Initial patches to G33

This commit is contained in:
Scott Lahteine 2017-04-28 17:17:01 -05:00 committed by teemuatlut
parent 12ce051b55
commit 29fa241617
2 changed files with 95 additions and 70 deletions

View file

@ -1838,7 +1838,8 @@ static void clean_up_after_endstop_or_probe_move() {
#endif //HAS_BED_PROBE #endif //HAS_BED_PROBE
#if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE) #if HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE) || ENABLED(DELTA_AUTO_CALIBRATION)
bool axis_unhomed_error(const bool x, const bool y, const bool z) { bool axis_unhomed_error(const bool x, const bool y, const bool z) {
const bool xx = x && !axis_homed[X_AXIS], const bool xx = x && !axis_homed[X_AXIS],
yy = y && !axis_homed[Y_AXIS], yy = y && !axis_homed[Y_AXIS],
@ -1858,6 +1859,7 @@ static void clean_up_after_endstop_or_probe_move() {
} }
return false; return false;
} }
#endif #endif
#if ENABLED(Z_PROBE_SLED) #if ENABLED(Z_PROBE_SLED)
@ -4941,11 +4943,12 @@ inline void gcode_G28() {
/** /**
* G30: Do a single Z probe at the current XY * G30: Do a single Z probe at the current XY
* Usage: *
* G30 <X#> <Y#> <S#> * Parameters:
* X = Probe X position (default=current probe position) *
* Y = Probe Y position (default=current probe position) * X Probe X position (default current X)
* S = Stows the probe if 1 (default=1) * Y Probe Y position (default current Y)
* S0 Leave the probe deployed
*/ */
inline void gcode_G30() { inline void gcode_G30() {
const float xpos = code_seen('X') ? code_value_linear_units() : current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER, const float xpos = code_seen('X') ? code_value_linear_units() : current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
@ -4996,42 +4999,56 @@ inline void gcode_G28() {
* C0 Calibrate height * C0 Calibrate height
* C1 Probe the center to set the Z height * C1 Probe the center to set the Z height
* C-1 same but 1 iteration only * C-1 same but 1 iteration only
* C2 probes center and towers / sets height, endstops and delta radius * C2 probe center and towers, set height, endstops, and delta radius
* C-2 same but opposite towers * C-2 same but opposite towers
* C3 probes all points: center, towers and opposite towers / sets all
* C0-C3 same but tower angle calibration disabled
* C4-C7 probes all points multiple times and averages
* *
* V Verbose level (0-2, default 1) * C3 probe all points: center, towers and opposite towers / sets all
* V0 dry-run mode. no calibration *
* V1 settings * C4-C7 probe all points multiple times and average
* V2 setting and probe results * C0-C3 same but tower angle calibration disabled
*
* V0 Dry-run mode
* V1 Output settings
* V2 Output setting and probe results
*/ */
inline void gcode_G33() { inline void gcode_G33() {
if (axis_unhomed_error(true, true, true)) return;
const int8_t c_value = code_seen('C') ? code_value_int() : DELTA_CALIBRATION_DEFAULT_POINTS;
if (!WITHIN(c_value, -7, 7)) {
SERIAL_PROTOCOLLNPGM("?C parameter is implausible (-7 to 7).");
