_STATUS_REG, MLX90640_INIT_STATUS_VALUE);
if (error == -MLX90640_I2C_NACK_ERROR)
{
return error;
}
error = mlx90640_int_i2c_reg_read(dev, MLX90640_PIXEL_DATA_START_ADDRESS, MLX90640_PIXEL_NUM, frameData);
if (error != MLX90640_NO_ERROR)
{
return error;
}
error = mlx90640_int_i2c_reg_read(dev, MLX90640_AUX_DATA_START_ADDRESS, MLX90640_AUX_NUM, data);
if (error != MLX90640_NO_ERROR)
{
return error;
}
error = mlx90640_int_i2c_reg_read(dev, MLX90640_CTRL_REG, 1, &controlRegister1);
frameData[832] = controlRegister1;
// frameData[833] = statusRegister & 0x0001;
frameData[833] = MLX90640_GET_FRAME(statusRegister);
if (error != MLX90640_NO_ERROR)
{
return error;
}
error = mlx90640_int_validate_aux_data(data);
if (error == MLX90640_NO_ERROR)
{
for (cnt = 0; cnt < MLX90640_AUX_NUM; cnt++)
{
frameData[cnt + MLX90640_PIXEL_NUM] = data[cnt];
}
}
error = mlx90640_int_validate_frame_data(frameData);
if (error != MLX90640_NO_ERROR)
{
return error;
}
return frameData[833];
}
// //------------------------------------------------------------------------------
void mlx90640_calculate_to(const struct device *dev, float emissivity, float tr)
{
mlx90640_params *params = &((struct mlx90640_data *)dev->data)->params;
uint16_t *frameData = ((struct mlx90640_data *)dev->data)->raw_data;
float *result = ((struct mlx90640_data *)dev->data)->temps;
float vdd;
float ta;
float ta4;
float tr4;
float taTr;
float gain;
float irDataCP[2];
float irData;
float alphaCompensated;
uint8_t mode;
int8_t ilPattern;
int8_t chessPattern;
int8_t pattern;
int8_t conversionPattern;
float Sx;
float To;
float alphaCorrR[4];
int8_t range;
uint16_t subPage;
float ktaScale;
float kvScale;
float alphaScale;
float kta;
float kv;
subPage = frameData[833];
vdd = mlx90640_get_vdd(dev);
ta = mlx90640_get_ta(dev);
ta4 = (ta + 273.15);
ta4 = ta4 * ta4;
ta4 = ta4 * ta4;
tr4 = (tr + 273.15);
tr4 = tr4 * tr4;
tr4 = tr4 * tr4;
taTr = tr4 - (tr4 - ta4) / emissivity;
ktaScale = MLX90640_POW2(params->ktaScale);
kvScale = MLX90640_POW2(params->kvScale);
alphaScale = MLX90640_POW2(params->alphaScale);
alphaCorrR[0] = 1 / (1 + params->ksTo[0] * 40);
alphaCorrR[1] = 1;
alphaCorrR[2] = (1 + params->ksTo[1] * params->ct[2]);
alphaCorrR[3] = alphaCorrR[2] * (1 + params->ksTo[2] * (params->ct[3] - params->ct[2]));
//------------------------- Gain calculation -----------------------------------
gain = (float)params->gainEE / (int16_t)frameData[778];
//------------------------- To calculation -------------------------------------
mode = (frameData[832] & MLX90640_CTRL_MEAS_MODE_MASK) >> 5;
irDataCP[0] = (int16_t)frameData[776] * gain;
irDataCP[1] = (int16_t)frameData[808] * gain;
irDataCP[0] =
irDataCP[0] - params->cpOffset[0] * (1 + params->cpKta * (ta - 25)) * (1 + params->cpKv * (vdd - 3.3));
if (mode == params->calibrationModeEE)
{
irDataCP[1] =
irDataCP[1] - params->cpOffset[1] * (1 + params->cpKta * (ta - 25)) * (1 + params->cpKv * (vdd - 3.3));
}
else
{
irDataCP[1] = irDataCP[1] - (params->cpOffset[1] + params->ilChessC[0]) * (1 + params->cpKta * (ta - 25)) *
(1 + params->cpKv * (vdd - 3.3));
}
for (int pixelNumber = 0; pixelNumber < 768; pixelNumber++)
{
ilPattern = pixelNumber / 32 - (pixelNumber / 64) * 2;
chessPattern = ilPattern ^ (pixelNumber - (pixelNumber / 2) * 2);
conversionPattern = ((pixelNumber + 2) / 4 - (pixelNumber + 3) / 4 + (pixelNumber + 1) / 4 - pixelNumber / 4) *
(1 - 2 * ilPattern);
if (mode == 0)
{
pattern = ilPattern;
}
else
{
pattern = chessPattern;
}
if (pattern == frameData[833])
{
irData = (int16_t)frameData[pixelNumber] * gain;
kta = params->kta[pixelNumber] / ktaScale;
kv = params->kv[pixelNumber] / kvScale;
irData = irData - params->offset[pixelNumber] * (1 + kta * (ta - 25)) * (1 + kv * (vdd - 3.3));
if (mode != params->calibrationModeEE)
{
irData = irData + params->ilChessC[2] * (2 * ilPattern - 1) - params->ilChessC[1] * conversionPattern;
}
irData = irData - params->tgc * irDataCP[subPage];
irData = irData / emissivity;
alphaCompensated = SCALEALPHA * alphaScale / params->alpha[pixelNumber];
alphaCompensated = alphaCompensated * (1 + params->KsTa * (ta - 25));
Sx = alphaCompensated * alphaCompensated * alphaCompensated * (irData + alphaCompensated * taTr);
Sx = sqrt(sqrt(Sx)) * params->ksTo[1];
To = sqrt(sqrt(irData / (alphaCompensated * (1 - params->ksTo[1] * 273.15) + Sx) + taTr)) - 273.15;
if (To < params->ct[1])