return;
}
const int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
if (!WITHIN(verbose_level, 0, 2)) {
SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-2).");
return;
}
stepper.synchronize(); stepper.synchronize();
#if PLANNER_LEVELING #if PLANNER_LEVELING
set_bed_leveling_enabled(false); set_bed_leveling_enabled(false);
#endif #endif
const int8_t pp = code_seen('C') ? code_value_int() : DELTA_CALIBRATION_DEFAULT_POINTS, const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
probe_points = (WITHIN(pp, -7, -1) || WITHIN(pp, 1, 7)) ? pp : DELTA_CALIBRATION_DEFAULT_POINTS;
int8_t verbose_level = code_seen('V') ? code_value_byte() : 1; const uint8_t probe_points = abs(c_value);
if (!WITHIN(verbose_level, 0, 2)) verbose_level = 1; const bool neg = c_value < 0,
equals4 = probe_points == 4,
float zero_std_dev = verbose_level ? 999.0 : 0.0; // 0.0 in dry-run mode : forced end over4 = probe_points > 4,
over5 = probe_points > 5;
gcode_G28();
float e_old[XYZ], float e_old[XYZ],
dr_old = delta_radius, dr_old = delta_radius,
zh_old = home_offset[Z_AXIS], zh_old = home_offset[Z_AXIS],
alpha_old = delta_tower_angle_trim[A_AXIS], alpha_old = delta_tower_angle_trim[A_AXIS],
beta_old = delta_tower_angle_trim[B_AXIS]; beta_old = delta_tower_angle_trim[B_AXIS];
COPY(e_old,endstop_adj);
COPY(e_old, endstop_adj);
// print settings // print settings
@ -5042,7 +5059,7 @@ inline void gcode_G28() {
LCD_MESSAGEPGM("Checking... AC"); LCD_MESSAGEPGM("Checking... AC");
SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]); SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
if (abs(probe_points) > 1) { if (probe_points > 1) {
SERIAL_PROTOCOLPGM(" Ex:"); SERIAL_PROTOCOLPGM(" Ex:");
if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+'); if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+');
SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2); SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2);
@ -5055,7 +5072,7 @@ inline void gcode_G28() {
SERIAL_PROTOCOLPAIR(" Radius:", delta_radius); SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
} }
SERIAL_EOL; SERIAL_EOL;
if (probe_points > 2) { if (c_value > 2) {
SERIAL_PROTOCOLPGM(".Tower angle : Tx:"); SERIAL_PROTOCOLPGM(".Tower angle : Tx:");
if (delta_tower_angle_trim[A_AXIS] >= 0) SERIAL_CHAR('+'); if (delta_tower_angle_trim[A_AXIS] >= 0) SERIAL_CHAR('+');
SERIAL_PROTOCOL_F(delta_tower_angle_trim[A_AXIS], 2); SERIAL_PROTOCOL_F(delta_tower_angle_trim[A_AXIS], 2);
@ -5070,10 +5087,10 @@ inline void gcode_G28() {
DEPLOY_PROBE(); DEPLOY_PROBE();
#endif #endif
float test_precision; float zero_std_dev = verbose_level ? 999.0 : 0.0, // 0.0 in dry-run mode : forced end
test_precision;
int8_t iterations = 0; int8_t iterations = 0;
do {
do { // start iterations
setup_for_endstop_or_probe_move(); setup_for_endstop_or_probe_move();
@ -5085,57 +5102,58 @@ inline void gcode_G28() {
int16_t center_points = 0; int16_t center_points = 0;