{
range = 0;
}
else if (To < params->ct[2])
{
range = 1;
}
else if (To < params->ct[3])
{
range = 2;
}
else
{
range = 3;
}
To = sqrt(sqrt(irData / (alphaCompensated * alphaCorrR[range] *
(1 + params->ksTo[range] * (To - params->ct[range]))) +
taTr)) -
273.15;
result[pixelNumber] = To;
}
}
}
//------------------------------------------------------------------------------
// void MLX90640_GetImage(uint16_t *frameData, const paramsMLX90640 *params, float *result)
// {
// float vdd;
// float ta;
// float gain;
// float irDataCP[2];
// float irData;
// float alphaCompensated;
// uint8_t mode;
// int8_t ilPattern;
// int8_t chessPattern;
// int8_t pattern;
// int8_t conversionPattern;
// float image;
// uint16_t subPage;
// float ktaScale;
// float kvScale;
// float kta;
// float kv;
// subPage = frameData[833];
// vdd = MLX90640_GetVdd(frameData, params);
// ta = MLX90640_GetTa(frameData, params);
// ktaScale = MLX90640_POW2(params->ktaScale);
// kvScale = MLX90640_POW2(params->kvScale);
// //------------------------- Gain calculation -----------------------------------
// gain = (float)params->gainEE / (int16_t)frameData[778];
// //------------------------- Image calculation -------------------------------------
// mode = (frameData[832] & MLX90640_CTRL_MEAS_MODE_MASK) >> 5;
// irDataCP[0] = (int16_t)frameData[776] * gain;
// irDataCP[1] = (int16_t)frameData[808] * gain;
// irDataCP[0] = irDataCP[0] - params->cpOffset[0] * (1 + params->cpKta * (ta - 25)) * (1 + params->cpKv * (vdd
// - 3.3)); if( mode == params->calibrationModeEE)
// {
// irDataCP[1] = irDataCP[1] - params->cpOffset[1] * (1 + params->cpKta * (ta - 25)) * (1 + params->cpKv * (vdd
// - 3.3));
// }
// else
// {
// irDataCP[1] = irDataCP[1] - (params->cpOffset[1] + params->ilChessC[0]) * (1 + params->cpKta * (ta - 25)) * (1
// + params->cpKv * (vdd - 3.3));
// }
// for( int pixelNumber = 0; pixelNumber < 768; pixelNumber++)
// {
// ilPattern = pixelNumber / 32 - (pixelNumber / 64) * 2;
// chessPattern = ilPattern ^ (pixelNumber - (pixelNumber/2)*2);
// conversionPattern = ((pixelNumber + 2) / 4 - (pixelNumber + 3) / 4 + (pixelNumber + 1) / 4 - pixelNumber / 4)
// * (1 - 2 * ilPattern);
// if(mode == 0)
// {
// pattern = ilPattern;
// }
// else
// {
// pattern = chessPattern;
// }
// if(pattern == frameData[833])
// {
// irData = (int16_t)frameData[pixelNumber] * gain;
// kta = params->kta[pixelNumber]/ktaScale;
// kv = params->kv[pixelNumber]/kvScale;
// irData = irData - params->offset[pixelNumber]*(1 + kta*(ta - 25))*(1 + kv*(vdd - 3.3));
// if(mode != params->calibrationModeEE)
// {
// irData = irData + params->ilChessC[2] * (2 * ilPattern - 1) - params->ilChessC[1] * conversionPattern;
// }
// irData = irData - params->tgc * irDataCP[subPage];
// alphaCompensated = params->alpha[pixelNumber];
// image = irData*alphaCompensated;
// result[pixelNumber] = image;
// }
// }
// }
// //------------------------------------------------------------------------------
float mlx90640_get_vdd(const struct device *dev)
{
mlx90640_params *params = &((struct mlx90640_data *)dev->data)->params;
uint16_t *frameData = ((struct mlx90640_data *)dev->data)->raw_data;
float vdd;
float resolutionCorrection;
uint16_t resolutionRAM;
resolutionRAM = (frameData[832] & ~MLX90640_CTRL_RESOLUTION_MASK) >> MLX90640_CTRL_RESOLUTION_SHIFT;
resolutionCorrection = MLX90640_POW2(params->resolutionEE) / MLX90640_POW2(resolutionRAM);
vdd = (resolutionCorrection * (int16_t)frameData[810] - params->vdd25) / params->kVdd + 3.3;
((struct mlx90640_data *)dev->data)->vdd = vdd;
return vdd;
}
// //------------------------------------------------------------------------------
float mlx90640_get_ta(const struct device *dev)
{
mlx90640_params *params = &((struct mlx90640_data *)dev->data)->params;
uint16_t *frameData = ((struct mlx90640_data *)dev->data)->raw_data;
int16_t ptat;
float ptatArt;
float vdd;
float ta;
vdd = mlx90640_get_vdd(dev);
ptat = (int16_t)frameData[800];
ptatArt = (ptat / (ptat * params->alphaPTAT + (int16_t)frameData[768])) * MLX90640_POW2(18);
ta = (ptatArt / (1 + params->KvPTAT * (vdd - 3.3)) - params->vPTAT25);
ta = ta / params->KtPTAT + 25;
((struct mlx90640_data *)dev->data)->ta = ta;
return ta;
}
//------------------------------------------------------------------------------
static float mlx90640_int_get_median(float *values, int n)