if (abs(probe_points) != 3 && abs(probe_points != 6)) { // probe centre if (probe_points != 3 && probe_points != 6) { // probe center
z_at_pt[0] += probe_pt(0.0, 0.0 , true, 1); z_at_pt[0] += probe_pt(0.0, 0.0 , true, 1);
center_points = 1; center_points = 1;
} }
int16_t step_axis = (abs(probe_points) > 4) ? 2 : 4; int16_t step_axis = over4 ? 2 : 4;
if (abs(probe_points) >= 3) { // probe extra 3 or 6 centre points if (probe_points >= 3) { // probe extra 3 or 6 center points
for (int8_t axis = (abs(probe_points) > 4) ? 11 : 9; axis > 0; axis -= step_axis) { for (int8_t axis = over4 ? 11 : 9; axis > 0; axis -= step_axis) {
z_at_pt[0] += probe_pt( z_at_pt[0] += probe_pt(
cos(RADIANS(180 + 30 * axis)) * (0.1 * delta_calibration_radius), cos(RADIANS(180 + 30 * axis)) * (0.1 * delta_calibration_radius),
sin(RADIANS(180 + 30 * axis)) * (0.1 * delta_calibration_radius), true, 1); sin(RADIANS(180 + 30 * axis)) * (0.1 * delta_calibration_radius), true, 1);
} }
center_points += (abs(probe_points) > 4) ? 6 : 3; // average centre points center_points += over4 ? 6 : 3; // average center points
z_at_pt[0] /= center_points; z_at_pt[0] /= center_points;
} }
float S1 = z_at_pt[0], S2 = sq(S1); float S1 = z_at_pt[0], S2 = sq(S1);
int16_t N = 1, start = (probe_points == -2) ? 3 : 1; int16_t N = 1, start = (c_value == -2) ? 3 : 1;
step_axis = (abs(probe_points) == 2) ? 4 : (abs(probe_points) == 4 || abs(probe_points) > 5) ? 1 : 2; step_axis = (probe_points == 2) ? 4 : (equals4 || over5) ? 1 : 2;
float start_circles = (abs(probe_points) > 6) ? -1.5 : (abs(probe_points) > 4) ? -1 : 0, // one or multi radius points
end_circles = (abs(probe_points) > 6) ? 1.5 : (abs(probe_points) > 4) ? 1 : 0; // one or multi radius points
int8_t zig_zag = 1;
if (abs(probe_points) > 1) { if (probe_points > 1) {
float start_circles = (probe_points > 6) ? -1.5 : over4 ? -1 : 0, // one or multi radius points
end_circles = -start_circles;
bool zig_zag = true;
for (uint8_t axis = start; axis < 13; axis += step_axis) { // probes 3, 6 or 12 points on the calibration radius for (uint8_t axis = start; axis < 13; axis += step_axis) { // probes 3, 6 or 12 points on the calibration radius
for (float circles = start_circles ; circles <= end_circles; circles++) // one or multi radius points for (float circles = start_circles ; circles <= end_circles; circles++) // one or multi radius points
z_at_pt[axis] += probe_pt( z_at_pt[axis] += probe_pt(
cos(RADIANS(180 + 30 * axis)) * ((1 + circles * 0.1 * zig_zag) * delta_calibration_radius), cos(RADIANS(180 + 30 * axis)) * ((1 + circles * 0.1 * (zig_zag ? 1 : -1)) * delta_calibration_radius),
sin(RADIANS(180 + 30 * axis)) * ((1 + circles * 0.1 * zig_zag) * delta_calibration_radius), true, 1); sin(RADIANS(180 + 30 * axis)) * ((1 + circles * 0.1 * (zig_zag ? 1 : -1)) * delta_calibration_radius), true, 1);
if (abs(probe_points) > 5) start_circles += (zig_zag == 1) ? +0.5 : -0.5; // opposites: one radius point less if (over5) start_circles += zig_zag ? +0.5 : -0.5; // opposites: one radius point less