{
float temp;
for (int i = 0; i < n - 1; i++)
{
for (int j = i + 1; j < n; j++)
{
if (values[j] < values[i])
{
temp = values[i];
values[i] = values[j];
values[j] = temp;
}
}
}
if (n % 2 == 0)
{
return ((values[n / 2] + values[n / 2 - 1]) / 2.0);
}
else
{
return values[n / 2];
}
}
//------------------------------------------------------------------------------
static int mlx90640_int_is_pixel_bad(const struct device *dev, uint16_t pixel)
{
mlx90640_params *mlx90640 = &((struct mlx90640_data *)dev->data)->params;
for (int i = 0; i < 5; i++)
{
if (pixel == mlx90640->outlierPixels[i] || pixel == mlx90640->brokenPixels[i])
{
return 1;
}
}
return 0;
}
//------------------------------------------------------------------------------
void mlx90640_bad_pixels_correction(const struct device *dev, int mode)
{
mlx90640_params *params = &((struct mlx90640_data *)dev->data)->params;
uint16_t *pixels = ((struct mlx90640_data *)dev->data)->raw_data;
float *to = ((struct mlx90640_data *)dev->data)->temps;
float ap[4];
uint8_t pix;
uint8_t line;
uint8_t column;
pix = 0;
while (pixels[pix] != 0xFFFF)
{
line = pixels[pix] >> 5;
column = pixels[pix] - (line << 5);
if (mode == 1)
{
if (line == 0)
{
if (column == 0)
{
to[pixels[pix]] = to[33];
}
else if (column == 31)
{
to[pixels[pix]] = to[62];
}
else
{
to[pixels[pix]] = (to[pixels[pix] + 31] + to[pixels[pix] + 33]) / 2.0;
}
}
else if (line == 23)
{
if (column == 0)
{
to[pixels[pix]] = to[705];
}
else if (column == 31)
{
to[pixels[pix]] = to[734];
}
else
{
to[pixels[pix]] = (to[pixels[pix] - 33] + to[pixels[pix] - 31]) / 2.0;
}
}
else if (column == 0)
{
to[pixels[pix]] = (to[pixels[pix] - 31] + to[pixels[pix] + 33]) / 2.0;
}
else if (column == 31)
{
to[pixels[pix]] = (to[pixels[pix] - 33] + to[pixels[pix] + 31]) / 2.0;
}
else
{
ap[0] = to[pixels[pix] - 33];
ap[1] = to[pixels[pix] - 31];
ap[2] = to[pixels[pix] + 31];
ap[3] = to[pixels[pix] + 33];
to[pixels[pix]] = mlx90640_int_get_median(ap, 4);
}
}
else
{
if (column == 0)
{
to[pixels[pix]] = to[pixels[pix] + 1];
}
else if (column == 1 || column == 30)
{
to[pixels[pix]] = (to[pixels[pix] - 1] + to[pixels[pix] + 1]) / 2.0;
}
else if (column == 31)
{
to[pixels[pix]] = to[pixels[pix] - 1];
}
else
{
if (mlx90640_int_is_pixel_bad(dev, pixels[pix] - 2) == 0 &&
mlx90640_int_is_pixel_bad(dev, pixels[pix] + 2) == 0)
{
ap[0] = to[pixels[pix] + 1] - to[pixels[pix] + 2];
ap[1] = to[pixels[pix] - 1] - to[pixels[pix] - 2];
if (fabs(ap[0]) > fabs(ap[1]))
{
to[pixels[pix]] = to[pixels[pix] - 1] + ap[1];
}
else
{
to[pixels[pix]] = to[pixels[pix] + 1] + ap[0];
}
}
else
{
to[pixels[pix]] = (to[pixels[pix] - 1] + to[pixels[pix] + 1]) / 2.0;
}
}
}
pix = pix + 1;
}
}
//------------------------------------------------------------------------------
static int mlx90640_int_check_adjacent_pixels(uint16_t pix1, uint16_t pix2)
{
int pixPosDif;
uint16_t lp1 = pix1 >> 5;
uint16_t lp2 = pix2 >> 5;
uint16_t cp1 = pix1 - (lp1 << 5);
uint16_t cp2 = pix2 - (lp2 << 5);
pixPosDif = lp1 - lp2;
if (pixPosDif > -2 && pixPosDif < 2)
{
pixPosDif = cp1 - cp2;
if (pixPosDif > -2 && pixPosDif < 2)
{
return -6;
}
}
return 0;
}
//------------------------------------------------------------------------------
static void mlx90640_int_extract_vdd_parameters(const struct device *dev, uint16_t *eeData)
{
mlx90640_params *mlx90640 = &((struct mlx90640_data *)dev->data)->params;
int8_t kVdd;
int16_t vdd25;
kVdd = MLX90640_MS_BYTE(eeData[51]);
vdd25 = MLX90640_LS_BYTE(eeData[51]);
vdd25 = ((vdd25 - 256) << 5) - 8192;
mlx90640->kVdd = 32 * kVdd;
mlx90640->vdd25 = vdd25;
}
//------------------------------------------------------------------------------
static void mlx90640_int_extract_ptat_parameters(const struct device *dev, uint16_t *eeData)
{
mlx90640_params *mlx90640 = &((struct mlx90640_data *)dev->data)->params;
float KvPTAT;
float KtPTAT;
int16_t vPTAT25;
float alphaPTAT;
KvPTAT = (eeData[50] & MLX90640_MSBITS_6_MASK) >> 10;
if (KvPTAT > 31)
{
KvPTAT = KvPTAT - 64;
}
KvPTAT = KvPTAT / 4096;
KtPTAT = eeData[50] & MLX90640_LSBITS_10_MASK;
if (KtPTAT > 511)
{
KtPTAT = KtPTAT - 1024;
}
KtPTAT = KtPTAT / 8;
vPTAT25 = eeData[49];
alphaPTAT = (eeData[16] & MLX90640_NIBBLE4_MASK) / MLX90640_POW2(14) + 8.0f;
mlx90640->KvPTAT = KvPTAT;
mlx90640->KtPTAT = KtPTAT;
mlx90640->vPTAT25 = vPTAT25;
mlx90640->alphaPTAT = alphaPTAT;
}
//------------------------------------------------------------------------------
static void mlx90640_int_extract_gain_parameters(const struct device *dev, uint16_t *eeData)
{
mlx90640_params *mlx90640 = &((struct mlx90640_data *)dev->data)->params;
mlx90640->gainEE = (int16_t)eeData[48];
;
}
//------------------------------------------------------------------------------
static void mlx90640_int_extract_tgc_parameters(const struct device *dev, uint16_t *eeData)
{
mlx90640_params *mlx90640 = &((struct mlx90640_data *)dev->data)->params;
mlx90640->tgc = (int8_t)MLX90640_LS_BYTE(eeData[60]) / 32.0f;
}
//------------------------------------------------------------------------------
static void mlx90640_int_extract_resolution_parameters(const struct device *dev, uint16_t *eeData)
{
mlx90640_params *mlx90640 = &((struct mlx90640_data *)dev->data)->params;
uint8_t resolutionEE;
resolutionEE = (eeData[56] & 0x3000) >> 12;
mlx90640->resolutionEE = resolutionEE;
}
//------------------------------------------------------------------------------
static void mlx90640_int_extract_ks_ta_parameters(const struct device *dev, uint16_t *eeData)
{
mlx90640_params *mlx90640 = &((struct mlx90640_data *)dev->data)->params;
mlx90640->KsTa = (int8_t)MLX90640_MS_BYTE(eeData[60]) / 8192.0f;
}
//------------------------------------------------------------------------------
static void mlx90640_int_extract_ks_to_parameters(const struct device *dev, uint16_t *eeData)
{
mlx90640_params *mlx90640 = &((struct mlx90640_data *)dev->data)->params;
int32_t KsToScale;
int8_t step;
step = ((eeData[63] & 0x3000) >> 12) * 10;
mlx90640->ct[0] = -40;
mlx90640->ct[1] = 0;
mlx90640->ct[2] = MLX90640_NIBBLE2(eeData[63]);
mlx90640->ct[3] = MLX90640_NIBBLE3(eeData[63]);
mlx90640->ct[2] = mlx90640->ct[2] * step;
mlx90640->ct[3] = mlx90640->ct[2] + mlx90640->ct[3] * step;
mlx90640->ct[4] = 400;
KsToScale = MLX90640_NIBBLE1(eeData[63]) + 8;
KsToScale = 1UL << KsToScale;
mlx90640->ksTo[0] = (int8_t)MLX90640_LS_BYTE(eeData[61]) / (float)KsToScale;
mlx90640->ksTo[1] = (int8_t)MLX90640_MS_BYTE(eeData[61]) / (float)KsToScale;
mlx90640->ksTo[2] = (int8_t)MLX90640_LS_BYTE(eeData[62]) / (float)KsToScale;
mlx90640->ksTo[3] = (int8_t)MLX90640_MS_BYTE(eeData[62]) / (float)KsToScale;
mlx90640->ksTo[4] = -0.0002;
}
//------------------------------------------------------------------------------
static void mlx90640_int_extract_alpha_parameters(const struct device *dev, uint16_t *eeData)
{
mlx90640_params *mlx90640 = &((struct mlx90640_data *)dev->data)->params;
int accRow[24];
int accColumn[32];
int p = 0;
int alphaRef;
uint8_t alphaScale;
uint8_t accRowScale;
uint8_t accColumnScale;
uint8_t accRemScale;
float alphaTemp[768];
float temp;
accRemScale = MLX90640_NIBBLE1(eeData[32]);
accColumnScale = MLX90640_NIBBLE2(eeData[32]);
accRowScale = MLX90640_NIBBLE3(eeData[32]);
alphaScale = MLX90640_NIBBLE4(eeData[32]) + 30;
alphaRef = eeData[33];
for (int i = 0; i < 6; i++)
{
p = i * 4;
accRow[p + 0] = MLX90640_NIBBLE1(eeData[34 + i]);
accRow[p + 1] = MLX90640_NIBBLE2(eeData[34 + i]);
accRow[p + 2] = MLX90640_NIBBLE3(eeData[34 + i]);
accRow[p + 3] = MLX90640_NIBBLE4(eeData[34 + i]);
}
for (int i = 0; i < MLX90640_LINE_NUM; i++)
{
if (accRow[i] > 7)
{
accRow[i] = accRow[i] - 16;
}
}
for (int i = 0; i < 8; i++)
{
p = i * 4;
accColumn[p + 0] = MLX90640_NIBBLE1(eeData[40 + i]);
accColumn[p + 1] = MLX90640_NIBBLE2(eeData[40 + i]);
accColumn[p + 2] = MLX90640_NIBBLE3(eeData[40 + i]);
accColumn[p + 3] = MLX90640_NIBBLE4(eeData[40 + i]);
}
for (int i = 0; i < MLX90640_COLUMN_NUM; i++)
{
if (accColumn[i] > 7)
{
accColumn[i] = accColumn[i] - 16;
}
}
for (int i = 0; i < MLX90640_LINE_NUM; i++)
{
for (int j = 0; j < MLX90640_COLUMN_NUM; j++)
{
p = 32 * i + j;
alphaTemp[p] = (eeData[64 + p] & 0x03F0) >> 4;
if (alphaTemp[p] > 31)
{
alphaTemp[p] = alphaTemp[p] - 64;
}
alphaTemp[p] = alphaTemp[p] * (1 << accRemScale);
alphaTemp[p] = (alphaRef + (accRow[i] << accRowScale) + (accColumn[j] << accColumnScale) + alphaTemp[p]);
alphaTemp[p] = alphaTemp[p] / MLX90640_POW2(alphaScale);
alphaTemp[p] = alphaTemp[p] - mlx90640->tgc * (mlx90640->cpAlpha[0] + mlx90640->cpAlpha[1]) / 2;
alphaTemp[p] = SCALEALPHA / alphaTemp[p];
}
}
temp = alphaTemp[0];
for (int i = 1; i < MLX90640_PIXEL_NUM; i++)
{
if (alphaTemp[i] > temp)
{
temp = alphaTemp[i];
}
}
alphaScale = 0;
while (temp < 32767.4)