if (abs(probe_points) > 5) end_circles += (zig_zag == 1) ? -0.5 : +0.5; if (over5) end_circles += zig_zag ? -0.5 : +0.5;
zig_zag = -zig_zag; zig_zag = !zig_zag;
if (abs(probe_points) > 4) z_at_pt[axis] /= (zig_zag == 1) ? 3.0 : 2.0; // average between radius points if (over4) z_at_pt[axis] /= (zig_zag ? 3.0 : 2.0); // average between radius points
} }
} }
if (abs(probe_points) == 4 || abs(probe_points) > 5) step_axis = 2;
if (equals4 || over5) step_axis = 2;
for (uint8_t axis = start; axis < 13; axis += step_axis) { // average half intermediates to towers and opposites for (uint8_t axis = start; axis < 13; axis += step_axis) { // average half intermediates to towers and opposites
if (abs(probe_points) == 4 || abs(probe_points) > 5) if (equals4 || over5)
z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0; z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
S1 += z_at_pt[axis]; S1 += z_at_pt[axis];
S2 += sq(z_at_pt[axis]); S2 += sq(z_at_pt[axis]);
N++; N++;
} }
zero_std_dev = round(sqrt(S2 / N) * 1000.0) / 1000.0 + 0.00001; // deviation from zero plane
// Solve matrices // Solve matrices
zero_std_dev = round(sqrt(S2 / N) * 1000.0) / 1000.0 + 0.00001; // deviation from zero plane
if (zero_std_dev < test_precision) { if (zero_std_dev < test_precision) {
COPY(e_old, endstop_adj); COPY(e_old, endstop_adj);
dr_old = delta_radius; dr_old = delta_radius;
@ -5145,6 +5163,7 @@ inline void gcode_G28() {
float e_delta[XYZ] = { 0.0 }, r_delta = 0.0, float e_delta[XYZ] = { 0.0 }, r_delta = 0.0,
t_alpha = 0.0, t_beta = 0.0; t_alpha = 0.0, t_beta = 0.0;
const float r_diff = delta_radius - delta_calibration_radius, const float r_diff = delta_radius - delta_calibration_radius,
h_factor = 1.00 + r_diff * 0.001, //1.02 for r_diff = 20mm h_factor = 1.00 + r_diff * 0.001, //1.02 for r_diff = 20mm
r_factor = -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), //2.25 for r_diff = 20mm r_factor = -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), //2.25 for r_diff = 20mm
@ -5162,7 +5181,7 @@ inline void gcode_G28() {
#define Z0444(I) ZP(a_factor * 4.0 / 9.0, I) #define Z0444(I) ZP(a_factor * 4.0 / 9.0, I)
#define Z0888(I) ZP(a_factor * 8.0 / 9.0, I) #define Z0888(I) ZP(a_factor * 8.0 / 9.0, I)
switch (probe_points) { switch (c_value) {
case -1: case -1:
test_precision = 0.00; test_precision = 0.00;
case 1: case 1:
@ -5177,10 +5196,10 @@ inline void gcode_G28() {
break; break;
case -2: case -2:
e_delta[X_AXIS] = Z1050(0) - Z0700(7) + Z0350(11) + Z0350(3); e_delta[X_AXIS] = Z1050(0) - Z0700(7) + Z0350(11) + Z0350(3);
e_delta[Y_AXIS] = Z1050(0) + Z0350(7) - Z0700(11) + Z0350(3); e_delta[Y_AXIS] = Z1050(0) + Z0350(7) - Z0700(11) + Z0350(3);
e_delta[Z_AXIS] = Z1050(0) + Z0350(7) + Z0350(11) - Z0700(3); e_delta[Z_AXIS] = Z1050(0) + Z0350(7) + Z0350(11) - Z0700(3);
r_delta = Z2250(0) - Z0750(7) - Z0750(11) - Z0750(3); r_delta = Z2250(0) - Z0750(7) - Z0750(11) - Z0750(3);
break; break;
default: default:
@ -5189,9 +5208,9 @@ inline void gcode_G28() {