{
temp = temp * 2;
alphaScale = alphaScale + 1;
}
for (int i = 0; i < MLX90640_PIXEL_NUM; i++)
{
temp = alphaTemp[i] * MLX90640_POW2(alphaScale);
mlx90640->alpha[i] = (temp + 0.5);
}
mlx90640->alphaScale = alphaScale;
}
//------------------------------------------------------------------------------
static void mlx90640_int_extract_offset_parameters(const struct device *dev, uint16_t *eeData)
{
mlx90640_params *mlx90640 = &((struct mlx90640_data *)dev->data)->params;
int occRow[24];
int occColumn[32];
int p = 0;
int16_t offsetRef;
uint8_t occRowScale;
uint8_t occColumnScale;
uint8_t occRemScale;
occRemScale = MLX90640_NIBBLE1(eeData[16]);
occColumnScale = MLX90640_NIBBLE2(eeData[16]);
occRowScale = MLX90640_NIBBLE3(eeData[16]);
offsetRef = (int16_t)eeData[17];
for (int i = 0; i < 6; i++)
{
p = i * 4;
occRow[p + 0] = MLX90640_NIBBLE1(eeData[18 + i]);
occRow[p + 1] = MLX90640_NIBBLE2(eeData[18 + i]);
occRow[p + 2] = MLX90640_NIBBLE3(eeData[18 + i]);
occRow[p + 3] = MLX90640_NIBBLE4(eeData[18 + i]);
}
for (int i = 0; i < MLX90640_LINE_NUM; i++)
{
if (occRow[i] > 7)
{
occRow[i] = occRow[i] - 16;
}
}
for (int i = 0; i < 8; i++)
{
p = i * 4;
occColumn[p + 0] = MLX90640_NIBBLE1(eeData[24 + i]);
occColumn[p + 1] = MLX90640_NIBBLE2(eeData[24 + i]);
occColumn[p + 2] = MLX90640_NIBBLE3(eeData[24 + i]);
occColumn[p + 3] = MLX90640_NIBBLE4(eeData[24 + i]);
}
for (int i = 0; i < MLX90640_COLUMN_NUM; i++)
{
if (occColumn[i] > 7)
{
occColumn[i] = occColumn[i] - 16;
}
}
for (int i = 0; i < MLX90640_LINE_NUM; i++)
{
for (int j = 0; j < MLX90640_COLUMN_NUM; j++)
{
p = 32 * i + j;
mlx90640->offset[p] = (eeData[64 + p] & MLX90640_MSBITS_6_MASK) >> 10;
if (mlx90640->offset[p] > 31)
{
mlx90640->offset[p] = mlx90640->offset[p] - 64;
}
mlx90640->offset[p] = mlx90640->offset[p] * (1 << occRemScale);
mlx90640->offset[p] =
(offsetRef + (occRow[i] << occRowScale) + (occColumn[j] << occColumnScale) + mlx90640->offset[p]);
}
}
}
//------------------------------------------------------------------------------
static void mlx90640_int_extract_kta_pixel_parameters(const struct device *dev, uint16_t *eeData)
{
mlx90640_params *mlx90640 = &((struct mlx90640_data *)dev->data)->params;
int p = 0;
int8_t KtaRC[4];
uint8_t ktaScale1;
uint8_t ktaScale2;
uint8_t split;
float ktaTemp[768];
float temp;
KtaRC[0] = (int8_t)MLX90640_MS_BYTE(eeData[54]);
;
KtaRC[2] = (int8_t)MLX90640_LS_BYTE(eeData[54]);
;
KtaRC[1] = (int8_t)MLX90640_MS_BYTE(eeData[55]);
;
KtaRC[3] = (int8_t)MLX90640_LS_BYTE(eeData[55]);
;
ktaScale1 = MLX90640_NIBBLE2(eeData[56]) + 8;
ktaScale2 = MLX90640_NIBBLE1(eeData[56]);
for (int i = 0; i < MLX90640_LINE_NUM; i++)
{
for (int j = 0; j < MLX90640_COLUMN_NUM; j++)
{
p = 32 * i + j;
split = 2 * (p / 32 - (p / 64) * 2) + p % 2;
ktaTemp[p] = (eeData[64 + p] & 0x000E) >> 1;
if (ktaTemp[p] > 3)
{
ktaTemp[p] = ktaTemp[p] - 8;
}
ktaTemp[p] = ktaTemp[p] * (1 << ktaScale2);
ktaTemp[p] = KtaRC[split] + ktaTemp[p];
ktaTemp[p] = ktaTemp[p] / MLX90640_POW2(ktaScale1);
}
}
temp = fabs(ktaTemp[0]);
for (int i = 1; i < MLX90640_PIXEL_NUM; i++)
{
if (fabs(ktaTemp[i]) > temp)
{
temp = fabs(ktaTemp[i]);
}
}
ktaScale1 = 0;
while (temp < 63.4)
{
temp = temp * 2;
ktaScale1 = ktaScale1 + 1;
}
for (int i = 0; i < MLX90640_PIXEL_NUM; i++)
{
temp = ktaTemp[i] * MLX90640_POW2(ktaScale1);
if (temp < 0)
{
mlx90640->kta[i] = (temp - 0.5);
}
else
{
mlx90640->kta[i] = (temp + 0.5);
}
}
mlx90640->ktaScale = ktaScale1;
}
//------------------------------------------------------------------------------
static void mlx90640_int_extract_kv_pixel_parameters(const struct device *dev, uint16_t *eeData)
{
mlx90640_params *mlx90640 = &((struct mlx90640_data *)dev->data)->params;
int p = 0;
int8_t KvT[4];
int8_t KvRoCo;
int8_t KvRoCe;
int8_t KvReCo;
int8_t KvReCe;
uint8_t kvScale;
uint8_t split;
float kvTemp[768];
float temp;
KvRoCo = MLX90640_NIBBLE4(eeData[52]);
if (KvRoCo > 7)
{
KvRoCo = KvRoCo - 16;
}
KvT[0] = KvRoCo;
KvReCo = MLX90640_NIBBLE3(eeData[52]);
if (KvReCo > 7)
{
KvReCo = KvReCo - 16;
}
KvT[2] = KvReCo;
KvRoCe = MLX90640_NIBBLE2(eeData[52]);
if (KvRoCe > 7)
{
KvRoCe = KvRoCe - 16;
}
KvT[1] = KvRoCe;
KvReCe = MLX90640_NIBBLE1(eeData[52]);
if (KvReCe > 7)
{
KvReCe = KvReCe - 16;
}
KvT[3] = KvReCe;
kvScale = MLX90640_NIBBLE3(eeData[56]);
for (int i = 0; i < MLX90640_LINE_NUM; i++)
{
for (int j = 0; j < MLX90640_COLUMN_NUM; j++)
{
p = 32 * i + j;
split = 2 * (p / 32 - (p / 64) * 2) + p % 2;
kvTemp[p] = KvT[split];
kvTemp[p] = kvTemp[p] / MLX90640_POW2(kvScale);
}
}
temp = fabs(kvTemp[0]);
for (int i = 1; i < MLX90640_PIXEL_NUM; i++)
{
if (fabs(kvTemp[i]) > temp)
{
temp = fabs(kvTemp[i]);
}
}
kvScale = 0;
while (temp < 63.4)
{
temp = temp * 2;
kvScale = kvScale + 1;
}
for (int i = 0; i < MLX90640_PIXEL_NUM; i++)
{
temp = kvTemp[i] * MLX90640_POW2(kvScale);
if (temp < 0)
{
mlx90640->kv[i] = (temp - 0.5);
}
else
{
mlx90640->kv[i] = (temp + 0.5);
}
}
mlx90640->kvScale = kvScale;
}
//------------------------------------------------------------------------------
static void mlx90640_int_extract_cpp_parameters(const struct device *dev, uint16_t *eeData)
{
mlx90640_params *mlx90640 = &((struct mlx90640_data *)dev->data)->params;
float alphaSP[2];
int16_t offsetSP[2];
float cpKv;
float cpKta;
uint8_t alphaScale;
uint8_t ktaScale1;
uint8_t kvScale;
alphaScale = MLX90640_NIBBLE4(eeData[32]) + 27;
offsetSP[0] = (eeData[58] & MLX90640_LSBITS_10_MASK);
if (offsetSP[0] > 511)
{
offsetSP[0] = offsetSP[0] - 1024;
}
offsetSP[1] = (eeData[58] & MLX90640_MSBITS_6_MASK) >> 10;
if (offsetSP[1] > 31)
{
offsetSP[1] = offsetSP[1] - 64;
}
offsetSP[1] = offsetSP[1] + offsetSP[0];
alphaSP[0] = (eeData[57] & MLX90640_LSBITS_10_MASK);
if (alphaSP[0] > 511)
{
alphaSP[0] = alphaSP[0] - 1024;
}
alphaSP[0] = alphaSP[0] / MLX90640_POW2(alphaScale);
alphaSP[1] = (eeData[57] & MLX90640_MSBITS_6_MASK) >> 10;
if (alphaSP[1] > 31)
{
alphaSP[1] = alphaSP[1] - 64;
}
alphaSP[1] = (1 + alphaSP[1] / 128) * alphaSP[0];
cpKta = (int8_t)MLX90640_LS_BYTE(eeData[59]);
ktaScale1 = MLX90640_NIBBLE2(eeData[56]) + 8;
mlx90640->cpKta = cpKta / MLX90640_POW2(ktaScale1);
cpKv = (int8_t)MLX90640_MS_BYTE(eeData[59]);
kvScale = MLX90640_NIBBLE3(eeData[56]);
mlx90640->cpKv = cpKv / MLX90640_POW2(kvScale);
mlx90640->cpAlpha[0] = alphaSP[0];
mlx90640->cpAlpha[1] = alphaSP[1];
mlx90640->cpOffset[0] = offsetSP[0];
mlx90640->cpOffset[1] = offsetSP[1];
}
//------------------------------------------------------------------------------
static void mlx90640_int_extract_cilc_parameters(const struct device *dev, uint16_t *eeData)
{
mlx90640_params *mlx90640 = &((struct mlx90640_data *)dev->data)->params;
float ilChessC[3];
uint8_t calibrationModeEE;
calibrationModeEE = (eeData[10] & 0x0800) >> 4;
calibrationModeEE = calibrationModeEE ^ 0x80;
ilChessC[0] = (eeData[53] & 0x003F);
if (ilChessC[0] > 31)
{
ilChessC[0] = ilChessC[0] - 64;
}
ilChessC[0] = ilChessC[0] / 16.0f;
ilChessC[1] = (eeData[53] & 0x07C0) >> 6;
if (ilChessC[1] > 15)
{
ilChessC[1] = ilChessC[1] - 32;
}
ilChessC[1] = ilChessC[1] / 2.0f;
ilChessC[2] = (eeData[53] & 0xF800) >> 11;
if (ilChessC[2] > 15)
{
ilChessC[2] = ilChessC[2] - 32;
}
ilChessC[2] = ilChessC[2] / 8.0f;
mlx90640->calibrationModeEE = calibrationModeEE;
mlx90640->ilChessC[0] = ilChessC[0];
mlx90640->ilChessC[1] = ilChessC[1];
mlx90640->ilChessC[2] = ilChessC[2];
}
//------------------------------------------------------------------------------
static int mlx90640_int_extract_deviating_pixels(const struct device *dev, uint16_t *eeData)
{
mlx90640_params *mlx90640 = &((struct mlx90640_data *)dev->data)->params;
uint16_t pixCnt = 0;
uint16_t brokenPixCnt = 0;
uint16_t outlierPixCnt = 0;
int warn = 0;
int i;
for (pixCnt = 0; pixCnt < 5; pixCnt++)
{
mlx90640->brokenPixels[pixCnt] = 0xFFFF;
mlx90640->outlierPixels[pixCnt] = 0xFFFF;
}
pixCnt = 0;
while (pixCnt < MLX90640_PIXEL_NUM && brokenPixCnt < 5 && outlierPixCnt < 5)
{
if (eeData[pixCnt + 64] == 0)
{
mlx90640->brokenPixels[brokenPixCnt] = pixCnt;
brokenPixCnt = brokenPixCnt + 1;
}
else if ((eeData[pixCnt + 64] & 0x0001) != 0)
{
mlx90640->outlierPixels[outlierPixCnt] = pixCnt;
outlierPixCnt = outlierPixCnt + 1;
}
pixCnt = pixCnt + 1;
}
if (brokenPixCnt > 4)
{
warn = -MLX90640_BROKEN_PIXELS_NUM_ERROR;
}
else if (outlierPixCnt > 4)
{
warn = -MLX90640_OUTLIER_PIXELS_NUM_ERROR;
}
else if ((brokenPixCnt + outlierPixCnt) > 4)
{
warn = -MLX90640_BAD_PIXELS_NUM_ERROR;
}
else
{
for (pixCnt = 0; pixCnt < brokenPixCnt; pixCnt++)
{
for (i = pixCnt + 1; i < brokenPixCnt; i++)
{
warn = mlx90640_int_check_adjacent_pixels(mlx90640->brokenPixels[pixCnt], mlx90640->brokenPixels[i]);
if (warn != 0)
{
return warn;
}
}
}
for (pixCnt = 0; pixCnt < outlierPixCnt; pixCnt++)
{
for (i = pixCnt + 1; i < outlierPixCnt; i++)