e_delta[Z_AXIS] = Z1050(0) - Z0175(1) - Z0175(5) + Z0350(9) + Z0175(7) + Z0175(11) - Z0350(3); e_delta[Z_AXIS] = Z1050(0) - Z0175(1) - Z0175(5) + Z0350(9) + Z0175(7) + Z0175(11) - Z0350(3);
r_delta = Z2250(0) - Z0375(1) - Z0375(5) - Z0375(9) - Z0375(7) - Z0375(11) - Z0375(3); r_delta = Z2250(0) - Z0375(1) - Z0375(5) - Z0375(9) - Z0375(7) - Z0375(11) - Z0375(3);
if (probe_points > 0) { //probe points negative disables tower angles if (c_value > 0) { //probe points negative disables tower angles
t_alpha = + Z0444(1) - Z0888(5) + Z0444(9) + Z0444(7) - Z0888(11) + Z0444(3); t_alpha = + Z0444(1) - Z0888(5) + Z0444(9) + Z0444(7) - Z0888(11) + Z0444(3);
t_beta = - Z0888(1) + Z0444(5) + Z0444(9) - Z0888(7) + Z0444(11) + Z0444(3); t_beta = - Z0888(1) + Z0444(5) + Z0444(9) - Z0888(7) + Z0444(11) + Z0444(3);
} }
break; break;
} }
@ -5216,7 +5235,6 @@ inline void gcode_G28() {
home_offset[Z_AXIS] = zh_old; home_offset[Z_AXIS] = zh_old;
delta_tower_angle_trim[A_AXIS] = alpha_old; delta_tower_angle_trim[A_AXIS] = alpha_old;
delta_tower_angle_trim[B_AXIS] = beta_old; delta_tower_angle_trim[B_AXIS] = beta_old;
recalc_delta_settings(delta_radius, delta_diagonal_rod); recalc_delta_settings(delta_radius, delta_diagonal_rod);
} }
@ -5226,7 +5244,7 @@ inline void gcode_G28() {
SERIAL_PROTOCOLPGM(". c:"); SERIAL_PROTOCOLPGM(". c:");
if (z_at_pt[0] > 0) SERIAL_CHAR('+'); if (z_at_pt[0] > 0) SERIAL_CHAR('+');
SERIAL_PROTOCOL_F(z_at_pt[0], 2); SERIAL_PROTOCOL_F(z_at_pt[0], 2);
if (abs(probe_points) > 2 || probe_points == 2) { if (probe_points > 2 || c_value == 2) {
SERIAL_PROTOCOLPGM(" x:"); SERIAL_PROTOCOLPGM(" x:");
if (z_at_pt[1] >= 0) SERIAL_CHAR('+'); if (z_at_pt[1] >= 0) SERIAL_CHAR('+');
SERIAL_PROTOCOL_F(z_at_pt[1], 2); SERIAL_PROTOCOL_F(z_at_pt[1], 2);
@ -5237,9 +5255,12 @@ inline void gcode_G28() {
if (z_at_pt[9] >= 0) SERIAL_CHAR('+'); if (z_at_pt[9] >= 0) SERIAL_CHAR('+');
SERIAL_PROTOCOL_F(z_at_pt[9], 2); SERIAL_PROTOCOL_F(z_at_pt[9], 2);
} }
if (probe_points != -2) SERIAL_EOL; if (c_value != -2) SERIAL_EOL;
if (abs(probe_points) > 2 || probe_points == -2) { if (probe_points > 2 || c_value == -2) {
if (abs(probe_points) > 2) SERIAL_PROTOCOLPGM(". "); if (probe_points > 2) {
SERIAL_CHAR('.');
SERIAL_PROTOCOL_SP(12);
}
SERIAL_PROTOCOLPGM(" yz:"); SERIAL_PROTOCOLPGM(" yz:");
if (z_at_pt[7] >= 0) SERIAL_CHAR('+'); if (z_at_pt[7] >= 0) SERIAL_CHAR('+');
SERIAL_PROTOCOL_F(z_at_pt[7], 2); SERIAL_PROTOCOL_F(z_at_pt[7], 2);
@ -5255,7 +5276,8 @@ inline void gcode_G28() {
if (test_precision != 0.0) { // !forced end if (test_precision != 0.0) { // !forced end
if (zero_std_dev >= test_precision) { // end iterations if (zero_std_dev >= test_precision) { // end iterations
SERIAL_PROTOCOLPGM("Calibration OK"); SERIAL_PROTOCOLPGM("Calibration OK");
SERIAL_PROTOCOLPGM(" rolling back."); SERIAL_PROTOCOL_SP(36);
SERIAL_PROTOCOLPGM("rolling back.");
SERIAL_EOL; SERIAL_EOL;
LCD_MESSAGEPGM("Calibration OK"); LCD_MESSAGEPGM("Calibration OK");
} }
@ -5264,13 +5286,14 @@ inline void gcode_G28() {