{
warn = mlx90640_int_check_adjacent_pixels(mlx90640->outlierPixels[pixCnt], mlx90640->outlierPixels[i]);
if (warn != 0)
{
return warn;
}
}
}
for (pixCnt = 0; pixCnt < brokenPixCnt; pixCnt++)
{
for (i = 0; i < outlierPixCnt; i++)
{
warn = mlx90640_int_check_adjacent_pixels(mlx90640->brokenPixels[pixCnt], mlx90640->outlierPixels[i]);
if (warn != 0)
{
return warn;
}
}
}
}
return warn;
}
int mlx90640_int_extract_parameters(const struct device *dev)
{
int error = 0;
uint16_t *ee_data = k_calloc(MLX90640_EEPROM_DUMP_NUM, 2);
error = mlx90640_int_i2c_reg_read(dev, MLX90640_EEPROM_START_ADDRESS, MLX90640_EEPROM_DUMP_NUM, ee_data);
mlx90640_int_extract_vdd_parameters(dev, ee_data);
mlx90640_int_extract_ptat_parameters(dev, ee_data);
mlx90640_int_extract_gain_parameters(dev, ee_data);
mlx90640_int_extract_tgc_parameters(dev, ee_data);
mlx90640_int_extract_resolution_parameters(dev, ee_data);
mlx90640_int_extract_ks_ta_parameters(dev, ee_data);
mlx90640_int_extract_ks_to_parameters(dev, ee_data);
mlx90640_int_extract_cpp_parameters(dev, ee_data);
mlx90640_int_extract_alpha_parameters(dev, ee_data);
mlx90640_int_extract_offset_parameters(dev, ee_data);
mlx90640_int_extract_kta_pixel_parameters(dev, ee_data);
mlx90640_int_extract_kv_pixel_parameters(dev, ee_data);
mlx90640_int_extract_cilc_parameters(dev, ee_data);
error = mlx90640_int_extract_deviating_pixels(dev, ee_data);
k_free(ee_data);
return error;
}
//--------------------------------------
// configuration methods
int mlx90640_set_adc_resolution(const struct device *dev, enum mlx90640_adc_resolution res)
{
const struct mlx90640_config *config = dev->config;
uint16_t controlRegister1;
uint16_t value;
int error;
value = ((uint16_t)res << MLX90640_CTRL_RESOLUTION_SHIFT);
value &= ~MLX90640_CTRL_RESOLUTION_MASK;
error = mlx90640_int_i2c_reg_read(dev, MLX90640_CTRL_REG, 1, &controlRegister1);
if (error == MLX90640_NO_ERROR)
{
value = (controlRegister1 & MLX90640_CTRL_RESOLUTION_MASK) | value;
error = mlx90640_int_i2c_reg_write(dev, MLX90640_CTRL_REG, value);
}
return error;
}
enum mlx90640_adc_resolution mlx90640_get_adc_resolution(const struct device *dev)
{
uint16_t controlRegister1;
int resolutionRAM;
int error;
error = mlx90640_int_i2c_reg_read(dev, MLX90640_CTRL_REG, 1, &controlRegister1);
if (error != MLX90640_NO_ERROR)
{
return error;
}
resolutionRAM = (controlRegister1 & ~MLX90640_CTRL_RESOLUTION_MASK) >> MLX90640_CTRL_RESOLUTION_SHIFT;
return resolutionRAM;
}
int mlx90640_set_refresh_rate(const struct device *dev, enum mlx90640_refresh_rate rate)
{
uint16_t controlRegister1;
uint16_t value;
int error;
value = ((uint16_t)rate << MLX90640_CTRL_REFRESH_SHIFT);
value &= ~MLX90640_CTRL_REFRESH_MASK;
error = mlx90640_int_i2c_reg_read(dev, MLX90640_CTRL_REG, 1, &controlRegister1);
if (error == MLX90640_NO_ERROR)
{
value = (controlRegister1 & MLX90640_CTRL_REFRESH_MASK) | value;
error = mlx90640_int_i2c_reg_write(dev, MLX90640_CTRL_REG, value);
}
return error;
}
enum mlx90640_refresh_rate mlx90640_get_refresh_rate(const struct device *dev)
{
uint16_t controlRegister1;
int refreshRate;
int error;
error = mlx90640_int_i2c_reg_read(dev, MLX90640_CTRL_REG, 1, &controlRegister1);
if (error != MLX90640_NO_ERROR)
{
return error;
}
refreshRate = (controlRegister1 & ~MLX90640_CTRL_REFRESH_MASK) >> MLX90640_CTRL_REFRESH_SHIFT;
return refreshRate;
}
int mlx90640_set_reading_pattern(const struct device *dev, enum mlx90640_reading_pattern pattern)
{
uint16_t controlRegister1;
uint16_t value;
int error;
error = mlx90640_int_i2c_reg_read(dev, MLX90640_CTRL_REG, 1, &controlRegister1);
if (error == 0)
{
value = (controlRegister1 & ~MLX90640_CTRL_MEAS_MODE_MASK);
if (pattern == MLX90640_PATTERN_CHESS)
{
value = (controlRegister1 | MLX90640_CTRL_MEAS_MODE_MASK);
}
error = mlx90640_int_i2c_reg_write(dev, MLX90640_CTRL_REG, value);
}
return error;
}
enum mlx90640_reading_pattern mlx90640_get_reading_pattern(const struct device *dev)
{
uint16_t controlRegister1;
int modeRAM;
int error;
error = mlx90640_int_i2c_reg_read(dev, MLX90640_CTRL_REG, 1, &controlRegister1);
if (error != 0)
{
return error;
}
modeRAM = (controlRegister1 & MLX90640_CTRL_MEAS_MODE_MASK) >> MLX90640_CTRL_MEAS_MODE_SHIFT;
return modeRAM;
}
//--------------------------------------
// API methods
static int mlx90640_sample_fetch(const struct device *dev, enum sensor_channel chan)