if (iterations < 31) if (iterations < 31)
sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations); sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations);
SERIAL_PROTOCOL(mess); SERIAL_PROTOCOL(mess);
SERIAL_PROTOCOLPGM(" std dev:"); SERIAL_PROTOCOL_SP(36);
SERIAL_PROTOCOLPGM("std dev:");
SERIAL_PROTOCOL_F(zero_std_dev, 3); SERIAL_PROTOCOL_F(zero_std_dev, 3);
SERIAL_EOL; SERIAL_EOL;
lcd_setstatus(mess); lcd_setstatus(mess);
} }
SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]); SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
if (abs(probe_points) > 1) { if (probe_points > 1) {
SERIAL_PROTOCOLPGM(" Ex:"); SERIAL_PROTOCOLPGM(" Ex:");
if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+'); if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+');
SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2); SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2);
@ -5283,7 +5306,7 @@ inline void gcode_G28() {
SERIAL_PROTOCOLPAIR(" Radius:", delta_radius); SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
} }
SERIAL_EOL; SERIAL_EOL;
if (probe_points > 2) { if (c_value > 2) {
SERIAL_PROTOCOLPGM(".Tower angle : Tx:"); SERIAL_PROTOCOLPGM(".Tower angle : Tx:");
if (delta_tower_angle_trim[A_AXIS] >= 0) SERIAL_CHAR('+'); if (delta_tower_angle_trim[A_AXIS] >= 0) SERIAL_CHAR('+');
SERIAL_PROTOCOL_F(delta_tower_angle_trim[A_AXIS], 2); SERIAL_PROTOCOL_F(delta_tower_angle_trim[A_AXIS], 2);
@ -5294,11 +5317,13 @@ inline void gcode_G28() {
SERIAL_EOL; SERIAL_EOL;
} }
if (zero_std_dev >= test_precision) if (zero_std_dev >= test_precision)
SERIAL_PROTOCOLLNPGM("save with M500 and/or copy to configuration.h"); serialprintPGM(save_message);
} }
else { // forced end else { // forced end
if (verbose_level == 0) { if (verbose_level == 0) {
SERIAL_PROTOCOLPGM("End DRY-RUN std dev:"); SERIAL_PROTOCOLPGM("End DRY-RUN");
SERIAL_PROTOCOL_SP(39);
SERIAL_PROTOCOLPGM("std dev:");
SERIAL_PROTOCOL_F(zero_std_dev, 3); SERIAL_PROTOCOL_F(zero_std_dev, 3);
SERIAL_EOL; SERIAL_EOL;
} }
@ -5307,7 +5332,7 @@ inline void gcode_G28() {
LCD_MESSAGEPGM("Calibration OK"); LCD_MESSAGEPGM("Calibration OK");
SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]); SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
SERIAL_EOL; SERIAL_EOL;
SERIAL_PROTOCOLLNPGM("save with M500 and/or copy to configuration.h"); serialprintPGM(save_message);
} }
} }

View file

@ -1833,7 +1833,7 @@ void kill_screen(const char* lcd_msg) {
START_MENU(); START_MENU();
MENU_BACK(MSG_MAIN); MENU_BACK(MSG_MAIN);
#if ENABLED(DELTA_AUTO_CALIBRATION) #if ENABLED(DELTA_AUTO_CALIBRATION)
MENU_ITEM(gcode, MSG_DELTA_AUTO_CALIBRATE, PSTR("G33 C")); MENU_ITEM(gcode, MSG_DELTA_AUTO_CALIBRATE, PSTR("G33"));
MENU_ITEM(gcode, MSG_DELTA_HEIGHT_CALIBRATE, PSTR("G33 C-1")); MENU_ITEM(gcode, MSG_DELTA_HEIGHT_CALIBRATE, PSTR("G33 C-1"));
#endif #endif
MENU_ITEM(submenu, MSG_AUTO_HOME, _lcd_delta_calibrate_home); MENU_ITEM(submenu, MSG_AUTO_HOME, _lcd_delta_calibrate_home);