{
// this method gets the raw data
struct mlx90640_data *drv_data = dev->data;
const struct mlx90640_config *config = dev->config;
__ASSERT_NO_MSG(chan == SENSOR_CHAN_ALL || chan == SENSOR_CHAN_AMBIENT_TEMP);
return mlx90640_get_frame_data(dev);
}
static int mlx90640_channel_get(const struct device *dev, enum sensor_channel chan, struct sensor_value *val)
{
// mlx90640_calculate_to(dev, float emissivity, float tr);
// struct mlx90640_data *drv_data = dev->data;
// size_t len = ARRAY_SIZE(drv_data->sample);
// if (chan != SENSOR_CHAN_AMBIENT_TEMP)
// {
// return -ENOTSUP;
// }
// for (size_t idx = 0; idx < len; idx++)
// {
// /* fix negative values */
// if (drv_data->sample[idx] & (1 << 11))
// {
// drv_data->sample[idx] |= 0xF000;
// }
// val[idx].val1 = (((int32_t)drv_data->sample[idx]) * MLX90640_TREG_LSB_SCALING) / 1000000;
// val[idx].val2 = (((int32_t)drv_data->sample[idx]) * MLX90640_TREG_LSB_SCALING) % 1000000;
// }
return 0;
}
static int mlx90640_init_device(const struct device *dev)
{
const struct mlx90640_config *config = dev->config;
uint16_t tmp;
uint16_t dev_id[3];
// initial wait, 80ms + 2s/refresh_rate below config
k_sleep(K_MSEC(80));
mlx90640_int_i2c_reg_read(dev, MLX90640_DEVICE_ID1_ADDRESS, 3, dev_id);
printf("MLX90640 Device ID1: %04x %04x %04x\n", dev_id[0], dev_id[1], dev_id[2]);
mlx90640_int_i2c_reg_read(dev, MLX90640_CTRL_REG, 1, &tmp);
printf("MLX90640 CTRL: %04x\n", tmp);
uint16_t regs[0x16];
mlx90640_int_i2c_reg_read(dev, MLX90640_CTRL_REG, 4, regs);
// printf("writing eeprom\n");
// k_sleep(K_SECONDS(10));
// printf("w_err:%d",mlx90640_int_i2c_reg_write(dev,0x240c,0x0000));
// k_sleep(K_MSEC(10));
// mlx90640_int_i2c_reg_read(dev, 0x2400, 16, regs);
// printf("w_err:%d",mlx90640_int_i2c_reg_write(dev,0x240c,0x1901));
// k_sleep(K_MSEC(10));
// mlx90640_int_i2c_reg_read(dev, 0x2400, 16, regs);
// printf("w_err:%d",mlx90640_int_i2c_reg_write(dev,0x240f,0x0000));
// k_sleep(K_MSEC(10));
// mlx90640_int_i2c_reg_read(dev, 0x2400, 16, regs);
// printf("w_err:%d",mlx90640_int_i2c_reg_write(dev,0x240f,0xBE33));
// k_sleep(K_MSEC(10));
// mlx90640_int_i2c_reg_read(dev, 0x2400, 16, regs);
// printf("eeprom done\n");
// k_sleep(K_SECONDS(1));
// mlx90640_int_i2c_reg_read(dev, 0x2400, 16, regs);
// mlx90640_int_i2c_reg_read(dev, MLX90640_CTRL_REG, 4, regs);
// k_sleep(K_SECONDS(10));
// mlx90640_set_adc_resolution(dev, config->adc_resolution);
// mlx90640_set_refresh_rate(dev, config->refresh_rate);
// mlx90640_set_reading_pattern(dev, config->reading_pattern);
switch (config->refresh_rate)
{
case MLX90640_REFRESH_0_5:
k_sleep(K_MSEC(4000));
break;
case MLX90640_REFRESH_1:
k_sleep(K_MSEC(2000));
break;
case MLX90640_REFRESH_2:
k_sleep(K_MSEC(1000));
break;
case MLX90640_REFRESH_4:
k_sleep(K_MSEC(500));
break;
case MLX90640_REFRESH_8:
k_sleep(K_MSEC(250));
break;
case MLX90640_REFRESH_16:
k_sleep(K_MSEC(125));
break;
case MLX90640_REFRESH_32:
k_sleep(K_MSEC(63));
break;
case MLX90640_REFRESH_64:
k_sleep(K_MSEC(32));
break;
}
mlx90640_int_extract_parameters(dev);
return 0;
}
int mlx90640_init(const struct device *dev)
{
const struct mlx90640_config *config = dev->config;
if (!device_is_ready(config->i2c.bus))
{
LOG_ERR("Bus device is not ready");
return -EINVAL;
}
if (mlx90640_init_device(dev) < 0)
{
LOG_ERR("Failed to initialize device!");
return -EIO;
}
// #ifdef CONFIG_MLX90640_TRIGGER
// if (mlx90640_init_interrupt(dev) < 0)
// {
// LOG_ERR("Failed to initialize interrupt!");
// return -EIO;
// }
// #endif
return 0;
}
static const struct sensor_driver_api mlx90640_driver_api = {
// #ifdef CONFIG_MLX90640_TRIGGER
// .attr_set = mlx90640_attr_set,
// .trigger_set = mlx90640_trigger_set,
// #endif
.sample_fetch = mlx90640_sample_fetch,
.channel_get = mlx90640_channel_get,
};
#define MLX90640_DEFINE(inst) \
static struct mlx90640_data mlx90640_data_##inst; \
\
static const struct mlx90640_config mlx90640_config_##inst = { \
.i2c = I2C_DT_SPEC_INST_GET(inst), \
.refresh_rate = DT_INST_PROP(inst, refresh_rate), \
.adc_resolution = DT_INST_PROP(inst, adc_resolution), \
.reading_pattern = DT_INST_PROP(inst, reading_pattern), \
}; \
\
SENSOR_DEVICE_DT_INST_DEFINE(inst, mlx90640_init, NULL, &mlx90640_data_##inst, &mlx90640_config_##inst, \
POST_KERNEL, CONFIG_SENSOR_INIT_PRIORITY, &mlx90640_driver_api);
DT_INST_FOREACH_STATUS_OKAY(MLX90640_DEFINE)